人教版数学七年级上册第一章有理数测试卷附答案

合集下载

2023-2024学年七年级数学上册《第一章有理数》单元测试卷有答案(人教版)

2023-2024学年七年级数学上册《第一章有理数》单元测试卷有答案(人教版)

2023-2024学年七年级数学上册《第一章有理数》单元测试卷有答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列说法正确的是()A.自然数就是非负整数B.一个数不是正数,就是负数C.整数就是自然数D.正数和负数统称有理数2.全面贯彻落实“大气十条”,抓好大气污染防治,是今年环保工作的重中之重.其中推进燃煤电厂脱硫改造15000 000千瓦是《政府工作报告》中确定的重点任务之一.将数据15 000 000用科学记数法表示为()A.15×106B.1.5×107C.1.5×108D.0.15×108 3.在,-4,0,这四个数中,属于负整数的是()A.B.C.0 D.4.|x|=|﹣3|,则x是()A.3 B.-3 C.D.±35.下面计算正确的是()A.﹣(﹣2)2=22B.(﹣3)2×C.﹣34=(﹣3)4D.(﹣0.1)2=0.126.花店、书店、学校依次坐落在一条东西走向的大街上,花店位于书店西边100米处,学校位于书店东边50米处,小明从书店沿街向东走了20米,接着又向西走了–30米,此时小明的位置()A.在书店B.在花店C.在学校D.不在上述地方7.如果两个有理数的积是负数,和是正数,那么这两个有理数()A.同号,且都为正数B.异号,且正数的绝对值较大C.同号,且都为负数D.异号,且负数的绝对值较大8.如图,数轴上的A、B两点分别表示有理数a、b,下列式子中不正确的是()A.|b|>|a| B.a﹣b<0 C.a+b<0 D.ab<0二、填空题:(本题共5小题,每小题3分,共15分.)9.有理数3.1415精确到百分位结果是.10.两个有理数的和是5,其中一个加数是12,那么另一个加数是.11.某地一天早晨的气温是-7℃,中午气温上升了11℃半夜又下降了9℃,半夜的气温是℃.12.一个数在数轴上所对应的点向右移动4个单位后,得到它的相反数的对应点,则这个数是.13.如图是一个三阶幻方,图中每行、每列、每条对角线上的数字之和相等,则的值为.三、解答题:(本题共5题,共45分)14.计算(1)(2)15.计算:(1)(2)(3)16.已知|a|=10,|b|=4(1)当a,b同号时,求a+b的值;(2)当a,b异号时,求a-b的值。

人教版七年级数学上册《第一章有理数》测试卷-附有答案

人教版七年级数学上册《第一章有理数》测试卷-附有答案

人教版七年级数学上册《第一章有理数》测试卷-附有答案(考试时间:90分钟试卷满分:100分)学校:___________姓名:___________班级:___________考号:___________一、选择题:本题共8个小题每小题4分共32分。

在每小题给出的四个选项中只有一项是符合题目要求的。

a+表示且1.(2020·无锡市第一中学七年级期中)点A在数轴上点A所对应的数用21点A到原点的距离等于3 则a的值为()A.2-D.1 -或1 B.2-或2 C.2【答案】A【分析】根据绝对值的几何意义列绝对值方程解答即可.【详解】解:由题意得:|2a+1|=3当2a+1>0时有2a+1=3 解得a=1当2a+1<0时有2a+1=-3 解得a=-2所以a的值为1或-2.故答案为A.【点睛】本题考查了绝对值的几何意义根据绝对值的几何意义列出绝对值方程并求解是解答本题的关键.2.(2020·酒泉市第二中学)下列各组数中互为相反数的有()①-(-2)和-|-2|;②(-1)2和-12;③23和32;④(-2)3和-23A.④B.①②C.①②③D.①②④【答案】B【分析】先利用去括号法则、绝对值运算、有理数的乘方运算进行计算再根据相反数的定义即可得.【详解】解:①(2)2,22--=--=- 则这组数互为相反数 ②22(1)1,11-=-=- 则这组数互为相反数 ③3228,39== 则这组数不互为相反数 ④33(2)8,28-=--=- 则这组数不互为相反数综上 互为相反数的有①②故选:B .【点睛】本题考查了去括号法则、绝对值运算、有理数的乘方运算、相反数的定义 熟练掌握各运算法则和定义是解题关键.3.(2020·浙江)在3,1,1,3--这四个数中 比2-小的数是( )A .3-B .1-C .1D .3【答案】A【分析】根据有理数的大小关系求解即可.【详解】解:在这四个数中 32-<-故答案为:A .【点睛】本题考查了比较有理数大小的问题 掌握比较有理数大小的方法是解题的关键.4.(2020·多伦县第四中学七年级期中)当n 为正整数时 (﹣1)2n+1﹣(﹣1)2n 的值为( )A .0B .2C .﹣2D .2或﹣2 【答案】C【分析】1、 由n 为正整数 得2n 是偶数 2n+1是奇数;2、 根据 “指数是偶数时 负数的幂是正数” 以及 “指数是奇数时 负数的幂是负数"可得(-1)2n+1=-1 (-1)2n=1;3、 接下来根据有理数的加法法则进行计算即可.【详解】解:原式=(﹣1)2n+1﹣(﹣1)2n= -1-1= - 2 故选C.【点睛】本题主要考查负数的幂运算: 指数是偶数时 负数的幂是正数 指数是奇数时 负数的幂是负数.5.(2020·银川英才学校)如图 数轴的单位长度为1 若点A 和点C 所表示的两个数的绝对值相等 则点B 表示的数是( )A .-3B .-1C .1D .3【答案】B【分析】找到AC 的中点即为原点 进而看B 点在原点的哪边 距离原点几个单位即可.【详解】解:设AC 的中点为O 点 表示的数是0 所以点C 表示的数是-3 所以点B 表示的数是-1.故选:B【点睛】本题考查数轴上点的确定;找到原点的位置是解决本题的关键;用到的知识点为:两个数的绝对值相等 那么这两个数到原点的距离相等.6.(2020·靖江市靖城中学)如图 数轴上的,,A B C 三点所表示的数分别为a b c 、、 其中AB BC = 如果||||||a c b >>那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边【答案】C【分析】根据绝对值是数轴上表示数的点到原点的距离 分别判断出点A 、B 、C 到原点的距离的大小 从而得到原点的位置 即可得解.【详解】解:∵|a|>|c|>|b|∴点A 到原点的距离最大 点C 其次 点B 最小又∵AB=BC∴原点O 的位置是在点B 、C 之间且靠近点B 的地方.故选:C .【点睛】此题考查了实数与数轴 理解绝对值的定义是解题的关键.7.(2020·湖南天心·长郡中学七年级期中)如图点A所表示的数的绝对值是()A.3 B.﹣3 C.13D.13【答案】A【分析】根据负数的绝对值是其相反数解答即可.【详解】|-3|=3故选A.【点睛】此题考查绝对值问题关键是根据负数的绝对值是其相反数解答.8.(2020·重庆市荣昌区荣隆镇初级中学七年级期中)4月24日是中国航天日 1970年的这一天我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射标志着中国从此进入了太空时代它的运行轨道距地球最近点439 000米.将439 000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.139×103【答案】C【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10 n为整数.确定n的值时要看把原数变成a时小数点移动了多少位 n的绝对值与小数点移动的位数相同.当原数绝对值>1时 n是正数;当原数的绝对值<1时 n是负数.【详解】解:将439000用科学记数法表示为4.39×105.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式其中1≤|a|<10 n为整数表示时关键要正确确定a的值以及n的值.二、填空题:本题共6个小题每题3分共18分。

人教版七年级数学上册《第一章有理数》测试卷-附含答案

人教版七年级数学上册《第一章有理数》测试卷-附含答案

人教版七年级数学上册《第一章有理数》测试卷-附含答案1.设|a |=4 |b |=2 且|a +b |=-(a +b ) 则a -b 所有值的和为( ) A .-8 B .-6 C .-4 D .-2点中可能是原点的为( )A .A 点B .B 点C .C 点D .D 点10010AB BC CD DE ===, 则数9910所对应的点在线段( )上.A .AB B .BC C .CD D .DE【详解】 AB BC =14AB ∴=4.计算202020222 1.5(1)3⎛⎫-⨯⨯- ⎪⎝⎭的结果是( )A .23B .32C .23-D .32-20202019 1.53⨯⋅⋅⋅⨯个个20193个在一个由六个圆圈组成的三角形里图中圆圈里 要求三角形每条边上的三个数的和S 都相等 那么S 的最大值是( )A .-9B .-10C .-12D .-13【答案】A【详解】解:六个数的和为:()()()()()()12345621-+-+-+-+-+-=- 最大三个数的和为:()()()1236-+-+-=- S=[(21)(6)]39-+-÷=-. 填数如图:故选A.6.|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|的最小值是a ||||||1a b ca b c++=-那么||||||||ab bc ac abcab bc ac abc+++的值为()A.﹣2B.﹣1C.0D.不确定【答案】45或23【详解】解:∵|x|=11 |y|=14 |z|=20∵x=±11 y=±14 z=±20.∵|x +y |=x +y |y +z |=﹣(y +z ) ∵x +y ≥0 y +z ≤0.∵x +y ≥0.∵x =±11 y =14. ∵y +z ≤0 ∵z =﹣20当x =11 y =14 z =﹣20时 x +y ﹣z =11+14+20=45; 当x =﹣11 y =14 z =﹣20时 x +y ﹣z =﹣11+14+20=23. 故答案为:45或23.8.若|a|+|b|=|a+b| 则a 、b 满足的关系是_____. 【答案】a 、b 同号或a 、b 有一个为0或同时为0 【详解】∵|a|+|b|=|a+b|∵a 、b 满足的关系是a 、b 同号或a 、b 有一个为0 或同时为0 故答案为a 、b 同号或a 、b 有一个为0 或同时为0.9.计算:11111111111111234201723420182342018⎛⎫⎛⎫⎛⎫----⋯-⨯+++⋯+-----⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11112342017⎛⎫⨯+++⋯+= ⎪⎝⎭_________.12017++=12018++=1111111111)]()[1()]()2017232018232018232017⨯+++--+++⨯+++++1[1(2018m -+)(2018m m -+a +2b +3c +4d 的最大值是_____. 【答案】81【详解】解:∵a b c d 表示4个不同的正整数 且a +b 2+c 3+d 4=90 其中d >1 ∵d 4<90 则d =2或3 c 3<90 则c =1 2 3或4b 2<90 则b =1 2 3 4 5 6 7 8 9a <90 则a =1 2 3 … 89 ∵4d ≤12 3c ≤12 2b ≤18 a ≤89 ∵要使得a +2b +3c +4d 取得最大值则a 取最大值时 a =90﹣(b 2+c 3+d 4)取最大值 ∵b c d 要取最小值 则d 取2 c 取1 b 取3 ∵a 的最大值为90﹣(32+13+24)=64 ∵a +2b +3c +4d 的最大值是64+2×3+3×1+4×2=81 故答案为:81.11.如图 将一个半径为1个单位长度的圆片上的点A 放在原点 并把圆片沿数轴滚动1周 点A 到达点A '的位置 则点A '表示的数是 _______;若起点A 开始时是与—1重合的 则滚动2周后点A '表示的数是______.【答案】 2π或2π- 41π-或41π--对数轴上分别表示数a和数b的两个点A B之间的距离进行了探究:(1)利用数轴可知5与1两点之间距离是;一般的数轴上表示数m和数n的两点之间距离为.问题探究:(2)请求出|x﹣3|+|x﹣5|的最小值.问题解决:(3)如图在十四运的场地建设中有一条直线主干道L L旁依次有3处防疫物资放置点A B C已知AB=800米BC=1200米现在设计在主干道L旁修建防疫物资配发点P问P建在直线L上的何处时才能使得配发点P到三处放置点路程之和最短?最短路程是多少?()1求A、B两点之间的距离;()2点C、D在线段AB上AC为14个单位长度BD为8个单位长度求线段CD的长;()3在()2的条件下动点P以3个单位长度/秒的速度从A点出发沿正方向运动同时点Q 以2个单位长度/秒的速度从D点出发沿正方向运动求经过几秒点P、点Q到点C的距离相等.)12a++b-=60b=;6)1218-=;在线段ABAC=AB=1418BC∴=18=CD BD()3设经过AD AB=①当点P的数学工具 它使数和数轴上的点建立起对应关系 揭示了数与点之间的内在联系 它是“数形结合”的基础.例如 式子2x -的几何意义是数轴上x 所对应的点与2所对应的点之间的距离;因为()+=--x 1x 1 所以1x +的几何意义就是数轴上x 所对应的点与-1所对应的点之间的距离.结合数轴与绝对值的知识回答下列问题:(1)若23x -= 则x = ;32x x -++的最小值是 .(2)若327x x -++= 则x 的值为 ;若43113x x x ++-++= 则x 的值为 .(3)是否存在x 使得32143x x x +-+++取最小值 若存在 直接写出这个最小值及此时x 的取值情况;若不存在 请说明理由.当P 在A 点左侧时2255PA PB PA AB PA +=+=+>;同理当P 在B 点右侧时2255PA PB PB AB PB +=+=+>;。

人教版数学七年级上册第一章有理数检测卷(含答案)

人教版数学七年级上册第一章有理数检测卷(含答案)

人教版数学七年级上学期第一章有理数测试一、选择题(本题共有10个小题,每小题都有A、B、C、D四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每题2分,共20分)1. 如果向东行驶3km,记作+3km,那么向西行驶2km,记作A. +2kmB. -2kmC. +3kmD. -3km2. 下列各对数中,数值相等的是()A. -27与(-2)7B. -32与(-3)2C. -3×23与-32×2D. ―(―3)2与―(―2)33. 《战狼2》在2017年暑假档上映取得历史性票房突破,共收获5 490 000 000元,数据5 490 000 000用科学记数法表示为A. 5.49×1010B. 5.49×109C. 5.49×108D. 549×1074. 如果一个数的平方与这个数的差等于0,那么这个数只能是()A. 0B. -1C. 1D. . 0或15. 绝对值大于或等于1,而小于4的所有的正整数的和是()A. 8B. 7C. 6D. 56. 计算:(-2)100+(-2)101的是()A. 2100B. -1C. -2D. -21007. 比-7.1大,而比1小的整数的个数是()A. 6B. 7C. 8D. 98. 2003年5月19日,国家邮政局特别发行万众一心,抗击“非典”邮票,收入全部捐赠给卫生部门用以支持抗击“非典”斗争,其邮票发行为12050000枚,用科学记数法表示正确的是( )A. 1.205×107B. 1.20×108C. 1.21×107D. 1.205×1049. 下列代数式中,值一定是正数的是( )A. x2B. |-x+1|C. (-x)2+2D. -x2+110. 已知8.622=73.96,若x2=0.7396,则x的值等于()A. 86. 2B. 862C. ±0.862D. ±862二、填空题(本题共有9个小题,每小题2分,共18分)11. 一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为;地下第一层记;数-2的实际意义为,数+9的实际意义为 .12. 如果数轴上的点A对应有理数为-2,那么与A点相距3个单位长度的点所对应的有理数为___________.13. 某数的绝对值是5,那么这个数是 .134756≈(保留四个有效数字)14. ( )2=16,(-)3= .15. 数轴上和原点的距离等于3.5点表示的有理数是 .16. 计算:(-1)6+(-1)7=____________.17. 如果a、b互为倒数,c、d互为相反数,且m=-1,则代数式2ab-(c+d)+m2=_______.18. +5.7的相反数与-7.1的绝对值的和是 .19. 已知每辆汽车要装4个轮胎,则51只轮胎至多能装配辆汽车.三、解答题20. 计算:(1)8+(― )―5―(―0.25) (2)―82+72÷36(3)7 ×1 ÷(-9+19) (4)25×(―18)+(―25)×12+25×(-10 )(5)(-79)÷2 + ×(-29) (6)(-1)3-(1-7)÷3×[3―(―3)2](7)2(x-3)-3(-x+1) (8) –a+2(a-1)-(3a+5)21. 一天小明和冬冬利用温差来测量山峰的高度.冬冬在山脚测得的温度是4℃,小明此时在山顶测得的温度是2℃,已知该地区高度每升高100米,气温下降0.8℃,问这个山峰有多高?22. 有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其结果等于24.例如对1,2,3,4,可作如下运算:(1+2+3)×4=24(上述运算与4×(1+2+3)视为相同方法的运算)现有四个有理数3,4,-6,10,运用上述规则写出三种不同方法的运算式,可以使用括号,使其结果等于24.运算式如下:(1) ,(2) ,(3) .另有四个有理数3,-5,7,-13,可通过运算式(4) 使其结果等于24.23. 下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京的时间早的时数).现在的北京时间是上午8∶00(1)求现在纽约时间是多少?(2)斌斌现在想给远在巴黎的姑妈打电话,你认为合适吗?24. 画一条数轴,并在数轴上表示:3.5和它的相反数,-4和它的倒数,绝对值等于3的数,最大的负整数和它的平方,并把这些数由小到大用“<”号连接起来.25. 体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩斐然记录,其中"+"表示成绩大于15秒.-0.8 +1 -1.2 0-0.7 +0.6 -0.4 -0.1问:(1)这个小组男生的达标率为多少?(2)这个小组男生的平均成绩是多少秒?26. 有若干个数,第一个数记为a1,第二个数记为a2,…,第n个数记为a n.若a1=,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.试计算:a2=______,a3=____,a4=_____,a5=______.这排数有什么规律吗?由你发现的规律,请计算a2004是多少?四、提高题(本题有2个小题,共16分)27. 同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=______.(2)找出所有符合条件的整数x,使得|x+5|+|x-2|=7这样的整数是___________.(3)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有写出最小值如果没有说明理由.28. 若a、b、c均为整数,且∣a-b∣3+∣c-a∣2=1,求∣a-c∣+∣c-b∣+∣b-a∣的值(8分)答案与解析一、选择题(本题共有10个小题,每小题都有A、B、C、D四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每题2分,共20分)1. 如果向东行驶3km,记作+3km,那么向西行驶2km,记作A. +2kmB. -2kmC. +3kmD. -3km【答案】B【解析】试题分析:∵向东行驶3km,记作+3km,∴向西行驶2km记作-2km.故选B.考点:正数和负数.2. 下列各对数中,数值相等的是()A. -27与(-2)7B. -32与(-3)2C. -3×23与-32×2D. ―(―3)2与―(―2)3【答案】A考点:有理数的乘方.3. 《战狼2》在2017年暑假档上映取得历史性票房突破,共收获5 490 000 000元,数据5 490 000 000用科学记数法表示为A. 5.49×1010B. 5.49×109C. 5.49×108D. 549×107【答案】B【解析】由科学记数法的定义知:5 490 000 000=5.49×109故选:B.4. 如果一个数的平方与这个数的差等于0,那么这个数只能是()A. 0B. -1C. 1D. . 0或1【答案】D【解析】试题分析:一个数的平方与这个数的差等于0,则这个数的平方等于其本身,而平方等于本身的数是0和1,则这个数只能是0或1.故选D.考点:有理数的乘方.5. 绝对值大于或等于1,而小于4的所有的正整数的和是()A. 8B. 7C. 6D. 5【答案】C【解析】试题分析:根据绝对值的性质,由题意得,符合题意的正整数为1,2,3,它们的和是故选C.考点:绝对值.6. 计算:(-2)100+(-2)101的是()A. 2100B. -1C. -2D. -2100【答案】D【解析】试题分析:故选D.考点:有理数的乘方.7. 比-7.1大,而比1小的整数的个数是()A. 6B. 7C. 8D. 9【答案】C【解析】试题分析:比-7.1大而比1小的整数有:-7、-6、-5、-4、-3、-2、-1和0共8个.考点:数的大小比较8. 2003年5月19日,国家邮政局特别发行万众一心,抗击“非典”邮票,收入全部捐赠给卫生部门用以支持抗击“非典”斗争,其邮票发行为12050000枚,用科学记数法表示正确的是( )A. 1.205×107B. 1.20×108C. 1.21×107D. 1.205×104【答案】A【解析】根据科学记数法的表示方法(形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数)可得:12050000枚=1.205×107枚.故答案是:A.9. 下列代数式中,值一定是正数的是( )A. x2B. |-x+1|C. (-x)2+2D. -x2+1【答案】C【解析】试题分析:根据平方的性质可得:≥0,≥0;-≤0,则-+1≤1,+2≥2;根据绝对值的性质可得:≥0.考点:(1)平方的性质;(2)绝对值的性质10. 已知8.622=73.96,若x2=0.7396,则x的值等于()A. 86. 2B. 862C. ±0.862D. ±862【答案】C【解析】试题分析:算术平方根的小数点向左移动两位,则被开方数的小数点向左移动一位,则根据题意可得:x=±0.862.考点:平方根的性质二、填空题(本题共有9个小题,每小题2分,共18分)11. 一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为;地下第一层记;数-2的实际意义为,数+9的实际意义为 .【答案】+2;-1;地下第2层;地面上第9层.【解析】规定向上为正,则向下为负,所以2楼表示的是以地面为基准向上2层,所以记为+1,地下第一层记作−1,−2表示的实际意义是地下2层,+9的实际意义为地上10层;故答案为:+1,−1,地下2层,地上10层.12. 如果数轴上的点A对应有理数为-2,那么与A点相距3个单位长度的点所对应的有理数为___________.【答案】-5,+1.【解析】试题分析:在数轴上与表示-2的点距离3个单位长度的点可能在右边,也可能在左边,所以表示的数是或1.考点:数轴13. 某数的绝对值是5,那么这个数是 .134756≈(保留四个有效数字)【答案】±5;1.348×105 .【解析】试题分析:考点:1、绝对值;2、有效数字.14. ( )2=16,(-)3= .【答案】±4;.【解析】由平方根的定义知:42=16,(-4)2=16,所以(±4)2=16;(-)3=(-) × (-) ×(-)=-,故答案为:±4;.15. 数轴上和原点的距离等于3.5点表示的有理数是 .【答案】± 3.5【解析】如图所示:数轴上和原点的距离等于3.5的点表示的有理数是±3.5.16. 计算:(-1)6+(-1)7=____________.【答案】0.【解析】试题分析:考点:有理数的运算.17. 如果a、b互为倒数,c、d互为相反数,且m=-1,则代数式2ab-(c+d)+m2=_______.【答案】3【解析】试题分析:互为倒数,,互为相反数,且,考点:1、倒数;2、相反数.18. +5.7的相反数与-7.1的绝对值的和是 .【答案】1.4【解析】试题分析:根据题意可得:-5.7+=1.4考点:有理数的计算19. 已知每辆汽车要装4个轮胎,则51只轮胎至多能装配辆汽车.【答案】12【解析】试题分析:根据题意可得:51÷4=12(辆)……3(个),则至多能装配12辆汽车.考点:有理数的除法三、解答题20. 计算:(1)8+(― )―5―(―0.25) (2)―82+72÷36(3)7 ×1 ÷(-9+19) (4)25×(―18)+(―25)×12+25×(-10 )(5)(-79)÷2 + ×(-29) (6)(-1)3-(1-7)÷3×[3―(―3)2](7)2(x-3)-3(-x+1) (8) –a+2(a-1)-(3a+5)【答案】① 3 ;②-80 ;③;④ 0;⑤ -48 ;⑥ 0;⑦5x-9 ;⑧ -2a-7. 【解析】试题分析:(1)先化简再按有理数的运算顺序计算即可;(2)先算除法,后算加法;(3)先算括号里面的,再计算乘除;(4)先提出公因数25,再计算即可;(5)先算除法,再算加法;(6)先乘方,后乘除最后算加减,有括号要先算括号里面的;(7)先去括号再合并同类项即可;(8)先去括号再合并同类项即可.试题解析:(1)原式=8-5+0.25=3.25;(2)原式=-82+2=-80;(3)原式=7 ×1 ÷10=;(4)原式=25×(―18)- 25×12+25×(-10 )= 25×(-18-12-10)=-1000;(5)原式=-39.5-29=-68.5;(6)原式=-1-(-6)÷3×(3-9)=-1-2×6=-13;(7)原式=2x-6+3x-3=5x-9;(8)原式=–a+2a-2-3a-5=-2a-7.21. 一天小明和冬冬利用温差来测量山峰的高度.冬冬在山脚测得的温度是4℃,小明此时在山顶测得的温度是2℃,已知该地区高度每升高100米,气温下降0.8℃,问这个山峰有多高?【答案】250.【解析】试题分析:先计算出山脚与山顶的温度差,再计算出下降了几个0.8°C,然后乘以100即可;试题解析:(4-2)÷0.8×100=250(米)考点:有理数的混合运算.22. 有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其结果等于24.例如对1,2,3,4,可作如下运算:(1+2+3)×4=24(上述运算与4×(1+2+3)视为相同方法的运算)现有四个有理数3,4,-6,10,运用上述规则写出三种不同方法的运算式,可以使用括号,使其结果等于24.运算式如下:(1) ,(2) ,(3) .另有四个有理数3,-5,7,-13,可通过运算式(4) 使其结果等于24.【答案】本题答案不唯一,符合条件即可.【解析】试题分析:看懂规则,加上运算符合使结果等于24即可;试题解析:(1)4-10×(-6)÷3=24;(2)3×[10+4+(-6)]=24;(3)10-4-3×(-6)=24;(4)[7+(-13)×(-5)]÷3=24;考点:有理数的混合运算.23. 下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京的时间早的时数).现在的北京时间是上午8∶00(1)求现在纽约时间是多少?(2)斌斌现在想给远在巴黎的姑妈打电话,你认为合适吗?城市时差/ 时纽约-13巴黎-7东京+1芝加哥-14【答案】①21;②不可以打电话.【解析】试题分析:(1)用北京时间减去所求地的时差即可;(2)合适,通过与(1)相同的计算即可得出巴黎的时间,从而可确定;试题解析:(1)8-(-13)=21时;(2)巴黎现在的时间是8-(-7)=15时,可以打电话.考点:有理数加减法的应用.【答案】数轴详见解析;-3.5<-3<-2<-1<-0.5<1<3<3.5.【解析】试题分析:先按要求求出各数,再在数轴上表示出这些数,最后用“<”把它们连接起来即可.解:3.5的相反数是﹣3.5,﹣4的倒数是﹣,绝对值等于3的数是±3,最大的负整数是﹣1,(﹣1)2=1,在数轴上表示为:故﹣4<﹣3.5<﹣3<﹣1<﹣<1<3<3.5.25. 体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩斐然记录,其中"+"表示成绩大于15秒.-0.8 +1 -1.2 0-0.7 +0.6 -0.4 -0.1问:(1)这个小组男生的达标率为多少?(2)这个小组男生的平均成绩是多少秒?【答案】①75%;②14.8.【解析】试题分析:(1)从表格中得出,达标的人数为6人,求出达标率;(2)根据平均数的公式求出平均成绩.试题解析:(1)成绩记为正数的不达标,只有2人不达标,6人达标.这个小组男生的达标率=6÷8=75%;(2)-0.8+1-1.2+0-0.7+0.6-0.4-0.1=-1.615-1.6÷8=14.8秒答:(1)这个小组男生的达标率为75%.(2)这个小组男生的平均成绩是14.8秒.26. 有若干个数,第一个数记为a1,第二个数记为a2,…,第n个数记为a n.若a1=,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.试计算:a2=______,a3=____,a4=_____,a5=______.这排数有什么规律吗?由你发现的规律,请计算a2004是多少?【答案】-1.【解析】分析:根据规定进行计算,发现:=,=2, ,=-1, ,=.从而发现3个一循环.按照这个规律计算即可.本题解析:由题意得:,,,,…可以发现,2,-1这三个数反复出现.∵2004÷3=668,其余数为0,∴a2004=a3=-1.点睛:此类题型首先要计算几个特殊数值,然后发现循环的规律,从而计算出最后的结果.四、提高题(本题有2个小题,共16分)27. 同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=______.(2)找出所有符合条件的整数x,使得|x+5|+|x-2|=7这样的整数是___________.(3)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有写出最小值如果没有说明理由.【答案】①7;(2)-5,-4,-3,-2,-1,0,1,2;(3)有最小值为3.【解析】试题分析:(1)、根据绝对值的计算法则得出答案;(2)、结合两点之间的距离得出整数的值;(3)、根据数轴上两点之间的距离公式得出最小值.试题解析:(1)、原式=7(2)、表示x到-5和2的距离和为7,-5≤x≤2,则整数为—5,—4,—3,—2,—1,0,1,2;(3)、表示x到3和6的距离最小值,则根据数轴可得:当3≤x≤6时距离有最小值,最小值为3.考点:数轴上点的距离28. 若a、b、c均为整数,且∣a-b∣3+∣c-a∣2=1,求∣a-c∣+∣c-b∣+∣b-a∣的值(8分)【答案】2.【解析】试题分析先判断出a、b、c有两个数相等,不妨设为a=b,然后表示出c,再求出|a-c|,即可得解.试题解析:∵∣a-b∣3+∣c-a∣2=1,并且a、b、c均为整数,∵∣a-b∣和∣c-a∣=0或1,∴当∣a-b∣=1时∣c-a∣=0,则c=a, ∣c-b∣=1∴∣a-c∣+∣c-b∣+∣b-a∣=0+1+1=2当∣a-b∣=0时∣c-a∣=1,则b=a, ∣c-b∣=1,∣a-c∣+∣c-b∣+∣b-a∣=1+1+0=2.点睛:本题考查了绝对值的性质和有理数的乘方,判断出a、b、c有两个数相等是解题的关键.。

人教版数学七年级上册第1章 有理数 测试卷(含答案)

人教版数学七年级上册第1章 有理数 测试卷(含答案)

人教版数学七年级上册第1章有理数测试卷(含答案)一、选择题(本大题10小题,每小题3分,共30分)1.(3分)在1,0,2,﹣3这四个数中,最大的数是()A.1B.0C.2D.﹣32.(3分)2的相反数是()A.B.C.﹣2D.23.(3分)﹣5的绝对值是()A.5B.﹣5C.D.﹣4.(3分)﹣2的倒数是()A.2B.﹣2C.D.﹣5.(3分)下列说法正确的是()A.带正号的数是正数,带负号的数是负数B.一个数的相反数,不是正数,就是负数C.倒数等于本身的数有2个D.零除以任何数等于零6.(3分)在有理数中,绝对值等于它本身的数有()A.1个B.2个C.3个D.无穷多个7.(3分)比﹣2大3的数是()A.1B.﹣1C.﹣5D.﹣68.(3分)下列算式正确的是()A.3﹣(﹣3)=6B.﹣(﹣3)=﹣|﹣3|C.(﹣3)2=﹣6D.﹣32=9 9.(3分)据报道,2014年第一季度,广东省实现地区生产总值约1.36万亿元,用科学记数法表示为()A.0.136×1012元B.1.36×1012元C.1.36×1011元D.13.6×1011元10.(3分)近似数2.7×103是精确到()A.十分位B.个位C.百位D.千位二、填空题(本大题6小题,每小题4分,共24分)11.(4分)如果温度上升3℃记作+3℃,那么下降3℃记作.12.(4分)已知|a|=4,那么a=.13.(4分)在数轴上,与表示﹣3的点距离2个单位长度的点表示的数是.14.(4分)比较大小:3223.15.(4分)若(a﹣1)2+|b+2|=0,那么a+b=.16.(4分)观察下列依次排列的一列数:﹣2,4,﹣6,8,﹣10…按它的排列规律,则第10个数为.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)把下列各数在数轴上表示出来,并用“>“号连结起来.﹣3,﹣1.5,﹣1,2.5,4.18.(6分)﹣8﹣6+22﹣919.(6分)计算:﹣8÷(﹣2)+4×(﹣5).四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)小强有5张卡片写着不同的数字的卡片:他想从中取出2张卡片,使这2张卡片上数字乘积最大.你知道应该如何抽取吗?最大的乘积是多少吗?21.(7分)计算:(﹣+﹣)×(﹣12).22.(7分)计算:﹣22+3×(﹣1)4﹣(﹣4)×2.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)若|a|=5,|b|=3,求a+b的值.24.(9分)某班抽查了10名同学的期末成绩,以80分为基准,超出的记作为正数,不足的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.25.(9分)一辆汽车沿着南北方向的公路来回行驶,某天早晨从A地出发,晚上最后到达B地,约定向北正方向(如:+7表示汽车向北行驶7千米),当天行驶记录如下:+18,﹣9,+7,﹣14,﹣6,12,﹣6,+8.(单位:千米)问:(1)B地在A地的何方,相距多少千米?(2)若汽车行驶1千米耗油0.35升,那么这一天共耗油多少升?参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)1.(3分)在1,0,2,﹣3这四个数中,最大的数是()A.1B.0C.2D.﹣3【考点】有理数大小比较.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣3<0<1<2,故选:C.【点评】本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.(3分)2的相反数是()A.B.C.﹣2D.2【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:2的相反数是﹣2,故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.(3分)﹣5的绝对值是()A.5B.﹣5C.D.﹣【考点】绝对值.【分析】根据绝对值的性质求解.【解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.【点评】此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.4.(3分)﹣2的倒数是()A.2B.﹣2C.D.﹣【考点】倒数.【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选D.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.5.(3分)下列说法正确的是()A.带正号的数是正数,带负号的数是负数B.一个数的相反数,不是正数,就是负数C.倒数等于本身的数有2个D.零除以任何数等于零【考点】有理数.【分析】利用有理数的定义判断即可得到结果.【解答】解:A、带正号的数不一定为正数,例如+(﹣2);带负号的数不一定为负数,例如﹣(﹣2),故错误;B、一个数的相反数,不是正数,就是负数,例如0的相反数是0,故错误;C、倒数等于本身的数有2个,是1和﹣1,正确;D、零除以任何数(0除外)等于零,故错误;故选:C.【点评】此题考查了有理数,熟练掌握有理数的定义是解本题的关键.6.(3分)在有理数中,绝对值等于它本身的数有()A.1个B.2个C.3个D.无穷多个【考点】绝对值.【分析】根据绝对值的意义求解.【解答】解:在有理数中,绝对值等于它本身的数有0和所有正数.故选D.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.7.(3分)比﹣2大3的数是()A.1B.﹣1C.﹣5D.﹣6【考点】有理数的加法.【分析】先根据题意列出算式,然后利用加法法则计算即可.【解答】解:﹣2+3=1.故选:A.【点评】本题主要考查的是有理数的加法法则,掌握有理数的加法法则是解题的关键.8.(3分)下列算式正确的是()A.3﹣(﹣3)=6B.﹣(﹣3)=﹣|﹣3|C.(﹣3)2=﹣6D.﹣32=9【考点】有理数的乘方;相反数;有理数的减法.【分析】根据有理数的减法和有理数的乘方,即可解答.【解答】解:A、3﹣(﹣3)=6,正确;B、﹣(﹣3)=3,﹣|﹣3|=﹣3,故本选项错误;C、(﹣3)2=9,故本选项错误;D、﹣32=﹣9,故本选项错误;故选:A.【点评】本题考查了有理数的减法和有理数的乘方,解决本题的关键是熟记有理数的乘方和有理数的减法.9.(3分)据报道,2014年第一季度,广东省实现地区生产总值约1.36万亿元,用科学记数法表示为()A.0.136×1012元B.1.36×1012元C.1.36×1011元D.13.6×1011元【考点】科学记数法—表示较大的数.【分析】根据科学记数法的表示方法:a×10n,可得答案.【解答】解:1.36万亿元,用科学记数法表示为1.36×1012元,故选:B.【点评】本题考查了科学记数法,科学记数法中确定n的值是解题关键,指数n 是整数数位减1.10.(3分)近似数2.7×103是精确到()A.十分位B.个位C.百位D.千位【考点】近似数和有效数字.【分析】由于2.7×103=2700,而7在百位上,则近似数2.7×103精确到百位.【解答】解:∵2.7×103=2700,∴近似数2.7×103精确到百位.故选C.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起,到这个数完为止,所有这些数字叫这个数的有效数字.二、填空题(本大题6小题,每小题4分,共24分)11.(4分)如果温度上升3℃记作+3℃,那么下降3℃记作﹣3℃.【考点】正数和负数.【分析】此题主要用正负数来表示具有意义相反的两种量:上升记为正,则下降就记为负.【解答】解:∵温度上升3℃记作+3℃,∴下降3℃记作﹣3℃.故答案为:﹣3℃.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.12.(4分)已知|a|=4,那么a=±4.【考点】绝对值.【分析】∵|+4|=4,|﹣4|=4,∴绝对值等于4的数有2个,即+4和﹣4,另外,此类题也可借助数轴加深理解.在数轴上,到原点距离等于4的数有2个,分别位于原点两边,关于原点对称.【解答】解:∵绝对值等于4的数有2个,即+4和﹣4,∴a=±4.【点评】绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.本题是绝对值性质的逆向运用,此类题要注意答案一般有2个,除非绝对值为0的数才有一个为0.13.(4分)在数轴上,与表示﹣3的点距离2个单位长度的点表示的数是﹣5或﹣1.【考点】数轴.【专题】探究型.【分析】由于所求点在﹣3的哪侧不能确定,所以应分在﹣3的左侧和在﹣3的右侧两种情况讨论.【解答】解:当所求点在﹣3的左侧时,则距离2个单位长度的点表示的数是﹣3﹣2=﹣5;当所求点在﹣3的右侧时,则距离2个单位长度的点表示的数是﹣3+2=﹣1.故答案为:﹣5或﹣1.【点评】本题考查的是数轴的特点,即数轴上右边的点表示的数总比左边的大.14.(4分)比较大小:32>23.【考点】有理数的乘方;有理数大小比较.【专题】计算题.【分析】分别计算32和23,再比较大小即可.【解答】解:∵32=9,23=8,∴9>8,即32>23.故答案为:>.【点评】本题考查了有理数的乘方以及有理数的大小比较,是基础知识要熟练掌握.15.(4分)若(a﹣1)2+|b+2|=0,那么a+b=﹣1.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b,然后相加即可得解.【解答】解:根据题意得,a﹣1=0,b+2=0,解得a=1,b=﹣2,所以,a+b=1+(﹣2)=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.(4分)观察下列依次排列的一列数:﹣2,4,﹣6,8,﹣10…按它的排列规律,则第10个数为20.【考点】规律型:数字的变化类.【分析】观察不难发现,这列数的绝对值是从2开始的连续偶数,并且第偶数个数是正数,第奇数个数是负数,然后写出第10个数即可.【解答】解:∵﹣2,4,﹣6,8,﹣10…,∴第10个数是正数数,且绝对值为2×10=20,∴第10个数是20,故答案为:20.【点评】本题是对数字变化规律的考查,比较简单,难点在于从绝对值和符号两个部分考虑求解.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)把下列各数在数轴上表示出来,并用“>“号连结起来.﹣3,﹣1.5,﹣1,2.5,4.【考点】有理数大小比较;数轴.【分析】先在数轴上表示各个数,再比较即可.【解答】解:4>2.5>﹣1>﹣1.5>﹣3.【点评】本题考查了有理数的大小比较,数轴的应用,能正确在数轴上表示各个数是解此题的关键,注意:在数轴上表示各个数,右边的数总比左边的数大.18.(6分)﹣8﹣6+22﹣9【考点】有理数的加减混合运算.【分析】直接进行有理数的加减运算.【解答】解:原式=﹣23+22=﹣1.【点评】本题考查有理数的运算,属于基础题,注意运算的顺序是关键.19.(6分)计算:﹣8÷(﹣2)+4×(﹣5).【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘除运算,再计算加减运算即可得到结果.【解答】解:原式=4﹣20=﹣16,故答案为:﹣16【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)小强有5张卡片写着不同的数字的卡片:他想从中取出2张卡片,使这2张卡片上数字乘积最大.你知道应该如何抽取吗?最大的乘积是多少吗?【考点】规律型:数字的变化类.【分析】分析几个数可知要使抽取的数最大,需同时抽两个最大正数或两个最小的负数,即可使乘积最大.【解答】解:抽取﹣3和﹣8.最大乘积为(﹣3)×(﹣8)=24.【点评】两个负数的乘积为正数,且这两个负数越小,其乘积越大.21.(7分)计算:(﹣+﹣)×(﹣12).【考点】有理数的混合运算.【专题】计算题.【分析】根据有理数的混合运算的运算方法,应用乘法分配律,求出算式的值是多少即可.【解答】解:(﹣+﹣)×(﹣12)=(﹣)×(﹣12)+×(﹣12)﹣×(﹣12)=2﹣9+5=﹣2【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意乘法运算定律的应用.22.(7分)计算:﹣22+3×(﹣1)4﹣(﹣4)×2.【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣4+3+8=7.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)若|a|=5,|b|=3,求a+b的值.【考点】有理数的加法;绝对值.【分析】|a|=5,则a=±5,同理b=±3,则求a+b的值就应分几种情况讨论.【解答】解:∵|a|=5,∴a=±5,同理b=±3.当a=5,b=3时,a+b=8;当a=5,b=﹣3时,a+b=2;当a=﹣5,b=3时,a+b=﹣2;当a=﹣5,b=﹣3时,a+b=﹣8.【点评】正确地进行讨论是本题解决的关键.规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.24.(9分)某班抽查了10名同学的期末成绩,以80分为基准,超出的记作为正数,不足的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.【考点】正数和负数.【分析】(1)根据正负数的意义解答即可;(2)求出所有记录的和的平均数,再加上基准分即可.【解答】解:(1)最高分为:80+12=92分,最低分为:80﹣10=70分;(2)8﹣3+12﹣7﹣10﹣3﹣8+1+0+10=8+12+1+10+0﹣3﹣7﹣10﹣3﹣8=31﹣31=0,所以,10名同学的平均成绩80+0=80分.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.25.(9分)一辆汽车沿着南北方向的公路来回行驶,某天早晨从A地出发,晚上最后到达B地,约定向北正方向(如:+7表示汽车向北行驶7千米),当天行驶记录如下:+18,﹣9,+7,﹣14,﹣6,12,﹣6,+8.(单位:千米)问:(1)B地在A地的何方,相距多少千米?(2)若汽车行驶1千米耗油0.35升,那么这一天共耗油多少升?【考点】正数和负数.【专题】应用题.【分析】(1)把当天记录相加,然后根据正数和负数的规定解答即可;(2)先求出行驶记录的绝对值的和,再乘以0.35计算即可得解.【解答】解:(1)18﹣9+7﹣14﹣6+12﹣6+8=45﹣35=10,所以,B地在A地北方10千米;(2)18+9+7+14+6+12+6+8=80千米80×0.35=28升.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.。

2023-2024学年七年级数学上册《第一章 有理数》单元测试卷含答案(人教版)

2023-2024学年七年级数学上册《第一章 有理数》单元测试卷含答案(人教版)

2023-2024学年七年级数学上册《第一章有理数》单元测试卷含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.﹣2的相反数是()A.﹣2 B.0 C.2 D.42.粤海铁路是我国第一条横跨海峡的铁路通道,设计年输送货物能力为11 000 000吨,用科学记数法应记为()A.11×106吨B.1.1×107吨C.11×107吨D.1.1×108吨3.从数﹣6,1,﹣3,5,﹣2中任取三个数相乘,则其积最小的是()A.﹣60 B.﹣36C.﹣90 D.﹣304.检测4个足球质量,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数,从轻重的角度看,最接近标准的是()A.+0.9 B.-3.6 C.-0.8 D.+2.55.算式的值与下列选项值相等的是()A.B.C.D.6.|a-2|+|b+1|=0,则a+b等于()A.-1 B.1 C.0 D.-27.一根1米长的绳子,第一次剪去它的三分之一,如此剪下去,第五次后剩下的绳子的长度为()A.米B.米C.米D.米8.有理数a,b在数轴上的位置如图所示,则下列各式中错误的是()A.b<a B.|b|>|a| C.a+b>0 D.ab<0二、填空题:(本题共5小题,每小题3分,共15分.)9.比较大小:.(用“>”“=”或“<”填空).10.用四舍五入法将4.036取近似数并精确到0.01,得到的值是.11.一天早晨的气温是﹣2℃,半夜又下降了1℃,则半夜的气温是℃.12.某车间生产一批圆柱形机器零件,从中抽出了6件进行检验,把标准直径的长记为0,比标准直径长的记为正数,比标准直径短的记为负数,检查记录如下:则第个零件最符合标准.13.数轴上的点A,B是互为相反数,其中A对应的点是2,C是距离点A为6的点,则点B和C所表示的数的和为.三、解答题:(本题共5题,共45分)14.计算15.计算:(1);(2) .16.计算:(1)(2)17.某仓库原有某种商品300件,现记录了8天内该种商品进出仓库的件数如下所示:(“+”表示进库,“﹣”表示出库)+30,﹣10,﹣15,+25,+17,+35,﹣20,﹣15.(1)经过8天,仓库内的该种商品是增加了还是减少了?此时仓库还有多少件商品?(2)如果该种商品每次进出仓库都需要支付人工费每件3元,请问这8天要支付多少人工费?18.“十一”黄金周期间,某市外出旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)(1)9月30日外出旅游人数记为a,请用含字母a的代数式表示10月2日外出旅游的人数:(2)请判断八天内外出旅游人数最多的是10月日,最少是10月日. (3)如果最多一天出游人数有3万人,且平均每人消费2000元,试问该城市10月5日外出旅游消费总额为万元.参考答案:1.C 2.B 3.B 4.C 5.A 6.B 7.B 8.C 9.>10.4.0411.-312.513.-6或614.解:﹣22﹣×[4﹣(﹣3)2]÷(﹣)=﹣4﹣×(4﹣9)×(﹣)=﹣4﹣×(﹣5)×(﹣)=﹣4﹣2=﹣6.15.(1)解:原式===== ;(2)解:原式=== .16.(1)解:;(2)解:= .17.(1)解:+30+(﹣10)+(﹣15)+(+25)+(+17)+(+35)+(﹣20)+(﹣15)=47(件)300+47=347(件)答:经过8天,仓库内的该种商品是增加了47件,此时仓库还有347件商品;(2)解:|+30|+|﹣10|+|﹣15|+|+25|+|+17|+|+35|+|﹣20|+|﹣15|=167(件)3×167=501(元)答:这8天要支付501元人工费.18.(1)解:由题意可知10月2日外出旅游的人数为:a+1.6+0.8=(a+2.4)万人(2)3;7(3)3600。

第一章 有理数 单元测试卷(含答案) 初中数学人教版(2024)七年级上册

第一章 有理数  单元测试卷(含答案)   初中数学人教版(2024)七年级上册

人教版(2024新教材)七年级(上)单元测试卷第一章《有理数》满分100分时间80分钟题型选择题填空题解答题分值一.选择题(共10小题,满分30分,每小题3分)1.下列数中,属于负数的是( )A.2024B.﹣2024C.D.12.零上5℃记作+5℃,零下3℃可记作( )A.3℃B.﹣3℃C.3D.﹣33.﹣2的相反数是( )A.﹣2B.2C.﹣D.±24.下列四个数中,属于负整数的是( )A.﹣2.5B.﹣3C.0D.65.一名同学画了四条数轴,只有一个正确,你认为正确的是( )A.B.C.D.6.在﹣1,0,3.5,﹣4这四个数中,最大的数是( )A.﹣1B.3.5C.﹣4D.07.下列各式中,等式不成立的是( )A.|﹣2|=2B.﹣|2|=﹣|﹣2|C.|﹣2|=|2|D.﹣|2|=28.如图,点A在数轴上表示的数为1,将点A向左移动4个单位长度得到点B,则点B表示的数为( )A.﹣2B.﹣3C.﹣5D.59.在数轴上,到表示﹣1的点的距离等于6的点表示的数是( )A.5B.﹣7C.5或﹣7D.810.若a、b为有理数,a<0,b>0,且|a|>|b|,那么a,b,﹣a,﹣b的大小关系是( )A.﹣b<a<b<﹣a B.b<﹣b<a<﹣a C.a<﹣b<b<﹣a D.a<b<﹣b<﹣a二.填空题(共8小题,满分24分,每小题3分)11.在3,﹣0.01,0,﹣2,+8,,﹣100中,负分数有 个.12.计算:﹣(﹣2024)= .13.比较大小:﹣ ﹣.14.某种零件,标明要求是φ25±0.2mm(φ表示直径,单位:毫米),经检查,一个零件的直径是24.9mm,该零件 (填“合格”或“不合格”).15.如图,数轴上A,B两点表示的数是互为相反数,且点A与点B之间的距离为4个单位长度,则点A表示的数是 .16.数轴上表示2的点与表示﹣5的点之间的距离为 .17.若|a|+|b﹣2|=0,则a= ,b= .18.一滴墨水洒在一个数轴上,根据图中标出的数值,判断墨迹盖住的整数个数是 .三.解答题(共6小题,满分46分)19.(8分)把下列各数填在相应的集合内(1)整数集合:{ …};(2)负分数集合:{ …};(3)非负数集合:{ …};(4)有理数集合:{ …}.20.(6分)在一条东西方向的大街上,约定向东前进为正,向西前进为负,某天某出租车自A地出发,到收工时所走路程(单位:千米)分别为:+10,﹣3,+4,+2,﹣8,+13,﹣2,+12,+8,+5.(1)收工时在A地的 面(哪个方向);距A地有 (多远);(2)若每千米耗油0.5升,问从A地出发到收工时共耗油多少升?21.(8分)如图是一个不完整的数轴,(1)请将数轴补充完整,并将下列各数表示在数轴上;(2)将下列各数按从小到大的顺序用“<”号连接起来:﹣3;3.5;;﹣|﹣1|.22.(8分)六一到了,嘉嘉和同学要表演节目.嘉嘉骑车到同学家拿东西,再到学校,她从自己家出发,向东骑了2km到达淇淇家,继续向东骑了1.5km到达小敏家,然后又向西骑了4.5km到达学校.演出结束后又向东骑回到自己家.(1)以嘉嘉家为原点,向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A 表示出淇淇家,用点B表示出小敏家,用点C表示出学校的位置;(2)求淇淇家与学校之间的距离;(3)如果嘉嘉骑车的速度是300m/min,那么嘉嘉骑车一共用了多长时间?23.(8分)(1)如果|a|=5,|b|=2,且a,b异号,求a、b的值.(2)若|a|=5,|b|=1,且a<b,求a,b的值.24.(8分)如图,灰太狼和喜羊羊、美羊羊、沸羊羊、懒羊羊在5×5的方格(每个小方格的边长表示10米距离)图上沿着网格线运动.灰太狼从点A处出发去寻找点B,C,D,E处的某只羊,规定:向上、向右走为正,向下、向左走为负.例如从点A到点B记为A→B(+1,+3),从点B到点A记为B→A(﹣1,﹣3),其中第一个数表示左右方向的移动情况,第二个数表示上下方向的移动情况.(1)填空:从点C到点D记为C→D .(2)若灰太狼从点A处出发去找点E处的喜羊羊,行走路线依次为(+3,+2),(+1,+2),(﹣3,﹣1),(+1,﹣1),请在图中标出喜羊羊的位置点E.(3)在(2)中,若灰太狼每走1米消耗0.5焦耳的能量,则灰太狼寻找喜羊羊的过程共消耗多少焦耳的能量?参考答案一.选择题1.B.2.B.3.B.4.B.5.C.6.B.7.D.8.B.9.C.10.C.二.填空题11.1.12.2024.13.>.14.合格.15.﹣2.16.7.17.0,2.18.120.三.解答题19.(8分)解:(1)整数集合:{﹣8,+5,0,……}.故答案为:﹣8,+5,0;(2)负分数集合:{﹣5.15,,﹣5%,……}.故答案为:﹣5.15,,﹣5%;(3)非负数集合:{+5,0.06,0,π,1.5,……}.故答案为:+5,0.06,0,π,1.5;(4)有理数集合:{﹣8,+5,0.06,﹣5.15,0,,﹣5%,1.5,……}.故答案为:﹣8,+5,0.06,﹣5.15,0,,﹣5%,1.5.20.(6分)解:(1)答案为:东;41千米;(2)|+10|+|﹣3|+|+4|+|+2|+|﹣8|+|+13|+|﹣2|+|+12|+|+8|+|+5|=67(千米),67×0.5=33.5(升).答:从A地出发到收工时共耗油33.5升.21.(8分)解:(1),﹣|﹣1|=﹣1,(2)由数轴可得,.22.(8分)解:(1)根据题意得:∵以嘉嘉家为原点,向东为正方向,用1个单位长度表示1km,且向东骑了2km到达淇淇家,继续向东骑了1.5km到达小敏家,则1×2=2,2+1.5=3.5;∴淇淇家的位置对应的数为2,小敏家的位置对应的数为3.5,学校的位置对应的数为﹣1,如图所示:;(2)依题意,2﹣(﹣1)=3(km).答:淇淇家与学校之间的距离是3km.(3)依题意2+1.5+|﹣4.5|+1=9(km),则9km=9000m,∴9000÷300=30(min).答:嘉嘉骑车一共用了30min.23.(8分)解:(1)∵|a|=5,|b|=2,∴a=±5,b=±2,∵a,b异号,∴a=5,b=﹣2,或a=﹣5,b=2;(2)∵|a|=5,|b|=1,∴a=±5,b=±1,∵a<b,∴a=﹣5,b=﹣1,或a=﹣5,b=1.24.(8分)解:(1)故答案为:(+1,﹣2);(2)如图:;(3)(3+2+1+2+3+1+1+1)×0.5×10=70(焦耳),故灰太狼共消耗了70焦耳能量.。

人教版七年级数学上册第一章 有理数单元测试卷(含答案)

人教版七年级数学上册第一章 有理数单元测试卷(含答案)

人教版七年级数学上册第一章有理数一、选择题1.在−π3,3.1415,0,−0.333…,−227,2.010010001…中,非负数的个数( )A .2个B .3个C .4个D .5个2.长江干流上的葛洲坝、三峡向家坝、溪洛渡、白鹤滩、乌东德6座巨型梯级水电站,共同构成目前世界上最大的清洁能源走廊,总装机容量71695000千瓦,将71695000用科学记数法表示为( )A .7.1695×107B .716.95×105C .7.1695×106D .71.695×1063.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )A .B .C .D .4.下列说法正确的是( )A .1是最小的自然数B .平方等于它本身的数只有1C .任何有理数都有倒数D .绝对值最小的数是05.计算 3−(−3) 的结果是( )A .6B .3C .0D .-66.下列说法:①有理数与数轴上的点一一对应;②1的平方根是它本身;③立方根是它本身的数是0,1;④对于任意一个实数a ,都可以用1a表示它的倒数.⑤任何无理数都是无限不循环小数.正确的有( )个.A .0B .1C .2D .37.把数轴上表示数2的点移动3个单位后,表示的数为( )A .5B .1C .5或-1D .5或18.如果|a|=−a ,那么a 一定是( )A .正数B .负数C .非正数D .非负数9.法国的“小九九”从“一 一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是( )7×8=?8×9=?因为两手伸出的手指数的和为5,未伸出的手指数的积为6,所以7×8=56.7×8=10×(2+3)+3×2=56因为两手伸出的手指数的和为7,未伸出的手指数的积为2,所以8×9=72.8×9=10×(3+4)+2×1=72A .2,4B .1,4C .3,4D .3,110.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1−12=11×2①12−13=12×3②13−14=13×4③14−15=14×5④ ……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .12021二、填空题11.12的相反数是  . 12.-2的绝对值是 13.定义一种新运算“⊗”,规则如下:a ⊗b =a 2−ab ,例如:3⊗1=32−3×1=6,则4⊗[2⊗(−5)]的值为  .14.如图所示的运算程序中,若开始输入的值为−2,则输出的结果为  .15.若a−2+|3−b |=0,则3a +2b = .16.若a ,b ,c 都不为0,则 a |a|+b |b|+c |c|+abc|abc|的值可能是 .三、解答题17.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.−3,|−3|,32,(−2)2,−(−2)18.将有理数−2.5,0,212,2023,−35%,0.6分别填在相应的大括号里.整数:{ …};负数:{ …};正分数:{ …}19.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 20.把相同的瓷碗按如图方式整齐地叠放在一起.叠放4个时,测量的高度为9.5cm;叠放6个时,测量的高度为12.5cm.(1)根据题意,可知每增加一个瓷碗,高度增加 cm;(2)求碗高;(3)若叠放10个瓷碗,高度为 cm.21.若a,b互为相反数,c,d互为倒数,m的绝对值为2.(1)直接写出a+b=______,cd=____,m=____.(2)求m−cd+3a+3bm的值.22.我们知道,|a|可以理解为|a−0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a−b|,反过来,式子|a−b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数−1的点和表示数−3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a−3|=5,那么a的值是_________.②|a−3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.23.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接与出a= ,b= ;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值:(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.答案解析部分1.【答案】B 2.【答案】A 3.【答案】B 4.【答案】D 5.【答案】A 6.【答案】B 7.【答案】C 8.【答案】C 9.【答案】A 10.【答案】B 11.【答案】﹣ 1212.【答案】213.【答案】−4014.【答案】815.【答案】1216.【答案】0或4或﹣417.【答案】图见解答,−3<32<−(−2)<|−3|<(−2)218.【答案】解:整数:0,2023;负数:−2.5,−35%;正分数:212,0.6.19.【答案】(1)解:如图所示(2)50(3)-820.【答案】(1)1.5(2)解:设碗高为xcm ,根据题意得x+1.5×3=9.5.解方程得,x=5 .答:碗高为5cm.(3)18.521.【答案】(1)0,1,±2;(2)1或−322.【答案】(1)5,2(2)①8或−2;②9;③1023132 23.【答案】(1)5;6(2)解:①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10-5t,MP=3t+10-5t即3t+10-5t=5t,解得t=10 7,②点M到达O返回,未到达A点或刚到达A点时,即当(2<t≤4时),OM=5t-10,AM=20-5t,MP=3t+5t-10即3t+5t-10=20-5t,解得t=30 13③点M到达O返回时,在A点右侧,即t>4时OM=5t-10,AM=5t-20,MP=3t+5t-10,即3t+5t-10=5t-20,解得t=−103(不符合题意舍去).综上t=107或t=3013;(3)解:如下图:根据题意:NO=6t,OM=5t,所以MN=6t+5t=11t依题意:NO+OA+AM+AN+OM+MN=MN+MN+OA+MN=33t+10=142,解得t=4.此时M对应的数为20.。

人教版七年级数学上册《第一章有理数》测试题-附有答案

人教版七年级数学上册《第一章有理数》测试题-附有答案

人教版七年级数学上册《第一章有理数》测试题-附有答案一、选择题(本题共12小题每小题4分共48分在每小题给出的四个选项中只有一项是符合题目要求的请用2B铅笔把答题卡上对应题目答案标号涂黑)1.(4分)有理数﹣1 0 1 3四个数中最小的是()A.﹣1B.0C.1D.3【分析】利用有理数的大小比较来选择即可.【解答】解:有理数﹣1 0 1 3四个数中最小的是﹣1故选:A.2.(4分)中国疾控中心免疫规划首席专家王华庆在2022年3月25日国务院联防联控机制新闻发布会上表示我国60岁以上的老年人中有2.12亿人完成了新冠病毒疫苗的全程接种.其中2.12亿用科学记数法表示为()A.2.12×107B.2.12×108C.0.212×109D.2.12×109【分析】用科学记数法表示较大的数时一般形式为a×10n其中1≤|a|<10 n为整数且n比原来的整数位数少1 据此判断即可.【解答】解:2.12亿=212000000=2.12×108.故选:B.3.(4分)中老铁路是与中国铁路网直接连通的国际铁路线路北起中国西南地区的昆明市南向到达老挝首都万象市是“一带一路”上最成功的样板工程.从长期看将会使老挝每年的总收入提升21% 若+21%表示提升21% 则﹣10%表示()A.提升10%B.提升31%C.下降10%D.下降﹣10%【分析】利用正负数表示相反意义的数来选择即可.【解答】解:∵+21%表示提升21%∴﹣10%就表示下降10%.故选:C.4.(4分)下列各对数中互为相反数的是()A.﹣(﹣2)和2B.4和﹣(+4)C.和﹣3D.5和|﹣5|【分析】利用互为相反数的定义、绝对值的定义判断即可.【解答】解:﹣(﹣2)=2 A不符合题意;4与﹣(+4)互为相反数B符合题意;和﹣3不互为相反数C不符合题意;5=|﹣5| 不互为相反数D不符合题意.故选:B.5.(4分)已知有理数a b c在数轴上的对应点的位置如图所示则下列结论不正确的是()A.c<a<b B.a﹣c>0C.bc<0D.|c﹣b|=c﹣b【分析】利用a b c在数轴上的位置可以判断出c<a<b再用有理数的加减乘除法则判断即可.【解答】解:利用数轴可以判断出c<a<b则A选项正确不符合题意;由数轴可以看出c<a则a﹣c>0 则B选项正确不符合题意;由数轴可以看出c<0<b则bc<0 则C选项正确不符合题意;由数轴可以看出c<0<b|c|>|b|则|c﹣b|=﹣(c﹣b)=b﹣c故D选项错误符合题意.故选:D.6.(4分)我国幅员辽阔南北跨纬度广温差较大5月份的某天同一时刻我国最南端的海南三沙市气温是30℃而最北端的漠河镇气温是﹣2℃则三沙市的气温比漠河镇的气温高()A.﹣32℃B.﹣28℃C.28℃D.32℃【分析】利用有理数的减法运算法则计算即可.【解答】解:根据题意可知三沙市的气温比漠河镇的气温高30﹣(﹣2)=30+2=32(℃)故选:D.7.(4分)如图1 点A B C是数轴上从左到右排列的三个点分别对应的数为﹣5 b 4 某同学将刻度尺如图2放置使刻度尺上的数字0对齐数轴上的点A发现点B对应刻度1.8cm点C对齐刻度5.4cm.则数轴上点B所对应的数b为()A.3B.﹣1C.﹣2D.﹣3【分析】根据刻度尺上的刻度与数轴上得单位长度的比值不变求解.【解答】解:∵5.4÷(4+5)=0.6(cm )∴1.8÷0.6=3∴﹣5+3=﹣2故选:C .8.(4分)计算(241343671211-+-)×(﹣24)的结果是( ) A .1 B .﹣1 C .10 D .﹣10【分析】根据乘法分配律计算即可.【解答】解:(﹣+﹣)×(﹣24) =×(﹣24)﹣×(﹣24)+×(﹣24)﹣×(﹣24) =﹣22+28+(﹣18)+13=1故选:A .9.(4分)下列说法正确的是( )A .近似数4.20和近似数4.2的精确度一样B .近似数4.20和近似数4.2的有效数字相同C .近似数3千万和近似数3000万的精确度一样D .近似数52.0和近似数5.2的精确度一样【分析】根据近似数和有效数字的定义 可以判断各个选项中的说法是否正确.【解答】解:近似数4.20和近似数4.2的精确度不一样 近似数4.20精确到百分位 近似数4.2精确到十分位 故选项A 错误 不符合题意;近似数4.20和近似数4.2的有效数字不相同 近似数4.20有三个有效数字 近似数4.2有两个有效数字 故选项B 错误 不符合题意;近似数3千万和近似数3000万的精确度不一样 近似数3千万精确到千万位 近似数3000万精确到万位 故选项C 错误 不符合题意;近似数52.0和近似数5.2的精确度一样 故选项D 正确 符合题意;故选:D .10.(4分)规定:把四个有理数1 2 3 ﹣5分成两组 每组两个 假设1 3分为一组 2 ﹣5分为另一组 则A =|1+3|+|2﹣5|.在数轴上原点右侧从左到右取两个有理数m 、n 再取这两个数的相反数 对于这样的四个数其所有A的和为()A.4m B.4m+4n C.4n D.4m﹣4n【分析】根据已知条件列出所有情况并求出A的值即可求得所有A的和.【解答】解:根据题意得m<n m n的相反数为﹣m﹣n则有如下三种情况:①m n为一组﹣m﹣n为另一组此时有A=|m+n|+|(﹣m)+(﹣n)|=2m+2n;②m﹣m为一组n﹣n为另一组此时有A=|m+(﹣m)|+|n+(﹣n)|=0;③m﹣n为一组n﹣m为另一组此时有A=|m+(﹣n)|+|n+(﹣m)|=2n﹣2m.∴所有A的和为2m+2n+0+2n﹣2m=4n.故选:C.11.(4分)如图在一个由6个圆圈组成的三角形里把﹣25到﹣30这6个连续整数分别填入图的圆圈中要求三角形的每条边上的三个数的和S都相等那么S的最小值是()A.﹣84B.﹣85C.﹣86D.﹣87【分析】三个顶点处分别是﹣30 ﹣29 ﹣28 ﹣30与﹣29之间是﹣25 ﹣30和﹣28之间是﹣26 ﹣29和﹣28之间是﹣27 这样每边的和才能相等并且S有最小值.【解答】解:如图∴S=﹣29﹣27﹣28=﹣84故选:A.12.(4分)设a b是有理数定义一种新运算:a⊗b=a2﹣b2.下面有四个推断:①a⊗b=b⊗a;②a⊗(﹣b)=(﹣a)⊗b;③a⊗(b⊗c)=(a⊗b)⊗c;④(a+b)⊗(a﹣b)=(b+a)⊗(b﹣a).所有合理推断的序号是()A.①③B.②④C.②③④D.①②③④【分析】各式利用新定义判断即可.【解答】解:根据题中的新定义得:①a⊗b=a2﹣b2b⊗a=b2﹣a2不成立;②a⊗(﹣b)=a2﹣b2(﹣a)⊗b=a2﹣b2成立;③a⊗(b⊗c)=a2﹣(b2﹣c2)2=a2﹣b4+2b2c2﹣c4;(a⊗b)⊗c=(a2﹣b2)2﹣c2=a4﹣2a2b2+b4﹣c2不成立;④(a+b)⊗(a﹣b)=(a+b)2﹣(a﹣b)2(b+a)⊗(b﹣a)=(b+a)2﹣(b﹣a)2=(a+b)2﹣(a﹣b)2成立故选:B.二、填空题(本题共4个小题每小题4分共16分答题请用黑色墨水笔或签字笔直接答在答题卡相应的位置上)13.(4分)定义:如果2m=n(m n为正数)那么我们把m叫做n的D数记作m=D(n).根据所学知识试计算:D(16)=.【分析】根据题意得:2m=16 求出m的值即可.【解答】解:根据题意得:2m=16∴m=4.故答案为:4.14.(4分)已知|a+2|=4 (b﹣1)2=4 且ab<0 则a+b=.【分析】先求出a b的值根据ab<0 知道a b异号分两种情况分别计算即可.【解答】解:∵|a+2|=4 (b﹣1)2=4∴a=2或﹣6 b=3或﹣1∵ab<0∴a b异号当a=2 b=﹣1时a+b=2﹣1=1;当a=﹣6 b=3时a+b=﹣6+3=﹣3;故答案为:1或﹣3.15.(4分)如果有4个不同的正整数a、b、c、d满足(2019﹣a)(2019﹣b)(2019﹣c)(2019﹣d)=8 那么a+b+c+d的最大值为.【分析】根据a、b、c、d是四个不同的正整数可知四个括号内是各不相同的整数结合乘积为8 进行分类讨论.【解答】解:∵a、b、c、d是四个不同的正整数∴四个括号内是各不相同的整数不妨设(2019﹣a)<(2019﹣b)<(2019﹣c)<(2019﹣d)又∵(2019﹣a)(2019﹣b)(2019﹣c)(2019﹣d)=8∴这四个数从小到大可以取以下几种情况:①﹣4 ﹣1 1 2;②﹣2 ﹣1 1 4.∵(2019﹣a)+(2019﹣b)+(2019﹣c)+(2019﹣d)=8076﹣(a+b+c+d)∴a+b+c+d=8076﹣[(2019﹣a)+(2019﹣b)+(2019﹣c)+(2019﹣d)]∴当(2019﹣a)+(2019﹣b)+(2019﹣c)+(2019﹣d)越小a+b+c+d越大∴当(2019﹣a)+(2019﹣b)+(2019﹣c)+(2019﹣d)=﹣4﹣1+1+2=﹣2时a+b+c+d取最大值=8076﹣(﹣2)=8078.故答案为:8078.16.(4分)如图圆的直径为1个单位长度该圆上的点A与数轴上表示﹣1的点重合将该圆沿数轴负方向滚动1周点A到达点B的位置点B表示的数为x则|4+x|=.【分析】B点到A点的距离即圆周长从而得到点B表示的数进一步代入计算即可.【解答】解:∵r=∴c=2πr=π∴AB=c=π∴B表示的数x=﹣(π+1).∴|4+x |=|4﹣(π+1)|=|4﹣π﹣1|=|3﹣π|=π﹣3故答案为:π﹣3.三、解答题(本题共8个小题 共86分 答题请用黑色墨水笔或签字笔直接答在答题卡相应的位置上 解答时应写出必要的文字说明、证明步骤或演算步骤.)17.(6分)把下列各数按要求分类:5.2 02722 +(﹣4) ﹣243 ﹣(﹣3) 0.25555… ﹣0.030030003….(1)写出所有的分数;(2)写出所有的非负整数;(3)写出所有的有理数.【分析】(1)根据分数的定义 可得答案;(2)根据不小于零的整数是非负整数 可得答案;(3)根据有理数包括整数和分数 可得答案.【解答】解:(1)分数集合:{5.2 ﹣2 0.25555} (2)非负整数集合:{ 5 ﹣(﹣3)}(3)有理数集合:{ 5.2 0 +(﹣4) ﹣2 ﹣(﹣3) 0.25555}.18.(8分)已知a b 互为相反数 c d 互为倒数 |m |=2 求3(a +b ﹣1)+(﹣c d )2022﹣2m 的值.【分析】利用相反数 倒数 绝对值定义求出a +b cd 及m 的值 将各自的值代入计算即可求出值.【解答】解:根据题意得:a +b =0 cd =1 m =2或﹣2当m =2时原式=3×(0﹣1)+(﹣1)2022﹣2×2=﹣3+1﹣4=﹣6;当m =﹣2时原式=3×(0﹣1)+(﹣1)2022﹣2×(﹣2)=﹣3+1+4=2.19.(12分)计算题:(1)1+(﹣2)+|﹣3|﹣5; (2)(4332125-+)×(﹣12); (3)(﹣43)×(﹣121)÷(﹣241); (4)(﹣85)×42﹣0.25×(﹣8)×(﹣1)2017. 【分析】(1)先算绝对值 再算加减法;(2)根据乘法分配律计算;(3)将带分数化为假分数 除法变为乘法 再约分计算即可求解;(4)先算乘方 再算乘 最后算减;同级运算 应按从左到右的顺序进行计算.【解答】解:(1)1+(﹣2)+|﹣3|﹣5=1﹣2+3﹣5=﹣3;(2)(+﹣)×(﹣12) =×(﹣12)+×(﹣12)﹣×(﹣12)=﹣5﹣8+9=﹣4;(3)(﹣)×(﹣1)÷(﹣2)=﹣××=﹣;(4)(﹣)×42﹣0.25×(﹣8)×(﹣1)2017=(﹣)×16﹣0.25×(﹣8)×(﹣1)=﹣10﹣2=﹣12.20.(10分)一个四位正整数的千位、百位、十位、个位上的数字分别为a b c d 如果a ≤b ≤c ≤d 那么我们把这个四位正整数叫做顺次数 例如四位正整数1369:因为1<3<6<9 所以1369叫做顺次数.(1)四位正整数中 最大的“顺次数”是 最小的“顺次数”是 ;(2)已知一个四位正整数的百位、个位上的数字分别是2、7 且这个四位正整数是“顺次数” 同时 这个四位正整数能被7整除 求这个四位正整数.【分析】(1)根据“顺次数”的概念分析最大数和最小数;(2)根据“顺次数”的概念千位上的数字是1或2 然后分情况分析求解.【解答】解:(1)根据题意a ≤b ≤c ≤d∴四位正整数中 最大的“顺次数”是9999 最小的“顺次数”是1111故答案为:9999;1111;(2)根据题意a ≤b ≤c ≤d 且一个四位顺次数的百位、个位上的数字分别是2、7∴这个“顺次数”的千位是1或2①当a =1时 这个顺次数可能是1227 1237 1247 1257 1267 1277;其中 只有1267是7的倍数;②当a =2时 这个顺次数可能是2227 2237 2247 2257 2267 2277;其中 只有2247是7的倍数;∴这个四位正整数是1267或2247.21.(12分)如图是某一条东西方向直线上的公交线路的部分路段 西起A 站 东至L 站 途中共设12个上下车站点 某天 小明参加该线路上的志愿者服务活动 从C 站出发 最后在某站结束服务活动.如果规定向东为正 向西为负 当天的乘车站数按先后顺序依次记录如下(单位:站):+5 ﹣3 +4 ﹣5 +8 ﹣2 +1 ﹣3 ﹣4 +1.(1)请通过计算说明结束服务的“某站”是哪一站?(2)若相邻两站之间的平均距离约为2.5千米 求这次小明志愿服务期间乘坐公交车行进的总路程约是多少千米?(3)已知油箱中要保持不低于10%的油量才能保证汽车安全行驶 若小明开始志愿服务活动时该汽车油量占油箱总量的7011 每行驶1千米耗油0.2升 活动结束时油量恰好能保证汽车安全行驶 则该汽车油箱能存储油多少升?【分析】(1)用原点表示起点位置 再利用有理数的和求解;(2)先用绝对值求共几个站 再求里程数;(3)列方程求解.【解答】解:(1)设C 站为原点 则):+5﹣3+4﹣5+8﹣2+1﹣3﹣4+1=+2 表示原点右侧第二个站 即E 站.(2))|+5|+|﹣3|+|+4|+|﹣5|+|+8|+|﹣2|+|+1|+|﹣3|+|﹣4|+|+1|=5+3+4+5+8+2+1+3+4+1=3636×2.5=90(千米).(3)设该汽车油箱能存储油x升依题意得:x﹣0.2×90=0.1x解得:x=315答:该汽车油箱能存储油315升22.(12分)如图所示某数学活动小组编制了一道有理数混合运算题即输入一个有理数按照自左向右的顺序运算可得计算结果其中“●”表示一个有理数.(1)若●表示2 输入数为﹣3 求计算结果;(2)若计算结果为8 且输入的数字是4 则●表示的数是几?(3)若输入数为a●表示的数为b当计算结果为0时请求出a与b之间的数量关系.【分析】(1)把﹣3和●表示的数输入计算程序中计算即可求出值;(2)设●表示的数为x根据计算程序列出方程求出方程的解即可得到x的值;(3)把a与b代入计算程序中计算使其结果为0 得到a与b的数量关系即可.【解答】解:(1)根据题意得:(﹣3)×(﹣4)÷2+(﹣1)﹣2=12÷2﹣1﹣2=6﹣1﹣2=3;(2)设●表示的数为x根据题意得:4×(﹣4)÷2+(﹣1)﹣x=8解得:x=﹣17;(3)由题意得:+(﹣1)﹣b=0整理得:b=﹣2a﹣1.23.(12分)某水果店以每箱200元的价格从水果批发市场购进20箱樱桃若以每箱净重10千克为标准超过的千克数记为正数不足的千克数记为负数称重的记录如下表:与标准重量的差值(单位:千克)﹣﹣0.2500.250.30.50.5箱数1246n2(1)求n的值及这20箱樱桃的总重量:(2)若水果店打算以每千克25元销售这批樱桃若全部售出可获利多少元;(3)实际上该水果店第一天以(2)中的价格只销售了这批樱桃的60% 第二天因为害怕剩余樱桃腐烂决定降价把剩余的樱桃以原零售价的70%全部售出水果店在销售这批樱桃过程中是盈利还是亏损盈利或亏损多少元.【分析】(1)根据总箱数和已知箱数求出n求出新数的和再加200千克即可;(2)根据销售额=销售单价×总数量计算即可;(3)根据销售额=销售单价×总数量×销售比例计算即可.【解答】解:(1)n=20﹣1﹣2﹣4﹣6﹣2=5(箱)10×20+(﹣0.5)×1+(﹣0.25)×2+0.25×6+0.3×5+0.5×2=203(千克);答:n的值是5 这20箱樱桃的总重量是203千克;(2)25×203﹣200×20=1075(元);答:全部售出可获利1075元;(3)25×203×60%+25×203×(1﹣60%)×70%﹣200×20=466(元).答:是盈利的盈利466元.24.(14分)数轴上有A B C三点给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系则称该点是其它两个点的“关联点”.例如数轴上点A B C所表示的数分别为1 3 4 此时点B是点A C的“关联点”.(1)若点A表示数﹣2 点B表示数1 下列各数﹣1 2 4 6所对应的点分别是C1C2C3C4其中是点A B的“关联点”的是;(2)点A表示数﹣10 点B表示数15 P为数轴上一个动点:①若点P在点B的左侧且点P是点A B的“关联点”求此时点P表示的数;②若点P在点B的右侧点P A B中有一个点恰好是其它两个点的“关联点”请直接写出此时点P表示的数.【分析】(1)根据新定义内容结合数轴上两点间距离公式求解;(2)①根据新定义内容结合方程思想及分类讨论思想求解;②根据新定义内容结合方程思想及分类讨论思想求解.【解答】解:(1)∵AC1=﹣1﹣(﹣2)=1 BC1=1﹣(﹣1)=2 ∴2AC1=BC1∴C1是点A B的“关联点”;∵AC2=2﹣(﹣2)=4 BC2=2﹣1=1 AB=1﹣(﹣2)=3∴C2不是点A B的“关联点”;AC3=4﹣(﹣2)=6 BC3=4﹣1=3∴AC3=2BC3∴C3是点A B的“关联点”;AC4=6﹣(﹣2)=8 BC4=6﹣1=5 AB=1﹣(﹣2)=3∴C4不是点A B的“关联点”;故答案为:C1C3;(2)设P点在数轴上表示的数为p.①∵P在点B左侧则:(Ⅰ)当P点在AB之间时15﹣p=2[p﹣(﹣10)]解得:p=−;或2(15﹣p)=p﹣(﹣10)解得:p=;(Ⅱ)当P点在A点左侧时15﹣p=2(﹣10﹣p)p=﹣35∴当P点在B点左侧时点P表示的数为﹣35或−或;②∵点P在B点右侧则:(Ⅰ)当点P为点A B的“关联点”时2(p﹣15)=p+10解得:p=40;(Ⅱ)当点B为点P A的“关联点”时2(p﹣15)=15+10解得:p=27.5;或p﹣15=2×25解得:p=65;(Ⅲ)当点A为点B P的“关联点”时p+10=(15+10)×2解得:p=40∴点P在点B的右侧点P A B中有一个点恰好是其它两个点的“关联点”此时点P表示的数为40或65或27.5.。

人教版七年级数学上册《第一章有理数》单元测试题-附答案

人教版七年级数学上册《第一章有理数》单元测试题-附答案

人教版七年级数学上册《第一章有理数》单元测试题-附答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.在生产生活中,正数和负数都有现实意义.例如收20元记作+20元,则支出10元记作()A.+10元B.﹣10元C.+20元D.﹣20元2.在数−2,12,√3,227中,有理数的个数有()A.4个B.3个C.2个D.1个3.如图是单位长度为1的数轴,点A,B是数轴上的点,若点A表示的数是−3,则点B表示的数是()A.−1B.0 C.1 D.24.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是()A.B.C.D.5.如图,数轴上点A所表示的数的相反数是()A.9 B.−19C.19D.−96.下列各对数中,互为相反数的是()A.-(-3)和3 B.+(-5)和-[-(-5)]C.13和-3 D.-(-7)和-|-7|7.有理数−2,−12,0,32中,绝对值最大的数是()A.−2B.−12C.0 D.328.−3的绝对值的相反数是()A.−3B.3 C.13D.0 二、填空题9.有理数中,最大的负整数是.10.在−5,|−4|,−(+3),0,−(−2)中,负数共有个.11.绝对值小于2.5的整数有.12.若a与−12互为相反数,则a的值为.13.如果一个数的绝对值是10,那么这个数是.三、解答题14.小明在超市买一食品,外包装上印有“总净含量(300±5)g”的字样.请问“±5g”表示什么意义?小明拿去称了一下,发现只有297g.问食品生产厂家有没有欺诈行为?15.把下列各数填在相应的集合中:8,-1,-0.4与35,0,13,−137,−(−5),−|−207|.正数集合{ …};负数集合{ …};整数集合{ …};分数集合{ …};非负有理数集合{ …}.16.求+358,-2.35,0,−227的相反数和绝对值.17.把下列各数和它们的相反数在数轴上表示出来.+3,-1.5,0 −5218.已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与-1表示的点重合,则-2表示的点与何数表示的点重合;(2)若-1表示的点与5表示的点重合,0表示的点与何数表示的点重合;(3)若-1表示的点与5表示的点之间的线段折叠2次,展开后,请写出所有的折点表示的数?参考答案1.B2.B3.C4.B5.D6.D7.A8.A9.-110.211.±2;±1;012.1213.±1014.解:由题意可知:“±5g”表示总净含量的浮动范围为上下5g,即含量范围在(300+5)=305克到(300−5)=295克之间,故总净含量为297在合格的范围内,食品生产厂家没有欺诈行为.15.8 3513−(−5);-1 -0.4 −137−|−207|;8 -1 0 −(−5);-0.4 3513−137−|−207|;8 350 1316.解:相反数分別是:−358,2.35,0,227;绝对值分别是:358,2.35,0,227.17.解:+3的相反数为:-3 -1.5的相反数为:1.50的相反数为:0−52的相反数为:52在数轴上表示如下:.18.(1)解:若1表示的点与-1表示的点重合,则-2表示的点与2表示的点重合;(2)解:若-1表示的点与5表示的点重合,0表示的点与4表示的点重合;(3)解:若-1表示的点与5表示的点重合,则对称中心是2表示的点,第2次对折:-1表示的点与2表示的点重合,则对称中心是0.5表示的点;2表示的点与5表示的点重合,则对称中心是3.5表示的点;∴展开后,所有的折点表示的数:0.5,2,3.5.。

人教版数学七年级上册第一章有理数综合检测(附答案)

人教版数学七年级上册第一章有理数综合检测(附答案)

人教版数学七年级上学期第一章有理数测试一.选择题1.下列各组数中,互为相反数的是( )A. +2与|﹣2|B. +(+2)与﹣(﹣2)C. +(﹣2)与﹣|+2|D. ﹣|﹣2|与﹣(﹣2)2.一个点从数轴上表示﹣2的点开始,向右移动7个单位长度,再向左移动4个单位长度.则此时这个点表示的数是( )A 0 B. 2 C. l D. ﹣13.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是( )A. a+b<0B. a+b>0C. a﹣b<0D. a•b>04.下列计算正确的是( )A. 2×32=36B. ﹣0.5÷14=2C. ﹣3÷14×4=﹣3 D. (﹣34)×(﹣8)=65.下列说法正确的个数有( )①负分数一定是负有理数②自然数一定是正数③﹣π是负分数④a一定是正数⑤0是整数A. 1个B. 2个C. 3个D. 4个6.15的绝对值是( )A. 5B. -15C. ﹣5D.157.计算:|–5+3|的结果是( )A. –8B. 8C. –2D. 28.下列式子中正确的是( ) A ﹣24=﹣16B. ﹣24=16C. (﹣2)4=8D. (﹣2)4=﹣169.在有理数(﹣1)2、-(﹣32)、﹣|﹣2|、(﹣2)3、﹣22中负数有( )个. A. 4B. 3C. 2D. 110.如图,数轴上每两个相邻的点之间距离均为1个单位长度,数轴上的点Q,R 所表示数的绝对值相等,则点P 表示的数为( )A. 0B. 3C. 5D. 7二.填空题11.若x 2=4,则x=_____;若|a ﹣2|=3,则a=_____.12.升降机运行时,如果下降13米记作“﹣13米”,那么当它上升25米时,记作_____.13.点A 在数轴上距离原点2个单位长度,将点沿着数轴向右移动3个单位长度得到点B ,则点B 表示的数是_____.14.化简:(1)﹣(﹣2005)=_____ (2)﹣|﹣2018|=_____15.绝对值是4数是_____.平方得36的数是_____. 16.计算:﹣8÷(﹣2)×12=_____. 三.解答题17.计算:43116(2)31-+÷-⨯--. 18.把下列各数填入相应的大括号里: -7 ,-0.5 ,-13,0 ,-98% ,8.7 ,2018 . 负整数集合:{ …}; 非负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …}.19.若a,b 互为相反数,c,d 互为倒数,m 到原点的距离为2,求2(a+b)+3cd-|-m|的值. 20.有理数, ,在数轴上的位置如图所示,试化简:a c a b b a b c +-+--++21.一只小虫从某点A出发,在一条直线上来回爬行,假定把向右爬行路程记为正数,向左爬行的路程记为负数,则爬行各段路程单位:(厘米)依次为:+6,﹣4,+10,﹣7,﹣6,+12,﹣10.(1)小虫爬完最后一段路程时距离出发点A多远?(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间?22.出租车司机李叔叔从公司出发,在南北方向人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):第1批第2批第3批第4批第5批5km 2km ﹣4km ﹣3km 6km(1)接送完第5批客人后,李叔叔在公司什么方向?距离公司多少千米?(2)若该出租车的计价标准为:行驶路程不超过3km收费8元,超过3km的部分按每千米1.5元收费,在这过程中李叔叔共收到车费多少元?23.定义☆运算观察下列运算:(+3)☆(+15)=+18(﹣14)☆(﹣7)=+21,(﹣2)☆(+14)=﹣16(+15)☆(﹣8)=﹣23,0☆(﹣15)=+15(+13)☆0=+13.(1)请你认真思考上述运算,归纳☆运算的法则:两数进行☆运算时,同号_____,异号______.特别地,0和任何数进行☆运算,或任何数和0进行☆运算,______.(2)计算:(+11)☆[0☆(﹣12)]=_____.(3)若2×(2☆a)﹣1=3a,求a的值.答案与解析一.选择题1.下列各组数中,互为相反数的是( )A. +2与|﹣2|B. +(+2)与﹣(﹣2)C. +(﹣2)与﹣|+2|D. ﹣|﹣2|与﹣(﹣2)【答案】D【分析】由相反数的定义对四个选项一一判断即可.【详解】A.+2=2,|﹣2|=2,+2=|﹣2|,此选项错误;B.+(+2)=2,﹣(﹣2)=2,+(+2)=﹣(﹣2),此选项错误;C.+(﹣2)=﹣2,﹣|+2|=﹣2,+(﹣2)=﹣|+2|,此选项错误;D.﹣|﹣2|=﹣2,﹣(﹣2)=2,﹣|﹣2|+[﹣(﹣2)]=0,﹣|﹣2|与﹣(﹣2)互为相反数,此选线正确.故选D.【点睛】本题主要考查相反数的概念:a与b互为相反数⇔a+b=0.2.一个点从数轴上表示﹣2的点开始,向右移动7个单位长度,再向左移动4个单位长度.则此时这个点表示的数是( )A. 0B. 2C. lD. ﹣1【答案】C【解析】向右移动个单位长度,向右移动个单位长度为,故选.3.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是( )A a+b<0 B. a+b>0 C. a﹣b<0 D. a•b>0【答案】A【解析】【分析】首先由数轴上表示的数的规律及绝对值的定义,得出b<0<a,且|b|>|a|,然后根据有理数的加法、减法及乘法法则对各选项进行判断.【详解】由图可知,b<0<a,且|b|>|a|.A、根据有理数的加法法则,可知b+a<0,正确;B、错误;C、∵a>b,∴a-b>0,错误;D、∵a>0,b<0,∴ab<0,错误.【点睛】此题考查了有理数的加法、减法及乘法法则.结合数轴解题,体现了数形结合的优点,给学生渗透了数形结合的思想.4.下列计算正确的是( )A. 2×32=36B. ﹣0.5÷14=2C. ﹣3÷14×4=﹣3 D. (﹣34)×(﹣8)=6【答案】D【解析】分析】各项计算得到结果,即可作出判断.【详解】A、原式=2×9=18,不符合题意;B、原式=-12×4=-2,不符合题意;C、原式=-3×4×4=-48,不符合题意;D、原式=34×8=6,符合题意,故选D.【点睛】此题考查了有理数的乘方,有理数的乘除法,熟练掌握运算法则是解本题的关键.5.下列说法正确的个数有( )①负分数一定是负有理数②自然数一定是正数③﹣π是负分数④a一定是正数⑤0是整数A. 1个B. 2个C. 3个D. 4个【答案】B【解析】分析:根据有理数的分类,可得答案.详解:①负分数一定是负有理数,故①正确;②自然数一定是非负数,故②错误;③-π是负无理数,故③错误④a可能是正数、零、负数,故④错误;⑤0是整数,故⑤正确;故选B.点睛:本题考查了有理数的分类,利用有理数的分类是解题关键,注意a可能是正数、零、负数.6.15的绝对值是( )A. 5B. -15C. ﹣5D.15【答案】D【解析】【分析】根据一个正数的绝对值是本身即可求解.【详解】15的绝对值是15.故选D.【点睛】本题考查了绝对值的知识,掌握绝对值的意义是解答本题的关键,解题时要细心.7.计算:|–5+3|的结果是( )A. –8B. 8C. –2D. 2【答案】D【解析】分析:原式绝对值里边利用异号两数相加的法则计算,再利用绝对值的代数意义化简即可得到结果.详解:原式=|-2|=2,故选D.点睛:此题考查了有理数的加法,熟练掌握加法法则是解本题的关键.8.下列式子中正确的是( )A. ﹣24=﹣16B. ﹣24=16C. (﹣2)4=8D. (﹣2)4=﹣16 【答案】A【解析】【分析】根据乘方的定义计算可得.【详解】A.﹣24=﹣16,故A正确;B.﹣24=-16,故B错误;C.(﹣2)4=16,故C错误;D.(﹣2)4=16,故D错误.故选A.【点睛】本题主要考查有理数的乘方,解题的关键是掌握有理数的乘方的定义及-a n与(-a)n的区别.9.在有理数(﹣1)2、-(﹣32)、﹣|﹣2|、(﹣2)3、﹣22中负数有( )个.A. 4B. 3C. 2D. 1 【答案】B【解析】【分析】各式利用乘方的意义,绝对值的代数意义计算,找出负数即可.【详解】有理数(-1)2=1,-(-32)=32、-|-2|=-2、(-2)3=-8、-22=-4,其中负数有3个,故选B.【点睛】此题考查了有理数的乘方,以及正数与负数,熟练掌握运算法则是解本题的关键.10.如图,数轴上每两个相邻的点之间距离均为1个单位长度,数轴上的点Q,R所表示数的绝对值相等,则点P 表示的数为( )A. 0B. 3C. 5D. 7【答案】C【解析】【分析】根据绝对值的意义推出原点的位置,再得出P表示的数.【详解】设数轴的原点为O,依图可知,RQ=4,又∵数轴上的点Q,R所表示数的绝对值相等,∴OR=OQ=RQ=2,∴OP=OQ+OR=2+3=5,故选C【点睛】本题考核知识点:绝对值.解题关键点:理解绝对值的意义,找出原点.二.填空题11.若x2=4,则x=_____;若|a﹣2|=3,则a=_____.【答案】(1). ±2(2). 5 或﹣1【解析】【分析】根据题目中的方程和绝对值,可以求得相应的x的值和a的值.【详解】解:∵x2=4,∴x=±2,∵|a-2|=3,∴a-2=3或a-2=-3,解得,a=5或a=-1,故答案为±2,5或-1.【点睛】本题考查有理数的乘方、绝对值,解答本题的关键是明确有理数乘方和绝对值的意义.12.升降机运行时,如果下降13米记作“﹣13米”,那么当它上升25米时,记作_____.【答案】+25米.【解析】【分析】在表示具有相反意义的量时,先规定的量为正,则与之相反意义的量为负,在表示相反意义量时,要注意加单位.【详解】因为升降机运行时,如果下降13米记作“﹣13米”,所以当它上升25米时,记作+25米,故答案为+25米.【点睛】本题主要考查正数和负数的意义,解决本题的关键时要熟练掌握用正数和负数表示具有相反意义的量.13.点A在数轴上距离原点2个单位长度,将点沿着数轴向右移动3个单位长度得到点B,则点B表示的数是_____.【答案】1或5【解析】【分析】此题借助数轴用数形结合的方法求解.由于点A与原点0的距离为2,那么A应有两个点,分别位于原点两侧,且到原点的距离为2,这两个点对应的数分别是-2和2.A向右移动3个单位长度,通过数轴上“右加左减”的规律,即可求得平移后点A表示的数.【详解】点A在数轴上距离原点2个单位长度,当点A在原点左边时,点A表示的数是-2,将A向右移动3个单位长度,此时点A表示的数是-2+3=1;当点A在原点右边时,点A表示的数是2,将A向右移动3个单位,得2+3=5.故答案为1或5.【点睛】此题考查数轴问题,根据正负数在数轴上的意义来解答:在数轴上,向右为正,向左为负.14.化简:(1)﹣(﹣2005)=_____(2)﹣|﹣2018|=_____【答案】(1). 2005(2). ﹣2018【解析】【分析】利用相反数和绝对值的意义,化简即可.【详解】(1)因为-2005的相反数是2005,所以-(-2005)=2005;(2)因为|-2018|=2018,所以-|-2018|=-2018.故答案为(1)2005,(2)-2018.【点睛】本题考查了相反数的意义和绝对值的化简,掌握相反数、绝对值的意义是解决本题的关键.15.绝对值是4的数是_____.平方得36的数是_____.【答案】(1). 4,﹣4(2). 6,﹣6【解析】【分析】利用绝对值,以及平方根定义计算即可求出值.【详解】绝对值是4的数是4,-4;平方得36的数是6,-6,故答案为4,-4;6,-6【点睛】此题考查了有理数的乘方,以及绝对值,熟练掌握乘方的意义是解本题的关键.16.计算:﹣8÷(﹣2)×12=_____.【答案】2 【解析】 【分析】原式从左到右依次计算即可得到结果. 【详解】原式=118=222⨯⨯. 故答案为2.【点睛】此题考查了有理数的乘除法混合运算,熟练掌握运算法则是解本题的关键.三.解答题17.计算:43116(2)31-+÷-⨯--. 【答案】-9. 【解析】 【分析】原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果. 【详解】原式()11684189=-+÷-⨯=--=-.【点睛】此题考查了有理数混合运算,熟练掌握运算法则是解本题的关键. 18.把下列各数填入相应的大括号里: -7 ,-0.5 ,-13,0 ,-98% ,8.7 ,2018 . 负整数集合:{ …}; 非负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …}. 【答案】-7;0,2018; 8.7; -0.5, - 13,-98%. 【解析】 【分析】根据实数的分类和性质进行判断即可. 【详解】解:负整数集合: { -7, …}; 非负整数集合:{ 0,2018, …};正分数集合: { 8.7, …};负分数集合:{ -0.5, - 13 ,-98% , …}. 【点睛】本题考查的是实数的分类和性质,解答此题应熟知以下概念:实数包括有理数和无理数;实数可分为正数、负数和0.19.若a,b 互为相反数,c,d 互为倒数,m 到原点的距离为2,求2(a+b)+3cd-|-m|的值.【答案】1【解析】【分析】首先求得m 的值,利用相反数,倒数的定义求出a+b 与cd 的值,代入原式计算即可得到结果 【详解】解:∵有理数m 所表示的点到原点距离2个单位,∴m=2或-2;根据题意得:a+b=0,cd=1,当m=2时,原式=1;当m=-2时,原式=1,则原式的值为1.【点睛】此题考查了代数式求值,数轴,相反数,以及倒数,熟练掌握各自的定义是解本题的关键. 20.有理数, ,在数轴上的位置如图所示,试化简:a c a b b a b c +-+--++【答案】3a c b --+【解析】解:根据数轴可得0a >,0b <,0c <且a b c <<,∴0a c +<,0a b c -->,0b a -<,0b c +<,∴a c a b c b a b c +-----++ ()()()a c a b c b a b c =-----+--+a c abc b a b c =---+++---3a c b =--+.故答案为3a c b --+.点睛:本题考查了数轴,绝对值的性质,以及合并同类项,根据数轴判断出a 、b 、c 的正负情况以及绝对值的大小是解题的关键.21.一只小虫从某点A 出发,在一条直线上来回爬行,假定把向右爬行路程记为正数,向左爬行的路程记为负数,则爬行各段路程单位:(厘米)依次为:+6,﹣4,+10,﹣7,﹣6,+12,﹣10.(1)小虫爬完最后一段路程时距离出发点A多远?(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间?【答案】(1)1厘米;(2)110秒.【解析】【分析】(1)把记录到所有数字相加,即可求解;(2)记录到的所有的数字的绝对值的和,除以0.5即可.【详解】(1)∵+6﹣4+10﹣7﹣6+12﹣10=1,∴小虫爬完最后一段路程时距离出发点A1厘米远;(2)(6+4+10+7+6+12+10)÷0.5=55÷0.5=110(秒).答:小虫共爬行了110秒.【点睛】此题主要考查正负数在实际生活中的应用,掌握有理数的加减运算是解答此题的关键.22.出租车司机李叔叔从公司出发,在南北方向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):(1)接送完第5批客人后,李叔叔在公司什么方向?距离公司多少千米?(2)若该出租车的计价标准为:行驶路程不超过3km收费8元,超过3km的部分按每千米1.5元收费,在这过程中李叔叔共收到车费多少元?【答案】(1)6千米处;(2)49元.【解析】【分析】(1)根据有理数加法即可求出答案.(2)根据题意列出算式即可求出答案.【详解】(1)5+2+(﹣4)+(﹣3)+6=6(km)答:接送完第五批客人后,该驾驶员在公司的南边6千米处;(2)[8+(5﹣3)×1.5]+8+[8+(4﹣3)×1.5]+8+[8+(6﹣3)×1.5]=11+8+9.5+8+12.5=49(元)答:在这个过程中李叔叔共收到车费49元.【点睛】本题考查了正负数的意义,解题的关键是熟练运用正负数的意义.23.定义☆运算观察下列运算:(+3)☆(+15)=+18(﹣14)☆(﹣7)=+21,(﹣2)☆(+14)=﹣16(+15)☆(﹣8)=﹣23,0☆(﹣15)=+15(+13)☆0=+13.(1)请你认真思考上述运算,归纳☆运算的法则:两数进行☆运算时,同号_____,异号______.特别地,0和任何数进行☆运算,或任何数和0进行☆运算,______.(2)计算:(+11)☆[0☆(﹣12)]=_____.(3)若2×(2☆a)﹣1=3a,求a的值.【答案】(1)两数运算取正号,并把绝对值相加;两数运算取负号,并把绝对值相加;等于这个数的绝对值;(2)23 ;(3)a为3或-1.【解析】【分析】(1)观察运算,即可得出运算法则;(2)根据法则计算即可;(3)分三种情况讨论:①a=0,②a>0,③a<0.【详解】(1)同号两数运算取正号,并把绝对值相加;异号两数运算取负号,并把绝对值相加等于这个数的绝对值;(2)原式=(+11) ☆(+12) =23 ;(3)①当a=0时,左边=2×2-1=3,右边=0,左边≠右边,所以a≠0;②当a﹥0时,2×(2+a)-1=3a,解得:a=3;③当a﹤0时,2×[-(2+a) ]-1=3a,解得:a=-1.综上所述:a为3或-1.【点睛】本题主要考查了有理数的混合运算,解题的关键是根据新定义列出关于x的一元一次方程.。

人教版七年级数学上册 第一章 有理数 单元测试题 (有答案)

人教版七年级数学上册 第一章 有理数 单元测试题 (有答案)

人教版七年级数学上册第一章有理数单元测试题一.选择题(共10小题)1.如果a表示有理数,那么下列说法中正确的是()A.+a和﹣(﹣a)互为相反数B.+a和﹣a一定不相等C.﹣a一定是负数D.﹣(+a)和+(﹣a)一定相等2.如图,乐乐将﹣3,﹣2,﹣1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a、b、c分别标上其中的一个数,则a﹣b+c的值为()A.﹣1 B.0 C.1 D.33.点A在数轴上,点A所对应的数用2a+1表示,且点A到原点的距离等于3,则a的值为()A.﹣2或1 B.﹣2或2 C.﹣2 D.14.<()<,符合条件的分数有()个.A.无数B.1 C.2 D.35.在,,1.62,0四个数中,有理数的个数为()A.4 B.3 C.2 D.16.在算式3﹣|﹣1□2|中的“□”里,选择一个运算符号,使得算式的值最大()A.+ B.﹣C.×D.÷7.有理数a,b在数轴上对应点的位置如图所示,则下列结论正确的是()A.a+b>0 B.a﹣b<0 C.ab>0 D.<08.312是96的()A.1倍B.C.D.36倍9.2019年“十一”黄金周期间(7天),北京市接待旅游总人数为920.7万人次,旅游总收入111.7亿元.其中111.7亿用科学记数法表示为()A.111.7×106B.11.17×109C.1.117×1010D.1.117×108 10.如果收入10元记作+10元,那么支出10元记作()A.+20 元B.+10元C.﹣10元D.﹣20元二.填空题(共8小题)11.2020年我国将完成脱贫攻坚目标任务.从2012年底到2019年底,我国贫困人口减少了93480000人,用科学记数法把93480000表示为.12.绝对值不大于11.1的整数有个.13.今年,秦州市市区道路的改造面积约达到231500平方米,使市民行车舒适度大大提升.231500(精确到1000)≈.14.计算:﹣ +|3|﹣+(﹣6)=.15.一只蜗牛在数轴上爬行,从原点出发爬行2个单位长度到达终点,那么这个终点表示的数值是.16.对于任意有理数a、b,规定a⊕b=2a2+ab﹣1,则(﹣3)⊕5=.17.﹣2020的相反数是,﹣2020的绝对值是,﹣2020的倒数是.18.若a+3=0,则a=.三.解答题(共8小题)19.计算(1)×()×÷;(2)()×12;(3)(﹣125)÷(﹣5);(4)(﹣10)3+[(﹣4)2﹣(1﹣32)×2].20.求|x+3|+|x﹣5|的最小值.21.如图,点A,B在数轴上,它们对应的数分别是﹣2,3x﹣4,且点A,B到原点的距离相等,求x的值.22.已知A地海拔高度为﹣30m,B地海拔高度为50m,C地海拔高度为﹣10m,哪个地方地势最高?哪个地方地势最低?地势最低的地方与地势最高的地方相差多少米?23.先计算,再阅读材料,解决问题:(1)计算:.(2)认真阅读材料,解决问题:计算:÷().分析:利用通分计算的结果很麻烦,可以采用以下方法进行计算:解:原式的倒数是:()÷=()×30=×30﹣×30+×30﹣×30=20﹣3+5﹣12=10.故原式=.请你根据对所提供材料的理解,选择合适的方法计算:(﹣)÷.24.超市购进8筐白菜,以每筐25kg为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,﹣3,2,﹣0.5,1,﹣2,﹣2,﹣2.5.(1)这8筐白菜总计超过或不足多少千克?(2)这8筐白菜一共多少千克?(3)超市计划这8筐白菜按每千克3元销售,为促销超市决定打九折销售,求这8筐白菜现价比原价便宜了多少钱?25.阅读理解:李华是一个勤奋好学的学生,他常常通过书籍、网络等渠道主动学习各种知识.下面是他从网络搜到的两位数乘11的速算法,其口诀是:“头尾一拉,中间相加,满十进一”例如:①24×11=264.计算过程:24两数拉开,中间相加,即2+4=6,最后结果264;②68×11=748.计算过程:68两数分开,中间相加,即6+8=14,满十进一,最后结果748.(1)计算:①32×11=,②78×11=;(2)若某个两位数十位数字是a,个位数字是b(a+b<10),将这个两位数乘11,得到一个三位数,则根据上述的方法可得,该三位数百位数字是,十位数字是,个位数字是;(用含a、b的代数式表示)(3)请你结合(2)利用所学的知识解释其中原理.26.定义新运算@”与“⊕”:a@b=,a⊕b=.(1)计算3@(﹣2)﹣(﹣2)⊕(﹣1)的值;(2)若A=3b@(﹣a)+a⊕(2﹣3b),B=a@(﹣3b)+(﹣a)⊕(﹣2﹣9b),比较A 和B的大小.参考答案与试题解析一.选择题(共10小题)1.解:A、+a和﹣(﹣a)互为相反数;错误,二者相等;B、+a和﹣a一定不相等;错误,当a=0时二者相等;C、﹣a一定是负数;错误,当a=0时不符合;D、﹣(+a)和+(﹣a)一定相等;正确.故选:D.2.解:∵5+1﹣3=3,每行、每列、每条对角线上的三个数之和相等,∴a+5+0=33+1+b=3c﹣3+4=3,∴a=﹣2,b=﹣1,c=2,∴a﹣b+c=﹣2+1+2=1,故选:C.3.解:由题意得,|2a+1|=3,解得,a=1或a=﹣2,故选:A.4.解:设符合条件的数为x,根据分数的基本性质,把分子分母扩大2倍,则,符合条件的分数有:,,;把分子分母扩大3倍,则,符合条件的分数有:,,,,;…,所以符合条件的分数有无数个,故选:A.5.解:在,,1.62,0四个数中,有理数为,1.62,0,共3个,故选:B.6.解:在算式3﹣|﹣1□2|中的“□”里,要使得算式的值最大,就要使﹣1□2的绝对值最小,∴选择的运算符号是÷.故选:D.7.解:由数轴可知:b<﹣1,0<a<1,∴a+b<0,a﹣b>0,ab<0,<0.故选:D.8.解:∵312=(32)6=96,∴312是96的1倍.故选:A.9.解:111.7亿=11170000000=1.117×1010故选:C.10.解:如果收入10元记作+10元,那么支出10元记作﹣10元.故选:C.二.填空题(共8小题)11.解:93480000=9.348×107.故答案为:9.348×107.12.解:原点(0点)左边绝对值不大于11.1的整数有:﹣1、﹣2、﹣3、﹣4、﹣5、﹣6、﹣7、﹣8、﹣9、﹣10、﹣11,原点(0点)右边绝对值不大于11.1的整数有:1、2、3、4、5、6、7、8、9、10、11,还有0,因此,绝对值不大于11.1的整数有:11+1+11=23(个).故答案为:23.13.解:231500≈2.32×105,故答案为2.32×105.14.解:原式=﹣﹣+﹣=﹣1﹣3=﹣4,故答案为:﹣4.15.解:从原点出发,向右爬行2个单位长度,得+2,从原点出发,向左爬行2个单位长度,得﹣2,故答案为:2或﹣2.16.解:∵a⊕b=2a2+ab﹣1,∴(﹣3)⊕5=2×(﹣3)2+(﹣3)×5﹣1 =18﹣15﹣1=2.故答案为:2.17.解:﹣2020的相反数是2020,﹣2020的绝对值为2020,﹣2020的倒数是:﹣.故答案为:2020,2020,﹣.18.解:∵a+3=0,∴a=﹣3.故答案为:﹣3.三.解答题(共8小题)19.解:(1)×()×÷=×(﹣)×=﹣;(2)()×12=3+2﹣6=﹣1;(3)(﹣125)÷(﹣5)=[(﹣125)+(﹣)]×(﹣)=25+=25;(4)(﹣10)3+[(﹣4)2﹣(1﹣32)×2]=(﹣1000)+[16﹣(1﹣9)×2]=(﹣1000)+[16﹣(﹣8)×2]=(﹣1000)+(16+16)=(﹣1000)+32=﹣968.20.解:∵|x+3|+|x﹣5|表示点x到点﹣3和点5之间的距离之和,∴当点x在点﹣3和5之间时,距离之和最小,即﹣3≤x≤5故最小值为5﹣(﹣3)=8.21.解:∵点A,B到原点的距离相等,点A表示的数是﹣2,点B在原点的右侧,∴点B表示的数为2,即:3x﹣4=2,解得,x=2,答:x的值为2.22.解:因为50>﹣10>﹣30,所以B地地势最高,A地地势最低,地势最低的地方与地势最高的地方相差:50﹣(﹣30)=50+30=80(m).答:B地地势最高,A地地势最低,地势最低的地方与地势最高的地方相差80m.23.解:(1)原式=×12﹣×12+×12=4﹣2+6=8;(2)原式的倒数是:(﹣+﹣)×(﹣52)=×(﹣52)﹣×(﹣52)+×(﹣52)﹣×(﹣52)=﹣39+10﹣26+8=﹣47,故原式=﹣.24.解:(1)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克),答:以每筐25千克为标准,这8筐白菜总计不足5.5千克;(2)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克),25×8﹣5.5=194.5(千克),答:这8筐白菜一共194.5千克;(3)194.5×3=583.5(元),583.5×(1﹣0.9)=58.35(元).答:这8筐白菜现价比原价便宜了58.35元.25.解:(1)①∵3+2=5∴32×11=352②∵7+8=15∴78×11=858故答案为352,858.(2)两位数十位数字是a,个位数字是b,这个两位数乘11,∴三位数百位数字是a,十位数字是a+b,个位数字是b.故答案为:a,a+b,b.(3)两位数乘以11可以看成这个两位数乘以10再加上这个两位数,若两位数十位数为a,个位数为b,则11(10a+b)=10(10a+b)+(10a+b)=100a+10b+10a+b=100a+10(a+b)+b根据上述代数式,可以总结出规律口诀为:“头尾一拉,中间相加,满十进一”.26.解:(1)3@(﹣2)﹣(﹣2)⊕(﹣1)=﹣=+=1;(2)A=3b@(﹣a)+a⊕(2﹣3b)=+=3b﹣1,B=a@(﹣3b)+(﹣a)⊕(﹣2﹣9b)=+=3b+1,则A<B.。

人教版数学七年级上册第一章有理数测试(含答案)

人教版数学七年级上册第一章有理数测试(含答案)

人教版数学七年级上学期第一章有理数测试一、选择题(本大题共10小题,每小题3分,共30分)1.下列各数中,不是负数的是()A. -2B. 3C. -58D. -0.102.在下列选项中,具有相反意义的量是()A. 收入20元与支出30元B. 上升了6米和后退了7米C. 卖出10斤米和盈利10元D. 向东行30米和向北行30米3. 下列四个数中最大的数是( )A. ﹣2B. ﹣1C. 0D. 14.计算1﹣(﹣1)的结果是()A. 2B. 1C. 0D. ﹣25.下列各对数是互为倒数的是( )A. 4和-4B. -3和13C. -2和12D. 0和06.下列说法中错误的是( )A. 0的相反数是0B. 任何有理数都有相反数C. a的相反数是-aD. 表示相反意义的量的两个数互为相反数7. 如图,数轴单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是( )A. —4B. —2C. 0D. 48.过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量,把数据3120000用科学记数法表示为( )A. 312×104B. 0.312×107C. 3.12×106D. 3.12×1079.下列各式中不正确的是( )A. 22=(-2)2B. -22=(-2)2C. -33=(-3)3D. -33=-|-33|10.有理数a,b在数轴上对应的位置如图所示,则下列结论中正确的是( )A a+b >0B. a-b=0C. a-b >0D. ab <0二、填空题(本大题共6小题,每小题3分,共18分)11.比较大小:﹣1____12-(填“>”、“<”或“=”) 12.某种零件,标明要求是φ20±0.2 mm (φ表示直径,单位:毫米),经检查,一个零件的直径是19.9mm ,该零件_____________(填“合格” 或“不合格”).13. 用四舍五入法取近似数,1.806≈__________(精确到0.01). 14.在检测排球质量过程中,规定超过标准的克数记为正数,不足的克数记为负数,根据下表提供的检测结果,你认为质量最接近标准的是_______号排球.15.如图,将一刻度尺放在数轴上(数轴上的单位长度是1cm ),刻度尺上“0cm ”和“8cm ”分别对应数轴上的3-和,那么的值为___ .16.已知2+23=22×23,3+38=32×38,4+415=42×415,…若14+a b =142×a b(a,b 均正整数),则a+b=_______.三、解答题(本大题共6小题,共52分)17.请把下列有理数填入相应的大括号里(将各数用逗号分开): -(-53),- 3.14-,+31,3--4⎛⎫ ⎪⎝⎭,0,-(+7) ,1213,2016,-1.39. 整数:{ …}; 分数:{ …}; 非负数:{ …}. 18.计算: (1)(-24)×(12-213-38); (2)[2-5×(-12)2]÷1-4⎛⎫ ⎪⎝⎭.19.计算6÷(﹣1123+),方方同学的计算过程如下,原式=6÷(-12)+6÷13=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.20.为节约水资源,某初中环保宣传小组作了一个调查,得到了如下的一组数据:全市大约有160万人,每天早晨起来漱口,如果漱口时都不关水龙头,那么每个人漱口时要浪费56毫升的水.(1)按这样计算,如果每个人都不关水龙头,那么全市一天早晨漱口要浪费多少升水?(结果用科学记数法表示)(2)如果用500毫升的水瓶来装(1)中浪费的水,可以装多少瓶?(结果用科学记数法表示)21.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(-15);(2)999×41185+999×(15-)-999×3185.22.在某次抗险救灾中,消防官兵的冲锋舟沿东西方向的河流营救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:km):+14,-9,+8,-7,+13,-6,+10,-5.(1)通过计算说明B地在A地什么方向,与A地相距多远.(2)救灾过程中,最远处离出发点A有多远?(3)若冲锋舟每千米耗油0.5 L,油箱容量为29 L,则途中还需补充多少升油?附加题(共20分,不计入总分)23.已知a为有理数,定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽a=a;当a=-2时,▽a=0.根据这种运算,计算▽[4+▽(2-5)]的值为( )A. -7B. 7C. -1D. 124.已知A,B在数轴上表示的数分别是m,n.(1)填写下表:m 5 -5 -6 -6 -10 -2.5n 3 0 4 -4 2 -2.5A、B两点间的距离(2)若A,B两点间的距离为d,写出d与m,n之间的数量关系.(3)在数轴上标出所有符合条件的整数点P,使它到5和-5的距离之和为10,并求出所有这些整数的和.答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1.下列各数中,不是负数是()A. -2B. 3C. -58D. -0.10【答案】B【解析】试题分析:A.﹣2是负数,故本选项不符合题意;B.3是正数,不是负数,故本选项符合题意;C.58是负数,故本选项不符合题意;D.﹣0.10是负数,故本选项不符合题意;故选B.考点:正数和负数.2.在下列选项中,具有相反意义的量是()A. 收入20元与支出30元B. 上升了6米和后退了7米C. 卖出10斤米和盈利10元D. 向东行30米和向北行30米【答案】A【解析】试题分析:收入20元与支出30元是一对具有相反意义的量.故选A.考点:相反意义的量.3. 下列四个数中最大的数是( )A. ﹣2B. ﹣1C. 0D. 1 【答案】D【解析】试题分析:∵﹣2<﹣1<0<1,∴最大的数是1.故选D.考点:有理数大小比较.4.计算1﹣(﹣1)的结果是()A. 2B. 1C. 0D. ﹣2 【答案】A【解析】【详解】解:1﹣(﹣1)=1+1=2. 故选:A .【点睛】本题考查有理数的减法. 5.下列各对数是互为倒数是( ) A. 4和-4 B. -3和13C. -2和12D. 0和0【答案】C 【解析】试题解析:A 、4×(-4)≠1,选项错误; B 、-3×13≠1,选项错误; C 、-2×(-12)=1,选项正确; D 、0×0≠1,选项错误. 故选C . 考点:倒数.6.下列说法中错误的是( ) A. 0的相反数是0 B. 任何有理数都有相反数C. a 的相反数是-aD. 表示相反意义的量的两个数互为相反数【答案】D 【解析】A 中,0的相反数是0本身,故A 不符合题意;B 中,任何有理数都有相反数,故B 不符合题意;C 中,a 的相反数是﹣a ,故C 不符合题意;D 中,只有符号不同的两个数叫做互为相反数.而表示相反意义的量的两个数可以用正数和负数表示. 故选D.点睛:本题考查了相反数,只有符号不同的两个数叫做互为相反数,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0. 7. 如图,数轴的单位长度为1,如果点A,B 表示的数的绝对值相等,那么点A 表示的数是( )A. —4B. —2C. 0D. 4【答案】B【解析】解:如图,AB的中点即数轴的原点O.根据数轴可以得到点A表示的数是﹣2.故选B.8.过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量,把数据3120000用科学记数法表示为( )A. 312×104B. 0.312×107C. 3.12×106D. 3.12×107【答案】C【解析】试题解析:3120000=3.12×106故选C.9.下列各式中不正确的是( )A. 22=(-2)2B. -22=(-2)2C. -33=(-3)3D. -33=-|-33|【答案】B【解析】【分析】根据乘方运算法则逐一计算即可判断.【详解】A. 22=4,(−2)2=4,故此选项正确;B. −22=−4,(−2)2=4,故此选项错误;C. −33=−27,(−3)3=−27,故此选项正确;D. −33=−27,−|−33|=−27,故此选项正确;故答案选:B.【点睛】本题考查了有理数的乘方运算,解题的关键是熟练的掌握有理数的乘方运算法则.10.有理数a,b在数轴上对应的位置如图所示,则下列结论中正确的是( )A. a+b>0B. a-b=0C. a-b>0D. ab<0【答案】D【解析】【分析】根据图示,可得:a<-1,0<b<1,据此逐项判断即可.【详解】∵a<−1,0<b<1,∴a+b<0,∴选项A不符合题意;∵a<−1,0<b<1,∴∴a−b<0∴选项B不符合题意;∵a<−1,0<b<1,∴a-b<0,∴选项C不符合题意;∵a<−1,0<b<1,∴ab<0,∴选项D符合题意.故答案选:D.【点睛】本题考查了数轴的知识点,解题的关键是熟练的掌握数轴的知识与运用.二、填空题(本大题共6小题,每小题3分,共18分)11.比较大小:﹣1____12-(填“>”、“<”或“=”)【答案】< 【解析】两个负数比较,绝对值大的反而小,故﹣1<1 2 -12.某种零件,标明要求是φ20±0.2 mm(φ表示直径,单位:毫米),经检查,一个零件的直径是19.9mm,该零件_____________(填“合格” 或“不合格”).【答案】合格【解析】【分析】先求出合格直径范围,再判断即可.【详解】解:由题意得,合格直径范围为:19.8mm--20.2mm,若一个零件的直径是19.9mm,则该零件合格.故答案为:合格.【点睛】本题考查了正数和负数的知识,解答本题的关键是求出合格直径范围.13. 用四舍五入法取近似数,1.806≈__________(精确到0.01).【答案】1.90.【解析】试题分析:本题考查了近似数和有效数字:经过四舍五入得到的数称为近似数;从一个近似数左边第一个不为0的数数起到这个数完,所以这些数字都叫这个近似数的有效数字.把千分位上的数字6进行四舍五入即可.解::1.806≈1.90(精确到0.01).故答案为1.90.考点:近似数和有效数字.14.在检测排球质量过程中,规定超过标准的克数记为正数,不足的克数记为负数,根据下表提供的检测结果,你认为质量最接近标准的是_______号排球.【答案】五【解析】【分析】根据题意可知:质量最接近标准的排球就是检测结果的绝对值最小的.【详解】解:依题意,有|−0.6|<|+0.8|<|−2.5|<|−3.5|<|+5|由于“绝对值越小,距离标准越近”所以质量接近标准的是五号排球.【点睛】本题考查了正数与负数,解题的关键是熟练的掌握正数与负数的相关知识.15.如图,将一刻度尺放在数轴上(数轴上的单位长度是1cm),刻度尺上“0cm”和“8cm”分别对应数轴上的3 和,那么的值为___ .【答案】5.【解析】试题解析:由数轴可知38,x -+= 解得: 5.x = 故答案 16.已知2+23=22×23,3+38=32×38,4+415=42×415,…若14+a b =142×a b(a,b 均为正整数),则a+b=_______.【答案】209 【解析】试题解析:根据题中规律可知33222221111n n n n n n n n n n n n -++===⋅---- ,则当14n = 时,14a = ,195b =,所以14195209a b +=+= . 故本题的答案为209.三、解答题(本大题共6小题,共52分)17.请把下列有理数填入相应的大括号里(将各数用逗号分开): -(-5.3),- 3.14-,+31,3--4⎛⎫⎪⎝⎭,0,-(+7) ,1213,2016,-1.39. 整数:{ …}; 分数:{ …}; 非负数:{ …}.【答案】+31,0,-(+7),2016;-(-5.3),- 3.14-,3--4⎛⎫ ⎪⎝⎭,1213,-1.39;-(-5.3),+31 ,3--4⎛⎫ ⎪⎝⎭,0,1213,2016.【解析】 【分析】根据有理数的分类进行判断即可.有理数包括:整数(正整数、0和负整数)和分数(正分数和负分数). 【详解】解:整数:{+31,0,-(+7),2016,…}; 分数:{-(-5.3),- 3.14-,3--4⎛⎫ ⎪⎝⎭,1213,-1.39,…};非负数:{-(-5.3),+31 ,3--4⎛⎫ ⎪⎝⎭,0,1213,2016,…}. 【点睛】考查了有理数的知识点,解题的关键是熟练的掌握有理数的分类与定义. 18.计算:(1)(-24)×(12-213-38);(2)[2-5×(-12)2]÷1-4⎛⎫⎪⎝⎭.【答案】(1)37;(2)-3.【解析】【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算再计算乘除运算,最后算加减运算即可得到结果. 【详解】解:(1)原式=-12+40+9=37;(2)原式=(2-54)×(-4)=-8+5= -3.【点睛】本题考查了有理数的综合运算,解决的关键在于符号的处理.19.计算6÷(﹣1123+),方方同学的计算过程如下,原式=6÷(-12)+6÷13=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.【答案】-36【解析】【分析】根据有理数的混合运算顺序,先算括号里面的,再根据除法法则进行计算即可.【详解】解:方方的计算过程不正确,正确的计算过程是:原式=6÷(﹣12+26)=6÷(﹣16)=6×(﹣6)=﹣36.【点睛】本题考查有理数的除法.20.为节约水资源,某初中环保宣传小组作了一个调查,得到了如下的一组数据:全市大约有160万人,每天早晨起来漱口,如果漱口时都不关水龙头,那么每个人漱口时要浪费56毫升的水.(1)按这样计算,如果每个人都不关水龙头,那么全市一天早晨漱口要浪费多少升水?(结果用科学记数法表示)(2)如果用500毫升的水瓶来装(1)中浪费的水,可以装多少瓶?(结果用科学记数法表示)【答案】(1) 8.96×104;(2) 1.792×105.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【详解】解:(1)1 600 000×56÷1000=89 600=8.96×104(升).答:如果每个人都不关水龙头,那么全市一天早晨漱口要浪费8.96×104升水.(2)89 600×1000÷500=179 200=1.792×105(瓶).答:如果用500毫升的水瓶来装(1)中浪费的水,可以装1.792×105瓶.【点睛】本题主要考查科学记数法—表示较大的数,关键在于要确定a的值和n的值.21.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(-15);(2)999×41185+999×(15-)-999×3185.【答案】(1)149985;(2)99900.【解析】【详解】试题分析:根据题目中所给的规律,第一题凑整法,第二题提同数法解决即可. 试题解析:(1)999×(-15)=(1000-1)×(-15)=15-15000=149985;(2)999×41185+999×(15-)-999×31185=999×[41185+(15-)-3185]=999×100=99900.考点:有理数的运算.22.在某次抗险救灾中,消防官兵的冲锋舟沿东西方向的河流营救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:km):+14,-9,+8,-7,+13,-6,+10,-5.(1)通过计算说明B地在A地的什么方向,与A地相距多远.(2)救灾过程中,最远处离出发点A有多远?(3)若冲锋舟每千米耗油0.5 L,油箱容量为29 L,则途中还需补充多少升油?【答案】(1) B地在A地的东边18千米处;(2) 还需补充7升油.【解析】试题分析:(1)把题目中所给数值相加,若结果为正数则B地在A地的东方,若结果为负数,则B地在A地的西方;(2)分别计算出各点离出发点的距离,取数值较大的点即可;(3)先求出这一天走的总路程,再计算出一共所需油量,减去油箱容量即可求出途中还需补充的油量. 试题解析:(1)∵14﹣9+8﹣7+13﹣6+10﹣5=18>0,∴B 地在A 地的东边18千米;(2)∵路程记录中各点离出发点的距离分别为:14千米;14﹣9=5千米;14﹣9+8=13千米;14﹣9+8﹣7=6千米;14﹣9+8﹣7+13=19千米;14﹣9+8﹣7+13﹣6=13千米;14﹣9+8﹣7+13﹣6+10=23千米;14﹣9+8﹣7+13﹣6+10﹣5=18千米,∴最远处离出发点23千米;(3)∵这一天走的总路程为:14+|﹣9|+8+|﹣7|+13+|﹣6|+10+|﹣5|=72千米,应耗油72×0.5=36(升),∴还需补充的油量为:36﹣29=7(升).考点:正数和负数.附加题(共20分,不计入总分)23.已知a 为有理数,定义运算符号▽:当a >-2时,▽a=-a ;当a <-2时,▽a=a ;当a=-2时,▽a=0.根据这种运算,计算▽[4+▽(2-5)]的值为( )A. -7B. 7C. -1D. 1 【答案】C【解析】【分析】定义运算符号▽当a>-2时, ▽a=-a;当时a<-2, ▽a=a;当a=-2时, ▽a=0,先判断a 的大小,然后按照题中的运算法则求解即可.【详解】2532,-=-<-且当a 2<-时, ▽a=a,▽(-3)=-3.4+▽(2-5)=4-3=1>-2,当a>-2时, ▽a=-a,▽[4+▽(2-5)]=▽1=-1.【点睛】本题考查了学生读题做题的能力.关键是理解“▽”这种运算符号的含义,以便从已知条件里找寻规律. 24.已知A,B 在数轴上表示的数分别是m,n.(1)填写下表:(2)若A,B两点间的距离为d,写出d与m,n之间的数量关系.(3)在数轴上标出所有符合条件的整数点P,使它到5和-5的距离之和为10,并求出所有这些整数的和.【答案】(1)2,5,10,2,12,0;(2)d=|m-n|;(3)在数轴上标出略,整数点P表示的数可以是5,-5,4,-4,3,-3,2,-2,1,-1,0,它们的和0.【解析】【分析】根据在数轴求距离的方法,让右边的点表示的数减去左边的点的表示的数,依次计算可得答案.数轴上两点间的距离d等于表示两点数之差的绝对值,即d=|m-n|.设P点为x,根据(2)得出的结论列出含绝对值的一元一次方程,利用绝对值的代数意义化简即可求出x的值.【详解】解:(1)从左到右依次填2,5,10,2,12,0.(2)d=|m-n|.(3) 5,-5,4,-4,3,-3,2,-2,1,-1,0,它们的和是0.【点睛】本题是一个新型题目,通过本题我们可掌握数轴上两点间的距离的计算方法:两点间的距离表示两个点的数的差的绝对值,熟悉掌握是关键.。

人教版七年级数学上册第1章《有理数-有理数除法》课后测试题(附答案)

人教版七年级数学上册第1章《有理数-有理数除法》课后测试题(附答案)

人教版七年级数学上册第1章《有理数-有理数除法》课后测试题(附答案)第一课时一.选择题1.计算(-16)÷8的结果等于( )A .12B .-2C .3D .-1的运算结果是( ) A .-12 B .12 C .-2 D .23.两个不为零的有理数相除,如果交换它们的位置,商不变,那么() A .两数相等 B .两数互为相反数C .两数互为倒数D .两数相等或互为相反数A .-1B .1C .118D .- 118A .−−a −bB .−a −bC .−a bD .a −b6.已知a 、b 为有理数,且ab >0,则 a |a | + b |b | + ab|ab | 的值是() A .3 B .-1 C .-3 D .3或-1二.填空题三.解答题11.化简下列分数.12.计算:答案:1.B 2.C 3.D 解析:交换它们的位置,商不变则两数相等或互为相反数.4.C=−−a −b .−a −b ab |a ||b ||ab |7.-1解析:∵a 、b 互为相反数,∴a=.∴原式=−b b =−1.10.>,<解析:∵|a |a =1,∴|a|=a .∴a >0.∵a |a | =-1,∴|a|=-1.∴a <0.11.解:(1)原式=-3;(2)原式(3)原式=6×5=30;12.解:(1)原式=0;第二课时一.选择题1.计算-1-2×(-3)的结果等于( )A .5B .-5C .7D .-7 2.计算:12-7×(-4)+8÷(-2)的结果是( ) A .-24 B .-20 C .6 D .36 3.计算2×(-9)-18×(16 - 12 )的结果是( )A .24B .-12C .-9D .64.某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元,这个公司去年平均每月的盈亏(精确到0.001万元)是( )A .盈利3.7万元B .亏损0.008万元C .盈利0.308万元D .亏损0.308万元A .1B .-1C .-11D .116.蜗牛在井里距井口1米处,它每天白天向上爬行30cm ,但每天晚上又下滑20cm .蜗牛爬出井口需要的天数是( )A .8天B .9天C .10天D .11天二.填空题7.(1+ 13 )÷(13 -1)× 38 = .三.解答题11.阅读下列材料:解法一:原式=50÷13 -50÷14 +50÷112 =50×3-50×4+50×12=550.故原式=300.上述得出的结果不同,肯定有错误的解法,你认为解法______是错误的.在正确的解法中,你认为解法最简捷.然后,请你解答下列问题:12.计算题(1)6-|-12|÷(-3).(2)(-48)÷8-(-25)×(-6)答案:1.A 2.D 3.B4.C解析:根据题意列式-1.5×3+2×3+1.7×4-2.3×2=-4.5+6+6.8-4.6=-9.1+12.8=3.7(万元).3.7÷12≈0.308(万元).所以这个公司去年平均每月盈利约0.308万元.5.B6.A解析:∵30cm=0.3m,20cm=0.2m,∴蜗牛每天向上实际爬0.3-0.2=0.1米,蜗牛最后一天可以爬出井,在此之前它要爬1-0.3=0.7(米),∴蜗牛要先爬7天,加上最后一天,总共是8天.11.解:上述得出的结果不同,肯定有错误的解法,我认为解法一是错误的.在正确的解法中,你认为解法三最简捷;原式的倒数为(16 − 314 +23 −27 )÷(−142 )=(16 − 314 +23 −27 )×(-42)=-7+9-28+12=-14, 则原式=-114 .12.解:(1)原式=6-12÷(-3)=6+4=10.。

人教版七年级数学上册《第一章有理数》练习题-附有答案

人教版七年级数学上册《第一章有理数》练习题-附有答案

人教版七年级数学上册《第一章有理数》练习题-附有答案考点1【正负数和零】1.一种巧克力的质量标识为“23±0.25千克”则下列哪种巧克力的质量是合格的.()A.23.30千克B.22.70千克C.23.55千克D.22.80千克【答案】D解:∵23+0.25=23.2523-0.25=22.75∴巧克力的重量在23.25与22.75kg之间.∴符合条件的只有D.2.若足球质量与标准质量相比超出部分记作正数不足部分记作负数则在下面4个足球中质量最接近标准的是()A.B.C.D.【答案】A-<+<+<-解:0.70.8 2.1 3.5∴质量最接近标准的是A选项的足球3.我市某天最高气温是12℃最低气温是零下3℃那么当天的日温差是_________ ℃【答案】15.12−(−3)=12+3=15(℃)4.若某次数学考试标准成绩定为85分规定高于标准记为正两位学生的成绩分别记作:+9分和﹣3分则第一位学生的实际得分为______分.5.教师节当天出租车司机小王在东西向的街道上免费接送教师规定向东为正向西为负当天出租车的行程如下(单位:千米):+5 ﹣4 ﹣8 +10 +3 ﹣6 +7 ﹣11﹣﹣1)将最后一名老师送到目的地时小王距出发地多少千米?方位如何?﹣2)若汽车耗油量为0.2升/千米则当天耗油多少升?若汽油价格为5.70元/升则小王共花费了多少元钱?解℃℃1℃+5℃4℃8+10+3℃6+7℃11=℃4℃则距出发地西边4千米;℃2)汽车的总路程是:5+4+8+10+3+6+7+11=54千米则耗油是54×0.2=10.8升花费10.8×5.70=61.56元答:当天耗油10.8升小王共花费了61.56元.考点2【有理数分类】1.在数22715π0.40.30.1010010001... 3.1415中有理数有()A.3个B.4个C.5个D.6个【答案】C数22715π0.40.30.1010010001... 3.1415中有理数有227150.40.3 3.1415共计5个2.下列说法正确的有( )(1)整数就是正整数和负整数;(2)零是整数但不是自然数;(3)分数包括正分数、负分数;(4)正数和负数统称为有理数;(5)一个有理数它不是整数就是分数.A.1个B.2个C.3个D.4个【答案】B℃分数包括正分数、负分数正确;℃正数、负数和0 统称为有理数故错误;℃一个有理数它不是整数就是分数正确3.在3.142π15-00.12个数中是有理数的几个()A.2B.3C.4D.5【答案】C解:有理数为3.1415-00.12共4个4.若a是最小的自然数b是最大的负整数c是绝对值最小的有理数则a-b-c的值为()A.-1B.0C.2D.1【答案】D解:由题意得:a=0b=-1c=0∴a-b-c=0-(﹣1)-0=1.5.下列说法中正确的是()A.非负有理数就是正有理数B.零表示没有不是自然数C.正整数和负整数统称为整数D.整数和分数统称为有理数【答案】DA.非负有理数就是正有理数和零故A错误;B.零表示没有是自然数故B错误;C.整正数、零、负整数统称为整数故C错误;D.整数和分数统称有理数故D正确;考点3【数轴】1.在数轴上表示a﹣b两数的点如图所示则下列判断正确的是()A.a+b﹣0B.a+b﹣0C.a﹣|b|D.|a|﹣|b|【答案】B解℃℃b℃0℃a而且a℃|b|℃a+b℃0∴选项A不正确选项B正确;℃a℃|b|∴选项C不正确;℃|a|℃|b|∴选项D不正确.2.数轴上表示整数的点称为整点某数轴的单位长度是1厘米若在这个数轴上随意画出一条长2000厘米的线段AB盖住的整点的个数共有()个.A.1998或1999B.1999或2000C.2000或2001D.2001或2002【答案】C解:依题意得:①当线段AB起点在整点时覆盖2001个数;②当线段AB起点不在整点即在两个整点之间时覆盖2000个数.3.已知点A和点B在同一数轴上点A表示数﹣2又已知点B和点A相距5个单位长度则点B表示的数是()A.3B.﹣7C.3或﹣7D.3或7【答案】C分为两种情况:当B点在A点的左边时B点所表示的数是-2-5=−7;当B点在A点的右边时B点所表示的数是-2+5=3;4.a b ,是有理数 它们在数轴上的对应点的位置如图所示 把a a b b --,,,按照从小到大的顺序排列( )A .b a a b -<<-<B .a b a b -<-<<C .b a a b -<-<<D .b b a a -<<-<【答案】A观察数轴可知:b >0>a 且b 的绝对值大于a 的绝对值.在b 和-a 两个正数中 -a <b ;在a 和-b 两个负数中 绝对值大的反而小 则-b <a . 因此 -b <a <-a <b .5.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是1cm) 刻度尺上的“0cm”和“8cm”分别对应数轴上的-3.6和x 则x 的值为( )A .4.2B .4.3C .4.4D .4.5【答案】C利用减法的意义 x -(-3.6)=8 x =4.4.所以选C.6.如图 数轴上四点O A B C 其中O 为原点 且2AC = OA OB = 若点C 表示的数为x 则点B 表示的数为( )A .()2x -+B .()2x --C .2x +D .2x -【答案】B解:∵AC=2 点C 表示的数为x∵OA OB =∴点B 表示的数为:-(x -2)7.点A 在数轴上距原点5个单位长度 将A 点先向左移动2个单位长度 再向右移动6个单位长度 此时A 点所表示的数是( ) A .-1 B .9C .-1或9D .1或9【答案】C解:∵点A 在数轴上距原点5个单位长度 ∴点A 表示的数是−5或5∵A 点先向左移动2个单位长度 再向右移动6个单位长度 ∴−5−2+6=−1或5−2+6=9 ∴此时点A 所表示的数是−1或9.考点4【相反数】1.若a 与1互为相反数 则a +3的值为( ) A .2 B .0C .﹣1D .1【答案】A∵a 与1互为相反数 ∴a =﹣1则a +3的值为:﹣1+3=2.2.下列各对数:()3+-与3- ()3++与+3 ()3--与()3+- ()3-+与()3+-()3-+与()3++ +3与3-中 互为相反数的有( )A .3对B .4对C .5对D .6对解:根据相反数的定义得-(-3)与+(-3)-(+3)与+(+3)+3与-3互为相反数所以有3对.3.如果a+b=0那么a b两个数一定()A.都等于0B.互为相反数C.一正一负D.a>b【答案】B由a+b=0则有=-a b所以a b两个数一定是互为相反数-的相反数是-2那么a是()4.7aA.5B.-3C.2D.1【答案】A解:∵7-a的相反数是-2∴7-a=2解得a=5.5.若a表示有理数则-a是()A.正数B.负数C.a的相反数D.a的倒数【答案】Ca表示有理数则a-表示a的相反数考点5【绝对值】1.下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有()A.0个B.1个C.2个D.3个【答案】B解:①∵互为相反数的两个数相加和为0移项后两边加上绝对值是相等的∴互为相反数的两个数绝对值相等故①正确;④∵|2|=|-2| 但2≠-2 ∴④错误2.如果一个有理数的绝对值是正数 那么这个数必定是( ) A .是正数 B .不是0C .是负数D .以上都不对【答案】B由于正数和负数的绝对值都是正数 而0的绝对值是0;所以若一个有理数的绝对值是正数 那么这个数必不为0.3.已知a>0 b<0 c<0且c >a >b 则下列结论错误的是( ) A .a+c<0 B .b -c>0C .c<-b<-aD .-b<a<-c【答案】C解:∵a>0 b<0 c<0且c >a >b在数轴上表示如下:则a+c<0 b -c>0 c<-a<-b -b<a<-c 故C 错误4.若a ab b=- 则下列结论正确的是( ) A .0a < 0b < B .0a > 0b >C .0ab >D .0ab ≤【答案】D解:a ab b=- ∴0ab≤ 即0ab ≤;A.a>0B.a≥0C.a<0D.a≤0【答案】D=-解:∵||a a∴a≤0.-表示的数是( )6.若x为有理数则x xA.正数B.非正数C.负数D.非负数【答案】D【解析】℃1)若x≥0时丨x丨-x=x-x=0℃℃2)若x℃0时丨x丨-x=-x-x=-2x℃0℃由(1℃℃2)可得丨x丨-x表示的数是非负数.考点6【有理数的加减法】1.已知|a|=7|b|=2且a<b求a+b的值.【答案】-5或-9解:∵|a|=7∴a=±7又∵|b|=2∴b=±2又∵a<b∴a=-7b=2或a=-7b=-2当a=-7b=2时a+b=-7+2=-5当a=-7b=-2时a+b=-7+(-2)=-9综上所述a+b的值为-5或-9.2.已知|a| = 3 |b| = 2 且ab < 0 求:a + b的值.解:℃|a|=3 |b|=2 ℃a=±3 b=±2; ℃ab <0 ℃ab 异号.℃当a=3时 b=-2 则a + b=3+(-2)=1; 当a=-3时 b=2 则a + b=-3+2=-1.3.已知5a = 2a b -=且a b a b -=- 求+a b 的值 【答案】8或-12 解:∵|a|=5 ∴a=±5∵2a b -=且a b a b -=- ∴0a b -> 2a b -= ∴2b a =- ∴当a=5 则b= 3 当a=-5 则b= -7 ∴a+b=8或-12;4.已知│a │=4且a<0 b 是绝对值最小的数 c 是最大的负整数 则a+b -c=____. 【答案】﹣3解:因为a =4且a <0 b 是绝对值最小的数 c 是最大的负整数所以a =﹣4 b =0 c =﹣1所以a +b -c =﹣4+0-(﹣1)=﹣4+1=﹣3.5.绝对值大于3且小于5.5的所有整数的和为______________ ;解:∵绝对值大于3而小于5.5的整数为:-4-545∴其和为:-4+(-5)+4+5=0故绝对值大于3且小于5.5的所有整数的和为0.考点7【有理数的乘除法】1.先阅读下面的材料再回答后面的问题:计算:10÷(12-13+16).解法一:原式=10÷12-10÷13+10÷16=10×2-10×3+10×6=50;解法二:原式=10÷(36-26+16)=10÷26=10×3=30;解法三:原式的倒数为(12-13+16)÷10=(12-13+16)×110=12×110-13×110+16×110=130故原式=30.(1)上面得到的结果不同肯定有错误的解法你认为解法是错误的。

七年级数学上册《第一章 有理数》单元测试卷带答案(人教版)

七年级数学上册《第一章 有理数》单元测试卷带答案(人教版)

七年级数学上册《第一章 有理数》单元测试卷带答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:1.6的负倒数是( )A .﹣6B .6C .16D .16- 2.下列计算结果最小的是( )A .()22--B .()22-C .212⎛⎫- ⎪⎝⎭D .212⎛⎫-- ⎪⎝⎭3.南海是我国固有领海,它的面积超过东海、黄海、渤海面积的总和,约为360万平方千米,360万用科学记数法表示为( )A .3.6×102B .360×104C .3.6×104D .3.6×1064.①0是绝对值最小的有理数;②相反数大于自身的数是负数;③任何一个有理数的绝对值都是非负数;④两个数相互比较,绝对值大的反而小;⑤符号不同的两个数是互为相反数.③绝对值等于本身的数是0和1.其中正确的有( )A .2个B .3个C .4个D .5个5.一个点从数轴的﹣1所表示的点开始,先向左移动5个单位,再向右移动3个单位,这时该点表示的数是( )A .1B .﹣2C .﹣5D .﹣36.按照如图所示的操作步骤进行计算,若输人的值为-3,则输出的值为( )A .0B .4C .55D .607.如图是某品牌鞋服店推出的优惠活动,小明看中了一双鞋子和一双原价80元的袜子,若购买这双鞋子和这双袜子所付的费用与单独购买这双鞋子所付的费用相同,则这双鞋子的原价可能是(A .269元B .369元C .569元D .669元8.有理数a ,b 在数轴上的位置如图,则下列各式不成立的是( )A .a+b <0B .a ﹣b >0C .ab >0D .|b|>a 二、填空题: 9.计算23--的结果为 .10.用科学记数法表示123000000000= .11.在数轴上,点A 表示的数为15-,点M 以每秒3个单位长度的速度从点A 出发沿数轴向右运动经过 秒,点M 与原点O 的距离为6个单位长度.12.若一种零件的直径尺寸为0.040.0330+-mm .则该种零件的最大直径为 mm ,最小直径为 mm .13.有一张厚度是0.2毫米的纸,如果将它连续对折6次,则折叠6次后的厚度为 毫米.14.我国的《洛书》中记载着世界上最古老的一个幻方:将1~9这九个数字填入3×3的方格内,使m 所表示的数是 。

人教版七年级数学上册《第一章有理数》单元测试卷-附答案

人教版七年级数学上册《第一章有理数》单元测试卷-附答案

人教版七年级数学上册《第一章有理数》单元测试卷-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列各数中,最小的数是( )A .3-B .1C .0D .522.实数2-的绝对值是( )A .2-B .2C .12D .12- 3.一天早晨的气温是7-℃,中午上升了10℃,中午的气温是( )A .1-℃B .3-℃C .1℃D .3℃4.下列说法不正确的是( )A .不同的两个数叫做互为相反数B .如果数轴上的两个点关于原点对称,则这两个点表示的数互为相反数C .若a 的相反数是正数,则a 一定是负数D .若a 和b 互为相反数,则0a b +=5.新能源汽车已经成为全球汽车产业转型发展的主要方向,根据中国乘用车协会的统计数据,2023年新能源汽车国内销量达8292000辆.数字8292000用科学记数法表示为( )A .68.29210⨯B .582.9210⨯C .4892.210⨯D .28.29210⨯ 6 . 若方程无解,则m 的取值范围是( ) A . B . C . D .7.用一块长12米,宽6米的长方形铁皮剪成半径是1.5米的小圆(不能剪拼)( )个. A .11个 B .8个 C .10个 D .13个8.下列计算正确的是( )A .733.5384⎛⎫-÷⨯-=- ⎪⎝⎭B .12323-÷⨯=-C .556(4)64-÷-⨯=D .11113065⎛⎫-÷÷=- ⎪⎝⎭9.a 、b 是有理数.下列各式中成立的是( )A .若22a b >,则a b >B .若a b >,则22a b >C .若a b ≠,则a bD .若a b ,则a b ≠10.如果四个互不相同的正整数m n p q 、、、满足()()()()44449m n p q ----=,则433+++m n p q 的最大值为( )A .40B .53C .60D .70二、填空题11.计算:20241-= .12.如图是一个简单的数值运算程序图,当输入x 的值为1-时,输出的数值为 .13.若12x <<,求代数式2121x x x x x x---+=-- . 14.车间里有五台车床同时出现故障.已知第一台至第五台修复的时间如下表: 车床代号 A B C DE 修复时间(分钟) 8 31 116 17 若每台车床停产一分钟造成经济损失10元,修复后即可投入生产.(1)若只有一名修理工,且一名修理工每次只能修理一台机床,则下列三个修复车床的顺序: ①D B E A C →→→→;①D A C E B →→→→;①C A E B D →→→→中,经济损失最少的是 (填序号);(2)如果由两名修理工同时修复车床,且每台机床只由一名修理工修理,则最少经济损失为 元.三、解答题15.计算:()()()2122533-+⨯---. 16.下面是一个不完整的数轴(1)请将数轴补充完整,并将下列各数表示在数轴上;(2)将下列各数按从小到大的顺序用“<”号连接起来:-3;3.5与122⎛⎫-- ⎪⎝⎭;-|-1|. 17.(1)若a 2=16,|b |=3,且ab<0,求a +b 的值.(2)已知a 、b 互为相反数且a≠0,c 、d 互为倒数,m 的绝对值是3,且m 位于原点左侧,求22015 (1)()2016m a b cd--++-的值.18.某公司6天内货品进出仓库的吨数如下:(“+”表示进库,“-”表示出库)+31,-32,-16,+35,-38,-20.(1)经过这6天,仓库里的货品________.(填“增多了”或“减少了”)(2)经过这6天,仓库管理员结算时发现仓库里还剩货品460t,那么6天前仓库里有货品多少吨?(3)如果货品进出仓库的装卸费都是每吨5元,那么这6天共需付多少元装卸费?参考答案1.A2.B3.D4.A5.A6.D7.B8.C9.C10.B11.1-12.5-13.114.① 104015.616.(1)(2)1312 3.52--⎛⎫-<<--<⎪⎝⎭17.(1)1±;(2)9.18.(1)减少了(2)500吨(3)860元。

人教版七年级数学上册《第一章有理数》测试-附有答案

人教版七年级数学上册《第一章有理数》测试-附有答案

人教版七年级数学上册《第一章有理数》测试-附有答案一、选择题(本题共12小题每小题4分共48分在每小题给出的四个选项中只有一项是符合题目要求的请用2B铅笔把答题卡上对应题目答案标号涂黑)1.(4分)下列各组数中数值相等的是()A.32与23B.﹣23与(﹣2)3C.﹣32与(﹣3)2D.3×22与(3×2)2【分析】先根据有理数的乘方和有理数的乘法进行计算再根据求出的结果进行判断即可.【解答】解:A.∵32=9 23=8∴32≠23故本选项不符合题意;B.∵﹣23=﹣8 (﹣2)3=﹣8∴﹣23=(﹣2)3故本选项符合题意;C.∵﹣32=﹣9 (﹣3)2=9∴﹣32≠(﹣3)2故本选项不符合题意;D.∵3×22=3×4=12 (3×2)2=62=36∴3×22≠(3×2)2故本选项不符合题意;故选:B.2.(4分)2022年春节期间为响应国家号召多数人选择“就地过年”太原市文旅系统推出了探寻晋商年味之旅、魅力山西时尚之旅等10条主题线路使“就地过年”更有年味、更加贴心2月1日至2月16日全市20家A级景区平均每天接待游客2万人次则全市这20家A级景区这7天共接待的游客数量用科学记数法可表示为()A.0.14×106人次B.1.4×105人次C.1.4×104人次D.1.4×108人次【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10 n为整数.确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同.当原数绝对值≥10时n 是正整数当原数绝对值<1时n是负整数.【解答】解:2万×7=140000=1.4×105.故选:B.3.(4分)下列各对数中互为相反数的是()A.﹣(﹣5)与﹣|﹣5|B.|+3|与|﹣3|C.﹣(﹣6)与|﹣6|D.﹣(+4)与+(﹣4)【分析】根据相反数和绝对值化简各选项中的数根据相反数的定义即可得出答案.【解答】解:A选项5与﹣5互为相反数故A选项符合题意;B选项3=3 故B选项不符合题意;C选项6=6 故C选项不符合题意;D选项﹣4=﹣4 故D选项不符合题意;故选:A.4.(4分)如表是几种液体在标准大气压下的沸点:液体名称液态氧液态氢液态氮液态氦沸点(℃)﹣183﹣253﹣196﹣268.9则沸点最高的液体是()A.液态氧B.液态氢C.液态氮D.液态氦【分析】根据有理数大小的比较方法解答即可.【解答】解:因为﹣268.9<﹣253<﹣196<﹣183 所以沸点最高的液体是液态氧.故选:A.5.(4分)如图在不完整的数轴上点A B分别表示数a b且a与b互为相反数若AB=8 则点A 表示的数为()A.﹣4B.0C.4D.8【分析】根据点A B分别表示数a b且a与b互为相反数得到A B两点位于原点的两侧且到原点的距离相等得到原点O在AB的中点求出OA的长度即可得到点A表示的数.【解答】解:∵点A B分别表示数a b且a与b互为相反数∴A B两点位于原点的两侧且到原点的距离相等∴原点O在AB的中点∵AB=8∴OA=AB=×8=4∴点A表示的数为﹣4.故选:A.6.(4分)如图已知A B(B在A的左侧)是数轴上的两点点A对应的数为4 且AB=6 动点P从点A出发以每秒2个单位长度的速度沿数轴向左运动在点P的运动过程中M N始终为AP BP 的中点设运动时间为t(t>0)秒则下列结论中正确的有()①B对应的数是2;②点P到达点B时t=3;③BP=2时t=2;④在点P的运动过程中线段MN的长度不变.A.①③④B.②③④C.②③D.②④【分析】利用数轴结合方程及分类讨论思想求解.【解答】解:∵已知A B(B在A的左侧)是数轴上的两点点A对应的数为4 且AB=6∴B对应的数为:4﹣6=﹣2;故①是不符合题意的;∵6÷2=3 故②是符合题意的;∵当BP=2时t=2或t=4 故③是不符合题意的;∵在点P的运动过程中MN=3 故④是符合题意的;故选:D.7.(4分)已知a b两数在数轴上的位置如图所示则化简代数式|b﹣a|﹣|1﹣a|﹣|b﹣2|的结果是()A.1B.2a﹣3C.﹣1D.2b﹣1【分析】根据负数的绝对值等于它的相反数去绝对值合并同类项即可得出答案.【解答】解:∵b﹣a<0 1﹣a<0 b﹣2<0∴|b﹣a|﹣|1﹣a|﹣|b﹣2|=a﹣b+1﹣a+b﹣2=﹣1.故选:C.8.(4分)用四舍五入法分别按要求取0.17326取近似值下列结果中错误的是()A.0.2(精确到0.1)B.0.17(精确到百分位)C.0.174(精确到0.001)D.0.1733(精确到0.0001)【分析】根据近似数的精确度对各选项进行判断.【解答】解:A.0.17326≈0.2(精确到0.1)所以A选项不符合题意;B.0.17326≈0.17(精确到百分位)所以B选项不符合题意;C.0.17326≈0.173(精确到0.001)所以C选项符合题意;D.0.17326≈0.1733(精确到0.0001)所以D选项不符合题意.故选:C.9.(4分)北京与西班牙的时差为7个小时.比如北京时间中午12点是西班牙的凌晨5点2022年2月4日晚8时北京冬奥会开幕式正式开始在西班牙留学的嘉琪准时观看了直播直播开始的当地时间为()A.凌晨1点B.凌晨3点C.17:00D.13:00【分析】根据北京与西班牙的时差为7个小时解答即可.【解答】解:晚8时=20时20﹣7=13即直播开始的当地时间为13时.故选:D.10.(4分)若(m﹣2)2与|n+3|互为相反数则(m+n)2021的值是()A.﹣1B.1C.2021D.﹣2021【分析】先根据互为相反数的和为0 再根据非负数的性质列出算式求出m、n的值计算即可.【解答】解:∵(m﹣2)2与|n+3|互为相反数∴(m﹣2)2+|n+3|=0∴m﹣2=0 n+3=0∴m=2 n=﹣3∴(m+n)2021=(2﹣3)2021=﹣1.故选:A.11.(4分)从小明家到学校有1200米上坡1600米平路和800米下坡小明上学时上坡的速度为60米/分钟平路上的速度为80米/分钟下坡速度为100米/分钟则小明上学时的平均速度是()A.75米/分钟B.80米/分钟C.85米/分钟D.无法求出平均速度【分析】利用小明上学时的平均速度=小明家到学校的路程÷小明从家到学校的时间即可求出小明上学时的平均速度..【解答】解:===75(米/分钟).故选:A.12.(4分)如图小明在3×3的方格纸上写了九个式子(其中的n是正整数)每行的三个式子的和自上而下分别记为A1A2A3每列的三个式子的和自左至右分别记为B1B2B3其中值可以等于732的是( )A .A 1B .B 1C .A 2D .B 3【分析】将A 1 A 2 B 1 B 3的式子表示出来 使其等于732 求出相应的n 的数值即可判断答案.【解答】解:A 1=2n ﹣2+2n ﹣4+2n ﹣6=732整理可得:2n =248n 不为整数;A 2=2n ﹣8+2n ﹣10+2n ﹣12=732整理可得:2n =254n 不为整数;B 1=2n ﹣2+2n ﹣8+2n ﹣14=732整理可得:2n =252n 不为整数;B 3=2n ﹣6+2n ﹣12+2n ﹣18=732整理可得:2n =256n =8;故选:D .二、填空题(本题共4个小题 每小题4分 共16分 答题请用黑色墨水笔或签字笔直接答在答题卡相应的位置上)13.(4分)已知a 为有理数 {a }表示不小于a 的最小整数 如{52}=1 {﹣321}=﹣3 则计算{﹣665}﹣{5}×{﹣143}÷{4.9}= . 【分析】根据新定义 将{﹣6}﹣{5}×{﹣1}÷{4.9}化简为﹣6﹣5×(﹣1)÷5 再根据有理数的混合运算法则解决此题.【解答】解:{﹣6}﹣{5}×{﹣1}÷{4.9}=﹣6﹣5×(﹣1)÷5=﹣6﹣(﹣5)÷5=﹣6﹣(﹣1)=﹣6+1=﹣5.故答案为:﹣5.14.(4分)若a 、b 互为相反数 c 、d 互为倒数 m 是(﹣3)的相反数 则cd b a m +++9的值是 . 【分析】先根据相反数的性质、倒数的定义得出a +b =0 cd =1 m =3 再代入计算即可.【解答】解:根据题意知a +b =0 cd =1 m =3则原式=3+0+1=4.故答案为:4.15.(4分)如图 圆的直径为1个单位长度 该圆上的点A 与数轴上表示1的点重合 将该圆沿数轴向左滚动1圈 点A 到达A '的位置 则点A '表示的数是 .【分析】先求出圆的周长为π 从A 滚动向左运动 运动的路程为圆的周长.【解答】解:∵圆的直径为1个单位长度∴此圆的周长=π∴当圆向左滚动时点A ′表示的数是﹣π+1;故答案为:﹣π+1.16.(4分)我们知道:相同加数的和用乘法表示 相同因数的积用乘方表示.类比拓展:求若干个相同的有理数(均不等于0)的除法运算叫做除方 如2÷2÷2 (﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等 类比有理数的乘方 我们把2÷2÷2记作2③读作“2的圈3次方” (﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④ 读作“﹣3的圈4次方”.一般地 我们把n 个a (a ≠0)相除记作an 读作“a 的圈n 次方”.根据所学概念 求(﹣4)③的值是 .【分析】根据新定义内容列出算式 然后将除法转化为乘法 再根据乘法和乘方的运算法则进行化简计算.【解答】解:(﹣4)③=(﹣4)÷(﹣4)÷(﹣4)=﹣4××=﹣.故答案为:﹣.三、解答题(本题共8个小题 共86分 答题请用黑色墨水笔或签字笔直接答在答题卡相应的位置上 解答时应写出必要的文字说明、证明步骤或演算步骤.)17.(8分)请你把下列各数填入表示它所在的数的集合内:(﹣3)4 ﹣(﹣2)5 ﹣62 |﹣0.5|﹣2 20% ﹣0.13 ﹣7 43 0 4.7 正有理数集合:{ …};整数集合:{ …};负分数集合:{ …};自然数集合:{ …}.【分析】先根据有理数的乘方 绝对值的定义将原数先化简 再进行分类即可得出答案.【解答】解:∵(﹣3)4=34=81 ﹣(﹣2)5=25=32 ﹣62=﹣36 |﹣0.5|﹣2=0.5﹣2=﹣1.5 ∴正有理数集合:{(﹣3)4 ﹣(﹣2)5 20% 4.7 …};整数集合:{(﹣3)4 ﹣(﹣2)5 ﹣62 ﹣7 0 …};负分数集合:{|﹣0.5|﹣2 ﹣0.13 …};自然数集合:{(﹣3)4 ﹣(﹣2)5 0 …}.18.(8分)若|a |=2 |b |=3 |c |=6 |a +b |=﹣(a +b ) |b +c |=b +c .计算a +b ﹣c 的值.【分析】根据题意可以求得a 、b 、c 的值 从而可以求得所求式子的值.【解答】解:∵|a |=2 |b |=3 |c |=6∴a =±2 b =±3 c =±6∵|a +b |=﹣(a +b ) |b +c |=b +c∴a +b ≤0 b +c ≥0∴a =±2 b =﹣3 c =6∴当a =2 b =﹣3 c =6时a +b ﹣c =2+(﹣3)﹣6=﹣7a =﹣2b =﹣3c =6时a +b ﹣c =﹣2+(﹣3)﹣6=﹣11.19.(10分)点M N 是数轴上的两点(点M 在点N 的左侧) 当数轴上的点P 满足PM =2PN 时 称点P为线段MN的“和谐点”.已知点O A B在数轴上表示的数分别为0 a b回答下面的问题:(1)当a=﹣1 b=5时线段AB的“和谐点”所表示的数为;(2)当b=a+6且a<0时如果O A B三个点中恰有一个点为其余两个点组成的线段的“和谐点”此时a的值是多少?【分析】(1)设线段AB的“和谐点”所表示的数为x分两种情况讨论:①点在A、B之间;②点在B 的右边.根据新定义列出方程求解;(2)首先由b=a+6得出AB=6 再分三种情况讨论:①点O为线段AB的“和谐点”;②点A为线段OB的“和谐点”;③点B为线段AO的“和谐点”.根据题意列出方程求解.【解答】解:(1)设线段AB的“和谐点”为P P表示的数为x.①如果点P在A、B之间∵P A=2PB A B在数轴上表示的数分别为﹣1 5∴x﹣(﹣1)=2(5﹣x)解得x=3;②如果点P在B的右边∵P A=2PB∴x﹣(﹣1)=2(x﹣5)解得x=11.故答案为:3或11;(2)∵b=a+6∴b﹣a=6 即AB=6分三种情况:①如果点O为线段AB的“和谐点”那么AO=2OB根据题意可得0﹣a=2(b﹣0)或0﹣a=2(0﹣b)即a=﹣2b或a=2b又b=a+6∴a=﹣4 b=2 或a=﹣12 b=﹣6;②如果点A为线段OB的“和谐点”那么AO=2AB∵a<0∴这种情况不存在;③如果点B为线段AO的“和谐点”那么AB=2OB根据题意可得 6=2(0﹣b ) 或6=2(b ﹣0)即b =﹣3 或b =3又∵b =a +6∴a =﹣9或a =﹣3;故答案为:﹣3 ﹣4 ﹣9 ﹣12.20.(10分)如果a c =b 那么我们规定(a b )=c 例如:因为23=8 所以(2 8)=3.(1)根据上述规定 填空:(3 9)= (4 1)= (2 81)= ; (2)若记(3 4)=a (3 7)=b (3 28)=c 求证:a +b =c .【分析】(1)根据有理数的乘方和新定义即可得出答案;(2)由题意得:3a =4 3b =7 3c =28 根据4×7=28 得到3a ×3b =3c 根据同底数幂的乘法法则得到3a +b =3c 从而得出结论.【解答】解:(1)∵32=9 40=1 2﹣3= 故答案为:2;0;﹣3;(2)证明:由题意得:3a =4 3b =7 3c =28因为4×7=28所以3a ×3b =3c所以3a +b =3c所以a +b =c .21.(12分)计算(1)﹣165+265﹣78﹣22+65; (2)38112143⨯⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-; (3)⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛--7812787431; (4)32÷(﹣2)3+(﹣2)3×⎪⎭⎫ ⎝⎛-43﹣22. 【分析】(1)先分组计算 再相加即可求解;(2)将带分数化为假分数 除法变为乘法 再约分计算即可求解;(3)将带分数化为假分数 根据乘法分配律计算;(4)先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算.【解答】解:(1)﹣165+265﹣78﹣22+65=(﹣165+265)﹣(78+22)+65=100﹣100+65=65;(2)=﹣×××3=﹣1;(3)=×(﹣)﹣×(﹣)﹣×(﹣)=﹣2+1+=﹣;(4)32÷(﹣2)3+(﹣2)3×﹣22=9÷(﹣8)﹣8×﹣4=﹣1+6﹣4=.22.(12分)某电商把脐橙产品放到了网上售卖原计划每天卖200kg脐橙但由于种种原因实际每天的销售与计划量相比有出入下表是某周的销售情况(超额记为正不足记为负单位:kg).星期一二三四五六日+6+3﹣2+12﹣7+19﹣11与计划量的差值(1)根据表中的数据可知前三天共卖出kg脐橙;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售kg脐橙;(3)若电商以1.5元/kg的价格购进脐橙又按3.5元/kg出售脐橙且电商需为买家按0.5元/kg的价格支付脐橙的运费则电商本周一共赚了多少元?【分析】(1)前三天共卖出的脐橙为200×3+(6+3﹣2)千克计算即可;(2)销售量最多的一天比销售量最少的一天多销售19﹣(﹣11)=30(千克);(3)先计算脐橙的总量然后根据:总量×(售价﹣进价﹣运费)代入数据计算结果就是赚的钱数.【解答】解:(1)前三天共卖出的脐橙为200×3+(6+3﹣2)=600+7=607(千克);(2)销售量最多的一天比销售量最少的一天多销售19﹣(﹣11)=30(千克);(3)200×7+(6+3﹣2+12﹣7+19﹣11)=1420(千克)1420×(3.5﹣1.5﹣0.5)=2130(元)答:电商本周一共赚了2130元.23.(12分)阅读下面材料:点A 、B 在数轴上分别表示有理数a 、b 在数轴上A 、B 两点之间的距离AB =|a ﹣b |.回答下列问题:(1)数轴上表示﹣3和1两点之间的距离是 数轴上表示x 和﹣2的两点之间的距离是 ;(2)数轴上表示a 和1的两点之间的距离为6 则a 表示的数为 ;(3)若x 表示一个有理数 则|x +2|+|x ﹣4|有最小值吗?若有 请求出最小值;若没有 请说明理由.【分析】(1)(2)在数轴上A 、B 两点之间的距离为AB =|a ﹣b | 依此即可求解;(3)根据绝对值的性质去掉绝对值号 然后计算即可得解.【解答】解:(1)|1﹣(﹣3)|=4;|x ﹣(﹣2)|=|x +2|;故答案为:4 |x +2|;(2)|a ﹣1|=6∴a ﹣1=6或a ﹣1=﹣6即a =7或a =﹣5故答案为:7或﹣5;(3)有最小值当x <﹣2时 |x +2|+|x ﹣4|=﹣x ﹣2﹣x +4=﹣2x +2>6当﹣2≤x ≤4时 |x +2|+|x ﹣4|=x +2﹣x +4=6当x >4时 |x +2|+|x ﹣4|=x +2+x ﹣4=2x ﹣2>6所以当﹣2≤x ≤4时 它的最小值为6.24.(14分)阅读下列材料:小明为了计算1+2+22+…+22020+22021的值 采用以下方法:设S =1+2+22+…+22020+22021①则2S =2+22+…+22021+22022②②﹣①得 2S ﹣S =S =22022﹣1.请仿照小明的方法解决以下问题:(1)2+22+…+220= ;(2)求1+21+221+…+5021= ; (3)求1+a +a 2+a 3+…+a n 的和.(a >1 n 是正整数 请写出计算过程)【分析】(1)(2)根据题目所给方法 令等式左边为S 表示出2S 相减即可得到结果;(3)根据题目所给方法令等式左边为S表示出aS相减即可得到结果.【解答】解:(1)设S=2+22+…+220则:2S=22+23+…+220+2212S﹣S=(22+23+…+220+221)﹣(2+22+…+220)=221﹣2∴S=221﹣2故答案为:221﹣2.(2)设S=1+++…+则:2S=2+1+++…+2S﹣S=(2+1+++…+)﹣(1+++…+)=2﹣∴S=2﹣故答案为:2﹣.(3)设S=1+a+a2+a3+…+a n则:aS=a+a2+a3+…+a n+a n+1aS﹣S=(a﹣1)S=(a+a2+a3+…+a n+a n+1)﹣(1+a+a2+a3+…+a n)=a n+1﹣1.∴S=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级上册第一章测试卷一.选择题(共10小题)1.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到22000公里,将22000用科学记数法表示应为( )A. 2.2×104B. 22×103C. 2.2×103D. 0.22×1052.一个点从数轴上表示–2的点开始,向右移动7个单位长度,再向左移动4个单位长度,则此时这个点表示的数是( )A. 0B. 2C. 1D. –13.我们定义一种新运算a⊕b=,例如5⊕2==,则式子7⊕(﹣3)的值为( )A. B. C. D. ﹣4.四个足球与足球规定质量偏差如下:﹣3,+5,+10,﹣20(超过为正,不足为负).质量相对最合规定的是( )A. +10B. ﹣20C. ﹣3D. +55.已知|x|=5,|y|=2,且|x+y|=﹣x﹣y,则x﹣y的值为( )A. ±3B. ±3或±7C. ﹣3或7D. ﹣3或﹣76.下列式子中正确的是( )A. ﹣24=﹣16B. ﹣24=16C. (﹣2)4=8D. (﹣2)4=﹣167.给出下列说法:①0是整数;②﹣2是负分数;③4.2不是正数;④自然数一定是正数;⑤负分数一定是负有理数,其中正确的说法有( )A. 1个B. 2个C. 3个D. 4个8.12的相反数与﹣7的绝对值的和是( )A. 5B. 19C. ﹣17D. ﹣59.丁丁做了以下4道计算题:①(﹣1)2010=﹣1;②0﹣(﹣1)=﹣1;③﹣=﹣;④÷(﹣2)=﹣1.请你帮他检查一下,他一共做对了( )A. 1题B. 2题C. 3题D. 4题10.若|a﹣4|=|a|+|﹣4|,则a的值是( )A. 任意有理数B. 任意一个非负数C. 任意一个非正数D. 任意一个负数二.填空题(共6小题)11.﹣|﹣|的相反数是_____.12.写出一个x的值,使|x﹣1|=﹣x+1成立,你写出的x的值是_____13.若规定一种特殊运算※为:a※b=ab﹣,则(﹣1)※(﹣2)_____.14.如果(﹣a)2=(﹣2)2,则a=_____.15.计算:﹣1÷×(﹣3)=_____.16.如图,有理数在数轴上对应的点分别为,化简的结果为________.三.解答题(共6小题)17.计算:(1)(2)18.已知|a|=5,|b|=2,若a<b,求ab的值.19.某电路检修小组在东西方向的已到庐山检修用电线路,检修车辆从该道路P处出发,如果规定检修车辆向东行驶为正,向西行驶为负,某一天施工过程中七次车辆行驶记录如下:(单位:千米)第一次第二次第三次第四次第五次第六次第七次﹣3 ﹢8 ﹣9 ﹢12 ﹢4 ﹣4 ﹣3(1)问检修小组收工时在P的哪个方位?距P处多远?(2)在第次记录时距P地最远.(3)若检测车辆每千米耗油0.2升,每升汽油需6.2元,问这一天检测车辆所需汽油费多少元?20.老师测得甲,乙,丙,丁四名学生的身高如下:156cm,158cm,153cm,157cm.(1)求这四名学生的平均身高.(2)以计算的平均值为基准,将平均值记为0,正负数表示出每名学生的身高.21.一名足球守门员练习折返跑,从球门的位置出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+6,﹣2,+10,﹣8,﹣7,+11,﹣10.(1)守门员是否回到了原来的位置?(2)守门员离开球门的位置最远是多少?(3)守门员一共走了多少路程?22.将下列各数填入适当的括号内:π,5,﹣3,,89,19,﹣,﹣3.14,﹣9,0,2负数集合:{ …}分数集合:{ …}非负有理数集合:{ …}非负数集合:{ …}.答案与解析一.选择题(共10小题)1.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到22000公里,将22000用科学记数法表示应为( )A. 2.2×104B. 22×103C. 2.2×103D. 0.22×105【答案】A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】22000=2.2×104.故选:A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.一个点从数轴上表示–2的点开始,向右移动7个单位长度,再向左移动4个单位长度,则此时这个点表示的数是( )A. 0B. 2C. 1D. –1【答案】C【解析】向右移动个单位长度,向右移动个单位长度为,故选.3.我们定义一种新运算a⊕b=,例如5⊕2==,则式子7⊕(﹣3)的值为( )A. B. C. D. ﹣【答案】B【解析】【分析】根据运算法则可得:=,化简可得.【详解】根据运算法则可得:=.故选:B【点睛】本题考核知识点:新定义运算.解题关键点:理解运算法则.4.四个足球与足球规定质量偏差如下:﹣3,+5,+10,﹣20(超过为正,不足为负).质量相对最合规定的是( )A. +10B. ﹣20C. ﹣3D. +5【答案】C【解析】【分析】质量偏差越少越好,最符合规定的是﹣3.【详解】最符合规定的是﹣3.故选C.【点睛】本题主要考查负数的意义.5.已知|x|=5,|y|=2,且|x+y|=﹣x﹣y,则x﹣y的值为( )A. ±3B. ±3或±7C. ﹣3或7D. ﹣3或﹣7【答案】D【解析】分析:根据|x|=5,|y|=2,求出x=±5,y=±2,然后根据|x+y|=-x-y,可得x+y≤0,然后分情况求出x-y的值.详解:∵|x|=5,|y|=2,∴x=±5、y=±2,又|x+y|=-x-y,∴x+y<0,则x=-5、y=2或x=-5、y=-2,所以x-y=-7或-3,故选:D.点睛:本题考查了绝对值以及有理数的加减法,解答本题的关键是根据题目所给的条件求出x和y的值.6.下列式子中正确的是( )A. ﹣24=﹣16B. ﹣24=16C. (﹣2)4=8D. (﹣2)4=﹣16【答案】A【解析】【分析】根据乘方的定义计算可得.【详解】A.﹣24=﹣16,故A正确;B.﹣24=-16,故B错误;C.(﹣2)4=16,故C错误;D.(﹣2)4=16,故D错误.故选:A.【点睛】本题主要考查有理数的乘方,解题的关键是掌握有理数的乘方的定义及-a n与(-a)n的区别.7.给出下列说法:①0是整数;②﹣2是负分数;③4.2不是正数;④自然数一定是正数;⑤负分数一定是负有理数,其中正确的说法有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】①0是整数,正确;②-2是负分数,错误(负整数);③4.2不是正数,错误(正数);④自然数一定是正数,错误(0是自然数,但不是正数);⑤负分数一定是负有理数,正确.【详解】①0是整数,正确;②-2是负分数,错误;③4.2不是正数,错误;④自然数一定是正数,错误;⑤负分数一定是负有理数,正确.故选:B.【点睛】本题考查的是有理数分类,区分清楚其分类的方式即可求解.8.12的相反数与﹣7的绝对值的和是( )A. 5B. 19C. ﹣17D. ﹣5【答案】D【解析】【分析】根据绝对值和相反数的定义进行选择即可.【详解】-12+|-7|=-12+7=-5,故选:D.【点睛】本题考查了绝对值和相反数的定义,掌握绝对值和相反数的求法是解题的关键.9.丁丁做了以下4道计算题:①(﹣1)2010=﹣1;②0﹣(﹣1)=﹣1;③﹣=﹣;④÷(﹣2)=﹣1.请你帮他检查一下,他一共做对了( )A. 1题B. 2题C. 3题D. 4题【答案】A【解析】【分析】各式计算得到结果,即可作出判断.【详解】①(-1)2010=1,不符合题意;②0-(-1)=0+1=1,不符合题意;③﹣=-,符合题意;④÷(-2)=-,不符合题意,故选:A.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.10.若|a﹣4|=|a|+|﹣4|,则a的值是( )A. 任意有理数B. 任意一个非负数C. 任意一个非正数D. 任意一个负数【答案】C【解析】【分析】由于|a+(-4)|=|a|+|-4|,根据绝对值的意义得到a与-4同号或a=0,然后对各选项进行判断.【详解】∵|a+(-4)|=|a|+|-4|,∴a与-4同号或a=0,∴a为一个非正数.故选:C.【点睛】本题考查了绝对值:正数的绝对值等于它本身,0的绝对值为0,负数的绝对值等于它的相反数.二.填空题(共6小题)11.﹣|﹣|的相反数是_____.【答案】.【解析】【分析】依据相反数的定义求解即可.【详解】﹣|﹣|=﹣,故﹣|﹣|的相反数是.故答案为:.【点睛】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.12.写出一个x的值,使|x﹣1|=﹣x+1成立,你写出的x的值是_____【答案】0(答案不唯一)【解析】【分析】根据绝对值的非负性,求出x的范围,即可得出结论.【详解】∵|x-1|=-x+1且|x-1|≥0,∴-x+1≥0,∴x≤1,故答案为:0(答案不唯一)【点睛】此题主要考查了绝对值的非负性,掌握绝对值的非负性,求出x≤1是解本题的关键.13.若规定一种特殊运算※为:a※b=ab﹣,则(﹣1)※(﹣2)_____.【答案】【解析】由题意得:a=-1,b=-2,(﹣1)※(﹣2)=(﹣1)×(﹣2)-=2-= .故答案为:.点睛:找准公式里面a、b的取值,将a、b代入公式即可.14.如果(﹣a)2=(﹣2)2,则a=_____.【答案】【解析】【分析】已知等式整理后,利用乘方的意义求出a的值即可.【详解】已知等式整理得:a2=4,解得:a=±2.故答案为:±2.【点睛】本题考查了有理数的乘方,熟练掌握乘方的意义是解答本题的关键.15.计算:﹣1÷×(﹣3)=_____.【答案】9【解析】【分析】根据有理数乘除法的运算法则按顺序进行计算即可.【详解】-1÷×(-3)=-1×3×(-3)=9,故答案为:9.【点睛】本题考查了有理数乘除混合运算,熟练掌握有理数乘除法的运算法则是解题的关键.16.如图,有理数在数轴上对应的点分别为,化简的结果为________.【答案】2b【解析】试题解析:根据各点在数轴上的位置得,c<a<0<b,且|a|<| c |<| b |,∴a+b>0,b+c>0,c+a<0,∴原式=(a+b)+(b+c)-(c+a)=a+b+b+c-c-a,=2b.点睛:先根据各点在数轴上的位置判断出a、b、c的符号,再根据绝对值的性质去掉绝对值符号,合并同类项即可.三.解答题(共6小题)17.计算:(1)(2)【答案】(1)-1;(2)- .【解析】试题分析:(1)利用乘法分配律进行简算;(2)利用有理数混合运算法则计算即可.试题解析:解:(1)原式==-40+55-16=-1;(2)原式====.18.已知|a|=5,|b|=2,若a<b,求ab的值.【答案】﹣10或10.【解析】【分析】根据题意,利用绝对值的代数意义求出a与b的值,即可确定出ab的值.【详解】∵|a|=5,|b|=2,且a<b,∴a=﹣5,b=2或a=﹣5,b=﹣2,则ab=﹣10或10.【点睛】此题考查了有理数的乘法,以及绝对值,熟练掌握运算法则是解本题的关键.19.某电路检修小组在东西方向的已到庐山检修用电线路,检修车辆从该道路P处出发,如果规定检修车辆向东行驶为正,向西行驶为负,某一天施工过程中七次车辆行驶记录如下:(单位:千米)第一次第二次第三次第四次第五次第六次第七次﹣3 ﹢8 ﹣9 ﹢12 ﹢4 ﹣4 ﹣3(1)问检修小组收工时在P的哪个方位?距P处多远?(2)在第次记录时距P地最远.(3)若检测车辆每千米耗油0.2升,每升汽油需6.2元,问这一天检测车辆所需汽油费多少元?【答案】(1)收工时在P的东边,距P处5km;(2)五;(3)这一天检测车辆所需汽油费53.32元.【解析】【分析】(1)七次行驶的和即收工时检修小组距离P地的距离;(2)计算每一次记录检修小组离开P的距离,比较后得出检修小组距P地最远的次数;(3)每次记录的绝对值的和,是检修小组一天的行程,根据单位行程的耗油量计算出该检修小组一天的耗油量.【详解】(1)﹣3+8﹣9+12+4﹣4﹣3=5(km),所以收工时在P的东边,距P处5km(2)第一次后,检修小组距P地3km;第二次后,检修小组距P地﹣3+8=5(km);第三次后,检修小组距P地﹣3+8﹣9=﹣4(km)第四次后,检修小组距P地﹣3+8﹣9+12=8(km)第五次后,检修小组距P地﹣3+8﹣9+12+4=12(km)第六次后,检修小组距P地﹣3+8﹣9+12+4﹣4=8(km)第七次后,检修小组距P地﹣3+8﹣9+12+4﹣4﹣3=5(km)(3)(3+8+9+12+4+4+3)×0.2×6.2=43×0.2×6.2=53.32(元).答:这一天检测车辆所需汽油费53.32元.【点睛】本题考查了有理数的加减法在生活中的应用.耗油量=行程×单位行程耗油量.20.老师测得甲,乙,丙,丁四名学生的身高如下:156cm,158cm,153cm,157cm.(1)求这四名学生的平均身高.(2)以计算的平均值为基准,将平均值记为0,正负数表示出每名学生的身高.【答案】(1)156cm;(2)这四名同学的身高可记作:0,2,﹣3,1.【解析】【分析】(1)将四名同学的身高相加,再除以4即可得平均身高;(2)用正负数来表示相反意义的量:选平均身高为标准记为0,超过部分记为正,不足部分记为负,直接得出结论即可.【详解】(1)这四名同学的平均身高为:=156(cm);(2)若以156cm为标准,这四名同学的身高可记作:0,2,﹣3,1.【点睛】本题主要考查正数和负数、平均数的计算,首先要知道以谁为标准,规定超出标准记为正,低于标准记为负,用正负数解答即可.21.一名足球守门员练习折返跑,从球门的位置出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+6,﹣2,+10,﹣8,﹣7,+11,﹣10.(1)守门员是否回到了原来的位置?(2)守门员离开球门的位置最远是多少?(3)守门员一共走了多少路程?【答案】(1)回到了原来的位置;(2)守门员离开守门的位置最远是14米;(3)54米.【解析】【分析】(1)只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)将所有绝对值相加即可.【详解】(1)根据题意得:6﹣2+10﹣8﹣7+11﹣10=0.答:回到了原来的位置.(2)第一次离开6米,第二次离开4米,第三次离开14米,第四次离开6米,第五次离开1米,第六次离开10米,第七次离开0米,则守门员离开守门的位置最远是14米;(3)总路程=|+6|﹣2|+|+10|+|﹣8|+|﹣7|+|+11|+|﹣10|=54米.【点睛】本题考查了正数和负数的知识,解题关键是理解“正”和“负”的相对性,确定具有相反意义的量.22.将下列各数填入适当的括号内:π,5,﹣3,,89,19,﹣,﹣3.14,﹣9,0,2负数集合:{ …}分数集合:{ …}非负有理数集合:{ …}非负数集合:{ …}.【答案】见解析.【解析】分析: 利用负数,分数,非负有理数,以及非负数的定义判断即可. 详解:负数集合:{﹣3,﹣,﹣3.14,﹣9,…};分数集合:{,﹣,﹣3.14,2,…};非负有理数集合:{5,,89,19,0,2,…};非负数集合:{π,5,,89,19,0,2,…}.点睛: 此题考查了有理数,熟练掌握各自的定义是解本题的关键.。

相关文档
最新文档