勾股定理与方程ppt课件
合集下载
勾股定理数学优秀ppt课件
实际应用
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
人教版八年级数学下册《勾股定理》PPT精品教学课件
13 .由此,可以依照如下方法在
数轴上画出表示 13 的点.
如图,在数轴上找出表示3的点A, 则OA=3,过点A作直
线l垂直于OA,在l上取点B,使AB = 2,以原点O为圆心,以
OB为半径作弧,弧与数轴的交点C即为表示 13 的点.
0
1 2
•
3 4
新知导入
想一想:
2, 3, 5 …的线段(图1).
随堂练习
4.如图,在△ABC中,AB=AC,D点在CB 延长线上,
求证:AD2-AB2=BD·
CD.
A
证明:过A作AE⊥BC于E.
∵AB=AC,∴BE=CE.
在Rt △ADE中,AD2=AE2+DE2.
在Rt △ABE中,AB2=AE2+BE2.
AD2-AB2= DE2- BE2
= (DE+BE)·( DE- BE)
键是仔细观察所给图形,面积与边长、直径有平
方关系,就很容易联想到勾股定理.
课程讲授
2
勾股定理与图形面积
练一练:
如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,
则b的面积为( D )
A.16
B.12
C.9
D.7
随堂练习
64 cm²
1.图中阴影部分是一个正方形,则此正方形的面积为_________.
角形外作三个半圆,则这三个半圆形的面积之间的关系式
S1 S 2 S3
是_______________.(用图中字母表示)
课程讲授
2
勾股定理与图形面积
归纳:与直角三角形三边相连的正方形、半圆及
正多边形、圆都具有相同的结论:两直角边上图
形面积的和等于斜边上图形的面积.本例考查了
数轴上画出表示 13 的点.
如图,在数轴上找出表示3的点A, 则OA=3,过点A作直
线l垂直于OA,在l上取点B,使AB = 2,以原点O为圆心,以
OB为半径作弧,弧与数轴的交点C即为表示 13 的点.
0
1 2
•
3 4
新知导入
想一想:
2, 3, 5 …的线段(图1).
随堂练习
4.如图,在△ABC中,AB=AC,D点在CB 延长线上,
求证:AD2-AB2=BD·
CD.
A
证明:过A作AE⊥BC于E.
∵AB=AC,∴BE=CE.
在Rt △ADE中,AD2=AE2+DE2.
在Rt △ABE中,AB2=AE2+BE2.
AD2-AB2= DE2- BE2
= (DE+BE)·( DE- BE)
键是仔细观察所给图形,面积与边长、直径有平
方关系,就很容易联想到勾股定理.
课程讲授
2
勾股定理与图形面积
练一练:
如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,
则b的面积为( D )
A.16
B.12
C.9
D.7
随堂练习
64 cm²
1.图中阴影部分是一个正方形,则此正方形的面积为_________.
角形外作三个半圆,则这三个半圆形的面积之间的关系式
S1 S 2 S3
是_______________.(用图中字母表示)
课程讲授
2
勾股定理与图形面积
归纳:与直角三角形三边相连的正方形、半圆及
正多边形、圆都具有相同的结论:两直角边上图
形面积的和等于斜边上图形的面积.本例考查了
北师大版八年级数学上册《勾股定理》课件(共18张PPT)
知识要点
1.勾股定理:如果直角三角形两直角边分别为 a,b,斜边为c,那么__________ . 2.勾股定理各种表达式: 在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对 边也分别为a,b,c,则c=_________, b=_________,a=_________.
知识要点
3.勾股定理的逆定理: 在△ABC中,若a、b、c三边满足___________, 则△ABC为___________. 4.勾股数: 满足________的三个________,称为勾股数. 5.几何体上的最短路程是将立体图形的 ________展开,转化为_________上的路程问 题,再利用___________两点之间, ___________,解决最短线路问题.
2.已知△ABC的三边为a,b,c,有下列各
组条件,判定△ABC的形状.
(1)a 4 1 , b 4 0 , c 9 (2)a m 2 n 2 , b m 2 n 2 , c 2 m ( n m n 0 )
合作探究
探究四:勾股定理及逆定理的综合应用
B港有甲、乙两艘渔船,若甲船沿北 偏东60o方向以每小时8 n mile的速度前进, 乙船沿南偏东某个角度以每小时15 n mile的速度前进,2 h后,甲船到M岛,乙 船到P岛,两岛相距34 n mile,你知道乙 船是沿哪个方向航行的吗?
第一章 勾股定理
回顾与思考
情境引入
勾股定理,我们把它称为世界第一定理. 首先,勾股定理是数形结合的最典型的代 表; 其次,正是由于勾股定理得发现,导致无 理数的发现,引发了数学的第一次危机,这一 点,我们将在《实数》一章里讲到; 第三,勾股定理中的公式是第一个不定方 程,有许许多多的数满足这个方程,也是有完 整的解答的最早的不定方程,最为著名的就是 费马大定理,直到1995年,数学家怀尔斯才将 它证明.
勾股定理的应用-课件
02
在实际应用中,可以利用勾股定 理来检验一个三角形是否为直角 三角形,从而确定角度和边长之 间的关系。
勾股定理的逆定理
勾股定理的逆定理是:如果一个三角 形的一组边长满足勾股定理,则这个 三角形一定是直角三角形。
通过勾股定理的逆定理,可以用来判 断一个三角形的角度和边长是否满足 直角三角形的条件,从而确定其是否 为直角三角形。
如何进一步推广和应用勾股定理
跨学科应用
01
鼓励将勾股定理应用于其他学科,以促进跨学科的学习和理解
。
创新教学方法
02
通过创新教学方法,例如使用数字化工具和互动游戏,提高学
生对勾股定理的兴趣和参与度。
实际应用
03
鼓励学生将勾股定理应用于实际问题解决中,例如在建筑、工
程和科学实验等领域。
THANKS
感谢观看
确定直角三角形
勾股定理可以用来确定一个三角形是 否为直角三角形,只需验证三边关系 是否满足勾股定理即可。
计算直角三角形边长
判断三角形的稳定性
勾股定理的应用可以帮助我们判断三 角形的稳定性,因为只有直角三角形 满足勾股定理,所以只有直角三角形 是稳定的。
已知直角三角形两条边的长度,可以 使用勾股定理计算第三边的长度。
。
在气象学中,勾股定理也被用于 计算气象气球上升的高度和速度 ,以了解大气层的结构和变化。
05
勾股定理的未来发展
勾股定理在现代数学中的应用
代数证明
勾股定理可以通过代数方法进行证明,这有助于学生更好地理解 代数和几何之间的联系。
三角函数
勾股定理与三角函数密切相关,通过应用勾股定理,可以解决一些 与三角函数相关的问题。
在海上导航中,勾股定理也用于确定船只的经度和纬度,以确保航行安全和准确 到达目的地。
在实际应用中,可以利用勾股定 理来检验一个三角形是否为直角 三角形,从而确定角度和边长之 间的关系。
勾股定理的逆定理
勾股定理的逆定理是:如果一个三角 形的一组边长满足勾股定理,则这个 三角形一定是直角三角形。
通过勾股定理的逆定理,可以用来判 断一个三角形的角度和边长是否满足 直角三角形的条件,从而确定其是否 为直角三角形。
如何进一步推广和应用勾股定理
跨学科应用
01
鼓励将勾股定理应用于其他学科,以促进跨学科的学习和理解
。
创新教学方法
02
通过创新教学方法,例如使用数字化工具和互动游戏,提高学
生对勾股定理的兴趣和参与度。
实际应用
03
鼓励学生将勾股定理应用于实际问题解决中,例如在建筑、工
程和科学实验等领域。
THANKS
感谢观看
确定直角三角形
勾股定理可以用来确定一个三角形是 否为直角三角形,只需验证三边关系 是否满足勾股定理即可。
计算直角三角形边长
判断三角形的稳定性
勾股定理的应用可以帮助我们判断三 角形的稳定性,因为只有直角三角形 满足勾股定理,所以只有直角三角形 是稳定的。
已知直角三角形两条边的长度,可以 使用勾股定理计算第三边的长度。
。
在气象学中,勾股定理也被用于 计算气象气球上升的高度和速度 ,以了解大气层的结构和变化。
05
勾股定理的未来发展
勾股定理在现代数学中的应用
代数证明
勾股定理可以通过代数方法进行证明,这有助于学生更好地理解 代数和几何之间的联系。
三角函数
勾股定理与三角函数密切相关,通过应用勾股定理,可以解决一些 与三角函数相关的问题。
在海上导航中,勾股定理也用于确定船只的经度和纬度,以确保航行安全和准确 到达目的地。
《勾股定理》PPT课件图文
ca b
S正
?(a
?
b)2
?
4?
1 2
ab
?
c2 ,
化简得: a 2 ? b 2 ? c 2
方法三:
c
b b-a c
a c
c
S正
?
c2?
4?
1 2
ab
?
(b
?
a)2,
化简得: a 2 ? b2 ? c 2
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
角的BC方向上的点C测得CA=130米,CB=120米,
则AB为 ( )
A
A.50米 B.120米 C.100米 D.130米
A
130
?
C
120 B
某楼房在 20米高处的楼层失火
,消防员取来 25米长的云梯救
火,已知梯子的底部离墙的距
ቤተ መጻሕፍቲ ባይዱ
离是15米。问消A防队员能否进
入该楼层灭火?
已知两直角 边求斜边
则 a2 ? b2 ? c2
议一议:判断下列说法是否正确,并说明理由: (1)在△ABC中,若a=3,b=4,则c=5 (2)在Rt△ABC中,如果a=3,b=4,则c=5. (3)在Rt△ABC中,∠C=90° , 如果a=3,b=4,则c=5.
勾 股
在中国古代,人们把弯曲成直角的手臂的上 半部分称为 勾 ,下半部分称为 股 。我国古代 学者把直角三角形较短的直角边称为“勾”,较 长的直角边称为“股”,斜边称为“弦”.
B
系吗?
图2
(图中每个小方格代表一个单位面积) SA+SB=SC
《勾股定理》PPT优质课件(第1课时)
A. 3
B.3
C. 5
D.5
E
课堂检测
基础巩固题
1. 若一个直角三角形的两直角边长分别为9和12,则斜边的
长为( C)
A.13
B.17
C. 15
D.18
2.若一个直角三角形的斜边长为17,一条直角边长为15,则
另一直角边长为( A )
A.8
B.40
C.50
D.36
3.在Rt△ABC中,∠C=90°,若a︰b=3︰4,c=100,则 a= _6_0___,b = __8_0___.
课堂检测
4.如图,所有的四边形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面 积之和为_____4_9_____cm2 .
C D
B A
7cm
课堂检测
能力提升题
在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
形,拼成一个新的正方形.
探究新知 剪、拼过程展示:
b
a ca
朱实
b 朱实 黄实朱实
c 〓b
ba
朱实
a
M a P bb
N
探究新知 “赵爽弦图”
c
朱实
b
朱实
黄实 朱实
a
朱实
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4·S三角形+S小正方形,
探究新知
毕达哥拉斯证法:请先用手中的四个全等的直角三角形按图 示进行拼图,然后分析其面积关系后证明吧.
因此设a=x,c=2x,根据勾股定理建立方程得 (2x)2-x2=152,
(精选幻灯片)勾股定理ppt课件
2 2 22
“总统证法”. 比较上面二式得 c2=a2+b2
16
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
17
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
b c
a2+b2=c2吗?
• 1881年,伽菲尔 德就任美国第二
A b 1 E aB ∵ S梯形ABCD= 2 a+b2
十任总统.后来, 1
人们为了纪念他 对勾股定理直观、 简捷、易懂、明
= (a2+2ab+b2) 2
又∵ S梯形 ABCD=S
AED+S
EBC+S
CED
了的证明,就把 这一证法称为
1 1 11 = ab+ ba+ c2= (2ab+c2)
33
34
C A
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
B C
图2-1
A
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么
B 图2-2
关系吗?
(图中每个小方格代表一个单位面积) SA+SB=SC
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
3
s1 s2
s3
返 拼回 图 4
合作 & 交S流1+☞S2=S3
a等²+腰a直²=角c三²角形两直角边
“总统证法”. 比较上面二式得 c2=a2+b2
16
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
17
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
b c
a2+b2=c2吗?
• 1881年,伽菲尔 德就任美国第二
A b 1 E aB ∵ S梯形ABCD= 2 a+b2
十任总统.后来, 1
人们为了纪念他 对勾股定理直观、 简捷、易懂、明
= (a2+2ab+b2) 2
又∵ S梯形 ABCD=S
AED+S
EBC+S
CED
了的证明,就把 这一证法称为
1 1 11 = ab+ ba+ c2= (2ab+c2)
33
34
C A
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
B C
图2-1
A
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么
B 图2-2
关系吗?
(图中每个小方格代表一个单位面积) SA+SB=SC
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
3
s1 s2
s3
返 拼回 图 4
合作 & 交S流1+☞S2=S3
a等²+腰a直²=角c三²角形两直角边
勾股定理ppt课件
体会数形结合的思想。(重点)
2.会用勾股定理进行简单的计算。(难点)
情境引入
学习目标
1.经历勾股定理的探究过程,了解关于勾股定理的 一 些文化历史背景,会用面积法来证明勾股定理, 体会数形结合的思想。(重点) 2.会用勾股定理进行简单的计算。(难点)
一、勾股定理的认识 让我们一起穿越回到2500年前,跟随毕达哥拉
直角三角形两直角边的平方和等于斜边的平方. 如果直角三角形的两条直角边长分别为a,b,斜边 长为c,那么有a2+b2=c2.
a c2 - b2 , b c2 - a2 , c a2 b2
(a、b、c为正数)
三、学以致用
例1 如图,在Rt△ABC中, ∠C=90°.
(1)若a=b=5,求c; (2)若a=1,c=2,求b.
归纳 已知直角三角形两边关系和第三边的长求未知两 边时,要运用方程思想设未知数,根据勾股定理列方 程求解.
变式2:在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
当BC为斜边时,如图,BC 42 32 5.
B B
斯再去他那位老朋友家做客 我们也来观察一下地面的图案,看看从中能发
现什么?
问题1:观察构成正方形A、B、C的等腰直角三角形之间有什么关系?试 问三个正方形面积之间有什么样的数量关系?
AB C
这些小的等腰直角三角形都全等
发现:SA+SB=SC
问题2:若正方形A、B、C边长分别为a、b、c,根据面积关系,猜想等 腰直角三角形三边之间有什么关系?
AB C
ab c
SA+SB=SC
猜想:a2+b2=c2
2.会用勾股定理进行简单的计算。(难点)
情境引入
学习目标
1.经历勾股定理的探究过程,了解关于勾股定理的 一 些文化历史背景,会用面积法来证明勾股定理, 体会数形结合的思想。(重点) 2.会用勾股定理进行简单的计算。(难点)
一、勾股定理的认识 让我们一起穿越回到2500年前,跟随毕达哥拉
直角三角形两直角边的平方和等于斜边的平方. 如果直角三角形的两条直角边长分别为a,b,斜边 长为c,那么有a2+b2=c2.
a c2 - b2 , b c2 - a2 , c a2 b2
(a、b、c为正数)
三、学以致用
例1 如图,在Rt△ABC中, ∠C=90°.
(1)若a=b=5,求c; (2)若a=1,c=2,求b.
归纳 已知直角三角形两边关系和第三边的长求未知两 边时,要运用方程思想设未知数,根据勾股定理列方 程求解.
变式2:在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
当BC为斜边时,如图,BC 42 32 5.
B B
斯再去他那位老朋友家做客 我们也来观察一下地面的图案,看看从中能发
现什么?
问题1:观察构成正方形A、B、C的等腰直角三角形之间有什么关系?试 问三个正方形面积之间有什么样的数量关系?
AB C
这些小的等腰直角三角形都全等
发现:SA+SB=SC
问题2:若正方形A、B、C边长分别为a、b、c,根据面积关系,猜想等 腰直角三角形三边之间有什么关系?
AB C
ab c
SA+SB=SC
猜想:a2+b2=c2
八下数学第十七章勾股定理全章课件
在Rt△ABM中,AB2+AM2=BM2.
在Rt△MDB′中,MD2+DB′2=MB′2.
B′
∵MB=MB′,∴AB2+AM2=MD2+DB′2,
即92+x2=(9-x)2+(9-3)2,
解得x=2.即AM=2.
探究新知
方法点拨
折叠问题中结合勾股定理求线段长的方法:
(1)设一条未知线段的长为x(一般设所求线段的长为x); (2)用已知线段或含x的代数式表示出其他线段长; (3)在一个直角三角形中应用勾股定理列出一个关于x的
D
3m,宽2.2m的薄木板能否从门框内
通过?为什么?
C 2m
解:如图,连接AC。 在Rt△ABC 中,根据勾股定理,
AC AB2 BC2 12 22
AB
1m
5
5 2.236 2.2
∴木板可以从门框内通过。
巩固练习
如图,池塘边有两点A,B,点C是与BA方向成直角的AC方 向上一点,测得BC=60 m,AC=20m.求A,B两点间的距离
在Rt△AFD′中,AF2=D′F2+AD′2,
(8-x)2=x2+42, 解得x=3. ∴AF=AB-FB=8-3=5, ∴S△AFC= AF•BC=10.
互逆命题:
两个命题中, 如果第一个命题的题设是第 二个命题的结论, 而第一个命题的结论又是第 二个命题的题设,那么这两个命题叫做互逆命 题.
A的面 B的面 C的面
积
积
积
C A
图1
9
9 18
B 图2-1
C A
B 图2-2
图2
4
48
A、B、C 面积关系
SA+SB=SC
直角三角形 两直角边的平方和 三边关系 等于斜边的平方
勾股定理课件ppt
THANKS
感谢观看
衡性非常重要。
03
地貌形成
地貌的形成过程中涉及到物体的高度和距离的关系,而这种关系可以用
勾股定理来描述,因此勾股定理可以帮助我们理解地貌的形成过程。
06
总结与回顾
勾股定理的重要性和应用价值
勾股定理是几何学中一个非常重要的定理,它揭示了直角三角形三边之间的数量关 系,对于解决几何问题具有关键作用。
建筑中的支撑结构需要精确计算和设计,勾股定理可以帮助建筑师确 定支撑结构的尺寸和形状,以确保建筑物的承重能力。
勾股定理在航天工程中的应用
确定飞行轨道
在航天工程中,勾股定理被用来确定飞行器的轨道和速度 ,以确保飞行器能够准确到达目标。
导航
飞行器在飞行过程中需要精确的导航,勾股定理可以帮助 飞行员计算出飞行器的位置和方向,以确保飞行器的安全 和准确性。
04
勾股定理的变式和推广
勾股定理的变式
勾股定理的逆定理
如果一个三角形的三条边满足勾 股定理的条件,那么这个三角形
是直角三角形。
勾股定理的推广
如果一个三角形的两条边长分别 为a和b,且它们的夹角为α,那 么这个三角形的第三条边长c满
足$c^2 = a^2 + b^2 2ab\cos(α)$。
勾股定理的变形
在现实生活中,勾股定理的应用非常广泛,例如在建筑、测量、航空等领域都有实 际应用。
通过对勾股定理的学习和应用,可以更好地理解几何学的基本概念和原理,提高解 决实际问题的能力。
学习勾股定理的收获和感悟
学习勾股定理需要掌握其基本 概念和定理,了解其历史背景 和证明方法。
通过学习和实践,可以培养自 己的逻辑思维能力和空间想象 力,同时提高对数学的兴趣和 热情。
苏教版八年级数学上册《勾股定理》课件(共34张PPT)
……
132=b+c
请你结合该表格及相关知识,求出b、c的值.
即b=
,c=
例5、如图,四边形ABCD中,AB=3,
BC=4,CD=12,AD=13, ∠B=90°,求四 边形ABCD的面积
D
13
A
12 3┐
B4 C
变式 有一块田地的形状和尺寸 如图所示,试求它的面积。
A
4
13
5
B
3
∟
C
12
D
例6、假期中,王强和同学到某海岛上去玩 探宝游戏,按照探宝图,他们登陆后先往 东走8千米,又往北走2千米,遇到障碍后 又往西走3千米,在折向北走到6千米处往 东一拐,仅走1千米就找到宝藏,问登陆点 A 到宝藏埋藏点B的距离是多少千米?
例1、如图,一块直角三角形的纸片,两 直角边AC=6㎝,BC=8㎝。现将直角边 AC沿直线AD折叠,使它落在斜边AB上, 且与AE重合,求CD的长.
A
6
6E x
4
x 8-x C
D D
第8题图
B
练习:三角形ABC是等腰三角形
AB=AC=13,BC=10,将AB向AC方向
对折,再将CD折叠到CA边上,折痕CE,
AB2=2.22+X2=9.34
AB≈3米
练习:一种盛饮料的圆柱形杯,测得内部底面 半径为2.5㎝,高为12㎝,吸管放进杯里, 杯口外面至少要露出4.6㎝,问吸管要做多 长?
1、通过这节课的学习活动你有哪些收获? 2、对这节课的学习,你还有什么想法吗?
不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月11日星期一2022/4/112022/4/112022/4/11 书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/112022/4/112022/4/114/11/2022 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/112022/4/11April 11, 2022 书籍是屹立在时间的汪洋大海中的灯塔。
132=b+c
请你结合该表格及相关知识,求出b、c的值.
即b=
,c=
例5、如图,四边形ABCD中,AB=3,
BC=4,CD=12,AD=13, ∠B=90°,求四 边形ABCD的面积
D
13
A
12 3┐
B4 C
变式 有一块田地的形状和尺寸 如图所示,试求它的面积。
A
4
13
5
B
3
∟
C
12
D
例6、假期中,王强和同学到某海岛上去玩 探宝游戏,按照探宝图,他们登陆后先往 东走8千米,又往北走2千米,遇到障碍后 又往西走3千米,在折向北走到6千米处往 东一拐,仅走1千米就找到宝藏,问登陆点 A 到宝藏埋藏点B的距离是多少千米?
例1、如图,一块直角三角形的纸片,两 直角边AC=6㎝,BC=8㎝。现将直角边 AC沿直线AD折叠,使它落在斜边AB上, 且与AE重合,求CD的长.
A
6
6E x
4
x 8-x C
D D
第8题图
B
练习:三角形ABC是等腰三角形
AB=AC=13,BC=10,将AB向AC方向
对折,再将CD折叠到CA边上,折痕CE,
AB2=2.22+X2=9.34
AB≈3米
练习:一种盛饮料的圆柱形杯,测得内部底面 半径为2.5㎝,高为12㎝,吸管放进杯里, 杯口外面至少要露出4.6㎝,问吸管要做多 长?
1、通过这节课的学习活动你有哪些收获? 2、对这节课的学习,你还有什么想法吗?
不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月11日星期一2022/4/112022/4/112022/4/11 书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/112022/4/112022/4/114/11/2022 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/112022/4/11April 11, 2022 书籍是屹立在时间的汪洋大海中的灯塔。
《勾股定理》PPT教学课件(第1课时)
献和地位。尤其是其中体现出来的“形
数统一”的思想方法,更具有科学创新
的重大意义。
获取新知
猜想直角三角形的三边关系
一起探究
问题1
4 AB=___
5
1、 BC=___,
3 AC=___,
B
25
S蓝 =___,
9
16 S红 =___
2、 S黄 =___,
C
A
S黄+S蓝=S红
3、S黄、S蓝与S红的关系是__________.
最短时,x=1.5
所以最短是1.5+0.5=2(m).
答:这根铁棒的长应在2~3 m之间.
2m
AC 2 AB 2 BC 2 12 22 5
AC 5 2.24
A
1m
B
因为AC大于木板的宽2.2m,所以木板能从门框内通过.
我们已经学习了勾股定理,利用勾股定理,我们可以解决一
些实际问题.
在应用中关键是利用转化思想将实际问题转化为直角三角形
模型,常见类型有:
(1)已知直角三角形的任意两边,求第三边;
则这三个半圆形的面积之间的关系式是
S1 S 2 S3
.(用图中字母表示)
勾股定理与图形面积
归纳:
与直角三角形三边相连的正方形、半圆及正多边形、圆都具有相同的
结论:
两直角边上图形面积的和等于斜边上图形的面积.
本例考查了勾股定理及半圆面积的求法,解答此类题目的关键是仔细
观察所给图形,面积与边长、直径有平方关系,就很容易联想到勾股
基本思想方法:勾股定理把“形”与
C
“数”有机地结合起来,即把直角三角
形这个“形”与三边关系这一“数”结
数统一”的思想方法,更具有科学创新
的重大意义。
获取新知
猜想直角三角形的三边关系
一起探究
问题1
4 AB=___
5
1、 BC=___,
3 AC=___,
B
25
S蓝 =___,
9
16 S红 =___
2、 S黄 =___,
C
A
S黄+S蓝=S红
3、S黄、S蓝与S红的关系是__________.
最短时,x=1.5
所以最短是1.5+0.5=2(m).
答:这根铁棒的长应在2~3 m之间.
2m
AC 2 AB 2 BC 2 12 22 5
AC 5 2.24
A
1m
B
因为AC大于木板的宽2.2m,所以木板能从门框内通过.
我们已经学习了勾股定理,利用勾股定理,我们可以解决一
些实际问题.
在应用中关键是利用转化思想将实际问题转化为直角三角形
模型,常见类型有:
(1)已知直角三角形的任意两边,求第三边;
则这三个半圆形的面积之间的关系式是
S1 S 2 S3
.(用图中字母表示)
勾股定理与图形面积
归纳:
与直角三角形三边相连的正方形、半圆及正多边形、圆都具有相同的
结论:
两直角边上图形面积的和等于斜边上图形的面积.
本例考查了勾股定理及半圆面积的求法,解答此类题目的关键是仔细
观察所给图形,面积与边长、直径有平方关系,就很容易联想到勾股
基本思想方法:勾股定理把“形”与
C
“数”有机地结合起来,即把直角三角
形这个“形”与三边关系这一“数”结
勾股定理与方程思想(课堂PPT)
2021/3/29
17
1.本节课学习了哪些知识?
(1)解决与勾股定理有关的实际问题 时,先要抽象出几何图形,从中找出直 角三角形,再设未知数,找出各边的数 量关系,最后根据勾股定理求解;
(2)如果一道题目中有多个直角三角 形,要选择能够用一个未知数表示出三 条边的直角三角形(边也可为常数), 在这个三角形中利用勾股定理求解. “斜 化直”即:斜三角形化为直角三角形求 解.
A
B
D
C
2021/3/29
14
E
A2 1 B
D
C
A B
GA
H
B
D
C
E
D
C
小结: 题目中没有直角三角形,但存在直角,
可以考虑“补”出直角三角形求解.实际上,
本题利用“割”也有多种做法.
A
A
E
B
E
B
DF
2021/3/29
C
DF
C
15
【问题5】如果将勾股定理中“直角三角形”改
为“斜三角形a”2 ,b2与c2
2021/3/29
12
例3. 已知:如图,△ABC中,AB=16, AC=14,BC=6,求△ABC的面积.
A
C DB
本题也可以过A或B作对边的高.
E C
A
2021/3/29
BA
CF
B
13
【问题4】如果题目中没有直角三角形,但存在直角, 怎么利用勾股定理求解?
例 4 . 一 块 四 边 形 的 土 地 , 其 中 A B C 1 2 0 , A B A D , B C C D , A B 33 , C D 53 , 求 这 块 土 地 的 面 积 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C'
平面内C'处,B C'与AD交于点E,AD=8,AB=4,求
DE的长.
A
E
D
注意:
B
C
1.基本图形:“平行、角平分线、等腰三角形”知二推一
2.折叠问题:折叠图形前后两个图形全等,最好 在图中标出相等的线段和角.
精品课件
18
练习
精品课件
19
思考1
1、如图,铁路上A,B两点相距25km,C,D为
方法一
A D / /B C
C'
1 3
B C D 沿 B D 折 叠 得 到 B C D
A 8-X E X
1D
4
X
2 3
B C D B C D 23 1= 2 BE DE
B
C 设 D E 为 x , 则 B E = x , A E = 8 -x ,
在 R t A B E 中 , 由 勾 股 定 理 得 ,
B
C
D
6
E6
A
由折叠可知AE=AC=6cm,CD=DE,
∠C= ∠AED=90°
∴BE=10-6=4cm, ∠BED=90° 设CD=DE=xcm,则BD=(8-x)cm
在Rt△BDE中
由勾股定理可得(8-x)2 =x2+42
解得x=3 ∴
CD=DE=3cm 精品课件
13
【问题2】如果一道题目中有多个直角三角形,我们如 何选择在哪个直角三角形中利用勾股定理求解呢?
设其中 一边为x
求各边长
解
利用勾股定理
方
列方程
程
精品课件
11
例1
如图,有一张直角三角形纸片,两直角边 AC=6cm,BC=8cm, 现将直角边沿直线AD 折叠,使点C落在斜边AB上的点E,求CD 的长.
C
D
6
B
E6
A
精品课件
12
例1
解:在Rt△ABC中
AC=6cm,BC=8cm
∴ AB=10cm
两村庄,DA⊥AB于A,CB⊥AB于B,已知
DA=15km,CB=10km,现在要在铁路AB上
建一个土特产品收购站E,使得C,D两村到
E站的距离相等,则E站应建在离A站多少km
处?
D
C
A
E
B
精品课件
20
思考1
解:
设AE= x km,则 BE=(25-x)km
根据勾股定理,得
D
AD2+AE2=DE2
【问题1】如何在实际问题中,利用勾股定理解决问题呢?
例1 .有一个水池,水面是一个边长为l0尺的 正方形.在水池正中央有一根芦苇.它高出 水面l尺.如果把这根芦苇拉向水池一边的 中点,它的顶端恰好到达池边的水面.水的 深度与这根芦苇的长度分别是多少?
精品课件
6
例1 .有一个水池,水面是一个边长为l0尺的正方形.在水池正中 央有一根芦苇.它高出水面l尺.如果把这根芦苇拉向水池一边的 中点,它的顶端恰好到达池边的水面.水的深度与这根芦苇的长 度分别是多少?
精品课件
9
感受新知2
如图,在Rt△ABC中,∠C=90°, AC=1, BC=3. AB的中垂线DE交BC于点D, 连结AD, 则AD的长为——.
A
AB的中垂线DE交BC于点D
Ex
B
AD=BD
D 3-x C
BC=3
BD+CD = AD+CD = 3
Hale Waihona Puke 精品课件10在直角三角形 中(已知两边 的数量关系)
4 2 + ( 8 -x )2 = x 2
答 :精品D课E件长 为 5 .
x=5
15
C' 方法二
解 : 四 边 形 ABCD为 矩 形
A
E5
C D A B 4, A C 9 0
4
D
B C D 沿 B D 折 叠 得 到 B C D
B C D B C D
C D C D 4, C C = 9 0 B
C
在 A E B 和 C E D 中
A C 90
4
=
5
A B C D
A E B C E D
BE DE
设DE为x,则BE=x,AE=8-x, 在RtABE中,由勾股定理得,
42 +(8-x)2 =x 2 x=5
答:DE长为5.
精品课件
16
例2.已知矩形ABCD沿直线BD折叠,使点C落在同一
D C
5A
X
X+1
B
解 : 设 水 深 为 x 尺 , 则 芦 苇 长 为 ( x+1 ) 尺 , 由 勾 股 定 理 , 得 x 2 +52 =(x+1)2
x=12 芦 苇 长 : 1 2 +1=1 3 答 : 水 深 1 2 尺 , 芦 苇 长 为1 3尺 .
精品课件
8
解 : 设 水 深 为 x 尺 , 则 芦 苇 长 为 ( x+1 ) 尺 ,
精品课件
1
直角三角形两条直角边的平方和等于斜边的平方
A
c
b
C
a
B
a2 b2 c2
精品课件
2
勾股定理的常见表达式和变形式
精品课件
3
在直角三角中,如果已知两边的长, 利用勾股定理就可以求第三边的长; 那么如果已知一条边长及另两边的 数量关系,能否求各边长呢?
精品课件
4
感受新知1
精品课件
5
(二)例题
由 勾 股 定 理 , 得 x 2 +52 =(x+1)2
x=12
芦 苇 长 : 1 2 +1=1 3 答 : 水 深 1 2 尺 , 芦 苇 长 为1 3尺 .
D C
5A
X
X+1
小结:
B
解决与勾股定理有关的实际问题时,先
要抽象出几何图形,从中找出直角三角形,再 设未知数,找出各边的数量关系,最后根据勾 股定理求解.
设计意图: 1.能利用勾股定理解决简单的实际问题; 2.通过用代数式、方程等表述数量关系的过程,体 会模型的思想,建立符号意识;
3.初步学会在具体的情境中从数学的角度发现问题和 提出问题,并综合运用数学知识和方法等解决简单的 实际问题,增强应用意识,提高实践能力;
4.本题是我国古代数学著作《九章算术》中的问题 ,展现我国古人在勾股定精品理课件应用研究方面的成果. 7
C'
平面内C'处,B C'与AD交于点E,AD=8,AB=4,求
DE的长.
A
E
D
小结:
B
C
1.如果一道题目中有多个直角三角形,要选择能够用 一个未知数表示出三条边的直角三角形(边也可为常 数),在这个三角形中利用勾股定理求解.
2.解决折叠问题的关键:在动、静的转化中找出不变量.
精品课件
17
例2.已知矩形ABCD沿直线BD折叠,使点C落在同一
例2.已知矩形ABCD沿直线BD折叠,使点C落在
同一平面内C'处,B C'与AD交于点E,AD=8,
AB=4,求DE的长.
C'
A
E
D
B
C
精品课件
14
例2.已知矩形ABCD沿直线BD折叠,使点C落在同一平面内C'处,B C'与
AD交于点E,AD=8,AB=4,求DE的长.
解 : 四 边 形 ABCD为 矩 形