角恒等变换知识总结

合集下载

三角恒等变换高考数学中的关键知识点总结

三角恒等变换高考数学中的关键知识点总结

三角恒等变换高考数学中的关键知识点总结三角恒等变换是高考数学中的重要内容,涉及到三角函数的性质和等价关系。

在解决三角函数相关题目时,熟练掌握三角恒等变换可帮助我们简化计算和推导过程,提高解题效率。

本文将对三角恒等变换中的关键知识点进行总结。

一、基本恒等式1. 余弦、正弦和正切的平方和恒等式:$cos^2(x) + sin^2(x) = 1$$1 - tan^2(x) = sec^2(x)$$1 - cot^2(x) = csc^2(x)$这些恒等式是三角函数中最为基础的恒等式,也是其他恒等式的基础。

通过这些基本恒等式,我们可以推导出其他更复杂的恒等式。

2. 三角函数的互余关系:$sin(\frac{\pi}{2} - x) = cos(x)$$cos(\frac{\pi}{2} - x) = sin(x)$$tan(\frac{\pi}{2} - x) = \frac{1}{cot(x)}$$cot(\frac{\pi}{2} - x) = \frac{1}{tan(x)}$互余关系表明,角度x和其余角之间的三角函数之间存在特定的关系。

3. 三角函数的倒数关系:$sin(-x) = -sin(x)$$cos(-x) = cos(x)$$tan(-x) = -tan(x)$$cot(-x) = -cot(x)$三角函数的倒数关系表明,对于同一角度的正负,其正弦、余弦、正切和余切的值也是相反的。

二、和差恒等式和差恒等式是三角恒等变换中的重要内容,它们可用于将角度的和或差转化为其他三角函数表示,从而简化解题过程。

1. 正弦和差恒等式:$sin(x \pm y) = sin(x)cos(y) \pm cos(x)sin(y)$2. 余弦和差恒等式:$cos(x \pm y) = cos(x)cos(y) \mp sin(x)sin(y)$3. 正切和差恒等式:$tan(x \pm y) = \frac{tan(x) \pm tan(y)}{1 \mp tan(x)tan(y)}$这些和差恒等式在解决角度和为特定值时的三角函数计算中起到了重要的作用。

9种常用三角恒等变换技巧总结

9种常用三角恒等变换技巧总结

9种常用三角恒等变换技巧总结三角函数是数学中一种重要的函数,它广泛应用于几何、物理、工程等领域。

而在解题过程中,常常需要通过三角恒等变换技巧来简化或转换问题,以便更容易求解或证明。

下面我们将总结一下常用的九种三角恒等变换技巧。

1.正弦和余弦平方和恒等式:sin^2(x) + cos^2(x) = 1这是最基本的三角恒等式,即正弦和余弦的平方和等于1、它在很多场合都会被应用到,例如求解三角方程、证明三角函数的性质等。

2.余弦的二倍角公式:cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x)这个公式可以将一个角的余弦值转化为另一个角的余弦值,同时也可以将余弦值转化为正弦值。

它在解决一些二次方程和证明一些三角恒等式的时候非常有用。

3.正弦的二倍角公式:sin(2x) = 2sin(x)cos(x)这个公式可以将一个角的正弦值转化为另一个角的正弦值,或者将正弦值转化为余弦值。

它在解决一些二次方程和证明一些三角恒等式的时候非常有用。

4.正切的和差公式:tan(x±y) = (tan(x)±tan(y))/(1∓tan(x)tan(y))这个公式可以将两个角的正切值的和或差转化为一个角的正切值,或者将一个角的正切值转化为两个角的正切值之和或差。

它在解决一些三角方程和证明一些三角恒等式的时候非常有用。

5.两角和差公式:sin(x±y) = sin(x)cos(y)±cos(x)sin(y)cos(x±y) = cos(x)cos(y)∓sin(x)sin(y)这些公式可以将两个角的正弦值或余弦值的和或差转化为一个角的正弦值或余弦值,或者将一个角的正弦值或余弦值转化为两个角的正弦值或余弦值之和或差。

它们在解决一些三角方程和证明一些三角恒等式的时候非常有用。

6.正切的和公式:tan(x+y) = (tan(x)+tan(y))/(1-tan(x)tan(y))这个公式可以将两个角的正切值的和转化为一个角的正切值,或者将一个角的正切值转化为两个角的正切值之和。

高中数学中的三角恒等变换常用恒等变换公式总结与应用技巧

高中数学中的三角恒等变换常用恒等变换公式总结与应用技巧

高中数学中的三角恒等变换常用恒等变换公式总结与应用技巧在高中数学中,三角函数是一个重要的概念,而三角恒等变换则是在解决三角函数方程和简化三角函数式子时经常用到的重要工具。

本文将总结常用的三角恒等变换公式,并介绍其应用技巧。

一、基本恒等变换公式1. 余弦函数的基本恒等变换(1) 余弦函数的平方形式:cos²θ + sin²θ = 1(2) 二倍角公式:cos2θ = cos²θ - sin²θ(3) 余弦函数的和差角公式:cos(θ ± φ) = cosθcosφ - sinθsinφ2. 正弦函数的基本恒等变换(1) 正弦函数的平方形式:sin²θ + cos²θ = 1(2) 二倍角公式:sin2θ = 2sinθcosθ(3) 正弦函数的和差角公式:sin(θ ± φ) = sinθcosφ ± cosθsinφ3. 正切函数的基本恒等变换(1) 正切函数的平方形式:tan²θ + 1 = sec²θ1 + cot²θ = cosec²θ(2) 二倍角公式:tan2θ = (2tanθ)/(1 - tan²θ)二、常用恒等变换公式1. 互余公式:sin(π/2 - θ) = cosθcos(π/2 - θ) = sinθtan(π/2 - θ) = cotθ2. 余角公式:sin(π - θ) = sinθcos(π - θ) = -cosθtan(π - θ) = -tanθ3. 倍角公式:sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θtan2θ = (2tanθ)/(1 - tan²θ)4. 积化和差公式:sinθsinφ = (1/2)[cos(θ - φ) - cos(θ + φ)]cosθcosφ = (1/2)[cos(θ - φ) + cos(θ + φ)]sinθcosφ = (1/2)[sin(θ + φ) + sin(θ - φ)]三、恒等变换的应用技巧1. 解三角函数方程:利用恒等变换可以将复杂的三角函数方程转化为简单的等式,从而更容易求解。

三角恒等变换所有公式

三角恒等变换所有公式

三角恒等变换所有公式三角恒等变换,又称三角恒等式,是指数学中关于三角函数的一类等式。

它们具有很重要的作用,可以用来化简、证明以及推导其他数学公式。

本文将从基本的三角恒等变换开始,逐步展开,总结了一些常用的三角恒等变换公式。

1.余弦函数的基本恒等变换:(1)余弦函数的定义:cosθ = x / r(2)余弦函数的平方:cos^2θ + sin^2θ = 1(3)余弦函数的倒数:1 + tan^2θ = sec^2θ(4)余弦函数的和差化积:cos(α + β) = cosα cosβ - sinα sinβcos(α - β) = cosα cosβ + sinα sinβ(5)余弦函数的倍角化积:cos2θ = 2cos^2θ - 1cos2θ = 1 - 2sin^2θ(6)余弦函数的半角化和:cos(θ/2) = ±√[(1 + cosθ) / 2]2.正弦函数的基本恒等变换:(1)正弦函数的定义:sinθ = y / r(2)正弦函数的平方:sin^2θ + cos^2θ = 1(3)正弦函数的倒数:1 + cot^2θ = csc^2θ(4)正弦函数的和差化积:sin(α + β) = sinα cosβ + cosα sinβsin(α - β) = sinα cosβ - cosα sinβ(5)正弦函数的倍角化积:sin2θ = 2sinθ cosθ(6)正弦函数的半角化和:sin(θ/2) = ±√[(1 - cosθ) / 2]3.正切函数的基本恒等变换:(1)正切函数的定义:tanθ = sinθ / cosθ(2)正切函数的平方:tan^2θ + 1 = sec^2θ(3)正切函数的倒数:1 + tan^2θ = csc^2θ(4)正切函数的和差化积:tan(α + β) = (tanα + tanβ) / (1 - tanα tanβ) tan(α - β) = (tanα - tanβ) / (1 + tanα tanβ)(5)正切函数的倍角化积:tan2θ = (2tanθ) / (1 - tan^2θ)(6)正切函数的半角化和:tan(θ/2) = ±√[(1 - cosθ) / (1 + cosθ)]4.余割、正割和余切函数的基本恒等变换:(1)余割函数的定义:cscθ = 1 / sinθ(2)倍角化积:csc2θ = cscθ cotθcsc2θ = 1 + 2 cot^2θ(3)非倍角化积:csc^2θ - cot^2θ = 1(4)正割函数的定义:secθ = 1 / cosθ(5)倍角化积:sec2θ = secθ tanθsec2θ = 1 + 2 tan^2θ(6)非倍角化积:sec^2θ - tan^2θ = 1(7)余切函数的定义:cotθ = 1 / tanθ(8)正割与余切的乘积:cotθ = 1 / tanθcotθ = cosθ / sinθ这些三角恒等变换公式是数学中非常基础且常用的,掌握它们可以更加灵活地运用三角函数进行计算操作。

三角恒等变换知识点总结

三角恒等变换知识点总结

三角恒等变换知识点总结三角恒等变换是解决三角函数中相关问题的重要工具,它们可以帮助我们简化表达式、证明恒等式以及解决三角方程等。

在本文中,将总结三角恒等变换的一些基本知识点,包括正弦、余弦和正切的恒等变换。

1. 正弦和余弦的恒等变换:(1) 余弦的恒等变换:a. 基本恒等式:cos^2θ + sin^2θ = 1,该恒等式也被称为三角恒等式之母。

b. 余弦的平方差公式:cos(α - β) = cosα·cosβ + sinα·sinβ,该公式可以用于简化两个余弦的差的表达式。

c. 余弦的和的公式:cos(α + β) = cosα·cosβ - sinα·sinβ,该公式可以用于简化两个余弦的和的表达式。

d. 余弦的倍角公式:cos2θ = 2cos^2θ - 1或cos2θ = 1 - 2sin^2θ,该公式可以用于简化余弦的倍角表达式。

(2) 正弦的恒等变换:a. 正弦的平方差公式:sin(α - β) = sinα·cosβ - cosα·sinβ,该公式可以用于简化两个正弦的差的表达式。

b. 正弦的和的公式:sin(α + β) = sinα·cosβ + cosα·sinβ,该公式可以用于简化两个正弦的和的表达式。

c. 正弦的倍角公式:sin2θ = 2sinθ·cosθ,该公式可以用于简化正弦的倍角表达式。

2. 正切的恒等变换:正切的恒等变换是基于正弦和余弦的恒等变换推导而来的:a. 正切的平方差公式:tan(α - β) = (tanα - tanβ)/(1 + tanα·tanβ),该公式可以简化两个正切的差的表达式。

b. 正切的和的公式:tan(α + β) = (tanα + tanβ)/(1 - tanα·tanβ),该公式可以简化两个正切的和的表达式。

c. 正切的倍角公式:tan2θ = (2tanθ)/(1 - tan^2θ),该公式可以简化正切的倍角表达式。

三角恒等变换

三角恒等变换

三角恒等变换三角恒等变换是指一系列等效的三角函数表达式之间的变换关系。

这些变换关系对于解决三角函数的各种问题非常有用。

本文将介绍三角恒等变换的基本概念、常见的恒等变换公式以及应用案例。

一、三角恒等变换的基本概念三角恒等变换是指将一个三角函数的表达式通过等效变换转化为另一个等价的表达式的过程。

三角函数包括正弦函数、余弦函数、正切函数、余切函数等。

恒等变换意味着两个表达式在任何实数取值范围内都成立,即两个表达式所代表的函数图像完全一致。

二、常见的三角恒等变换公式1. 余弦函数的恒等变换:- 余弦函数的平方与正弦函数平方的关系:cos^2θ + sin^2θ = 1。

- 余弦函数的两倍角公式:cos(2θ) = cos^2θ - sin^2θ。

- 余弦函数的和差公式:cos(α ± β) = cosαcosβ - sinαsinβ。

2. 正弦函数的恒等变换:- 正弦函数的平方与余弦函数平方的关系:sin^2θ + cos^2θ = 1。

- 正弦函数的两倍角公式:sin(2θ) = 2sinθcosθ。

- 正弦函数的和差公式:sin(α ± β) = sinαcosβ ± cosαsinβ。

3. 正切函数的恒等变换:- 正切函数的平方与余切函数平方的关系:tan^2θ + 1 = sec^2θ。

- 正切函数的两倍角公式:tan(2θ) = 2tanθ / (1 - tan^2θ)。

- 正切函数的和差公式:tan(α ± β) = (tanα ± tanβ) / (1 ∓ tanαtanβ)。

4. 余切函数的恒等变换:- 余切函数的平方与正切函数平方的关系:cot^2θ + 1 = cosec^2θ。

- 余切函数的两倍角公式:c ot(2θ) = (cot^2θ - 1) / 2cotθ。

- 余切函数的和差公式:cot(α ± β) = (cotαcotβ ± 1) / (cotβ ± cotα)。

三角函数恒等变换知识点总结

三角函数恒等变换知识点总结

三角函数 三角恒等变换知识点总结一、角的概念和弧度制:(1)在直角坐标系内讨论角:角的顶点在原点,始边在x 轴的正半轴上,角的终边在第几象限,就说过角是第几象限的角。

若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。

(2)①与α角终边相同的角的集合:},2|{},360|{0Z k k Z k k ∈+=∈+=απββαββ或与α角终边在同一条直线上的角的集合: ; 与α角终边关于x 轴对称的角的集合: ; 与α角终边关于y 轴对称的角的集合: ; 与α角终边关于x y =轴对称的角的集合: ;②一些特殊角集合的表示:终边在坐标轴上角的集合: ;终边在一、三象限的平分线上角的集合: ; 终边在二、四象限的平分线上角的集合: ; 终边在四个象限的平分线上角的集合: ; (3)区间角的表示:①象限角:第一象限角: ;第三象限角: ;第一、三象限角: ;②写出图中所表示的区间角:(4)正确理解角:要正确理解“oo90~0间的角”= ;“第一象限的角”= ;“锐角”= ; “小于o90的角”= ; (5)由α的终边所在的象限,通过 来判断2α所在的象限。

来判断3α所在的象限 (6)弧度制:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;任一已知角α的弧度数的绝对值rl =||α,其中l 为以角α作为圆心角时所对圆弧的长,r 为圆的半径。

注意钟表指针所转过的角是负角。

(7)弧长公式: ;半径公式: ;扇形面积公式: ;二、任意角的三角函数:(1)任意角的三角函数定义:以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则=αsin ;=αcos ;=αtan ;=αcot ;=αsec ;=αcsc ;如:角α的终边上一点)3,(a a -,则=+ααsin 2cos 。

注意r>0 (2)在图中画出角α的正弦线、余弦线、正切线;比较)2,0(π∈x ,x sin ,x tan ,x 的大小关系: 。

三角恒等变换各种题型归纳分析

三角恒等变换各种题型归纳分析

三角恒等变换各种题型归纳分析三角恒等变换基础知识及题型分类汇总一、知识点:一)公式回顾:cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta $,简记为C($\alpha\pm\beta$)sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta $,简记为S($\alpha\pm\beta$)sin2\alpha=2\sin\alpha\cos\alpha$,简记为S2cos2\alpha=\cos^2\alpha-\sin^2\alpha$,简记为C2tan2\alpha=\frac{2\tan\alpha}{1-\tan^2\alpha}$,其中$\alpha\neq\frac{k\pi}{2}$,简记为T2二)公式的变式1\pm\cos2\alpha=2\cos^2\alpha$,简记为1±C2frac{1\pm\cos\alpha}{2}=\sin^2\frac{\alpha}{2}$,简记为S2/2sin\alpha\pm\sin\beta=2\sin\frac{\alpha\pm\beta}{2}\cos\frac {\alpha\mp\beta}{2}$,简记为S±Scos\alpha+\cos\beta=2\cos\frac{\alpha+\beta}{2}\cos\frac{\al pha-\beta}{2}$,简记为C+Ccos\alpha-\cos\beta=-2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}$,简记为C-Ctan\frac{\alpha}{2}=\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1+\cos\alpha}$,简记为T1辅助角(合一)公式:begin{cases}\sin(\pi-\alpha)=\sin\alpha\\\cos(\pi-\alpha)=-\cos\alpha\end{cases}$begin{cases}\sin(\pi+\alpha)=-\sin\alpha\\\cos(\pi+\alpha)=-\cos\alpha\end{cases}$begin{cases}\sin(-\alpha)=-\sin\alpha\\\cos(-\alpha)=\cos\alpha\end{cases}$begin{cases}\sin(\frac{\pi}{2}-\alpha)=\cos\alpha\\\cos(\frac{\pi}{2}-\alpha)=\sin\alpha\end{cases}$begin{cases}\sin(\frac{\pi}{2}+\alpha)=\cos\alpha\\\cos(\frac {\pi}{2}+\alpha)=-\sin\alpha\end{cases}$begin{cases}\sin(\pi-\alpha)=\sin\alpha\\\cos(\pi-\alpha)=-\cos\alpha\end{cases}$二典例剖析:基础题型例1:已知$\sin2\alpha=\frac{5\pi}{13}$,$\alpha\in\left(0,\frac{\pi}{2}\right)$,求$\sin4\alpha$,$\cos4\alpha$,$\tan4\alpha$。

三角恒等变换公式总结

三角恒等变换公式总结

三角恒等变换公式总结以下是一些常见的三角恒等变换公式:1.积化和差公式:sin(A ± B) = sinA * cosB ± cosA * sinBcos(A ± B) = cosA * cosB ∓ sinA * sinBtan(A ± B) = (tanA ± tanB) / (1 ∓ tanA * tanB)2.和差化积公式:sinA + sinB = 2 * sin((A + B) / 2) * cos((A - B) / 2)sinA - sinB = 2 * cos((A + B) / 2) * sin((A - B) / 2)cosA + cosB = 2 * cos((A + B) / 2) * cos((A - B) / 2)cosA - cosB = -2 * sin((A + B) / 2) * sin((A - B) / 2)3.二倍角公式:sin2A = 2 * sinA * cosAcos2A = cos^2 A - sin^2 A = 2 * cos^2 A - 1 = 1 - 2 * sin^2 Atan2A = (2 * tan A) / (1 - tan^2 A)4.半角公式:sin(A / 2) = ±√[(1 - cosA) / 2]cos(A / 2) = ±√[(1 + cosA) / 2]tan(A / 2) = ±√[(1 - cosA) / (1 + cosA)]5.和差化积公式的倒数形式:sinA * sinB = (cos(A - B) - cos(A + B)) / 2cosA * cosB = (cos(A - B) + cos(A + B)) / 2sinA * cosB = (sin(A + B) + sin(A - B)) / 2cosA * sinB = (sin(A + B) - sin(A - B)) / 26.和差化积公式的平方形式:sin^2 A + sin^2 B = 2 * sin^2((A + B) / 2) * cos^2((A - B) / 2)cos^2 A + cos^2 B = 2 * cos^2((A + B) / 2) * cos^2((A - B) / 2)sin^2 A − sin^2 B = sin^2((A + B) / 2) − sin^2((A - B) / 2) cos^2 A − cos^2 B = −sin^2((A + B) / 2) + sin^2((A - B) / 2)7.三角函数的和差化积公式:sinA + sinB = 2 * sin[(A + B) / 2] * cos[(A - B) / 2]sinA - sinB = 2 * cos[(A + B) / 2] * sin[(A - B) / 2]cosA + cosB = 2 * cos[(A + B) / 2] * cos[(A - B) / 2]cosA - cosB = -2 * sin[(A + B) / 2] * sin[(A - B) / 2]8.三角函数的平方化和差公式:sin^2 A = (1 - cos2A) / 2cos^2 A = (1 + cos2A) / 2tan^2 A = (1 - cos2A) / (1 + cos2A)9.和差化积公式的高阶形式:sinA + sinB = 2 * sin[(A + B) / 2] * cos[(A - B) / 2]sinA + sinB + sinC = 4 * sin[(A + B) / 2] * sin[(B + C) / 2] * sin[(C + A) / 2]sinA + sinB + sinC + sinD = 8 * sin[(A + C) / 4] * sin[(A +D) / 4] * sin[(B + C) / 4] * sin[(B + D) / 4]10.三角函数的多项式展开:sin(A + B + C) = sinA * cosB * cosC + cosA * sinB * cosC + cosA * cosB * sinC − sinA * sinB * sinCcos(A + B + C) = cosA * cosB * cosC − sinA * sinB * cosC −sinA * cosB * sinC − cosA * sinB * sinC这些恒等变换公式是解决复杂三角函数问题的有力工具。

高中数学三角恒等变换知识点归纳总结

高中数学三角恒等变换知识点归纳总结

高中数学三角恒等变换知识点归纳总结1. 基本定义三角恒等变换是指在三角函数运算中,通过等式的变换,得到具有相同意义但表达形式不同的等价关系。

2. 基本恒等式- 正弦函数的基本恒等式:$\sin^2\theta + \cos^2\theta = 1$- 余弦函数的基本恒等式:$1 + \tan^2\theta = \sec^2\theta$- 正切函数的基本恒等式:$1 + \cot^2\theta = \csc^2\theta$3. 和差恒等式- 正弦函数的和差恒等式:$\sin(\alpha \pm \beta) =\sin\alpha\cos\beta \pm \cos\alpha\sin\beta$- 余弦函数的和差恒等式:$\cos(\alpha \pm \beta) =\cos\alpha\cos\beta \mp \sin\alpha\sin\beta$- 正切函数的和差恒等式:$\tan(\alpha \pm \beta) =\dfrac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha\tan\beta}$4. 二倍角恒等式- 正弦函数的二倍角恒等式:$\sin2\theta = 2\sin\theta\cos\theta$ - 余弦函数的二倍角恒等式:$\cos2\theta = \cos^2\theta -\sin^2\theta = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta$- 正切函数的二倍角恒等式:$\tan2\theta = \dfrac{2\tan\theta}{1 - \tan^2\theta}$5. 三倍角恒等式- 正弦函数的三倍角恒等式:$\sin3\theta = 3\sin\theta -4\sin^3\theta$- 余弦函数的三倍角恒等式:$\cos3\theta = 4\cos^3\theta -3\cos\theta$- 正切函数的三倍角恒等式:$\tan3\theta = \dfrac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}$6. 半角恒等式- 正弦函数的半角恒等式:$\sin\dfrac{\theta}{2} = \sqrt{\dfrac{1 - \cos\theta}{2}}$- 余弦函数的半角恒等式:$\cos\dfrac{\theta}{2} =\sqrt{\dfrac{1 + \cos\theta}{2}}$- 正切函数的半角恒等式:$\tan\dfrac{\theta}{2} = \dfrac{1 -\cos\theta}{\sin\theta} = \dfrac{\sin\theta}{1 + \cos\theta}$7. 和角恒等式- 正弦函数的和角恒等式:$\sin(\alpha + \beta) =\sin\alpha\cos\beta + \cos\alpha\sin\beta$- 余弦函数的和角恒等式:$\cos(\alpha + \beta) =\cos\alpha\cos\alpha - \sin\alpha\sin\beta$以上是高中数学中常用的三角恒等变换知识点的归纳总结。

三角恒等变换知识点

三角恒等变换知识点

三角恒等变换一、 三角基础知识1. 定义α终边过点),(y x P ,22y x OP r +==,则,sin r y =α,cos r x =α,tan x y =α ,csc y r =α,sec x r =α.cot yx =α其中αsec 称为角α的正割,αcsc 称为角α的余割.2. 同角三角函数的基本关系式(1) 平方关系:1cos sin 22=+αααα22sec 1tan =+ αα22csc 1cot =+(2) 商数关系:ααααααsin cos cot ,cos sin tan == (3) 倒数关系:1cot tan =∙αα1csc sin =⋅αα 1sec cos =⋅αα3. 诱导公式4. 三角函数恒等变形公式 (1) 两角和与差公式()βαβαβαsin cos cos sin sin ±=± ()βαβαβαsin sin cos cos cos =±()βαβαβαtan tan 1tan tan tan ±=±(2) 二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-= ααα2tan 1tan 22tan -=(3) 三倍角公式ααα3sin 4sin 33sin -= αααcos 3cos 43cos 3-=(4) 半角公式2cos 12sinαα-±= 2cos 12cos αα+±= αααααααsin cos 1cos 1sin cos 1cos 12tan-=+=+-±= (5) 万能公式2tan 12tan2sin 2ααα+=,2tan 12tan 1cos 22ααα+-=,2tan 12tan2tan 2ααα-=(6) 积化和差()()[]βαβαβα-++=sin sin 21cos sin , ()()[]βαβαβα--+=sin sin 21sin cos ,()()[]βαβαβα-++=cos cos 21cos cos ,()()[]βαβαβα--+-=cos cos 21sin sin(7) 和差化积2cos2sin2sin sin ϕθϕθϕθ-+=+,2sin 2cos 2sin sin ϕθϕθϕθ-+=-,2cos 2cos 2cos cos ϕθϕθϕθ-+=+,2sin 2sin 2cos cos ϕθϕθϕθ-+-=-,二、 例题讲解例1.(2004北京高考)在ABC ∆中,,3,2,22cos sin ===+AB AC A A 求A tan 的值和ABC ∆的面积.[解法一] 解方程组⎪⎩⎪⎨⎧=+=+1cos sin 22cos sin 22A A A A 得⎪⎪⎩⎪⎪⎨⎧-=+=462cos 462sin A A ,故 32tan --=A 。

《三角恒等变换》知识点及常见题型总结

《三角恒等变换》知识点及常见题型总结

简单的三角恒等变换一、考点、热点回顾模块一、两角和与差的三角函数要点一、两角和与差的正弦、余弦、正切公式及倍角公式:()sin sin cos cos sin sin 22sin cos 令αβαβαβαβααα=±=±−−−→=()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 21cos2sin 22tan tan 21tan 令 = = αβαβαβαβααααααβααβααβααααα=±=−−−→=-↓=-=-±±=⇒-↓=-要点二、三角函数的化简、计算、证明的恒等变形的基本思路①巧变角:()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=---等②三角函数名互化:切割化弦③公式变形使用:tan tan αβ±()()tan 1tan tan αβαβ=±, 1±sin2α=sin 2α+cos 2α±2sinα·cosα=(sinα±cosα)2 ④三角函数次数的降升:降幂公式:21cos 2cos 2αα+=,21cos 2sin 2αα-=;升幂公式:21cos 22cos αα+=,21cos 22sin αα-= ⑤常值变换主要指“1”的变换:221sin cos x x =+tan sin 42ππ===等模块二、简单的三角恒等变换 要点三、半角公式:sin α2=cos 2α= tan2α=sin 1cos 1cos sin αααα-=+ 要点四、三角函数的积化和差公式1sin cos [sin()sin()].2αβαβαβ=++-1cos sin [sin()sin()].2αβαβαβ=+--1cos cos [cos()cos()].2αβαβαβ=++-1sin sin [cos()cos()].2αβαβαβ=-+--记忆口诀:前角用和后角差,正余二分正弦和,余正二分正弦差,余余二分余弦和,正正负半余弦差。

三角恒等变换知识点

三角恒等变换知识点

三角恒等变换知识点三角恒等变换是指一些与三角函数相关的等式,通过它们可以将一个三角函数表达式转化为另一个等价的三角函数表达式。

它们在解三角方程、简化三角函数表达式以及证明数学恒等式等方面具有重要的作用。

下面将介绍一些常用的三角恒等变换及其相关知识点。

1.余弦和差公式余弦和差公式是将两个角的余弦之间的关系进行表示的公式:cos(A ± B) = cos A cos B ∓ sin A sin B利用这个公式,可以将两个角的和(或差)的余弦值表达为这两个角的余弦值以及正弦值之间的关系。

2.正弦和差公式正弦和差公式是将两个角的正弦之间的关系进行表示的公式:sin(A ± B) = sin A cos B ± cos A sin B利用这个公式,可以将两个角的和(或差)的正弦值表达为这两个角的正弦值以及余弦值之间的关系。

3.二倍角公式二倍角公式是将一个角的两倍表达为这个角的余弦值或正弦值之间的关系:cos(2A) = cos^2 A – sin^2 Asin(2A) = 2 sin A cos A利用这个公式,可以将一些角的两倍的余弦值或正弦值表示为这个角的余弦值或正弦值的函数。

4.半角公式半角公式是将一个角的一半表达为这个角的余弦值或正弦值之间的关系:cos(A/2) = ±√[(1 + cos A)/2]sin(A/2) = ±√[(1 – cos A)/2]利用这个公式,可以将一些角的一半的余弦值或正弦值表示为这个角的余弦值或正弦值的函数。

5.和差化积公式和差化积公式是将两个三角函数的和(或差)表示为一个三角函数乘以另一个三角函数的表达式:sin A + sin B = 2 sin[(A + B)/2] cos[(A – B)/2]sin A – sin B = 2 cos[(A + B)/2] sin[(A – B)/2]cos A + cos B = 2 cos[(A + B)/2] cos[(A – B)/2]cos A – cos B = -2 sin[(A + B)/2] sin[(A – B)/2]利用这个公式,可以将两个三角函数的和(或差)表示为一个三角函数的乘积。

三角恒等变换与方程的性质知识点总结

三角恒等变换与方程的性质知识点总结

三角恒等变换与方程的性质知识点总结三角恒等变换是指在三角函数表达式中,通过一系列等价的变换,将一个三角函数表达式转化为另一个等价的三角函数表达式。

这种变换在解决三角方程、简化三角表达式等数学问题中有着重要的应用。

本文将对三角恒等变换及相关的方程性质进行总结,并提供一些例子来帮助读者更好地理解和应用这些知识点。

一、平凡的三角恒等变换:1. 正弦函数的平方等于1减去余弦函数的平方:sin^2(x) = 1 -cos^2(x)该恒等变换适用于解决三角方程中含有sin^2(x)类型的问题。

2. 余弦函数的平方等于1减去正弦函数的平方:cos^2(x) = 1 -sin^2(x)该恒等变换适用于解决三角方程中含有cos^2(x)类型的问题。

3. 正切函数的平方加1等于割函数的平方:tan^2(x) + 1 = sec^2(x)该恒等变换适用于解决三角方程中含有tan^2(x)类型的问题。

4. 余切函数的平方加1等于余割函数的平方:cot^2(x) + 1 = csc^2(x)该恒等变换适用于解决三角方程中含有cot^2(x)类型的问题。

以上四个平凡的三角恒等变换是基础中的基础,掌握了这些变换,可以更好地应对复杂的三角恒等变换问题。

二、复杂的三角恒等变换:除了上述的平凡的恒等变换外,还存在一些复杂的恒等变换,下面是其中的两个例子:1. 和差化积公式:sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)cos(A ± B) = cos(A)cos(B) ∓ sin(A)sin(B)和差化积公式常用于解决三角方程中的和差类型问题,其中的正负号取决于题目中给出的具体条件。

2. 二倍角公式:sin(2A) = 2sin(A)cos(A)cos(2A) = cos^2(A) - sin^2(A) = 2cos^2(A) - 1 = 1 - 2sin^2(A)二倍角公式常用于解决三角方程中的二倍角类型问题,同样,具体的变换方式需根据题目给出的条件而定。

三角恒等变换的总结与应用

三角恒等变换的总结与应用

三角恒等变换的总结与应用三角恒等变换是解决三角函数问题中常用的重要工具。

它们是一些基本的等式,它们可以将一个三角函数表达式转化为另一个等价的形式,从而使计算变得更简单、更方便。

在这篇文章中,我们将对三角恒等变换进行总结,并探讨一些它们在实际问题中的应用。

一、三角恒等变换总结1. 正弦、余弦和正切的平方和恒等式:sin²θ + cos²θ = 11 + tan²θ = sec²θ1 + cot²θ = cosec²θ这些恒等式表明,在平方和为1的限制下,正弦、余弦和正切之间存在着特殊的关系。

通过利用这些关系,我们可以大大简化三角函数的计算。

2. 互余恒等式:sin(π/2 - θ) = cosθcos(π/2 - θ) = sinθtan(π/2 - θ) = cotθcot(π/2 - θ) = tanθ这些恒等式表明,对于一个角度θ,其互余角度为π/2 - θ,而互余角度的正弦、余弦、正切和余切与原角度的三角函数有特殊的对应关系。

3. 余切和正切的倒数的恒等式:cotθ = 1/tanθtanθ = 1/cotθ这些恒等式表明,余切和正切是彼此的倒数关系。

我们可以通过这一关系,将一个三角函数的计算转化为另一个三角函数的计算,从而简化问题求解的过程。

二、三角恒等变换的应用1. 证明与简化:三角恒等变换常用于证明三角恒等式及简化复杂的三角函数表达式。

通过灵活应用三角恒等变换,并结合基本的三角函数性质,我们可以将复杂的三角函数等式逐步化简为更简明的形式,从而解决三角函数相关的证明问题。

2. 三角函数的恒等式证明:利用三角恒等变换,我们可以轻松证明各种三角恒等式。

例如,利用平方和恒等式sin²θ + cos²θ = 1,我们可以证明tan²θ + 1 = sec²θ;利用互余恒等式sin(π/2 - θ) = cosθ,我们可以证明sin²θ + cos²θ = 1等等。

三角恒等变换的基本公式与应用

三角恒等变换的基本公式与应用

三角恒等变换的基本公式与应用三角恒等变换是指由三角函数之间的关系,通过变换得到等价关系的过程。

它们是解决三角函数计算和证明题非常有用的工具。

本文将介绍三角恒等变换的基本公式、根据这些公式的应用以及相关的数学问题。

一、基本公式1. 正弦定理对于任意三角形ABC,其三边长度分别为a、b、c,夹角分别为A、B、C,则正弦定理表达式如下:a/sin(A) = b/sin(B) = c/sin(C)该定理可以用于求解三角形的边长或角度,甚至用于构造和证明三角形的性质。

2. 余弦定理对于任意三角形ABC,其三边长度分别为a、b、c,夹角分别为A、B、C,则余弦定理表达式如下:c² = a² + b² - 2abcos(C)该定理可以用于求解三角形的边长或角度,尤其适用于解决非特殊角的计算问题。

3. 正弦、余弦、正切的关系三角函数的基本关系:sin²(A) + cos²(A) = 1tan(A) = sin(A)/cos(A)这些关系可以通过三角函数间的相互转化和运算来推导和应用。

二、应用1. 角度推导与证明三角恒等变换的基本公式可以用于推导和证明角度之间的关系。

例如,我们可以利用正弦定理推导两角和差公式:sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)这个公式在三角函数运算中非常常用。

2. 三角函数的化简与计算三角函数的公式化简是三角恒等变换的重要应用之一。

例如,我们可以利用tan(A) = sin(A)/cos(A)将复杂的三角函数表达式化简为更简洁的形式。

另外,当我们需要计算某些特殊角度的三角函数值时,也可以利用三角恒等变换的公式得到准确的数值结果。

3. 三角方程的求解三角方程是指含有未知角度的方程。

解决三角方程的关键是将其转化为已知角度的三角函数公式。

通过利用三角恒等变换的公式,我们可以将复杂的三角方程转化为简单的代数方程,从而求解出未知角度的值。

角函数恒等变换知识点总结

角函数恒等变换知识点总结

角函数恒等变换知识点总结1.基本恒等变换:基本恒等变换包括正弦函数的平方与余弦函数的平方之和等于1:sin²θ + cos²θ = 1这是最基本的角函数恒等变换,它适用于所有角度。

2.余弦函数和正弦函数的互补关系:余弦函数和正弦函数具有互补关系,即:sin(π/2 - θ) = cosθcos(π/2 - θ) = sinθ这个恒等变换可以用于将一个三角函数问题转化为另一个等效的问题。

3.正切函数与余切函数的互补关系:正切函数和余切函数具有互补关系,即:tan(π/2 - θ) =cotθcot(π/2 - θ) = tanθ这个恒等变换可以用于将一个三角函数问题转化为另一个等效的问题。

4.正弦函数和余弦函数的余角关系:正弦函数和余弦函数具有余角关系,即:sin(π - θ) = sinθcos(π - θ) = -cosθ这个恒等变换可以用于简化计算过程。

5.正切函数和余切函数的余角关系:正切函数和余切函数具有余角关系,即:tan(π - θ) = -tanθcot(π - θ) = -cotθ这个恒等变换可以用于简化计算过程。

6.二倍角恒等变换:二倍角恒等变换包括正弦函数的二倍角等于两个正弦函数的乘积,余弦函数的二倍角等于两个余弦函数的乘积,以及正切函数的二倍角等于两个正切函数的商:sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θtan2θ = 2tanθ / (1 - tan²θ)这些恒等变换可以用于将一个角度的问题转化为两倍角的问题。

7.三倍角恒等变换:三倍角恒等变换包括正弦函数的三倍角等于三个正弦函数的乘积,余弦函数的三倍角等于四个余弦函数的乘积减去一个余弦函数,以及正切函数的三倍角等于三个正切函数的差除以一减去三倍正切函数的平方:sin3θ = 3sinθ - 4sin³θcos3θ = 4cos³θ - 3cosθtan3θ = (3tanθ - tan³θ) / (1 - 3tan²θ)这些恒等变换可以用于将一个角度的问题转化为三倍角的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角恒等变换知识点总结
2014/10/24
一、基本内容串讲
1. 两角和与差的正弦、余弦和正切公式如下:
; ;
对其变形:tan α+tan β=tan(α+β)(1- tan αtan β),有时应用该公式比较方便。

2. 二倍角的正弦、余弦、正切公式如下:
. .
.
要熟悉余弦“倍角”与“二次”的关系(升角—降次,降角—升次).特别注意公式的三角表达形式,且要善于变形, 这两个形式常用。

3.辅助角公式:sin cos 4x x x π⎛⎫+=+ ⎪⎝⎭cos 2sin 6x x x π⎛⎫±=± ⎪⎝

()sin cos a x b x x ρ+=+.
4.简单的三角恒等变换
(1)变换对象:角、名称和形式,三角变换只变其形,不变其质。

(2)变换目标:利用公式简化三角函数式,达到化简、计算或证明的目的。

(3)变换依据:两角和与差的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式。

(4)变换思路:明确变换目标,选择变换公式,设计变换途径。

5.常用知识点:
(1)基本恒等式:22sin sin cos 1,tan cos ααααα
+==(注意变形使用,尤其‘1’的灵活应用,求函数值时注意角的范围);
(2)三角形中的角:A B C π++=,sinA sin(B ),cosA cos(B C)C =+=-+;
(3)向量的数量积:cos ,a b a b a b =r r r r r r g
, 1212a b x x y y =+r r g ,12120a b x x y y ⊥⇔+=r r 1221//0a b x y x y ⇔-=r r ;
二、考点阐述
考点1两角和与差的正弦、余弦、正切公式
1、的值等于( )
2、若,,则等于( )
3、若3,4
παβ+=则(1tan )(1tan )αβ--的值是________. 4、(1tan1)(1tan 2)(1tan3)(1tan 44)(1tan 45)+︒+︒+︒+︒+︒=L _______________.
考点2二倍角的正弦、余弦、正切公式
5、coscos 的值等于( ) (提示:构造分子分母)
6、cos 20cos 40cos60cos80=o o o o ( )
7、 已知322
A ππ<<,且,那么等于( ) 考点3运用相关公式进行简单的三角恒等变换
8、已知则的值等于( )
9、已知则值等于()
10、函数是( )
(A )周期为的奇函数
(B )周期为的偶函数 (C )周期为的奇函数 (D )周期为的偶函数
4、常见题型及解题技巧(另外总结)
(一)关于辅助角公式:()sin cos a x b x x ρ+=+.
其中cos ϕϕ==

如:1.
若方程sin x x c =有实数解,则c 的取值范围是____________.
2.2cos 3sin 2y x x =-+的最大值与最小值之和为_____________.
7.若2tan(),45
π
α+=则tan α=________. (二)三角函数式的化简与求值 [例1] 1.00
00cos15sin15cos15sin15
-+;
2.00sin 50(1)+;
3. 求值;
4.△ABC 不是直角三角形,求证:C B A C B A tan tan tan tan tan tan ••=++
(三)三角函数给值求值问题
1. 已知cos(α-π6)+sin α=453,则sin(α+7π6
)的值是_____________; 2. 已知 3.33350,cos ,sin 4445413ππππβααβ⎛⎫⎛⎫<<
<<-=+= ⎪ ⎪⎝⎭⎝⎭,求的值.
(四) 三角函数给值求角问题
1.若10
,且A,B 均为钝角,求A+B 的值. 2.已知,且是方程的两个根,求.
3.已知均为锐角,且,,,则αβγ++的值( ) A.π6 B. C.π3 D.
4.已知1tan 7α=,1tan 3
β=,并且,αβ均为锐角,求2αβ+的值. (五)综合问题(求周期,最值,对称轴,增减区间等) 1.(2010·北京)已知函数2()2cos 2sin f x x x =+.
(1)求()3
f π
的值;(2)求()f x 的最大值和最小值. 2.已知函数()2sin()cos f x x x π=-.
(1)求()f x 的最小正周期;(2)求()f x 在区间[,]62
ππ-
上的最大值和最小值;(3)求函数在(,)ππ-的单调区间。

三、解题方法分析
1.熟悉三角函数公式,从公式的内在联系上寻找切入点
【方法点拨】三角函数中出现的公式较多,要从角名称、结构上弄清它们之间的内在联系,做到真正
的理解、记熟、用活。

解决问题时究竟使用哪个公式,要抓住问题的实质,善于联想,灵活运用。

例1设则有( )
【点评】:本题属于“理解”层次,要能善于正用、逆用、变用公式。

例如:
sincos=,cos=,,,,,,,tan α+tan β=tan(α+β)(1- tan αtan β)等。

另外,三角函数
式asinx+bcosx 是基本三角函数式之一,引进辅助角,将它化为即asinx+bcosx=(其中)
是常用转化手段。

特别是与特殊角有关的sin ±cosx ,±sinx ±cosx ,要熟练掌握其变形
结论。

2.明确三角恒等变换的目的,从数学思想方法上寻找突破口
(1)运用转化与化归思想,实现三角恒等变换`
【方法点拨】教材中两角和与差的正、余弦公式以及二倍角公式的推导都体现了转化与化归的思想,
应用该思想能有效解决三角函数式化简、求值、证明中角、名称、形式的变换问题。

例2. 已知<β<α<,cos (α-β)=,sin (α+β)=-,求sin2α的值.(-
(本题属于“理解”层次,解答的关键在于分析角的特点, 2α=(α-β)+(α+β))
例2解答:
例3.化简:[2sin50°+sin10°(1+tan10°)]·.
【解析】:原式=
=.
【点评】:本题属于“理解”层次, 解题的关键在于灵活运用“化切为弦”的方法,再利用两角和与差的三角函数关系式整理化简.化简时要求使三角函数式成为最简:项数尽量少,名称尽量少,次数尽量底,分母尽量不含三角函数,根号内尽量不含三角函数,能求值的尽量求出值来。

(2)运用函数方程思想,实现三角恒等变换
【方法点拨】三角函数也是函数中的一种,其变换的实质仍是函数的变换。

因此,有时在三角恒等变换中,可以把某个三角函数式看作未知数,利用条件或公式列出关于未知数的方程求解。

例4:已知sin(α+β)=,sin(α-β)=,求的值.。

【解析】
===-17
【点评】:本题属于“理解”层次,考查学生对所学过的内容能进行理性分析,善于利用题中的条件运用方程思想达到求值的目的。

(3)运用换元思想,实现三角恒等变换
【方法点拨】换元的目的就是为了化繁为简,促使未知向已知转化,可以利用特定的关系,把某个式子用新元表示,实行变量替换,从而顺利求解,解题时要特别注意新元的范围。

例5:若求的取值范围。

【解析】:令,则
【点评】:本题属于“理解”层次,解题的关键是将要求的式子看作一个整体,通过
代数、三角变换等手段求出取值范围。

3.关注三角函数在学科内的综合,从知识联系上寻找结合点
【方法点拨】三角函数在学科内的联系比较广泛,主要体现在与函数、平面向量、解析几何等知识的联系与综合,特别是与平面向量的综合,要适当注意知识间的联系与整合。

例6:已知:向量,,函数
(1)若且,求的值;或
(2)求函数取得最大值时,向量与的夹角.
【解析】:∵=
(2)
∴,当时,由
得,∴
【点评】:本题属于“理解”中综合应用层次,主要考查应用平面向量、三角函数知识的分析和计算能力.
四、课堂练习
1.s in165º= () A. B. C. D.
2.s in14ºcos16º+sin76ºcos74º的值是() A. B. C. D.3.已知,,则() A. B. C. D.
4.化简2sin(-x)·sin(+x),其结果是()
A.sin2x B.cos2x C.-cos2x D.-sin2x
5.sin—cos的值是()
A.0 B.— C. D. 2 sin
6.
A. B. C. D.
7.若,,则角的终边一定落在直线()上。

A. B. C. D.
8.
9.=
10.的值是 .
11.求证:. 12.已知,求的值.
13.已知求的值。

14.若,且, 求的值。

15.在△ABC 中,若sin A sin B =cos 2
2C ,则△ABC 是( ) A .等边三角形 B .等腰三角形
C .不等边三角形
D .直角三角形
16.化简θ
θθθ2cos 2sin 12cos 2sin 1++-+. 17.求证:
αααααtan 1tan 1sin cos cos sin 2122+-=-⋅-a . 18. 已知sin α=1312,sin (α+β)=54,α与β均为锐角,求co s 2β. .。

相关文档
最新文档