两角差的余弦公式 说课稿 教案

合集下载

高中数学《两角差的余弦公式》教案和教案说明

高中数学《两角差的余弦公式》教案和教案说明

高中数学《两角差的余弦公式》教案和教案说明教案说明:本教案旨在帮助学生理解和掌握两角差的余弦公式,并能运用该公式解决相关问题。

通过本节课的学习,学生将能够:1. 理解两角差的余弦公式的定义和意义;2. 熟练掌握两角差的余弦公式的推导过程;3. 能够运用两角差的余弦公式解决实际问题。

教案内容:一、教学目标1. 理解两角差的余弦公式的定义和意义;2. 掌握两角差的余弦公式的推导过程;3. 能够运用两角差的余弦公式解决实际问题。

二、教学重点与难点1. 教学重点:两角差的余弦公式的定义和意义,推导过程;2. 教学难点:两角差的余弦公式的运用。

三、教学准备1. 教师准备:教材、教案、PPT、黑板、粉笔;2. 学生准备:课本、笔记本、文具。

四、教学过程1. 导入:引导学生回顾已学过的三角函数知识,为新课的学习做好铺垫;2. 讲解:讲解两角差的余弦公式的定义和意义,通过示例让学生理解公式的应用;3. 推导:引导学生通过图形和逻辑推理,推导出两角差的余弦公式;4. 练习:布置一些练习题,让学生运用两角差的余弦公式解决问题;五、课后作业1. 复习本节课所学内容,巩固两角差的余弦公式的理解和运用;2. 完成课后练习题,提高运用两角差的余弦公式解决问题的能力。

教学反思:在课后,教师应认真反思本节课的教学效果,针对学生的掌握情况,调整教学策略,以提高学生对两角差的余弦公式的理解和运用能力。

关注学生的学习反馈,及时解答学生的疑问,提高教学质量。

六、教学评价1. 课堂讲解:评价学生对两角差的余弦公式的理解程度,观察学生是否能清晰地解释公式的含义和应用;2. 练习题目:评估学生运用两角差的余弦公式解决问题的能力,检查解答的准确性;3. 课后作业:检查学生完成作业的情况,观察是否能正确运用公式并解决实际问题。

七、教学拓展1. 引导学生思考:两角差的余弦公式在实际生活中的应用,例如测量角度、建筑设计等;2. 介绍进一步的研究:引导学生探索更多关于三角函数的性质和公式,激发学生的学习兴趣。

两角差的余弦公式 说课稿 教案

两角差的余弦公式 说课稿  教案

两角差的余弦公式一、概述本节课选自人教版必修四,第三章第一节,其中心任务是通过已知的《平面向量》和《三角函数》的知识,探索推导出两角差的余弦公式。

并通过简单的运用,使学生初步理解公式的由来,结构,功能及其运用,分一课时完成。

三角恒等变换处于三角函数与数学变换的结合点和交汇点上,两角差的余弦公式是《三角恒等变换》这一章的基础和出发点,是前面所学三角函数知识的继续与发展,是培养学生推理能力和运算能力的重要素材。

所以,从知识的结构和内容上看都具有承上启下的作用。

二、教学目标分析由于新课程要求要让学生经历数学知识的形成与应用过程,要鼓励学生自主探索合作交流,因此三维目标主要体现在:知识与技能目标:1、理解两角差余弦公式的推导过程;2、掌握两角差的余弦公式并能用之解决某些简单的问题。

过程与方法目标:1、通过对公式的推导,让学生体会所蕴含的类比思想和分类讨论的思想;2、通过对公式的推导提高学生分析问题,解决问题的能力,让学生从公式探索中体会认知新事物时从一般到特殊的思想和规律;情感态度与价值观目标:通过对公式的推导与简单应用,使学生经历数学知识的发现、认知的过程,体验成功探索新知的乐趣,激发学生的求知欲,鼓励学生大胆尝试,从而提高学生的学习兴趣。

(二)教学重、难点重点:两角差的余弦公式及公式的灵活应用;[设计意图]:课标要求要让学生经历数学知识的形成与应用过程;难点:余弦公式的探索,推导和证明;[设计意图]:高一学生逻辑思维能力还比较薄弱,对于公式的证明还存在很大的问题。

三、学习者特征分析1从学生已有的知识与方法看:高一学生已经学习了《平面向量》和《三角函数》的知识,从日常教学所反应的学生特点来看,学生对类比和分类讨论的思想有所体会,但是还是只停留在体会阶段,没有办法真正灵活的运用。

具有了一定归纳总结的能力,但对于一般结论的原因,还是没能用严格的定义证明;2从学生的情感,态度看:高一学生已经厌倦老师的单独说教,希望老师创设便于他们进行观察的环境,给他们发表自己见解和表现自己才华的机会,希望老师满足他们的创造愿望,让他们实际操作,小组交流,使他们获得施展自己创造才能的空间。

人教版高中数学两角差的余弦公式教案和教案说明

人教版高中数学两角差的余弦公式教案和教案说明

人教版高中数学两角差的余弦公式教案和教案说明教案内容:一、教学目标:1. 让学生理解两角差的余弦公式的概念和意义。

2. 引导学生掌握两角差的余弦公式的推导过程。

3. 培养学生运用两角差的余弦公式解决实际问题的能力。

二、教学重点与难点:1. 重点:两角差的余弦公式的推导过程及其应用。

2. 难点:两角差的余弦公式的灵活运用。

三、教学方法与手段:1. 采用讲授法、探究法、练习法等教学方法。

2. 使用多媒体课件、黑板、教具等教学手段。

四、教学过程:1. 导入:回顾上一节课所学的两角和的余弦公式,引导学生思考两角差的余弦公式。

2. 新课讲解:(1)介绍两角差的余弦公式的概念和意义。

(2)引导学生推导两角差的余弦公式。

(3)通过例题讲解两角差的余弦公式的应用。

3. 课堂练习:布置练习题,让学生巩固所学内容。

4. 总结与拓展:回顾本节课所学内容,引导学生思考两角差的余弦公式的拓展应用。

五、课后作业:1. 抄写并理解两角差的余弦公式。

2. 完成课后练习题,巩固所学知识。

教案说明:本教案旨在帮助学生掌握两角差的余弦公式,通过导入、新课讲解、课堂练习、总结与拓展等环节,让学生逐步理解两角差的余弦公式的概念和意义,并能够灵活运用到实际问题中。

在教学过程中,教师应注重引导学生主动探究,培养学生的动手实践能力和思维能力。

课后作业的布置有助于巩固所学知识,提高学生的学习效果。

六、教学评价:1. 评价目标:检查学生对两角差的余弦公式的理解程度和应用能力。

2. 评价方法:(1)课堂问答:通过提问方式检查学生对两角差的余弦公式的概念和推导过程的理解。

(2)课后作业:布置相关的习题,评估学生对两角差的余弦公式的应用能力。

(3)单元测试:进行一次单元测试,全面评估学生对两角差的余弦公式的掌握情况。

七、教学反思:在教学过程中,教师应根据学生的反馈情况及时进行调整教学方法和节奏。

针对学生的薄弱环节,加强针对性训练,提高学生的理解和应用能力。

两角差的余弦公式说课稿

两角差的余弦公式说课稿

两角差的余弦公式说课稿一、教材分析本节课是高中数学必修4(人教A版)第三章3.1.1两角差的余弦公式的内容,教学安排是1课时。

在学习本章之前学生已经学习了任意角的三角函数和诱导公式等知识,并学习了向量的相关知识,因此我准备优先选择运用向量的知识推导和证明两角差的余弦公式,降低新课难度,使学生容易接受。

本章是以两角差的余弦公式作为基础来推导其它的公式,因此本节内容对于后续内容三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有重要的支撑作用。

二、学情分析本节课的主要内容就是“推导两角差的余弦公式”,用到的方法有三角函数线和向量法。

都属于必修4刚刚学过的基础知识,内容简单,容易理解和接受,这是学习本节课的有利因素。

π,这与两但是,使用向量法来推导公式虽然简单,而向量夹角范围是[0,]角差αβ-的范围并不一致,还要分类计论。

分类讨论是学生的弱项,客观上也成为学习本节的不利因素,也成为本节课的一个难点。

三、教学目标分析课标要求:了解用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用;理解两角差的余弦公式.1.知识与技能目标理解用向量方法推导两角差的余弦公并能够初步运用.2.过程与方法目标在两角差余弦公式的推导过程中,进一步体会向量方法的作用,体会数形结合,分类讨论思想、化归思想的运用。

3.情感、态度与价值观目标①培养学生不怕困难,勇于探索的求知精神。

②通过观察、对比体会公式的对称美,给学生以美的陶冶。

四、教学重点、难点分析重点:两角差的余弦公式的推导与运用。

难点:两角差余弦公式的推导过程中两角差αβ-的范围的讨论。

解决难点的关键是,搞清向量夹角的范围,运用数形结合的思想,使角的关系变得形象直观,容易找到αβ-与向量的夹角θ之间的等量关系()2k αβθπ-+=,从而降代难度,化解难点。

五、教法与学法分析(1)坚持“低起点-小步子-引方法-勤反馈”四个基本原则;低起点旨在带所有学生入门,积极参与课堂,打消学困生的畏难情绪;小步子是指设置难度梯度的问题情境和练习题以及变式训练,让学生学得轻松,易于掌握;引方法是数学教学中需长期坚持的原则,数学非常体重方法的引导和思维的训练;勤反馈是课堂效率得以保障的重要途径,通过学生交流讨论,回答问题,以及上黑板做题,课堂小检测等方面及时反馈学生的掌握情况。

八年级数学《两角差的余弦公式》的说课稿

八年级数学《两角差的余弦公式》的说课稿

八年级数学《两角差的余弦公式》的说课稿八年级数学《两角差的余弦公式》的说课稿一、教材分析“两角差的余弦公式”是课标教材人教版必修4第三章《三角恒等变换》第一节第一课时的内容。

学生已经学习了三角函数的基本关系和诱导公式以及平面向量,在此基础上,本章将学习任意两个角和、差的三角函数式的变换。

作为本章的第一节课,重点是引导学生通过合作、交流,探索两角差的余弦公式,为后续简单的恒等变换的学习打好基础。

由于两角差的余弦公式推导方法有很多,书本上出现两种证明方法——三角函数线法和向量法。

课本中丰富的生活实例为学生用数学的眼光看待生活,体验用数学知识解决实际问题,有助于增强学生的数学应用意识。

二、学情分析学生在第一章已经学习了三角函数的基本关系和诱导公式以及平面向量,但只对有特殊关系的两个角的三角函数关系通过诱导公式变换有一定的了解。

对任意两角和、差的三角函数知之甚少。

本课时面对的学生是高一年级的学生,学生对探索未知世界有主动意识,对新知识充满探求的渴望,但应用已有知识解决问题的能力还处在初期,需进一步提高。

三、教法学法分析(一)、说教法基于新课标的理念中“学生主体性和教师主导性”的原则以及本班学生的实际情况,我采取如下教学方法:1、通过学生熟悉的实际生活问题引入课题,为公式学习创设情境,拉近数学与现实的距离,激发学生的求知欲,调动学生的主体参与的积极性。

2、突破教材,引导学生利用较为简洁的两种方法——两点间距离公式和向量法,在鼓励学生主体参与、乐于探究、勤于思考公式推导的同时,充分发挥教师的主导作用。

3、采用投影仪、多媒体等现代教学手段,增强教学简易性和直观性。

4、通过有梯度的练习、变式训练、分层作业,学生对知识掌握逐步提高。

(二)、说学法从学生已有的认知水平、认知能力出发,经过观察分析、自主探究、推导证明、归纳总结等环节,理解公式的推导过程,通过有梯度的练习、变式训练、分层作业,学生逐步提高对知识掌握。

四、教学目标(根据新课程标准和本节知识的特点,以及本班学生的实际情况,确立以下教学目标)(一)、知识目标1、理解两角差的余弦公式的推导过程,并会利用两角差的余弦公式解决简单问题。

两角差的余弦公式详细教案

两角差的余弦公式详细教案

两角差的余弦公式详细教案第一章:两角差的余弦公式简介1.1 教学目标了解两角差的余弦公式的概念和意义掌握两角差的余弦公式的表达式1.2 教学内容两角差的余弦公式的定义两角差的余弦公式的推导过程两角差的余弦公式的应用示例1.3 教学方法通过图片和实例引入两角差的余弦公式的概念利用几何图形和三角函数的性质推导两角差的余弦公式通过例题和练习题引导学生运用两角差的余弦公式解决问题1.4 教学评估课堂讲解和互动,了解学生对两角差的余弦公式的理解程度练习题和作业的批改,评估学生对两角差的余弦公式的掌握情况第二章:两角差的余弦公式的推导2.1 教学目标掌握两角差的余弦公式的推导过程理解两角差的余弦公式的几何意义2.2 教学内容两角差的余弦公式的推导方法2.3 教学方法利用三角函数的性质和几何图形推导两角差的余弦公式通过图示和动画演示两角差的余弦公式的几何意义2.4 教学评估课堂讲解和互动,了解学生对两角差的余弦公式的推导过程的理解程度练习题和作业的批改,评估学生对两角差的余弦公式的掌握情况第三章:两角差的余弦公式的应用3.1 教学目标掌握两角差的余弦公式的应用方法能够运用两角差的余弦公式解决实际问题3.2 教学内容两角差的余弦公式的应用示例两角差的余弦公式在实际问题中的应用3.3 教学方法通过例题和练习题引导学生运用两角差的余弦公式解决问题利用图形和实际问题解释两角差的余弦公式的应用方法3.4 教学评估课堂讲解和互动,了解学生对两角差的余弦公式的应用方法的理解程度练习题和作业的批改,评估学生对两角差的余弦公式的掌握情况第四章:两角差的余弦公式的拓展4.1 教学目标掌握两角差的余弦公式的推广和应用4.2 教学内容两角差的余弦公式的推广公式两角差的余弦公式在其他领域的应用4.3 教学方法通过讲解和示例引导学生了解两角差的余弦公式的推广公式通过相关领域的实例展示两角差的余弦公式的应用范围4.4 教学评估课堂讲解和互动,了解学生对两角差的余弦公式的拓展知识的理解程度练习题和作业的批改,评估学生对两角差的余弦公式的推广和应用的掌握情况第五章:两角差的余弦公式的综合练习5.1 教学目标巩固对两角差的余弦公式的理解和掌握提高运用两角差的余弦公式解决综合问题的能力5.2 教学内容综合练习题,涵盖两角差的余弦公式的各个方面5.3 教学方法通过综合练习题,让学生综合运用两角差的余弦公式解决问题提供解答和解析,帮助学生理解和纠正错误5.4 教学评估课堂讲解和互动,了解学生对两角差的余弦公式的综合练习的掌握情况练习题和作业的批改,评估学生对两角差的余弦公式的综合运用能力第六章:两角差的余弦公式的逆向应用6.1 教学目标理解两角差的余弦公式的逆向应用的概念学会如何使用逆向应用解决相关问题6.2 教学内容两角差的余弦公式的逆向应用的定义和原理逆向应用的典型例题解析6.3 教学方法通过讲解和示例,让学生理解两角差的余弦公式的逆向应用的概念引导学生运用逆向应用解决实际问题6.4 教学评估课堂讲解和互动,了解学生对两角差的余弦公式的逆向应用的理解程度练习题和作业的批改,评估学生对两角差的余弦公式的逆向应用的掌握情况第七章:两角差的余弦公式在三角函数图像中的应用7.1 教学目标理解两角差的余弦公式在三角函数图像中的应用学会如何利用两角差的余弦公式分析三角函数图像的特点7.2 教学内容两角差的余弦公式在三角函数图像中的应用方法利用两角差的余弦公式分析三角函数图像的典型例题7.3 教学方法通过讲解和示例,让学生理解两角差的余弦公式在三角函数图像中的应用方法引导学生运用两角差的余弦公式分析三角函数图像的特点7.4 教学评估课堂讲解和互动,了解学生对两角差的余弦公式在三角函数图像中的应用的理解程度练习题和作业的批改,评估学生对两角差的余弦公式在三角函数图像中的应用的掌握情况第八章:两角差的余弦公式在实际生活中的应用8.1 教学目标理解两角差的余弦公式在实际生活中的应用学会如何利用两角差的余弦公式解决实际问题8.2 教学内容两角差的余弦公式在实际生活中的应用实例利用两角差的余弦公式解决实际问题的方法8.3 教学方法通过讲解和示例,让学生理解两角差的余弦公式在实际生活中的应用引导学生运用两角差的余弦公式解决实际问题8.4 教学评估课堂讲解和互动,了解学生对两角差的余弦公式在实际生活中的应用的理解程度练习题和作业的批改,评估学生对两角差的余弦公式在实际生活中的应用的掌握情况第九章:两角差的余弦公式的拓展与研究培养学生对两角差的余弦公式的深入理解激发学生对两角差的余弦公式的探究欲望9.2 教学内容两角差的余弦公式的深入讲解和分析引导学生对两角差的余弦公式进行探究和研究9.3 教学方法通过深入讲解和分析,让学生对两角差的余弦公式有更深入的理解鼓励学生提出问题,引导学生进行探究和研究9.4 教学评估课堂讲解和互动,了解学生对两角差的余弦公式的深入理解的程度学生的问题和探究成果,评估学生对两角差的余弦公式的探究和研究的能力第十章:两角差的余弦公式总结与复习10.1 教学目标巩固学生对两角差的余弦公式的理解和掌握提高学生对两角差的余弦公式的运用能力10.2 教学内容两角差的余弦公式的总结和复习针对学生掌握情况,进行针对性的练习和讲解10.3 教学方法通过总结和复习,让学生巩固对两角差的余弦公式的理解和掌握根据学生的掌握情况,进行针对性的练习和讲解课堂讲解和互动,了解学生对两角差的余弦公式的总结和复习的理解程度练习题和作业的批改,评估学生对两角差的余弦公式的掌握情况重点和难点解析重点:1. 两角差的余弦公式的概念和表达式。

两角差的余弦公式说课稿

两角差的余弦公式说课稿
采用“引导发现”和“主动参与、独立探索” 为了抓住重点,我从学生已有的认知水平出发, 设计具有梯度的问题导入,激发学生的学习兴趣,引
导和组织学生参与探索公式的建立和推导过程,鼓励
学生独立思考,让学生在参与推理的过程中感受成功
的快乐和提高逻辑推理能力 .
在突破难点上,主要通过以下四个方面的师生活动 :
1.课本P 习题3.1A组第1(1)、(3);2;3题. 137 课本P 习题3.1A组第4题. 2.(选做题) 137
五、评价分析
本节课的学生评价坚持形成性评价的原则 1.从学习兴趣、交流合作、情绪情感、逻辑推理能力 等方面对学生学习效果进行过程评价; 2.对出现困难的学生,指出其可取之处并耐心引导, 这样有助于培养他们面对挫折,敢于探索的精神; 3.当学生做的精彩,及时给予充分的鼓励,进一步 激发学生学习的潜能,提高他们的求知欲望; 4.通过例题、练习、课堂小结、作业等对学生在三维 目标方面进一步评价,反思教学,改进方法.
求 cos2 .
①深化对公式结构的认识; ②有意识培养学生见角找联系,而不是见角拆角, 盲目运用公式.
(六)、课堂小结
1.对公式的探索过程中你是怎么联系有关知识的? 怎样进行探索的?运用了什么工具? 2.对公式 C( ) 的结构和功能的认识. . 3. 教师加以提炼和补充.
(七)、布置作业
①引导学生积极思考,大胆探索,学会对目标进行
对比分析,把握思维方向;
②组织学生共同钻研,学会合作,开展讨论交流;
③对学生的探求活动适当指导,适时地给与帮助;
④完善推理过程——对 0, 的情况引导 学生完善.
四、过程分析
(一)、设置问题,引发思考
1.填空:
cos(

高中数学《两角差的余弦公式》教案和教案说明

高中数学《两角差的余弦公式》教案和教案说明

3.1.1 两角差的余弦公式教学分析本节首先引导学生对cos(α-β)的结果进行探究,让学生充分发挥想象力,进行猜想,给出所有可能的结果,然后再去验证其真假.这也展示了数学知识的发生、发展的具体过程,最后提出了两种推导证明“两角差的余弦公式”的方案.方案一,利用单位圆上的三角函数线进行探索、推导,让学生动手画图,构造出α-β角,利用学过的三角函数知识探索存在一定的难度,教师要作恰当的引导.方案二,利用向量知识探索两角差的余弦公式时,要注意推导的层次性:①在回顾求角的余弦有哪些方法时,联系向量知识,体会向量方法的作用;②结合有关图形,完成运用向量方法推导公式的必要准备;③探索过程不应追求一步到位,应先不去理会其中的细节,抓住主要问题及其线索进行探索,然后再反思,予以完善;④补充完善的过程,既要运用分类讨论的思想,又要用到诱导公式.本节是数学公式的教学,教师要遵循公式教学的规律,应注意以下几方面:①要使学生了解公式的由来;②使学生认识公式的结构特征,加以记忆;③使学生掌握公式的推导和证明;④通过例子使学生熟悉公式的应用,灵活运用公式进行解答有关问题.三维目标1.通过让学生探索、猜想、发现并推导“两角差的余弦公式”,了解单角与复角的三角函数之间的内在联系,并通过强化题目的训练,加深对两角差的余弦公式的理解,培养学生的运算能力及逻辑推理能力,提高学生的数学素质.2.通过两角差的余弦公式的运用,会进行简单的求值、化简、证明,体会化归思想在数学当中的运用,使学生进一步掌握联系的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题、解决问题的能力.3.通过本节的学习,使学生体会探究的乐趣,认识到世间万物的联系与转化,养成用辩证与联系的观点看问题.创设问题情境,激发学生分析、探求的学习态度,强化学生的参与意识,从而培养学生分析问题、解决问题的能力和代换、演绎、数形结合等数学思想方法.重点难点教学重点:通过探究得到两角差的余弦公式.教学难点:探索过程的组织和适当引导.课时安排1课时教学过程导入新课思路2.(复习导入)我们在初中时就知道cos45°=22,cos30°=23,由此我们能否得到cos15°=cos(45°-30°)=?这里是不是等于cos45°-cos30°呢?教师可让学生验证,经过验证可知,我们的猜想是错误的.那么究竟是个什么关系呢?cos(α-β)等于什么呢?这时学生急于知道答案,由此展开新课:我们就一起来探讨“两角差的余弦公式”.这是全章公式的基础.推进新课新知探究提出问题①请学生猜想cos(α-β)=?②利用前面学过的单位圆上的三角函数线,如何用α、β的三角函数来表示cos(α-β)呢? ③利用向量的知识,又能如何推导发现cos(α-β)=?④细心观察C (α-β)公式的结构,它有哪些特征?其中α、β角的取值范围如何?⑤如何正用、逆用、灵活运用C (α-β)公式进行求值计算?活动:问题①,出示问题后,教师让学生充分发挥想象能力尝试一下,大胆猜想,有的同学可能就首先想到cos(α-β)=cosα-cosβ的结论,此时教师适当的点拨,然后让学生由特殊角来验证它的正确性.如α=60°,β=30°,则cos(α-β)=cos30°=23,而cosα-cosβ=cos60°-cos30°=231-,这一反例足以说明cos(α-β)≠cosα-cosβ. 0060,30,αβ==如让学生明白,要想说明猜想正确,需进行严格证明,而要想说明猜想错误,只需一个反例即可.问题②,既然cos(α-β)≠cosα-cosβ,那么cos(α-β)究竟等于什么呢?由于这里涉及的是三角函数的问题,是α-β这个角的余弦问题,我们能否利用单位圆上的三角函数线来探究呢?图1如图1,设角α的终边与单位圆的交点为P 1,∠POP 1=β,则∠POx=α-β.过点P 作PM 垂直于x 轴,垂足为M,那么OM 就是角α-β的余弦线,即OM=cos(α-β),这里就是要用角α、β的正弦线、余弦线来表示OM.过点P 作PA 垂直于OP 1,垂足为A,过点A 作AB 垂直于x 轴,垂足为B,过点P 作PC 垂直于AB,垂足为C.那么,OA 表示cosβ,AP 表示sinβ,并且∠PAC=∠P 1Ox=α.于是,OM=OB+BM=OB+CP=OAcosa+APsina =cosβcosα+sinβsinα,所以,cos(α-β)=cosαcosβ+sinα sinβ.教师引导学生进一步思考,以上的推理过程中,角α、β、α-β是有条件限制的,即α、β、α-β均为锐角,且α>β,如果要说明此结果是否对任意角α、β都成立,还要做不少推广工作,并且这项推广工作的过程比较繁琐,由同学们课后动手试一试.图2问题③,教师引导学生,可否利用刚学过的向量知识来探究这个问题呢?如图2,在平面直角坐标系xOy 内作单位圆O,以Ox 为始边作角α、β,它们的终边与单位圆O 的交点分别为A 、B,则=(cosα,sinα),=(cosβ,sinβ),∠AOB =α-β.由向量数量积的定义有OA ·OB =|OA ||OB |·cos(α-β)=cos(α-β), 由向量数量积的坐标表示有·=(cosα,sinα)(cosβ,sinβ)=cosαcosβ+sinαsinβ, 于是,cos(α-β)=cosαcosβ+sinαsinβ.我们发现,运用向量工具进行探究推导,过程相当简洁,但在向量数量积的概念中,角α-β必须符合条件0≤α-β≤π,以上结论才正确,由于α、β都是任意角,α-β也是任意角,因此就是研究当α-β是任意角时,以上公式是否正确的问题.当α-β是任意角时,由诱导公式,总可以找到一个角θ∈[0,2π),使cosθ=cos(α-β),若θ∈[0,π],则OA ·OB =cosθ=cos(α-β).若θ∈[π,2π],则2π-θ∈[0,π],且OA ·OB =cos(2π-θ)=cosθ=cos(α-β). 由此可知,对于任意角α、β都有此公式给出了任意角α、β的正弦、余弦值与其差角α-β的余弦值之间的关系,称为差角的余弦公式,简记为C (α-β).有了公式C (α-β)以后,我们只要知道cosα、cosβ、sinα、sinβ的值,就可以求得cos(α-β)的值了.问题④,教师引导学生细心观察公式C (α-β)的结构特征,让学生自己发现公式左边是“两角差的余弦”,右边是“这两角的余弦积与正弦积的和”,可让学生结合推导过程及结构特征进行记忆,特别是运算符号,左“-”右“+”.或让学生进行简单填空,如:cos(A-B)=__________,cos(θ-φ)= __________等.因此,只要知道了sinα、cosα、sinβ、cosβ的值就可以求得cos(α-β)的值了. 问题⑤,对于公式的正用是比较容易的,关键在于“拆角”的技巧,而公式的逆用则需要学生的逆向思维的灵活性,特别是变形应用,这就需要学生具有较强的观察能力和熟练的运算技巧.如cos75°cos45°+sin75°sin45°=cos(75°-45°)=cos30°=23, cosα=cos [(α+β)-β]=cos(α+β)cosβ+sin(α+β)sinβ.讨论结果:①—⑤略.应用示例思路1例1 利用差角余弦公式求cos15°的值.活动:先让学生自己探究,对有困难的学生教师可点拨学生思考题目中的角15°,它可以拆分为哪些特殊角的差,如15°=45°-30°或者15°=60°-45°,从而就可以直接套用公式C (α-β)计算求值.教师不要包办,充分让学生自己独立完成,在学生的具体操作下,体会公式的结构,公式的用法以及把未知转化为已知的数学思想方法.对于很快就完成的同学,教师鼓励其换个角度继续探究.解:方法一:cos15°=cos(45°-30°)=cos45°cos30°+sin45°sin30° =.42621222322+=⨯+⨯ 方法二:cos15°=cos(60°-45°)=cos60°cos45°+sin60°sin45° =21×.426232222+=⨯+ 点评:本题是指定方法求cos15°的值,属于套用公式型的,这样可以使学生把注意力集中到使用公式求值上.但是仍然需要学生将这个非特殊角拆分成两个特殊角的差的形式,灵活运用公式求值.本例也说明了差角余弦公式也适用于形式上不是差角,但可以拆分成两角差的情形.至于如何拆分,让学生在应用中仔细体会.变式训练1.不查表求sin75°,sin15°的值解:sin75°=cos15°=cos(45°-30°)=cos45°cos30°+sin45°sin30° =.42621322322+=⨯+⨯ sin15°= 15cos 12-=2)426(1+-=.426162628-=⨯- 点评:本题是例题的变式,比例题有一定的难度,但学生只要细心分析,利用相关的诱导公式,不难得到上面的解答方法.2.不查表求值:cos110°cos20°+sin110°sin20°.解:原式=cos(110°-20°)=cos90°=0.点评:此题学生一看就有似曾相识而又无从下手的感觉,需要教师加以引导,让学生细心观察,再结合公式C (α-β)的右边的特征,逆用公式便可得到cos(110°-20°).这就是公式逆用的典例,从而培养了学生思维的灵活性.例2 已知sinα=54,α∈(2π,π),cosβ=135-,β是第三象限角,求cos (α-β)的值. 活动:教师引导学生观察题目的结构特征,联想到刚刚推导的余弦公式,学生不难发现,欲求cos(α-β)的值,必先知道sinα、cosα、sinβ、cosβ的值,然后利用公式C (α-β)即可求解.从已知条件看,还少cosα与sinβ的值,根据诱导公式不难求出,但是这里必须让学生注意利用同角的平方和关系式时,角α、β所在的象限,准确判断它们的三角函数值的符号.本例可由学生自己独立完成.解:由sinα=54,α∈(2π,π),得 cosα=.53)54(1sin 122-=--=--a又由cosβ=135-,β是第三象限角,得 sinβ=.1312)135(1cos 122-=---=--β 所以cos(α-β)=cosαcosβ+sinαsinβ =.6533)1312(54)135()53(-=-⨯+-⨯- 点评:本题是直接运用公式C (α-β)求值的基础练习,但必须思考使用公式前应作出的必要准备.特别是运用同角三角函数平方关系式求值时,一定要弄清角的范围,准确判断三角函数值的符号.教师可提醒学生注意这点,养成良好的学习习惯.变式训练已知sinα=54,α∈(0,π),cosβ=135-,β是第三象限角,求cos(α-β)的值.解:①当α∈[2π,π)时,且sinα=54,得cosα=53)54(1sin 122-=--=--a , 又由cosβ=135-,β是第三象限角,得 s inβ=22)135(1cos 1---=--β=1312-. 所以cos(α-β)=cosαcosβ+sinαsinβ =.6533)1312(54)135()53(-=-⨯+-⨯-. ②当α∈(0,2π)时,且sinα=54,得 cosα=53)54(1sin 122=-=-a , 又由cosβ=135-,β是第三象限角,得 sinβ=.1312)135(1cos 122-=---=--β 所以cos(α-β)=cosαcosβ+sinαsinβ =.6563)1312(54)135(53-=-⨯+-⨯ 点评:本题与例2的显著的不同点就是角α的范围不同.由于α∈(0,π),这样cosα的符号可正、可负,需讨论,教师引导学生运用分类讨论的思想,对角α进行分类讨论,从而培养学生思维的严密性和逻辑的条理性.教师强调分类时要不重不漏.课堂小结1.先由学生自己思考、回顾公式的推导过程,观察公式的特征,特别要注意公式既可正用、逆用,还可变用及掌握变角和拆角的思想方法解决问题.然后教师引导学生围绕以下知识点小结:(1)怎么联系有关知识进行新知识的探究?(2)利用差角余弦公式方面:对公式结构和功能的认识;三角变换的特点.2.教师画龙点睛:本节课要理解并掌握两角差的余弦公式及其推导,要正确熟练地运用公式进行解题,在解题时要注意分析三角函数名称、角的关系,准确判断三角函数值的符号.多对题目进行一题多解,从中比较最佳解决问题的途径,以达到优化解题过程,规范解题步骤,领悟变换思路,强化数学思想方法之目的.作业1、 课本习题3.1 A 组2、3、4任选两题;2、 (选做题)课本习题3.1 B 组第4题.教案说明:1.本节课是典型的公式教学模式,因此本节课的设计流程为“实际问题→猜想→探索推导→记忆→应用”.它充分展示了公式教学中以学生为主体,进行主动探索数学知识发生、发展的过程.同时充分发挥教师的主导作用,引导学生利用旧知识推导、证明新知识,并学会记忆公式的方法,灵活运用公式解决实际问题,从而培养学生独立探索数学知识的能力,增强学生的应用意识,激发学生学习的积极性.2.纵观本教案的设计,学生发现推导出公式C(α-β)后就是应用,同时如何训练公式的正用、逆用、变形用也是本节的重点难点.而学生从探究活动过程中学会了怎样去发现数学规律,又发现了怎样逆用公式及活用公式,那才是深层的,那才是我们中学数学教育的最终目的.3.教学矛盾的主要方面是学生的学,学是中心,会学是目的,根据高中三角函数的推理特点,本节主要是教给学生“研究问题、猜想探索公式、验证特殊情形、推导公式、学习应用”的探索创新式学习方法.这样做增强了学生的参与意识,教给了学生发现规律、探索推导,获取新知的途径,让学生真正尝到探索的喜悦,真正成为教学的主体.学生体会到数学的美,产生一种成功感,从而提高了学习数学的兴趣.。

标准说课稿——两角差的余弦公式

标准说课稿——两角差的余弦公式

《两角差的余弦公式》说课稿全宏莲一、教材分析本节课是高中数学必修4(人教版)第三章3.1。

1两角差的余弦公式的内容,教学安排是1课时。

在学习本章之前我们刚刚学习了向量的相关知识,因此作者的意图是选择两角差的余弦公式作为本章基础,运用向量知识论证,即降低了难度,使学生容易接受.又为学习后续三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决奠定了坚实基础.二、教学目标分析课程目标要求:理解用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用;理解两角差的余弦公式。

1.知识与技能目标理解用向量方法推导两角差的余弦公并能够初步运用.2.过程与方法目标在两角差余弦公式的推导过程中,进一步体会向量方法的作用,体会分类讨论思想的应用.3.情感、态度与价值观目标感悟事物之间普遍联系和转化的关系。

三、教法分析利用引导探究的方法,在课程开始之初,提出问题,引发学生求知欲望。

利用讲授法为主的教学方法全面深入分析两角差的余弦公式的论证过程。

并用例题与课后练习巩固所学内容.四、学法分析积极主动参与两角差的余弦公式的论证过程,重点理解利用向量数量积论证公式的过程.着重记忆论证过程中分类讨论思想的运用。

并在教师的指导下,通过认真观察,积极思考,用数形结合的方法从直观上打开突破口,探究归纳出两角差的余弦公式。

五、教学重点、难点分析重点:两角差的余弦公式的推导与运用难点:两角差余弦公式的推导过程解决难点的关键是,搞清向量夹角的范围,运用数形结合的思想,使角的关系变得形象直观,容易找到与向量的夹角之间的等量关系,从而降低难度,化解难点。

六、教学用具分析几何画板课件七、教学过程分析(一)、温习平面向量的数量积是怎样定义的?坐标表示是怎样的?(二)、提问并引出本节内容1、cos45°=? cos30°=? cos15°=? 【cos15°= cos(45°—30°)】2、根据上述三个问题的联系,提出两角差的余弦公式(三)、两角差的余弦公式的论证A、利用刚刚学习的向量知识1.当时如图,则又∴2.当时思考:上面图中向量的夹角是怎样的?,范围是怎样的?(,且)正与向量夹角的范围相符,所以我们自然地列出了表达式,但是的范围可不可能超出呢?探究:将OA旋转到下图的位置,显然此时已经不是向量的夹角,在范围内,是向量夹角的补角.我们设夹角为,则+=此时,=∴综上,对任意角都有B、利用我们刚接触三角函数时的单位圆上的三角函数线能否解决呢?同学们下课后可自己探讨。

人教版高中数学两角差的余弦公式教案和教案说明

人教版高中数学两角差的余弦公式教案和教案说明

人教版高中数学两角差的余弦公式教案和教案说明教案说明:本教案旨在帮助学生理解和掌握两角差的余弦公式,并能灵活运用到实际问题中。

通过本章的学习,学生将能够理解两角差的余弦公式的概念,学会如何运用该公式进行角度计算和问题求解。

教案内容:一、教学目标1. 了解两角差的余弦公式的定义和推导过程。

2. 学会运用两角差的余弦公式进行角度计算和问题求解。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学重难点1. 两角差的余弦公式的理解和推导。

2. 运用两角差的余弦公式解决实际问题。

三、教学准备1. 教师准备PPT或黑板,展示两角差的余弦公式。

2. 准备一些实际问题,用于学生练习和应用。

四、教学过程1. 引入:通过一些实际问题,引导学生思考如何计算两个角的差值。

2. 讲解:讲解两角差的余弦公式的定义和推导过程,让学生理解和掌握该公式。

3. 练习:让学生通过一些例题和练习题,运用两角差的余弦公式进行计算和解决问题。

4. 应用:让学生解决一些实际问题,运用两角差的余弦公式进行分析和求解。

五、教学评价1. 通过课堂讲解和练习,评价学生对两角差的余弦公式的理解和掌握程度。

2. 通过学生解决问题的能力,评价学生对两角差的余弦公式的应用能力。

教案总结:本章通过引入实际问题,讲解两角差的余弦公式,并进行练习和应用,旨在帮助学生理解和掌握该公式,并能够灵活运用到实际问题中。

通过本章的学习,学生将能够掌握两角差的余弦公式的概念和运用方法,提高他们在数学问题求解中的能力。

六、教学拓展1. 引导学生思考:两角差的余弦公式是否可以推广到其他三角函数?2. 探讨:如何将两角差的余弦公式应用于解决更复杂的问题,如三角函数的和差化积、积化和差等?3. 推荐学习资源:提供一些相关的书籍、网络教程或视频,供有兴趣深入研究的学生自学。

七、课堂小结1. 让学生回顾本节课所学的内容,总结两角差的余弦公式的定义、推导过程及应用。

2. 强调两角差的余弦公式在数学问题求解中的重要性,激发学生学习三角函数的兴趣。

《两角和与差的余弦》 说课稿

《两角和与差的余弦》 说课稿

《两角和与差的余弦》说课稿尊敬的各位评委老师:大家好!今天我说课的内容是《两角和与差的余弦》。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。

一、教材分析1、教材的地位和作用“两角和与差的余弦”是三角函数中的重要内容,它是后续学习两角和与差的正弦、正切以及二倍角公式的基础,在三角函数的化简、求值、证明中有着广泛的应用。

通过对这一内容的学习,能够进一步加深学生对三角函数的理解,提高学生的运算能力和逻辑推理能力。

2、教材内容的处理教材通过单位圆中的三角函数线以及向量的数量积两种方法来推导两角和与差的余弦公式。

在教学过程中,我将引导学生从不同的角度去思考问题,体会数学知识之间的内在联系,培养学生的创新意识和探究精神。

二、学情分析1、知识基础学生已经掌握了三角函数的基本定义、诱导公式以及向量的基本运算等知识,具备了一定的数学思维能力和运算能力。

2、学习能力高二的学生已经具备了一定的自主学习能力和探究能力,但对于抽象的数学公式的推导和理解还存在一定的困难。

3、心理特点学生对新鲜事物充满好奇心,喜欢探索未知的领域,但在学习过程中容易出现畏难情绪,需要教师给予适当的引导和鼓励。

三、教学目标1、知识与技能目标(1)理解两角和与差的余弦公式的推导过程。

(2)掌握两角和与差的余弦公式,并能熟练运用公式进行化简、求值和证明。

2、过程与方法目标(1)通过对公式的推导,培养学生的逻辑推理能力和创新意识。

(2)通过公式的应用,提高学生的运算能力和分析问题、解决问题的能力。

3、情感态度与价值观目标(1)让学生在自主探究和合作交流中,体验数学学习的乐趣,增强学习数学的信心。

(2)培养学生严谨的治学态度和勇于探索的精神。

四、教学重难点1、教学重点两角和与差的余弦公式的推导和应用。

2、教学难点两角和与差的余弦公式的推导过程,特别是向量法的推导。

五、教法与学法1、教法根据本节课的教学内容和学生的实际情况,我将采用启发式教学法、探究式教学法和讲练结合法相结合的教学方法。

两角差的余弦公式 说课稿 教案 教学设计

两角差的余弦公式   说课稿  教案 教学设计

两角和与差的正切(二)新课讲解:1.两角和的正切sin cos cos sin tan()cos cos sin sin αβαβαβαβαβ++=-sin cos cos sin cos cos cos cos sin sin cos cos αβαβαβαβαβαβ+=-tan tan 1tan tan αβαβ+=-即:tan()αβ+tan tan 1tan tan αβαβ+=- (()T αβ+)2.两角差的正切tan()αβ-tan tan()1tan tan()αβαβ+-=--tan tan 1tan tan αβαβ-=+即:tan()αβ-tan tan 1tan tan αβαβ-=+ (()T αβ-)说明:①()T αβ±公式的适用范围是使公式两边有意义的角的取值范围;②()T αβ±公式的变形:tan tan tan()(1tan tan )αβαβαβ+=+-tan tan tan()(1tan tan )αβαβαβ-=-+.3.例题分析:例1.求值:(1)11tan 12π; (2)tan 285.解:(1)11tan 12πtan tan()1246πππ=-=--tan tan 461tan tan 46ππππ-=-+12==-(2)tan 285tan(36075)tan 75=-=-tan 45tan 3021tan 45tan 30+=-=--.例2.求1tan151tan15+-值。

解:1tan151tan15+-=tan 45tan151tan 45tan15+-tan(4515)tan 603=+==.例3.求tan 70tan 503tan 70tan 50+-值。

解:原式tan(7050)(1tan 70tan 50)=+-70tan 50tan 70tan 50)=-70tan 50=.例4.已知一元二次方程20ax bx c ++=(0,)a a c ≠≠的两个根为tan ,tan αβ, 求tan()αβ+的值。

两角差的余弦公式详细教案

两角差的余弦公式详细教案

两角差的余弦公式详细教案第一章:两角差的余弦公式的引入1.1 教学目标理解两角差的余弦公式的概念和意义。

掌握两角差的余弦公式的推导过程。

1.2 教学内容引入两角差的余弦公式的概念,即对于任意实数α和β,两角差的余弦公式可以表示为cos(αβ) = cosαcosβ+ sinαsinβ。

解释两角差的余弦公式的意义,即求两个角的差的余弦值可以通过求两个角的余弦值和正弦值的乘积来计算。

1.3 教学方法通过举例和实际问题引入两角差的余弦公式,让学生感受到公式的实际应用。

通过图形和几何解释两角差的余弦公式的推导过程,让学生直观地理解公式。

1.4 教学活动举例说明两角差的余弦公式的应用,如计算一个角度与参考角度的差的余弦值。

引导学生通过图形和几何推理来推导两角差的余弦公式。

第二章:两角差的余弦公式的推导2.1 教学目标掌握两角差的余弦公式的推导过程。

理解两角差的余弦公式的几何意义。

2.2 教学内容推导两角差的余弦公式,通过构造一个直角三角形,利用三角形的边长关系和余弦定理。

解释两角差的余弦公式的几何意义,即两个角的差的余弦值等于这两个角的余弦值的乘积加上这两个角的正弦值的乘积。

2.3 教学方法通过图形和几何推理推导两角差的余弦公式,让学生直观地理解公式的推导过程。

通过实际例子和计算,让学生巩固两角差的余弦公式的应用。

2.4 教学活动引导学生通过构造直角三角形,利用三角形的边长关系和余弦定理推导两角差的余弦公式。

让学生通过实际例子和计算,运用两角差的余弦公式计算角度的差的余弦值。

第三章:两角差的余弦公式的应用3.1 教学目标掌握两角差的余弦公式的应用。

能够灵活运用两角差的余弦公式解决实际问题。

3.2 教学内容介绍两角差的余弦公式的应用,包括解决三角函数的和差问题、计算向量的夹角余弦值等。

通过实际例子和计算,展示两角差的余弦公式的应用方法和步骤。

3.3 教学方法通过实际例子和计算,让学生掌握两角差的余弦公式的应用方法。

定两角差的余弦公式(说课稿)

定两角差的余弦公式(说课稿)

《两角差的余弦公式》说课稿(人教A版高中课标教材数学必修4第三章第3.1.1节)李杰序号我说课的内容是:人教版(A版)高中数学必修4第三章第1节《两角差的余弦公式》,我将从教材、教学目标、教法学法、教学问题诊断、教学过程、教学评价等六个方面展开分析。

一、教材分析:1.教材的地位与作用:“两角差的余弦公式”是数学必修4第三章第一节第一课时的内容。

它是三角函数线和诱导公式等知识的延伸,是两角和与差的正弦、余弦、正切,以及二倍角公式等知识的基础。

对三角变换、三角恒等式的证明和三角函数式的化简、求值等问题的解决有重要的支撑作用。

2.学情分析学生已经学习了同角三角函数的基本关系、诱导公式及平面向量,这为他们探究两角差的余弦公式建立了良好的基础。

但学生的逻辑推理能力毕竟有限,要有一定的难度,教师可引导学生通过合作交流,探索两角发现并证明公式C(α-β)差的余弦公式,完成本课的学习目标。

3.教材处理遵循教材安排意图为原则,让学生体会由特殊到一般的思维过程,即先用数形结合的思想,借助单位圆中的三角函数线,推出角α,β,α-β均为锐角时公式成立。

对于α,β为任意角时的情况,运用向量的知识进行探究,使得公式的得出成为一个纯粹的代数运算过程,学生易于理解和掌握。

然后通过有梯度的练习、变式训练、分层作业等巩固公式。

4.教学重点、难点重点:两角差的余弦公式的推导过程及简单应用难点:两角差的余弦公式的猜想与推导,探索过程的组织和引导。

二、目标分析:根据《普通高中数学课程标准》(实验)和新课改的理念,为了体现新课标让学生经历“学数学,做数学,用数学”的理念,我从知识、能力和情感三个方面制订了教学目标。

1.知识目标①.掌握运用单位圆中的三角函数线和向量的方法推导两角差的余弦公式. ②.掌握公式的结构和特点,能够简单运用公式.2.能力目标①.在公式探究过程中体会从特殊到一般,数形结合、分类讨论等多种数学思想.②.通过公式的探究、灵活运用,培养学生分析问题、解决问题的能力.3.情感目标①.通过公式的推导论证过程,培养学生学习数学的严谨 、求实的科学态度. ②.让学生体验数学活动充满着探索与创造,培养学生勤于思考、勇于探索的精神.三、教法学法分析1.说教法①.通过实际生活问题引入课题,为公式学习创设情境,拉近数学与现实的距离,激发学生的求知欲。

两角差的余弦公式 说课稿 教案 教学设计

两角差的余弦公式   说课稿  教案 教学设计
课题
两角和与差的正弦、余弦、正切公式(一)
课型
新授课
教学
目标
理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用.
重点
难点
重点两角和、差正弦和正切公式的推导过程及运用;
难点两角和与差正弦、余弦和正切公式的灵活运用
教具
准备
多媒体课件
课时
安排
1课时
教学过程与教学内容
教学方法、教学手段与学法、学情
(一)复习式导入
(1)大家首先回顾一下两角差的余弦公式 .
(2) ?
(二)新课讲授
问题 由两角差的余弦公式,怎样得到两角差的正弦公式呢?
探究1、让学生动手完成两角和与差正弦公式.
探究2、让学生观察认识两角和与差正弦公式的特征,并思考两角和与差正切公式.(学生动手)

探究3、我们能否推倒出两角差的正切公式呢?
探究4、通过什么途径可以把上面的式子化成只含有 、 的形式呢?
(分式分子、分母同时除以 ,
得到 .
注意
5、将 、 、 称为和角公式,
、 、 称为差角公式。
(三)例题讲解
例1、已知 是第四象限角,求
的值.
解 因为 是第四象限角,
得 ,

于是有
思考 在本题中, ,那么对任意角 ,此等式成立吗?若成立你能否证明?
练习 教材P131面1、2、3、4题
例2、已知 求
的值.( )
例3、利用和(差)角公式计算下列各式的值
(1)、 ;
(2)、 ;(3)、 .
解 (1)、

(2)、

(3)、

(四)小结

两角差的余弦公式 说课稿 教案 教学设计

两角差的余弦公式   说课稿  教案 教学设计

两角和与差的正弦、余弦和正切公式一、教学目标知识与技能在学习两角差的余弦公式的基础上,通过让学生探索、发现并推导两角和与差的正弦、余弦、正切公式,了解它们之间的内在联系,并通过强化题目的训练,加深对公式的理解,培养学生的运算能力及逻辑推理能力,从而提高解决问题的能力.过程与方法通过两角和与差的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明,使学生深刻体会联系变化的观点,自觉地利用联系变化的观点分析问题,提高学生分析问题、解决问题的能力.情感、态度与价值观通过本节学习,使学生掌握寻找数学规律的方法,提高学生的观察分析能力,培养学生的应用意识,提高学生的数学素质.二.重点难点重点两角和与差的正弦、余弦、正切公式及其推导.难点灵活运用所学公式进行求值、化简、证明.三、教材与学情分析1.两角和与差的正弦、余弦、正切公式是在研究了两角差的余弦公式的基础上,进一步研究具有“两角和差”关系的正弦、余弦、正切公式的.在这些公式的推导中,教书都把对照、比较有关的三角函数式,认清其区别,寻找其联系和联系的途径作为思维的起点,如比较cos(α-β)与cos(α+β),它们都是角的余弦只是角形式不同,但不同角的形式从运算或换元的角度看都有内在联系,即α+β=α-(-β)的关系,从而由公式C(α-β)推得公式C(α+β),又如比较sin(α-β)与cos(α-β),它们包含的角相同但函数名称不同,这就要求进行函数名的互化,利用诱导公式(5)(6)即可推得公式S(α-β)、S(α+β)等.2.本节的几个公式是相互联系的,其推导过程也充分说明了它们之间的内在联系,让学生深刻领会它们的这种联系,从而加深对公式的理解和记忆.本节几个例子主要目的是为了训练学生思维的有序性,逐步培养他们良好的思维习惯,教学中应当有意识地对学生的思维习惯进行引导,例如在面对问题时,要注意先认真分析条件,明确要求,再思考应该联系什么公式,使用公式时要具备什么条件等.另外,还要重视思维过程的表述,不能只看最后结果而不顾过程表述的正确性、简捷性等,这些都是培养学生三角恒等变换能力所不能忽视的.四、教学方法问题引导,主动探究,启发式教五、教学过程1、导入新课思路1.(旧知导入)教师先让学生回顾上节课所推导的两角差的余弦公式,并把公式默写在黑板上或打出幻灯片,注意有意识地让学生写整齐.然后教师引导学生观察cos(α-β)与cos(α+β)、sin(α-β)的内在联系,进行由旧知推出新知的转化过程,从而推导出C(α+β)、S(α-β)、S(α+β).本节课我们共同研究公式的推导及其应用.思路2.(问题导入)教师出示问题,先让学生计算以下几个题目,既可以复习回顾上节所学公式,又为本节新课作准备.若sinα=55,α∈(0,π2),cosβ=1010,β∈(0,π2),求cos(α-β),cos(α+β)的值.学生利用公式C(α-β)很容易求得cos(α-β),但是如果求cos(α+β)的值就得想法转化为公式C(α-β)的形式求,此时思路受阻,从而引出新课题,并由此展开联想探究其他公式.2、新知探究①还记得两角差的余弦公式吗?请一位同学到黑板上默写出.②在公式C(α-β)中,角β是任意角,请学生思考角α-β中β换成角-β是否可以?此时观察角α+β与α-(-β)之间的联系,如何利用公式C(α-β)推导cos(α+β)=?③分析观察C(α+β)的结构有何特征?④在公式C(α-β)、C(α+β)的基础上能否推导sin(α+β)=?sin(α-β)=?⑤公式S(α-β)、S(α+β)的结构特征如何?⑥对比分析公式C(α-β)、C(α+β)、S(α-β)、S(α+β),能否推导出tan(α-β)=?tan(α+β)=?⑦分析观察公式T(α-β)、T(α+β)的结构特征如何?⑧思考如何灵活运用公式解题?活动对问题①,学生默写完后,教师打出课件,然后引导学生观察两角差的余弦公式,点拨学生思考公式中的α,β既然可以是任意角,是怎样任意的?你会有些什么样的奇妙想法呢?鼓励学生大胆猜想,引导学生比较cos(α-β)与cos(α+β)中角的内在联系,学生有的会发现α-β中的角β可以变为角-β,所以α-(-β)=α+β〔也有的会根据加减运算关系直接把和角α+β化成差角α-(-β)的形式〕.这时教师适时引导学生转移到公式C(α-β)上,这样就很自然地得到cos(α+β)=cos[α-(-β)]=cosαcos(-β)+sinαsin(-β)=cosαcosβ-sinαsinβ.所以有如下公式cosα+β=cosαcosβ-sinαsinβ我们称以上等式为两角和的余弦公式,记作C(α+β).对问题②,教师引导学生细心观察公式C(α+β)的结构特征,可知“两角和的余弦,等于这两角的余弦积减去这两角的正弦积”,同时让学生对比公式C(α-β)进行记忆,并填空cos75°=cos(__________)=__________=__________.对问题③,上面学生推得了两角和与差的余弦公式,教师引导学生观察思考,怎样才能得到两角和与差的正弦公式呢?我们利用什么公式 实现正、余弦的互化呢?学生可能有的想到利用诱导公式(5)(6) 化余弦为正弦(也有的想到利用同角的平方和关系式sin 2α+cos 2α=1 互化,此法让学生课下进行),因此有sin(α+β)=cos[π2-(α+β)]=cos[(π2-α)-β]=cos(π2-α)cos β+sin(π2-α)sin β=sin αcos β+cos αsin β.在上述公式中,β用-β代之,则sin(α-β)=sin[α+(-β)]=sin αcos(-β)+cos αsin(-β)=sin αcos β-cos αsin β.因此我们得到两角和与差的正弦公式,分别简记为S (α+β)、S (α-β).Sin (α+β=sin αcos β+cos αsin β,sin (α-β)=sin αcos β-cos αsin β.对问题④⑤,教师恰时恰点地引导学生观察公式的结构特征并结合推导过程进行记忆,同时进一步体会本节公式的探究过程及公式变化特点,体验三角公式的这种简洁美、对称美.为强化记忆,教师可让学生填空,如sin(θ+φ)=____________________,sin 2π7cos 5π7+cos 2π7sin 5π7=__________. 对问题⑥,教师引导学生思考,在我们推出了公式C (α-β)、C (α+β)、S (α+β)、S (α-β)后,自然想到两角和与差的正切公式,怎么样 推导出tan(α-β)=?,tan(α+β)=?呢?学生很容易想到利用同角三角函数关系式,化弦为切得到.在学生探究推导时很可能想不到讨论,这时教师不要直接提醒,让学生自己悟出 .当cos(α+β)≠0时,tan(α+β)=sin α+βcos α+β=sin αcos β+cos αsin βcos αcos β-sin αsin β. 如果cos αcos β≠0,即cos α≠0且cos β≠0时,分子、分母同除以cos αcos β得tan(α+β)=tan α+tan β1-tan αtan β,据角α、β的任意性,在上面的式子中,β用-β代之,则有 tan(α-β)=tan α+tan -β1-tan αtan -β=tan α-tan β1+tan αtan β. 由此推得两角和、差的正切公式,简记为T (α-β)、T (α+β).tan (α+β)=βαβαtan tan 1 tan tan -+, tan (α-β)=βαβαtan tan 1 tan tan +-. 对问题⑥,学生回顾自己的公式探究过程可知,α、β、α±β都不能等于π2+ π( ∈ ),并引导学生分析公式结构特征,加深公式记忆. 对问题⑦⑧,教师与学生一起归类总结,我们把前面六个公式分类比较可得C (α+β)、S (α+β)、T (α+β)叫和角公式;S (α-β)、C (α-β)、T (α-β)叫差角公式.并由学生归纳总结以上六个公式的推导过程,从而得出以下逻辑联系图.可让学生自己画出这六个框图.通过逻辑联系图,深刻理解它们之间的内在联系,借以理解并灵活运用这些公式.同时教师应提醒学生注意 不仅要掌握这些公式的正用,还要注意它们的逆用及变形用.如两角和与差的正切公式的变形式tan α+tan β=tan(α+β)(1-tan αtan β),tan α-tan β=tan(α-β)(1+tan αtan β),在化简求值中就经常应用到,使解题过程大大简化,也体现了数学的简洁美.对于两角和与差的正切公式,当tan α,tan β或tan(α±β)的值不存在时,不能使用T (α±β )处理某些有关问题,但可改用诱导公式或其他方法,例如 化简tan(π2-β),因为tan π2的值不存在,所以改用诱导公式tan(π2-β)=sinπ2-βcos π2-β=cos βsin β 处理等.3. 应用示例例1已知sin α=-35,α是第四象限角,求sin(π4-α),cos(π4+α),tan(π4-α)的值. 活动 教师引导学生分析题目中角的关系,在面对问题时要注意认真分析条件,明确要求.再思考应该联系什么公式,使用公式时要有什么准备,准备工作怎么进行等.例如本题中,要先求出cos α,tan α的值,才能利用公式得解,本题是直接应用公式解题,目的是为了让学生初步熟悉公式的应用,教师可以完全让学生自己独立完成.解 由sin α=-35,α是第四象限角,得cos α=1-sin 2α=1--352=45. ∴tan α=sin αcos α=-34. 于是有sin(π4-α)=sin π4cos α-cos π4sin α=22×45-22×(-35)=7210, cos(π4+α)=cos π4cos α-sin π4sin α=22×45-22×(-35)=7210, tan(α-π4)=tan α-tan π41+tan αtan π4=tan α-11+tan α=-34-11+-34=-7.点评 本例是运用和差角公式的基础题,安排这个例题的目的是为了训练学生思维的有序性,逐步培养他们良好的思维习惯. 变式训练1. 不查表求cos75°,tan105°的值. 解 cos75°=cos(45°+30°)=cos45°cos30°-sin45°sin30° =22×32-22×12=6-24, tan105°=tan(60°+45°)=tan60°+tan45°1-tan60°tan45°=3+11-3=-(2+3). 2.设α∈(0,π2),若sin α=35,则2sin(α+π4)等于( ) A.75 B.15 C.72D .4 答案 A例2已知sin α=23,α∈(π2,π),cos β=-34,β∈(π,3π2).求sin(α-β),cos(α+β),tan(α+β).活动 教师可先让学生自己探究解决,对探究困难的学生教师给以适当的点拨,指导学生认真分析题目中已知条件和所求值的内在联系.根据公式S (α-β)、C (α+β)、T (α+β)应先求出cos α、sin β、tan α、tan β的值,然后利用公式求值,但要注意解题中三角函数值的符号.解 由sin α=23,α∈(π2,π),得cos α=-1-sin 2α=-1-232=-53,∴tan α=-255. 又由cos β=-34,β∈(π,3π2),得sin β=-1-cos 2β=-1--342=-74, ∴tan β=73.∴sin(α-β)=sin αcos β-cos αsin β=23×(-34)-(-53)×(-74)=-6-3512. ∴cos(α+β)=cos αcos β-sin αsin β=(-53)×(-34)-23×(-74)=35+2712. ∴tan(α+β)=tan α+tan β1-tan αtan β=-255+731--255×73=-65+5715+235=-325+27717. 点评 本题仍是直接利用公式计算求值的基础题,其目的还是让学生熟练掌握公式的应用,训练学生的运算能力.变式训练2.引导学生看章头图,利用本节所学公式解答课本章头题,加强学生的应用意识.解 设电视发射塔高CD =x 米,∠CAB =α,则sin α=3067, 在Rt △ABD 中,tan(45°+α)=x +3030tan α. 于是x =30tan 45°+αtan α-30, 又∵sin α=3067,α∈(0,π2),∴cos α≈6067,tan α≈12. tan(45°+α)=1+tan α1-tan α≈1+121-12=3,∴x =30×312-30=150(米). 答 这座电视发射塔的高度约为150米.例3在△ABC 中,sin A =35(0°<A <45°),cos B =513(45°<B <90°),求sin C 与cos C 的值. 活动 本题是解三角形问题,在必修5中还作专门的探究,这里用到的仅是与三角函数诱导公式与和差公式有关的问题,难度不大,但应是学生必须熟练掌握的.同时也能加强学生的应用意识,提高学生分析问题和解决问题的能力.教师可让学生自己阅读、探究、讨论解决,对有困难的学生教师引导学生分析题意和找清三角形各角之间的内在联系,从而找出解决问题的路子.教师要提醒学生注意角的范围这一隐含条件.解 ∵在△ABC 中,A +B +C =180°,∴C =180°-(A +B ).又∵sin A =35且0°<A <45°,∴cos A =45. 又∵cos B =513且45°<B <90°,∴sin B =1213. ∴sin C =sin[180°-(A +B )]=sin(A +B )=sin A cos B +cos A sin B =35×513+45×1213=6365, cos C =cos[180°-(A +B )]=-cos(A +B )=sin A sin B -cos A cos B =35×1213-45×513=1665. 点评 本题是利用两角和差公式, 解决三角形问题的典型例子,培养了学生的应用意识,也使学生更加认识了公式的作用,解决三角形问题时,要注意三角形内角和等于180°这一隐含条件.六、课堂小结。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两角差的余弦公式
教学设计说明
一、教材地位及其作用
恒等变换在数学中扮演着重要的角色,它的主要作用是化简.在数学中通过恒等变换,可以把复杂的关系用简单的形式表示出来.三角恒等变换在后续学习中具有重要的作用.
而以本节课为起始课的第三章内容需要学习三角函数运算中蕴涵的恒等关系.由于和、差、倍之间存在的联系,和角、差角、倍角的三角函数之间必然存在紧密的内在联系,因而需要推出一个公式作为基础。

由于三角恒等变换的内容与三角函数没有直接的关系,因此现行的课改教材(人教A 版)安排学生学完三角函数后,先学习了平面向量,因此选择了运用向量方法推导公式βαβαβαsin sin cos cos )cos(+=-作为建立其它公式的基础,使得公式的得出成为一个纯粹的代数运算过程,降低了思考难度。

本节课的作用承前启后,非常重要。

二、学情分析与教学目标
学生在前两章已经学习了同角三角函数的基本关系、诱导公式及平面向量,为探究两角差的余弦公式建立了良好的基础。

但学生的逻辑推理能力有限,要发现并证明公式C (α-β)有一定的难度,教师可引导学生通过合作交流,体会向量法的作用,探索两角差的余弦公式。

由于学生初次使用恒等变换去推理解答问题,分析问题的能力和逻辑推理的能力都有所欠缺,并且面对新问题如何运用已学知识和方法去解决存有困惑.但同时学生在学习新的一章知识时又都会充满好奇心,这对教学是非常有利的。

根据学生的认知结构和心理特点,我制定了本课的学习目标如下:
1.知识与技能
(1)通过对两角差的余弦公式的推导,使学生体会应用向量解决数学问题的技能。

(2)通过公式的灵活应用,使学生掌握两角差的余弦公式的作用。

2.过程与方法
(1)利用两角差的余弦公式推导过程,使学生体会向量在代数几何方面运用的方式方法。

(2)在公式的灵活运用过程中进一步培养学生分类讨论思想、转化和化归思想、数形结合思想。

3.情感态度与价值观
通过引导学生主动参与、大胆猜想独立探索、激发学生学习兴趣,形成探究、证明、应用的获取知识的方式。

从应用中去体会数学的严谨,形成理性思维,体会向量及两角差的余弦公式的运用价值。

三、教学重点及难点
重点:两角差的余弦公式的运用.
难点:用两角差余弦公式进行简化、计算及逆用公式等技能.
四、教法选择和学法指导
基于对教材和学生的分析,本节课我采用“引导发现”和“主动参与、独立探索”等方法组织课堂教学.
为了抓住重点,我从学生已有的认知水平出发,设计具有梯度的问题导入,激发学生的求知欲,引导和组织学生参与探索公式的建立和推导过程,鼓励学生独立思考,让学生在参与推理的过程中感受成功的快乐和提高逻辑推理能力;在突破难点上,主要通过以下四个方面的师生活动:
①引导学生积极思考,大胆探索,学会对目标进行对比分析,把握思维方向;
②组织学生共同钻研,学会合作,开展讨论交流;
③对学生的探究活动适当指导,适时地给与帮助;
④完善推理过程——对[]πβα,0∉-的情况引导学生完善.
通过实际生活问题引入课题,为公式学习创设情境,拉近数学与现实的距离,激发学生的求知欲。

采用多媒体等现代教学手段,增强教学简易性和直观性。

通过有梯度的练习、变式训练、分层作业,让学生对知识掌握逐步提高。

学法分析
①.教师在课前让学生简单复习一下本课要用到的一些知识点,如三角函数的定义,向量的数量积等。

②.在学生自主探究过程中,教师要从某些角度引导学生去发现公式,给出一些证明方法的提示性问题,引导学生去推导公式。

相关文档
最新文档