函数的实际应用题试题

合集下载

中考二次函数实际问题应用题 3

中考二次函数实际问题应用题 3

中考二次函数实际问题应用题2.某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出工辆车时,日收益为y 元.(日收益=日租金收入一平均每日各项支出)(1)公司每日租出x 辆车时,每辆车的日租金为 元(用含x 的代数式表示); (2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元? (3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?3.某汽车在刹车后行驶的距离s (单位:米)与时间t (单位:秒)之间的关系得部分数据如下表:时间t (秒)0.2 0.4 0.6 0.8 1.0 1.2 … 行驶距离s (米) 02.85.27.28.81010.8…(1)根据这些数据在给出的坐标系中画出相应的点;(2)选择适当的函数表示s 与t 之间的关系,求出相应的函数解析式;(3)①刹车后汽车行驶了多长距离才停止?②当t 分别为t 1,t 2(t 1<t 2)时,对应s 的值分别为s 1,s 2,请比较11s t 与22s t 的大小,并解释比较结果的实际意义.4.某商场购进一批L 型服装(数量足够多),进价为40元/件,以60元/件销售,每天销售20件。

根据市场调研,若每件每降1元,则每天销售数量比原来多3件。

现商场决定对L型服装开展降价促销活动,每件降价x元(x为正整数)。

在促销期间,商场要想每天获得最大销售利润,每件降价多少元?每天最大销售毛利润为多少?(注:每件服装销售毛利润指每件服装的销售价与进货价的差)5.某科技开发公司研制出一种新型产品,每件产品的成本为2400元,销售单价定为3000 元.在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10 件时,每件按3000 元销售;若一次购买该种产品超过10 件时,每多购买一件,所购买的全部产品的销售单价均降低10 元,但销售单价均不低于2600 元.(1)商家一次购买这种产品多少件时,销售单价恰好为2600 元?(2)设商家一次购买这种产品x件,开发公司所获的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围.(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)6.某商品的进价为每件50元,售价为每件60元,每个月可卖出200件。

专题03 函数实际应用综合题(解析版)

专题03 函数实际应用综合题(解析版)

专题03 函数实际应用综合题1.(2019•常德中考)某生态体验园推出了甲、乙两种消费卡,设入园次数为x时所需费用为y元,选择这两种卡消费时,y与x的函数关系如图所示,解答下列问题:(1)分别求出选择这两种卡消费时,y关于x的函数表达式;(2)请根据入园次数确定选择哪种卡消费比较合算.2.(2019•山西中考)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1,y2与x之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.3.(2019•台州中考)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系3610h x=-+,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.4.(2019•天门中考)某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克,若一次购买超过5千克,则超过5千克部分的种子价格打8折.设一次购买量为x千克,付款金额为y 元.(1)求y关于x的函数解析式;(2)某农户一次购买玉米种子30千克,需付款多少元?5.(2019•天津中考)甲、乙两个批发店销售同一种苹果.在甲批发店,不论一次购买数量是多少,价格均为6元/kg .在乙批发店,一次购买数量不超过元50 kg 时,价格为7元/kg ;一次购买数量超过50kg 时,其中有50kg 的价格仍为7元/kg ,超出50 kg 部分的价格为5元/kg .设小王在同一个批发店一次购买苹果的数量为 kg x (0)x .(1)根据题意填表:(2)设在甲批发店花费1y 元,在乙批发店花费2y 元,分别求1y ,2y 关于x 的函数解析式; (3)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为__________kg ;②若小王在同一个批发店一次购买苹果的数量为120 kg ,则他在甲、乙两个批发店中的__________批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的__________批发店购买数量多.6.(2019•湖州中考)某校的甲、乙两位老师同住一小区,该小区与学校相距2400米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校义骑行若干米到达还车点后,立即步行走回学校.已知甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x (分),图1中线段OA 和折线B C D --分别表示甲、乙离开小区的路程y (米)与甲步行时间x (分)的函数关系的图象;图2表示甲、乙两人之间的距离s (米)与甲步行时间x (分)的函数关系的图象(不完整).根据图1和图2中所给信息,解答下列问题:(1)求甲步行的速度和乙出发时甲离开小区的路程;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)在图2中,画出当2530x ≤≤时s 关于x 的函数的大致图象.(温馨提示:请画在答题卷相对应的图上)7.(2019•河南中考)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A 奖品和2个B 奖品共需120元;购买5个A奖品和4个B奖品共需210元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的13.请设计出最省钱的购买方案,并说明理由.8.(2019•宿迁中考)超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?9.(2019•潍坊中考)扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.(1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元?(2)某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克,设水果店一天的利润为w元,当每千克的平均销售价为多少元时,该水果店一天的利润最大,最大利润是多少?(利润计算时,其它费用忽略不计)10.(2019•南充中考)在“我为祖国点赞”征文活动中,学校计划对获得一、二等奖的学生分别奖励一支钢笔,一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元.(1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加一支,单价降低0.1元;超过50支,均按购买50支的单价销售,笔记本一律按原价销售,学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等学生多少人时,购买奖品金额最少,最少为多少元?11.(2019•梧州中考)我市某超市销售一种文具,进价为5元/件.售价为6元/件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为x元/件(x≥6,且x是按0.5元的倍数上涨),当天销售利润为y元.(1)求y与x的函数关系式(不要求写出自变量的取值范围);(2)要使当天销售利润不低于240元,求当天销售单价所在的范围;(3)若每件文具的利润不超过80%,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润.12.(2019•云南中考)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.13.(2019•成都中考)随着5G技术的发展,人们对各类5G产品的使用充满期待,某公司计划在某地区销售一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x(x为正整数)个销售周期每台的销售价格为y元,y与x之间满足如图所示的一次函数关系.(1)求y与x之间的关系式;(2)设该产品在第x个销售周期的销售数量为p(万台),p与x的关系可以用p=12x+12来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?14.(2019•武汉中考)某商店销售一种商品,童威经市场调查发现:该商品的周销售量y(件)是售价x (元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如表:售价x(元/件)50 60 80周销售量y(件)100 80 40周销售利润w(元)1000 1600 1600 注:周销售利润=周销售量×(售价-进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是__________元/件;当售价是__________元/件时,周销售利润最大,最大利润是__________元.(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.专题03 函数实际应用综合题1.(2019•常德中考)某生态体验园推出了甲、乙两种消费卡,设入园次数为x时所需费用为y元,选择这两种卡消费时,y与x的函数关系如图所示,解答下列问题:(1)分别求出选择这两种卡消费时,y关于x的函数表达式;(2)请根据入园次数确定选择哪种卡消费比较合算.【解析】(1)设y甲=k1x,根据题意得5k1=100,解得k1=20,∴y甲=20x;设y乙=k2x+100,根据题意得:20k2+100=300,解得k2=10,∴y乙=10x+100.(2)①y甲<y乙,即20x<10x+100,解得x<10,当入园次数小于10次时,选择甲消费卡比较合算;②y甲=y乙,即20x=10x+100,解得x=10,当入园次数等于10次时,选择两种消费卡费用一样;③y甲>y乙,即20x>10x+100,解得x>10,当入园次数大于10次时,选择乙消费卡比较合算.2.(2019•山西中考)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1,y2与x之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.【解析】(1)当游泳次数为x时,方式一费用为:y1=30x+200,方式二的费用为:y2=40x.(2)由y1<y2得:30x+200<40x,解得x>20时,当x>20时,选择方式一比方式二省钱.3.(2019•台州中考)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系3610h x=-+,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y 关于x 的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.【解析】(1)设y 关于x 的函数解析式是y kx b =+,6153b k b =⎧⎨+=⎩,解得,156k b ⎧=-⎪⎨⎪=⎩, 即y 关于x 的函数解析式是165y x =-+. (2)当0h =时,30610x =-+,得20x ,当0y =时,1065x =-+,得30x =, ∵2030<, ∴甲先到达地面.4.(2019•天门中考)某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克,若一次购买超过5千克,则超过5千克部分的种子价格打8折.设一次购买量为x 千克,付款金额为y 元.(1)求y 关于x 的函数解析式;(2)某农户一次购买玉米种子30千克,需付款多少元? 【解析】(1)根据题意,得①当0≤x ≤5时,y =20x ; ②当x >5,y =20×0.8(x -5)+20×5=16x +20. (2)把x =30代入y =16x +20, ∴y =16×30+20=500; ∴一次购买玉米种子30千克,需付款500元.5.(2019•天津中考)甲、乙两个批发店销售同一种苹果.在甲批发店,不论一次购买数量是多少,价格均为6元/kg .在乙批发店,一次购买数量不超过元50 kg 时,价格为7元/kg ;一次购买数量超过50kg 时,其中有50kg 的价格仍为7元/kg ,超出50 kg 部分的价格为5元/kg .设小王在同一个批发店一次购买苹果的数量为 kg x (0)x >.(1)根据题意填表:(2)设在甲批发店花费1y 元,在乙批发店花费2y 元,分别求1y ,2y 关于x 的函数解析式; (3)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为__________kg ;②若小王在同一个批发店一次购买苹果的数量为120 kg ,则他在甲、乙两个批发店中的__________批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的__________批发店购买数量多.【解析】(1)当x =30时,1306180y =⨯=,2307210y =⨯=,当x =150时,11506900y =⨯=,2507515050850y =⨯+-=(), 故答案为:180,900,210,850. (2)16y x =(0)x >. 当050x <≤时,27y x =;当50x >时,27505(50)y x =⨯+-,即25100y x =+. (3)①∵0x >∴6x 7x ≠, ∴当21y y =时,即6x =5x +100, ∴x =100, 故答案为:100. ②∵x =12050>,∴16120720y =⨯=;25120100=700y =⨯+, ∴乙批发店购买花费少, 故答案为:乙.③∵当x =50时乙批发店的花费是:350360<, ∵一次购买苹果花费了360元,∴x >50, ∴当1360y =时,6x =360,∴x =60, ∴当2360y =时,5x +100=360,∴x =52, ∴甲批发店购买数量多. 故答案为:甲.6.(2019•湖州中考)某校的甲、乙两位老师同住一小区,该小区与学校相距2400米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校义骑行若干米到达还车点后,立即步行走回学校.已知甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x (分),图1中线段OA 和折线B C D --分别表示甲、乙离开小区的路程y (米)与甲步行时间x (分)的函数关系的图象;图2表示甲、乙两人之间的距离s (米)与甲步行时间x (分)的函数关系的图象(不完整).根据图1和图2中所给信息,解答下列问题:(1)求甲步行的速度和乙出发时甲离开小区的路程;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)在图2中,画出当2530x ≤≤时s 关于x 的函数的大致图象.(温馨提示:请画在答题卷相对应的图上)【解析】(1)由题意,得:甲步行的速度是24003080÷=(米/分), ∴乙出发时甲离开小区的路程是8010800⨯=(米). (2)设直线OA 的解析式为:(0)y kx k =≠, ∵直线OA 过点()30,2400A , ∴302400k =,解得80k =,∴直线OA 的解析式为:80y x =, ∴当18x =时,80181440y =⨯=,∴乙骑自行车的速度是()14401810180÷-=(米/分). ∵乙骑自行车的时间为251015-=(分), ∴乙骑自行车的路程为180152700⨯=(米).当25x =时,甲走过的路程是8080252000y x ==⨯=(米),∴乙到达还车点时,甲、乙两人之间的距离是27002000700-=(米). (3)乙步行的速度为:80-5=75(米/分),乙到达学校用的时间为:25+(2700-2400)÷75=29(分), 当25≤x ≤30时s 关于x 的函数的大致图象如图所示.7.2019•河南中考)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A 奖品和2个B 奖品共需120元;购买5个A 奖品和4个B 奖品共需210元. (1)求A ,B 两种奖品的单价;(2)学校准备购买A ,B 两种奖品共30个,且A 奖品的数量不少于B 奖品数量的13.请设计出最省钱的购买方案,并说明理由.【解析】(1)设A 的单价为x 元,B 的单价为y 元, 根据题意,得3212054210x y x y +=⎧⎨+=⎩,∴3015x y =⎧⎨=⎩, ∴A 的单价30元,B 的单价15元;(2)设购买A 奖品z 个,则购买B 奖品为(30-z )个,购买奖品的花费为W 元,由题意可知,z ≥13(30-z ), ∴z ≥152, W =30z +15(30-z )=450+15z , ∵15>0,W 随z 的减小而减小 ∴当z =8时,W 有最小值为570元,即购买A 奖品8个,购买B 奖品22个,花费最少.8.(2019•宿迁中考)超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x 元,每天售出y 件.(1)请写出y 与x 之间的函数表达式;(2)当x 为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w 元,当x 为多少时w 最大,最大值是多少? 【解析】(1)根据题意得,1502y x =-+. (2)根据题意得,()140(50)22502x x +-+=, 解得:150x =,210x =, ∵每件利润不能超过60元, ∴10x =,答:当x 为10时,超市每天销售这种玩具可获利润2250元. (3)根据题意得,()21140(50)30200022w x x x x =+-+=-++()213024502x =--+, ∵102a =-<, ∴当30x <时,w 随x 的增大而增大,∴当20x时,2400w =增大,答:当x 为20时w 最大,最大值是2400元.9.(2019•潍坊中考)扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.(1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元? (2)某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克,设水果店一天的利润为w 元,当每千克的平均销售价为多少元时,该水果店一天的利润最大,最大利润是多少?(利润计算时,其它费用忽略不计)【解析】(1)由题意,设这种水果今年每千克的平均批发价是x 元,则去年的批发价为()1x +元, 今年的批发销售总额为()10120%12-=万元, ∴12000010000010001x x -=+, 整理得2191200x x --=,解得24x =或5x =-(不合题意,舍去), 故这种水果今年每千克的平均批发价是24元. (2)设每千克的平均售价为m 元,依题意 由(1)知平均批发价为24元,则有()4124(180300)3mw m -=-⨯+260420066240m m =-+-, 整理得()260357260w m =--+, ∵600a =-<, ∴抛物线开口向下,∴当35m =元时,w 取最大值,即每千克的平均销售价为35元时,该水果店一天的利润最大,最大利润是7260元.10.(2019•南充中考)在“我为祖国点赞”征文活动中,学校计划对获得一、二等奖的学生分别奖励一支钢笔,一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元. (1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加一支,单价降低0.1元;超过50支,均按购买50支的单价销售,笔记本一律按原价销售,学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等学生多少人时,购买奖品金额最少,最少为多少元? 【解析】(1)设钢笔、笔记本的单价分别为x 、y 元,根据题意可得23384570x y x y +=⎧⎨+=⎩, 解得:106x y =⎧⎨=⎩.答:钢笔、笔记本的单价分别为10元,6元.(2)设钢笔单价为a 元,购买数量为b 支,支付钢笔和笔记本总金额为W 元, ①当30≤b ≤50时,100.1(30)0.113a b b =--=-+,w =b (-0.1b +13)+6(100-b )20.17600b b =-++20.1(35)722.5b =--+, ∵当30b =时,W =720,当b =50时,W =700, ∴当30≤b ≤50时,700≤W ≤722.5. ②当50<b ≤60时, a =8,86(100)2600W b b b =+-=+,∵700720W <≤,∴当30≤b ≤60时,W 的最小值为700元,∴当一等奖人数为50时花费最少,最少为700元.11.(2019•梧州中考)我市某超市销售一种文具,进价为5元/件.售价为6元/件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为x 元/件(x ≥6,且x 是按0.5元的倍数上涨),当天销售利润为y 元. (1)求y 与x 的函数关系式(不要求写出自变量的取值范围); (2)要使当天销售利润不低于240元,求当天销售单价所在的范围;(3)若每件文具的利润不超过80%,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润.【解析】(1)由题意,y =(x -5)(100-60.5x -×5)=-10x 2+210x -800, 故y 与x 的函数关系式为:y =-10x 2+210x -800. (2)要使当天利润不低于240元,则y ≥240, ∴y =-10x 2+210x -800=-10(x -10.5)2+302.5=240,解得,x1=8,x2=13,∵-10<0,抛物线的开口向下,∴当天销售单价所在的范围为8≤x≤13.(3)∵每件文具利润不超过80%,∴50.8xx-≤,得x≤9,∴文具的销售单价为6≤x≤9,由(1)得y=-10x2+210x-800=-10(x-10.5)2+302.5,∵对称轴为x=10.5,∴6≤x≤9在对称轴的左侧,且y随着x的增大而增大,∴当x=9时,取得最大值,此时y=-10(9-10.5)2+302.5=280,即每件文具售价为9元时,最大利润为280元.12.(2019•云南中考)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.【解析】(1)当6≤x≤10时,设y与x的关系式为y=kx+b(k≠0),根据题意得1000620010k bk b=+⎧⎨=+⎩,解得2002200kb=-⎧⎨=⎩,∴y=-200x+1200,当10<x≤12时,y=200,故y与x的函数解析式为:y=2002200(610) 200(1012)x xx-+≤≤⎧⎨<≤⎩.(2)由已知得:W=(x-6)y,当6≤x ≤10时,W =(x -6)(-200x +1200)=-200(x -172)2+1250, ∵-200<0,抛物线的开口向下, ∴x =172时,取最大值, ∴W =1250,当10<x ≤12时,W =(x -6)•200=200x -1200, ∵y 随x 的增大而增大,∴x =12时取得最大值,W =200×12-1200=1200, 综上所述,当销售价格为8.5元时,取得最大利润,最大利润为1250元.13.(2019•成都中考)随着5G 技术的发展,人们对各类5G 产品的使用充满期待,某公司计划在某地区销售一款5G 产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x (x 为正整数)个销售周期每台的销售价格为y 元,y 与x 之间满足如图所示的一次函数关系. (1)求y 与x 之间的关系式;(2)设该产品在第x 个销售周期的销售数量为p (万台),p 与x 的关系可以用p =12x +12来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?【解析】(1)设函数的解析式为:y =kx +b (k ≠0),由图象可得,700055000k b k b +=⎧⎨+=⎩, 解得5007500k b =-⎧⎨=⎩,∴y 与x 之间的关系式:y =-500x +7500. (2)设销售收入为w 万元,根据题意得,w=yp=(-500x+7500)(12x+12),即w=-250(x-7)2+16000,∴当x=7时,w有最大值为16000,此时y=-500×7+7500=4000(元).答:第7个销售周期的销售收入最大,此时该产品每台的销售价格是4000元.14.(2019•武汉中考)某商店销售一种商品,童威经市场调查发现:该商品的周销售量y(件)是售价x (元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如表:售价x(元/件)50 60 80周销售量y(件)100 80 40周销售利润w(元)1000 1600 1600 注:周销售利润=周销售量×(售价-进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是__________元/件;当售价是__________元/件时,周销售利润最大,最大利润是__________元.(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.【解析】(1)①依题意设y=kx+b,则有50100 6080k bk b+=⎧⎨+=⎩,解得2200 kb=-⎧⎨=⎩,所以y关于x的函数解析式为y=-2x+200.②该商品进价是50-1000÷100=40,设每周获得利润w=ax2+bx+c,则有2500501000 3600601600 6400801600a b ca b ca b c++=⎧⎪++=⎨⎪++=⎩,解得22808000 abc=-⎧⎪=⎨⎪=-⎩,∴w=-2x2+280x-8000=-2(x-70)2+1800,∴当售价是70元/件时,周销售利润最大,最大利润是1800元;故答案为:40,70,1800;(2)根据题意得,w=(x-40-m)(-2x+200)=-2x2+(280+2m)x-8000-200m,∵对称轴x=1402m+,∴①当1402m+<65时(舍),②当1402m+≥65时,x=65时,w求最大值1400,解得:m=5.。

二次函数的应用(解决实际问题)带答案)

二次函数的应用(解决实际问题)带答案)

二次函数的应用1.如图,假设篱笆(虚线部分)的长度16m ,则所围成矩形ABCD 的最大面积是( ) A .60m 2 B .63m 2 C .64m 2 D .66m 2【答案】C .考点:1.二次函数的应用;2.应用题;3.二次函数的最值;4.二次函数的最值.2.厂为扬州三月经贸旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度(m)h 与飞行时间(s)t 的关系式是252012h t t =-++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A .3sB .4sC .5sD .6s【答案】B .考点:二次函数的应用. 3.如图,正三角形ABC 的边长为,在三角形中放入正方形DEMN 和正方形EFPH ,使得D 、E 、F在边CB 上,点P 、N 分别在边CA 、AB 上,设两个正方形的边长分别为m ,n ,则这两个正方形的面积和的最小值为A.B.C.3 D.【答案】D【解析】【分析】设正方形DEMN、正方形EFPH的边长分别为m、n,它们的面积和为S,根据等边三角形的性质得∠A=∠B=60°,AB=3+,利用含30°的直角三角形三边的关系得BD=DN=m,CF=PF=n,则m+m+n+n=3+,所以n=3-m,S=m2+n2=m2+(3-m)2=2(m-)2+,接着确定m的取值范围,然后根据二次函数的性质求出S的最小值.【详解】设正方形DEMN、正方形EFPH的边长分别为m、n,它们的面积和为S,∵△ABC为等边三角形,∴∠A =∠B=60°,AB=3+,在Rt△ADN中,BD=DN=m,在Rt△BPF中,CF=PF=n,∵AD+DE+EF+BF=AB,∴m+m+n+n=3+,∴m+n=3,∴n=3-m,∴S=m2+n2=m2+(3-m)2=2(m-)2+,当点M落在AC上,则正方形PHEC的边长最小,正方形DNME的边长最大,如图,在Rt△ADN中,BD=DN,CM=DN,∴DN+DN=3+,解得DN=3-3,在Rt△CPF中,CF=PF,∴(3-3)+3-3+EF+PF=3+,解得PF=6-9,∴6-9≤m≤3-3,∴当m=时,S最小,S的最小值为,故答案选D.4.把一个物体以初速度v0(米/秒)竖直向上抛出,在不计空气阻力的情况下,物体的运动路线是一条抛物线,且物体的上升高度h(米)与抛出时间t(秒)之间满足:h=v0t- gt2(其中g是常数,取10米/秒2).某时,小明在距地面2米的O点,以10米/秒的初速度向上抛出一个小球,抛出2.1秒时,该小球距地面的高度是( ) A.1.05米B.-1.05米C.0.95米D.-0.95米【答案】C【解析】【分析】把t=2.1代入h=v0t-gt2,求出h的值,然后加2即可.【详解】把t=2.1代入h=v0t-gt2得,h=10×2.1-×10×2.12=-1.05(米),-1.05+2=0.95(米).故选C.5.点为线段上的一个动点,,分别以和为一边作等边三角形,用表示这两个等边三角形的面积之和,下列判断正确的是()A.当为的三等分点时,最小B.当是的中点时,最大C.当为的三等分点时,最大D.当是的中点时,最小【答案】D【解析】【分析】根据四个选择项,可知要判断的问题是C在AB的什么位置时,S有最大或最小值.由于点C是线段AB上的一个动点,可设AC=x,然后用含x的代数式表示S,得到S与x的函数关系式,最后根据函数的性质进行判断.【详解】设AC=x,则CB=1-x,S=x2+(1-x)2,即S=x2-x+=(x-)2+,∵a=>0,∴当x=时,S最小,此时,C是AB的中点,故选D.【点睛】本题考查了二次函数的最值,根据题意建立二次函数的关系式,然后根据二次根式的性质进行解答是关键.6.抛物线p :y=ax 2+bx+c 的顶点为C ,与x 轴相交于A 、B 两点(点A 在点B 左侧),点C 关于x 轴的对称点为C′,我们称以A 为顶点且过点C′,对称轴与y 轴平行的抛物线为抛物线p 的“梦之星”抛物线,直线AC′为抛物线p 的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y =x 2+2x +1和y =2x +2,则这条抛物线的解析式为_____________________. 【答案】223y x x =--. 【解析】试题分析:由题意可得,抛物线y =x 2+2x +1和直线y =2x +2的交点坐标就是点A 、C′的坐标,把y =x 2+2x +1和y =2x +2联立组成方程组,解得方程组的解即可的得A (—1,0)、C′(1,4).又因y=ax 2+bx+c 的顶点为C 与C′关于x 轴对称,所以C (1,-4). y=ax 2+bx+c 的顶点为C (1, —4)且过点A (—1,0).可设抛物线的解析式为y=a (x —1)2 —4,把点A (—1,0)代入即可求得a=1,所以y=(x —1)2 —4,即223y x x =--.考点:阅读理解题;求函数的交点坐标;求函数的解析式.学科网7. 某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x 棵橙子树.(1)直接写出平均每棵树结的橙子个数y (个)与x 之间的关系; (2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?【答案】(1)6005y x =-;(2)果园多种10棵橙子树时,可以使橙子的总产量最大,最大为60500个. 【分析】(1)根据每多种一棵树,平均每棵树就会少结5个橙子列式即可;(2)根据题意列出函数解析式,利用配方法把二次函数化为顶点式,根据二次函数的性质进行解答即可. 【解析】(1)平均每棵树结的橙子个数y (个)与x 之间的关系为:y =600﹣5x (0≤x <120);(2)设果园多种x 棵橙子树时,可使橙子的总产量为w ,则w =(600﹣5x )(100+x )=25(10)60500x --+ 则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个. 考点:二次函数的应用.8.某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m (30<m ≤100)人时,每增加1人,人均收费降低1元;超过m 人时,人均收费都按照m 人时的标准.设景点接待有x 名游客的某团队,收取总费用为y 元.(1)求y 关于x 的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m 的取值范围.【答案】(1)y =120 (030)[120(30)] (30)[120(30)] (100)x x x x x m m x m x <≤⎧⎪--<≤⎨⎪--<≤⎩;(2)30<m ≤75.【分析】(1)根据收费标准,分0<x ≤30,30<x ≤m ,m <x ≤100分别求出y 与x 的关系即可.(2)由(1)可知当0<x ≤30或m <x <100,函数值y 都是随着x 是增加而增加,30<x ≤m 时,2150y x x =-+,根据二次函数的性质即可解决问题.【解析】(1)y =120 (030)[120(30)] (30)[120(30)] (100)x x x x x m m x m x <≤⎧⎪--<≤⎨⎪--<≤⎩.(2)由(1)可知当0<x ≤30或m <x <100,函数值y 都是随着x 是增加而增加,当30<x ≤m 时,22150(75)5625y x x x =-+=--+,∵a =﹣1<0,∴x ≤75时,y 随着x 增加而增加,∴为了让收取的总费用随着团队中人数的增加而增加,∴30<m ≤75.考点:二次函数的应用;分段函数;最值问题;二次函数的最值9. 某宾馆拥有客房100间,经营中发现:每天入住的客房数y (间)与其价格x (元)(180≤x ≤300)满足一次函数关系,部分对应值如表:x (元) 180 260 280 300 y (间) 100 60 50 40(1)求y 与x 之间的函数表达式;(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每日空置的客房需支出各种费用60元,当房价为多少元时,宾馆当日利润最大?求出最大值.(宾馆当日利润=当日房费收入﹣当日支出) 【答案】(1)11902y x =-+(180≤x ≤300);(2)当房价为210元时,宾馆当日利润最大,最大利润为8450元.【分析】(1)设一次函数表达式为y =kx +b (k ≠0),由点的坐标(180,100)、(260,60)利用待定系数法即可求出该一次函数表达式;(2)设房价为x 元(180≤x ≤300)时,宾馆当日利润为w 元,依据“宾馆当日利润=当日房费收入﹣当日支出”即可得出w 关于x 的二次函数关式,根据二次函数的性质即可解决最值问题.【解析】(1)设一次函数表达式为y=kx+b(k≠0),依题意得:18010016060k bk b+=⎧⎨+=⎩,解得:12190kb⎧=-⎪⎨⎪=⎩,∴y与x之间的函数表达式为11902y x=-+(180≤x≤300).(2)设房价为x元(180≤x≤300)时,宾馆当日利润为w元,依题意得:w=(12-x+190)(x﹣100)﹣60×[100﹣(12-x+190)]=21210136002x x-+-=21(210)84502x--+,∴当x=210时,w取最大值,最大值为8450.答:当房价为210元时,宾馆当日利润最大,最大利润为8450元.考点:二次函数的应用;二次函数的最值;最值问题.10.小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:售价(元/件)100 110 120 130 …月销量(件)200 180 160 140 …已知该运动服的进价为每件60元,设售价为x元.(1)请用含x的式子表示:①销售该运动服每件的利润是元;②月销量是件;(直接填写结果)(2)设销量该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?【答案】(1)①(x-60);②(-2x + 400)(2)售价为每件130元时,当月的利润最大为9800元试题解析:(1)①(x-60);②(-2x + 400)(2)依题意可得:y=(x-60)×(-2x + 400= -2x2 + 520x – 24000= -2(x-130)2 + 9800当x=130时,y有最大值9800所以售价为每件130元时,当月的利润最大为9800元考点:二次函数的应用.11.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)设每天盈利w元,求出w关于x的函数关系式,并说明每天盈利是否可以达到8000元?(6分)(2)若该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?(6分) 【答案】(1)(10)(50020)y x x =+-,不能;(2)5.试题解析:(1)设每千克涨价x 元,利润为y 元,由题意,得:215(10)(50020)20()61252y x x x =+-=--+ ∴a =﹣20<0,∴抛物线开口向下,当x =7.5时,y 最大值=6125,∴每天盈利不能达到8000元. (2)当y =6000时,6000(10)(50020)x x =+-,解得:110x =,25x =, ∵要使顾客得到实惠,∴x =5. 答:每千克应涨价为5元. 考点:二次函数的应用.12.技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一个点)的路线是抛物线,已知起跳点A 距地面的高度为1米,弹跳的最大高度距地面4.75米,距起跳点A 的水平距离为2.5米,建立如图所示的平面直角坐标系, (1)求演员身体运行路线的抛物线的解析式?(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?说明理由.【答案】(1)23315y x x =-++;(2)能,理由见试题解析. 【解析】试题分析:(1)由题意可知二次函数过A (0,1),顶点(31924,),用顶点式即可求出二次函数的解析式; (2)当4x =时代入二次函数可得点B 的坐标在抛物线上.试题解析:(1)由题意可知二次函数过A (0,1),顶点(31924,),设二次函数解析式为:2519()24y a x =-+, 把A (0,1)代入得:2519144a =+,解得:35a =-,∴23519()524y x =--+,即23315y x x =-++;(2)能成功表演.理由是:当4x =时,234341 3.45y =-⨯+⨯+=.即点B (4,3.4)在抛物线23315y x x =-++上,因此,能表演成功.考点:二次函数的应用.13.某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y (单位:元)与售价x (单位:元/件)之间的函数解析式. (2)当销售价定为45元时,计算月销售量和销售利润.(3)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10000元,销售价应定为多少? (4)当销售价定为多少元时会获得最大利润?求出最大利润.【答案】(1)2105006000y x x =-++;(2)550件,8250元;(3)50元;(4)65元,12250元. 【解析】试题分析:(1)根据设每个书包涨价x 元,由这种书包的售价每上涨1元,其销售量就减少10个,列出函数关系式;(2)销售价为45元,即上涨了5元,所以5x =,代入即可月销售量和销售利润; (3)令10000y =,解方程即可;(4)用配方法求出二次函数的最大值即可. 试题解析:(1)∵每个书包涨价x 元,∴2(4030)(60010)105006000y x x x x =-+-=-++, 答:y 与x 的函数关系式为:2105006000y x x =-++;(2)销售价为45元,即上涨了5元,所以月销量=600-10×5=550(件),销售利润=2105500560008250y =-⨯+⨯+=(元);考点:二次函数的应用.14.为满足市场需求,某超市在五月初五“端午节”来领前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式; (2)当每盒售价定为多少元时,每天销售的利润P (元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?【答案】(1)201600y x =-+;(2)售价定为60元时,每天销售的利润P (元)最大,最大利润是8000元;(3)440. 【解析】试题分析:(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P 与x 的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x 的取值范围,再根据(1)中所求得的销售量y (盒)与每盒售价x (元)之间的函数关系式即可求解.考点:二次函数的应用.15.已知某隧道截面积拱形为抛物线形,拱顶离地面10米,底部款20米.(1)建立如图1所示的平面直角坐标系,使y 轴为抛物线的对称轴,x 轴在地面上.求这条抛物线的解析式;(2)维修队对隧道进行维修时,为了安全,需要在隧道口搭建一个如图2所示的矩形支架AB -BC -CD (其中B 、C 两点在抛物线上,A .D 两点在地面上),现有总长为30米的材料,那么材料是否够用? (3)在(2)的基础上,若要求矩形支架的高度AB 不低于5米,已知隧道是双向行车道,正中间用护栏隔开,则同一方向行驶的两辆宽度分别为4米,高度不超过5米的车能否并排通过隧道口?(护栏宽度和两车间距忽略不计)【答案】(1)211010y x =-+;(2)够用;(3)不能.试题解析:(1)设2y ax c =+,由题意抛物线经过点(10,0),(0,10),则100010a c c +=⎧⎨=⎩,解得:11010a c ⎧=-⎪⎨⎪=⎩, 故抛物线的解析式为211010y x =-+; (2)设点C 的坐标为(m ,n ),则所需材料长度=2221112222()210210(5)251055m n m m m m m +=+⨯-+⨯=-++=--+, ∵105-<,∴当m =5时,所需材料最多,为25米,∴总长为30米的材料够用;(3)当5n =时,2110510m -+=,解得52m =, ∵5224<⨯,∴高度不超过5米的车不能并排通过隧道口. 考点:1.二次函数综合题;2.二次函数的应用.学科网。

二次函数与实际问题典型例题

二次函数与实际问题典型例题

二次函数与实际问题典型例题摘要:一、二次函数的应用背景1.二次函数在实际问题中的重要性2.常见实际问题与二次函数的关系二、二次函数典型例题解析1.例题一:抛物线与直角三角形的面积问题2.例题二:抛物线与最值问题3.例题三:抛物线与交点问题4.例题四:抛物线与对称性问题三、解决二次函数实际问题的方法与技巧1.利用二次函数的基本性质2.代数法与几何法的结合3.合理运用已知条件四、总结1.二次函数与实际问题的紧密联系2.解决二次函数实际问题的策略与方法正文:二次函数在实际问题中有着广泛的应用,它不仅可以帮助我们理解许多现实中的现象,还能为解决实际问题提供有力的工具。

本文将通过解析几道典型的二次函数实际问题例题,来探讨如何巧妙地运用二次函数来解决实际问题。

首先来看一道抛物线与直角三角形的面积问题。

题目描述:已知抛物线y = ax^2 + bx + c 与x 轴相交于A、B 两点,且AB = 4,点C 到AB 的距离为h。

求抛物线与三角形ABC 的面积。

解析:通过将抛物线与x 轴相交的点A、B 坐标代入解析式,可以求得a、b、c 的值,进一步计算出顶点坐标。

由于已知AB = 4,可以根据顶点到AB 的距离公式求得h,最后利用三角形面积公式计算出结果。

接下来是抛物线与最值问题。

题目描述:已知抛物线y = ax^2 + bx + c 在x = 1 处取得最小值,求a、b、c 的值。

解析:根据抛物线的性质,可以知道当a > 0 时,抛物线开口向上,此时可以通过配方法将解析式转化为顶点式,从而求得最小值点的坐标。

当a < 0 时,抛物线开口向下,此时可以通过配方和换元法求得最值。

再来一道抛物线与交点问题。

题目描述:已知抛物线y = ax^2 + bx + c 与直线y = mx + n 相交于不同的两点,求a、b、c、m、n 的关系。

解析:将直线方程代入抛物线方程,消去y 得到一个关于x 的二次方程,通过求解该方程可以得到交点的横坐标,再代入直线方程求得纵坐标,从而得到交点坐标。

6.题型六 函数的实际应用

6.题型六  函数的实际应用

题型六函数的实际应用1. 某超市以10元/个购进一批新型儿童玩具,当以17元/个出售时,每天可以售出50个.元旦期间,在确保不亏本的前提下超市采取降价促销的方式招揽顾客,经调查发现,当售价每降低0.5元时,每天可多卖出5个玩具,设售价降低了x元,每天可获利润为w元.(1)求w与x之间的函数关系式;(2)每件玩具的售价定为多少元时,商店每天获得的利润最大,最大利润是多少?此时每天的销售量是多少个?2. 游泳作为一项健康的有氧运动,越来越受到人们的欢迎.某游泳馆的普通卡售价30元/张,寒假为了促销,新推出两种优惠卡:①金卡售价900元/张,每次凭卡不再收费.②银卡售价300元/张,每次凭卡另收10元.普通卡正常出售,两种优惠卡仅限寒假使用,不限次数.设游泳x次时,所需总费用为y元.(1)分别写出选择银卡、普通卡消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点B、C、D的坐标;(3)根据三种方案,请你写出经济实惠的选择方案.第2题图3. (2019温州)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩,景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.4. 某地甲、乙两家超市出售同样的保温壶和水杯,保温壶和水杯在两家超市的售价一样.已知购买1个保温壶和2个水杯要花费70元,购买2个保温壶和3个水杯要花费130元.(1)求一个保温壶与一个水杯售价各是多少元?(2)为了迎接“五一劳动节”,两家超市都在搞促销活动,甲超市规定:两种商品都打九折;乙超市规定:买一个保温壶赠送一个水杯.若某单位想要购买保温壶和水杯共120个,且购买保温壶不超过50个,如果只能在一家超市购买,请问选择哪家超市购买更实惠?请说明理由.5. 为了美化环境,建设宜居城市,某市准备在一个广场上种植甲、乙两种花卉.经市场调查,乙种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,甲种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;(2)花卉种植面积为200 m2时,计算种植甲、乙两种花卉的费用;(3)广场上甲、乙两种花卉的种植面积共1200 m2,若乙种花卉的种植面积不少于200 m2,且不超过甲种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?第5题图6. 已知A、B两地相距2.4 km,甲骑车匀速从A地前往B地,如图表示甲骑车过程中离A地的路程y(km)与行驶所用的时间x(min)之间的关系.根据图象解答下列问题:(1)甲骑车的速度是________ km/min;(2)若在甲出发时,乙在甲前方0.6 km处,两人均沿同一路线同时出发匀速前往B地,在第3分钟甲追上了乙,两人到达B地后停止.①请在下面同一平面直角坐标系中画出乙离A地的距离y乙(km)与所用时间x(min)的关系的大致图象;②乙在第几分钟到达B地?③两人在整个行驶过程中,何时相距0.2 km?第6题图7. (2019武汉)某商店销售一种商品,经市场调查发现,该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价,周销售量,周销售利润w(元)的三组对应值如下表:注:周销售利润=周销售量×(售价-进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是________元/件;当售价是____元/件时,周销售利润最大,最大利润是________元;(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.8. 某宾馆共有80间客房,现规定每间房的价格不低于60元且不超过180元,对于顾客所入住的房间,宾馆每天需支出20元的其他费用,每天顾客入住房间数y(间)与房间单价x(元)之间满足的函数关系如图所示.(1)求y与x之间的函数关系式;(2)若宾馆某天客房的营业额为4250元,则这天每间客房的价格是多少元?(3)房价定为多少元时,宾馆每天获利最大?最大利润是多少?第8题图9. 某经销商去批发市场买某种水果,已知这种水果的批发量在20千克~50千克之间(含20千克和50千克)时,每千克的批发价是5元;若超过50千克时,批发的这种水果全部打八折.(1)求当所付的金额为320元时,批发量是多少千克;(2)此种水果的日销售量y(千克)受零售价x(元/千克)的影响较大,为此该经销商试销一周获得如下数据:根据以上数据求y与x之间的函数关系式;(3)如果每天批发的水果能够全部销售完,且当日零售价不变,那么零售价定为多少时,该经销商销售这种水果的当日利润最大?最大日利润为多少元?此时进货量是多少?参考答案题型六函数的实际应用1. 解:(1)由题意得,w=(50+10x).(17-10-x)=-10x2+20x+350,∴w=-10x2+20x+350;(2)由(1)知w =-10x 2+20x +350=-10(x -1)2+360, 由于进价是10元/个,因此价格不能低于10元,故0<x <7, ∵-10<0,∴当x =1时,w 最大,最大值为360.∴此时售价为17-1=16(元/个),每天的销售量为50+10×1=60(个).答:每件玩具的售价定为16元时,商店每天获得的利润最大,最大利润是360元,此时每天的销售量是60个.2. 解:(1)银卡:y =300+10x , 普通卡:y =30x ; (2)金卡:y =900,由题意得:当300+10x =900时, 解得x =60,则y =900, 当300+10x =30x 时, 解得x =15,则y =450, 当30x =900时, 解得x =30,则y =900,∴点B ,C ,D 的坐标为(15,450),(60,900),(30,900); (3)如题图所示:由点B ,D ,C 的坐标可知:当0<x <15时,普通卡消费更划算;当x =15时,银卡、普通卡费用相同,均比金卡划算;当15<x <60时,银卡消费更划算;当x =60时,金卡、银卡费用相同,均比普通卡划算;当x >60时,金卡消费更划算.3. 解:(1)设该旅行团中成人x 人,少年y 人,根据题意,得⎩⎪⎨⎪⎧x +y +10=32x =y +12,解得⎩⎪⎨⎪⎧x =17y =5.答:该旅行团中成人17人,少年5人. (2)①∵成人8人可免费带8名儿童,∴所需门票的总费用为:100×8+100×0.8×5+100×0.6×(10-8)=1320(元); ②设可以安排成人a 人、少年b 人带队,则1≤a ≤17,1≤b ≤5. 当10≤a ≤17时,(ⅰ)当a =10时,100×10+100×0.8≤1200,∴b ≤52,∴b 最大值=2,此时a +b =12,费用为1160元; (ⅱ)当a =11时,100×11+100×0.8≤1200,∴b ≤54,∴b 最大值=1,此时a +b =12,费用为1180元;(ⅲ)当a ≥12时,100a ≥1200,即成人门票至少需要1200元,不合题意,舍去. 当1≤a <10时,(ⅰ)当a =9时,100×9+100×0.8+60≤1200,∴b ≤3, ∴b 最大值=3,此时a +b =12,费用为1200元;(ⅱ)当a =8时,100×8+100×0.8+2×60≤1200,∴b ≤72,∴b 最大值=3,此时a +b =11<12.不合题意,舍去; (ⅲ)同理,当a <8时,a +b <12,不合题意,舍去.综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.4. 解:(1)设一个保温壶售价是a 元,一个水杯售价是b 元,根据题意得⎩⎪⎨⎪⎧a +2b =702a +3b =130,解得⎩⎪⎨⎪⎧a =50b =10,答:一个保温壶售价是50元,一个水杯售价是10元; (2)设购买x 个保温壶(0<x ≤50),付款金额为W 元, 甲超市:W 甲=0.9[50x +10(120-x )]=36x +1080, 乙超市:W 乙=50x +10(120-2x )=30x +1200, 当36x +1080=30x +1200时,解得x =20,∴当x <20时,W 甲<W 乙,当20<x ≤50 时,W 甲>W 乙, ∴当购买保温壶少于20个时,选择甲超市更实惠; 当购买保温壶等于20个时,两个超市优惠活动效果相同; 当购买保温壶多于20个而不超过50个时,选择乙超市更实惠.5. 解:(1)y =⎩⎪⎨⎪⎧130x (0≤x ≤300)80x +15000(x >300);(2)种植甲种花卉的费用为:200×100=20000元;种植乙种花卉的费用为200×130=26000元; 答:种植甲种花卉的费用为20000元,种植乙种花卉的费用为26000元;(3)设总费用为W 元,乙种花卉种植面积为a m 2,则甲种花卉种植面积为(1200-a ) m 2;依题意得:200≤a ≤2(1200-a ),即200≤a ≤800,当200≤a ≤300时,W =130a +100(1200-a )=30a +120000; 故当a =200时,W min =126000, 当300<a ≤800时,W =80a +15000+100(1200-a )=-20a +135000; 故当a =800时,W min =119000. ∵119000<126000, ∴当a =800时总费用最少.答:当甲种花卉种植面积为400 m 2,乙种花卉种植面积为800 m 2时,种植总费用最少,最少总费用为119000元.6. 解:(1)0.4;【解法提示】根据图象可知,甲骑行2.4 km 用了6 min ,∴速度是2.4÷6=0.4 km /min .(2)画出图象如解图;第6题解图(3)设甲的函数的表达式为y 甲=kx (k ≠0),把x =6,y =2.4代入求得k =0.4,故函数表达式为y 甲=0.4x ,把x =3代入y =0.4x ,得y =1.2,设乙的函数表达式为y 乙=k ′x +b (k ′≠0),把x =0,y =0.6;x =3,y =1.2.代入得⎩⎪⎨⎪⎧b =0.6,3k ′+b =1.2,解得⎩⎪⎨⎪⎧k ′=0.2,b =0.6. 故函数表达式为y 乙=0.2x +0.6,把y =2.4代入y 乙=0.2x +0.6得x =9,∴乙在第9分钟到达B 地;(4)分为以下三种情况:①相遇前是y 乙-y 甲=0.2,即0.2x +0.6-0.4x =0.2,解得x =2,∴在第2分钟两人相距0.2 km ;②相遇后是y 甲-y 乙=0.2,即0.4x -(0.2x +0.6)=0.2,解得x =4,∴在第4分钟两人相距0.2 km ;③∵乙在甲前方0.6 km 处出发,且甲先到,故在y =2.2 km 处时,甲乙相距0.2 km ,把y =2.2代入y 乙=0.2x +0.6得x =8,∴第8分钟时两人相距0.2 km .综上所述,当两人在整个行驶过程中相距0.2 km 时,时间为2分钟或4分钟或8分钟.7. 解:(1)①设y =kx +b ,将x =50,y =100;x =60,y =80代入上式解得k =-2,b =200,故y =-2x +200;②40,70,1800;【解法提示】进价=50-1000÷100=40,利润w =(-2x +200)×(x -40)=-2x 2+280x -8000=-2(x -70)2+1800,∴当售价为70元/件时,最大利润w max =1800 元.(2)由题意可知w =(-2x +200)×(x -40-m )=-2x 2+(280+2m )x -8000-200m ,对称轴为x =140+m 2, ∵m >0,∴140+m 2>70>65, ∴当x =65时,w 取最大值1400,即(-2×65+200)×(65-40-m )=1400,解得m =5.8. 解:(1)设y 与x 之间的函数关系式为y =kx +b (k ≠0),将(70,75)、(80,70)代入得⎩⎪⎨⎪⎧70k +b =75,80k +b =70,解得⎩⎪⎨⎪⎧k =-0.5,b =110. 即y 与x 之间的函数关系式是y =-0.5x +110;(2)设宾馆每天客房的营业额为z ,则z =x (-0.5x +110)=-0.5x 2+110x ,将z =4250代入,得4250=-0.5x 2+110x ,解得x 1=170,x 2=50(舍),答:这天每间客房的价格是170元;(3)设宾馆每天获得的利润为w 元,w =(x -20)(-0.5x +110)=-0.5x 2+120x -2200=-0.5(x -120)2+5000,∵-0.5<0,60≤x ≤180,∴当x =120时,w 取得最大值,此时w =5000.答:房价定为120元时,宾馆每天获利最大,最大利润是5000元.9. 解:(1)∵50×5=250<320,∴当所付的金额为320元时,批发量超过50千克.设此时的批发量为z 千克,根据题意可得5×0.8z =320,解得z =80.∴当所付的金额为320元时,批发量是80千克;(2)由表格数据可知,y 与x 之间满足一次函数关系,设y =kx +b ,将点(5,90)、(6,60)代入,得⎩⎪⎨⎪⎧5k +b =90,6k +b =60,解得⎩⎪⎨⎪⎧k =-30,b =240, ∴y =-30x +240.∴y 与x 之间的函数关系式为y =-30x +240;(3)①当日销售量y 满足20≤y ≤50时,设日利润为W 1,则W 1=(x -5)·y =(x -5)(-30x +240)=-30x 2+390x -1200=-30(x -6.5)2+67.5(193≤x ≤223). ∴当x =6.5时,W 1最大,最大值为67.5,此时y =45;②当日销售量y 满足y >50时,设日利润为W 2,则W 2=(x -5×0.8)·y =(x -4)(-30x +240)=-30x 2+360x -960=-30(x -6)2+120(4<x <193). ∴当x =6时,W 2最大,最大值为120,此时y =60.∵67.5<120,∴当零售价定为6元/千克时,该经销商销售这种水果的当日利润最大,最大日利润为120元,此时进货量为60千克.。

初三数学《三角函数的实际应用》题目

初三数学《三角函数的实际应用》题目

专题08《三角函数的实际应用》题型一、利用仰角和俯视解决问题【例1】如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26,).【变式1-1】小明在楼高AB=15米的楼顶A处测得一电视塔底部C的俯角为31°,测得塔顶D的仰角为52°,求楼顶A到塔顶D的距离(结果保留整数).(参考数据:sin31°=0.52,cos31°=0.86,tan31°=0.80,sin52°=0.79,cos52°=0.62,tan52°=1.28)【变式1-2】如图,C地在A地的正东方向,因有大山阻隔,由A地到C地需绕行B地.已知B地位于A地北偏东67°方向,距离A地520km,C地位于B地南偏东30°方向.若打通穿山隧道,建成两地直达高铁,求A地到C地之间高铁线路的长.(结果保留整数)(参考数据:sin67°≈,cos67°≈,tan67°≈,≈1.73)【变式1-3】如图,两幢建筑物AB和CD,AB⊥BD,CD⊥BD,AB=15m,CD=20m.AB 和CD之间有一景观池,小双在A点测得池中喷泉处E点的俯角为42°,在C点测得E点的俯角为45°,点B、E、D在同一直线上.求两幢建筑物之间的距离BD.(结果精确到0.1m)【参考数据:sin42°=0.67,cos42°=0.74,tan42°=0.90】【例2】如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE =39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到0.1m).(参考数据:tan31°≈,sin31°≈,tan39°≈,sin39°≈)【变式2-1】为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置一个平面镜E,使得B,E,D在同一水平线上(如图所示).该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED),在F处测得旗杆顶A 的仰角为45°,平面镜E的俯角为67°,测得FD=2.4米.求旗杆AB的高度约为多少米?(结果保留整数,参考数据:sin67°≈,cos67°≈,tan67°≈)【变式2-2】如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D 与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)【变式2-3】某公园的人工湖边上有一座假山,假山顶上有一竖起的建筑物CD,高为10米,数学小组为了测量假山的高度DE,在公园找了一水平地面,在A处测得建筑物点D(即山顶)的仰角为35°,沿水平方向前进20米到达B点,测得建筑物顶部C点的仰角为45°,求假山的高度DE.(结果精确到1米,参考数据:sin35°≈,cos35°≈,tan35°≈)题型二、方位角的应用【例1】钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A 、B ,B 船在A 船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A 的东北方向,B 的北偏东15°方向有一我国渔政执法船C ,求此时船C 与船B 的距离是多少.(结果保留根号)【变式1-1】如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB ,栈道AB 与景区道路CD 平行.在C 处测得栈道一端A 位于北偏西42︒方向,在D 处测得栈道另一端B 位于北偏西32︒方向.已知120CD m =,80BD m =,求木栈道AB 的长度(结果保留整数).(参考数据:17sin 3232︒≈,17cos3220︒≈,5tan 328︒≈,27sin 4240︒≈,3cos 424︒≈,9tan 42)10︒≈【变式1-2】如图,位于A 处的海上救援中心获悉:在其北偏东68︒方向的B 处有一艘渔船遇险,在原地等待营救.该中心立即把消息告知在其北偏东30︒且距离A 点20海里的C 处救生船,此时,遇险船在救生船的正东方向B 处,现救生船沿着航线CB 前往B 处救援,求救生船到达B 处行驶的距离?(参考数据:sin 680.90︒≈,cos680.36︒≈,tan 68 2.50︒≈,1.7)≈【例2】我国北斗导航装备的不断更新,极大方便人们的出行.某中学从A 地出发,组织学生利用导航到B 、C 两个地区进行研学考察活动,出发时,发现C 地恰好在A 地正北方向,且距离A 地15.3千米.但是导航显示路线应沿北偏东45°方同走到B 地,再沿北偏西37°方向走一段距离才能到达C地,求B,C两地的距离(精确到1千米).(参考数据sin37°≈0.6,cos37°≈0.8,tan37°≈0.7)【变式2-1】某区域平面示意图如图,点O在河的一侧,AC和BC表示两条互相垂直的公路.甲勘测员在A处测得点O位于北偏东45°,乙勘测员在B处测得点O位于南偏西73.7°,测得AC=840m,BC=500m.请求出点O到BC的距离.参考数据:sin73.7°≈,cos73.7°≈,tan73.7°≈【变式2-2】码头A、B位于东西走向的河岸线l上,一游轮在P处测得码头A在其北偏东70°,游轮向东航行10分钟后到达Q处,此时测得码头B在其北偏东35°.已知游轮的速度为30千米/小时,两码头A、B相距2千米.(1)求点P到河岸线l的距离;(2)若该游轮按原速度从点Q驶向码头B,则它至少需要多长时间才能到达码头B?(参考数据:sin35°≈,cos35°≈,tan35°≈,sin70°≈,cos70°≈,tan70°≈)【变式2-3】海岛A 的周围8 n mile 内有暗礁,渔船跟踪鱼群由西向东航行,在点B 处测得海岛A 位于北偏东67︒,航行12n mlie 到达C 点,又测得小岛A 在北偏东45︒方向上.如果渔船不改变航线继续向东航行,那么它有没有触礁的危险?请说明理由.(参考数据:12sin 6713︒≈,5cos 6713︒,12tan 67)5︒≈题型三、综合类【例1】如图,马路的两边CF ,DE 互相平行,线段CD 为人行横道,马路两侧的A ,B 两点分别表示车站和超市.CD 与AB 所在直线互相平行,且都与马路的两边垂直,马路宽20米,A ,B 相距62米,∠A =67°,∠B =37°.(1)求CD 与AB 之间的距离;(2)某人从车站A 出发,沿折线A →D →C →B 去超市B .求他沿折线A →D →C →B 到达超市比直接横穿马路多走多少米.(参考数据:sin67°≈,cos67°≈,tan67°≈,sin37°≈,cos37°≈,tan37°≈)【变式1-1】如图,某学校教学楼AB的后面有一建筑物CD,在距离CD正后方28米的观测点P处,以22︒的仰角测得建筑物的顶端C恰好挡住教学楼的顶端A,而在建筑物CD 上距离地面2米高的E处,测的教学楼的顶端A的仰角为45︒,求教学楼AB的高度(结果保留整数,2 tan22)5︒≈.【变式1-2】如图,校园内有两幢高度相同的教学楼AB,CD,大楼的底部B,D在同一平面上,两幢楼之间的距离BD长为24米,小明在点E(B,E,D在一条直线上)处测得教学楼AB顶部的仰角为45°,然后沿EB方向前进8米到达点G处,测得教学楼CD顶部的仰角为30°.已知小明的两个观测点F,H距离地面的高度均为1.6米,求教学楼AB的高度AB长.(精确到0.1米)参考值:≈1.41,≈1.73.【变式1-3】在一次综合实践课上,同学们为教室窗户设计一个遮阳篷,小明同学绘制的设计图如图所示,其中AB表示窗户,且AB=2米,BCD表示直角遮阳蓬,已知当地一年中正午时刻太阳光与水平线CD的最小夹角∠PDN=18.6°,最大夹角∠MDN=64.5°请你根据以上数据,帮助小明同学计算出遮阳篷中CD的长是多少米?(结果精确到0.1)(参考数据:sin18.6°≈0.32,tan18.6°≈0.34,sin64.5°≈0.90,tan64.5°≈2.1)【变式1-4】如图是某斜拉桥引申出的部分平面图,AE,CD是两条拉索,其中拉索CD与水平桥面BE的夹角为72°,其底端与立柱AB底端的距离BD为4米,两条拉索顶端距离AC为2米,若要使拉索AE与水平桥面的夹角为35°,请计算拉索AE的长.(结果精确到0.1米)(参考数据:sin35°≈,cos35°≈,tan35°≈,sin72°≈,cos72°≈,tan72°≈)【变式1-5】2018年2月17日上午10点34分,我国自主研制的第二架C919大型客机在上海浦东国际机场进行首次飞行,这意味着C919大型客机逐步拉开全面试验试飞的新征程.这大大激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)【变式1-6】如图,在一条河流的两岸分别有A,B,C,D四棵景观树,已知AB∥CD,某数学活动小组测得∠DAB=45°,∠CBE=73°,AB=10m,CD=30m,请计算这条河的宽度.(参考数据:sin73°≈,cos73°≈,tan73°≈)【课堂练习】1、如图所示,小河中学九年级数学活动小组选定测量学校前面小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°.若斜坡FA的坡比i=1:,求大树的高度.(结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)2、小明家所在居民楼的对面有一座大厦AB,AB=80米,为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C处测得大厦顶部A的仰角为37°,大厦底部B的俯角为48°.求小明家所在居民楼与大厦的距离CD的长度.(结果保留整数)(参考数据:)3、若商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式动扶梯,如图所示,已知原阶梯式自动扶梯AB长为10m,扶梯AB的坡度i为1:.改造后的斜坡式动扶梯的坡角∠ACB为15°,请你计算改造后的斜坡式自动扶梯AC的长度.(结果精确到0.1m.参考数据:sin15°≈0.26,cos15°≈0.97,tanl5°≈0.27)4、共享单车为人们的生活带来了极大的便利.如图,一辆单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,A,B之间的距离为49cm,现测得AC,BC与AB的夹角分别为45°,68°.若点C到地面的距离CD为28cm,坐垫中轴E处与点B的距离BE为5cm,求点E到地面的距离.(结果保留一位小数,参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.50)。

二次函数实际应用题

二次函数实际应用题

1. 为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80℅销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y1、y2与x之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?2.某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x元(x为10的整数倍).(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;(2)设宾馆一天的利润为w元,求w与x的函数关系式;(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?3.红星食品厂独家生产具有地方特色的某种食品,产量y1(万千克)与销售价格x(元/千克)(2≤x≤10)满足函数关系式y1=0.5x+11.经市场调查发现:该食品市场需求量y2(万千克)与销售价格x(元/千克)(2≤x≤10)的关系如图所示.当产量小于或等于市场需求量时,食品将被全部售出;当产量大于市场需求量时,只能售出符合市场需求量的食品,剩余食品由于保质期短将被无条件销毁.(1)求y2与x的函数关系式;(2)当销售价格为多少时,产量等于市场需求量?(3)若该食品每千克的生产成本是2元,试求厂家所得利润W(万元)与销售价格x(元/千克) (2≤x≤10)之间的函数关系式.4.某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时平均每天销售量是500件,而销售单价每降低1元,平均每天就可以多售出100件.(1)假设每件商品降低x元,商店每天销售这种小商品的利润是y元,请你写出y与x的之间的函数关系式,并注明x的取值范围;(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?(注:销售利润=销售收入-购进成本)5.恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y 与x之间的函数关系式.(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?6.已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。

函数:函数的实际应用(题目版)

函数:函数的实际应用(题目版)

2021全国中考真题分类汇编(函数)----函数的实际应用一、选择题1. (2021·安徽省)某品牌鞋子的长度y cm 与鞋子的“码”数x 之间满足一次函数关系.若22码鞋子的长度为16cm ,44码鞋子的长度为27cm ,则38码鞋子的长度为( ) A. 23cmB. 24cmC. 25cmD. 26cm2. (2021•江苏省连云港)关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征. 甲:函数图像经过点;乙:函数图像经过第四象限;丙:当0x >时,y 随x 的增大而增大. 则这个函数表达式可能是( ) A. y x =-B. 1y x=C. 2yx D. 1y x=-3. (2021•四川省自贡市)已知蓄电池的电压为定值,使用蓄电池时,电流O (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.下列说法正确的是( )A. 函数解析式为13I R=B. 蓄电池的电压是18VC. 当10A I ≤时, 3.6R ≥ΩD. 当6R =Ω时,4A I =4. (2021•江苏省苏州市)如图,线段AB =10,点C 、D 在AB 上,以每秒1个单位长度的速度沿着AB 向点D 移动,到达点D 后停止移动.在点P 移动过程中作如下操作:先以点P 为圆心,再将两个扇形分别围成两个圆锥的侧面,设点P 的移动时间为t (秒),则S 关于t 的函数图象大致是( )A.B.C.D.5.(2021•江西省)在同一平面直角坐标系中,二次函数y=ax2与一次函数y=bx+c的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()A. B.C.D.6.(2021•山东省聊城市)已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c的图象和反比例函数y=a b cx++的图象在同一坐标系中大致为()A. B. C. D.7.(2021•山东省聊城市)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A,C分别在x轴,y轴上,B,D两点坐标分别为B(﹣4,6),D(0,4),线段EF在边OA上移动,保持EF=3,当四边形BDEF的周长最小时,点E的坐标为__________.8.(2021•上海市)某人购进一批苹果到集贸市场零售,已知卖出的苹果数量与售价之间的关系如图所示,成本为5元/千克,现以8元/千克卖出,赚___________元.9.(2021•湖北省恩施州)某物体在力F的作用下,沿力的方向移动的距离为s,力对物体所做的功W与s的对应关系如图所示,则下列结论正确的是()A .W =sB .W =20sC .W =8sD .s =10. (2021•浙江省杭州)已知y 1和y 2均是以x 为自变量的函数,当x =m 时,函数值分别是M 1和M 2,若存在实数m ,使得M 1+M 2=0,则称函数y 1和y 2具有性质P .以下函数y 1和y 2具有性质P 的是( ) A .y 1=x 2+2x 和y 2=﹣x ﹣1 B .y 1=x 2+2x 和y 2=﹣x +1C .y 1=﹣和y 2=﹣x ﹣1D .y 1=﹣和y 2=﹣x +111. (2021•浙江省丽水市)一杠杆装置如图,杆的一端吊起一桶水,水桶对杆的拉力的作用点到支点的杆长固定不变.甲、乙、丙、丁四位同学分别在杆的另一端竖直向下施加压力F F F F 丁乙甲丙、、、,将相同重量的水桶吊起同样的高度,若 F F F F <<<甲丁丙乙,则这四位同学对杆的压力的作用点到支点的距离最远的是( )A. 甲同学B. 乙同学C. 丙同学D. 丁同学12. (2021•湖南省张家界市)若二次函数)0(2≠++=a c bx ax y 的图象如图所示,则一次函数b ax y +=与反比例函数xcy -=在同一个坐标系内的大致图象为( )13. (2021•北京市)如图,用绳子围成周长为10m 的矩形,记矩形的一边长为xm ,它的邻边长为ym ,矩形的面积为Sm 2.当x 在一定范围内变化时,y 和S 都随x 的变化而变化,则y 与x ,S 与x 满足的函数关系分别是( )O yxO y xAO y Bx O yCxO yDxA .一次函数关系,二次函数关系B .反比例函数关系,二次函数关系C .一次函数关系,反比例函数关系D .反比例函数关系,一次函数关系14. (2021•内蒙古包头市) 已知二次函数2(0)y ax bx c a =-+≠的图象经过第一象限的点(1,)b -,则一次函数y bx ac =-的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限15. (2021•深圳)二次函数21y ax bx =++的图象与一次函数2y ax b =+在同一平面直角坐标系中的图象可能是( )ABCD16. (2021•湖南省娄底市)用数形结合等思想方法确定二次函数22y x =+的图象与反比例函数2y x=的图象的交点的横坐标0x 所在的范围是( ) A. 0104x <≤ B.01142x <≤ C.01324x <≤ D.0314x <≤ 二、填空题1. (2021•江苏省连云港)某快餐店销售A 、B 两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A 种快餐的利润,同时提高每份B 种快餐的利润.售卖时发现,在一定范围内,每份A 种快餐利润每降1元可多卖2份,每份B 种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是______元.2. (2021•江苏省无锡市)请写出一个函数表达式,使其图象在第二、四象限且关于原点对称: .3.(2021•襄阳市)从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度y (单位:m )与它距离喷头的水平距离x (单位:m )之间满足函数关系式2-241y x x =++,喷出水珠的最大高度是______m .三、解答题1. (2021•湖北省黄冈市)红星公司销售一种成本为40元/件产品,若月销售单价不高于50元/件,一个月可售出5万件,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x (单位:元/件),月销售量为y (单位:万件). (1)直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当月销售单价是多少元时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a 元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元2. (2021•湖北省武汉市)在“乡村振兴”行动中,某村办企业以A ,B 两种农作物为原料开发了一种有机产品.A 原料的单价是B 原料单价的1.5倍,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒,每天少销售10盒. (1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是x 元(x 是整数),每天的利润是w 元,求w 关于x 的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过a 元(a 是大于60的常数,且是整数),直接写出每天的最大利润.3.(2021•怀化市)某超市从厂家购进A、B两种型号的水杯,两次购进水杯的情况如表:进货批次A型水杯(个)B型水杯(个)总费用(元)一1002008000二20030013000(1)求A、B两种型号的水杯进价各是多少元?(2)在销售过程中,A型水杯因为物美价廉而更受消费者喜欢.为了增大B型水杯的销售量,超市决定对B型水杯进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将B型水杯降价多少元时,每天售出B型水杯的利润达到最大?最大利润是多少?(3)第三次进货用10000元钱购进这两种水杯,如果每销售出一个A型水杯可获利10元,售出一个B型水杯可获利9元,超市决定每售出一个A型水杯就为当地“新冠疫情防控”捐b元用于购买防控物资.若A、B两种型号的水杯在全部售出的情况下,捐款后所得的利润始终不变,此时b为多少?利润为多少?4.(2021•江苏省扬州)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:说明:①汽车数量为整数..;②月利润=月租车费-月维护费;③两公司月利润差=月利润较高公司的利润-月利润较低公司的利润.在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是_______元;当每个公司租出的汽车为_______辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;a>给慈善机构,如果捐款后甲公(3)甲公司热心公益事业,每租出1辆汽车捐出a元()0司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.5.(2021•山东省临沂市)公路上正在行驶的甲车,发现前方20m处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程s(单位:m)、速度v(单位:m/s)与时间t (单位:s)的关系分别可以用二次函数和一次函数表示,其图象如图所示.(1)当甲车减速至9m/s时,它行驶的路程是多少?(2)若乙车以10m/s的速度匀速行驶,两车何时相距最近,最近距离是多少?6.(2021•河北省)如图是某机场监控屏显示两飞机的飞行图象,1号指挥机(看成点P)始终以3km/min的速度在离地面5km高的上空匀速向右飞行,2号试飞机(看成点Q)一直保持在1号机P的正下方.2号机从原点O处沿45°仰角爬升,到4km高的A处便立刻转为水平飞行,再过1min到达B处开始沿直线BC降落,要求1min后到达C(10,3)处.(1)求OA的h关于s的函数解析式,并直接写出2号机的爬升速度;(2)求BC的h关于s的函数解析式,并预计2号机着陆点的坐标;(3)通过计算说明两机距离PQ不超过3km的时长是多少.[注:(1)及(2)中不必写s的取值范围]7.(2021•河北省)如图是某同学正在设计的一动画示意图,x轴上依次有A,O,N三个点,且AO=2,在ON上方有五个台阶T1~T5(各拐角均为90°),每个台阶的高、宽分别是1和1.5,台阶T1到x轴距离OK=10.从点A处向右上方沿抛物线L:y=﹣x2+4x+12发出一个带光的点P.(1)求点A的横坐标,且在图中补画出y轴,并直接指出点P会落在哪个台阶上;(2)当点P落到台阶上后立即弹起,又形成了另一条与L形状相同的抛物线C,且最大高度为11,求C的解析式,并说明其对称轴是否与台阶T5有交点;(3)在x轴上从左到右有两点D,E,且DE=1,从点E向上作EB⊥x轴,且BE=2.在△BDE沿x轴左右平移时,必须保证(2)中沿抛物线C下落的点P能落在边BD(包括端点)上,则点B横坐标的最大值比最小值大多少?[注:(2)中不必写x的取值范围]8. (2021•湖北省随州市)如今我国的大棚(如图1)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体A 处,另一端固定在离地面高2米的墙体B 处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度y (米)与其离墙体A 的水平距离x (米)之间的关系满足216y x bx c =-++,现测得A ,B 两墙体之间的水平距离为6米.(1)直接写出b ,c 的值;(2)求大棚的最高处到地面的距离;(3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为3724米的竹竿支架若干,已知大棚内可以搭建支架的土地平均每平方米需要4根竹竿,则共需要准备多少根竹竿?9. (2021•四川省达州市)渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,每天可销售500千克,为增大市场占有率,工厂采取降价措施,批发价每千克降低1元(1)写出工厂每天的利润W 元与降价x 元之间的函数关系.当降价2元时,工厂每天的利润为多少元?(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?10. (2021•四川省乐山市)通过实验研究发现:初中生在数学课上听课注意力指标随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散.学生注意力指标y 随时间x (分钟)变化的函数图象如图所示,当010x ≤<和1020x ≤<时,图象是线段;当2045x ≤≤时,图象是反比例函数的一部分.(1)求点A 对应的指标值;(2)张老师在一节课上讲解一道数学综合题需要17分钟,他能否经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于36?请说明理由.11. (2021•天津市)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学校、书店、陈列馆依次在同一条直线上,书店离学校12km ,陈列馆离学校20km .李华从学校出发,匀速骑行0.6h 到达书店;在书店停留0.4h 后,匀速骑行0.5h 到达陈列馆;在陈列馆参观学习一段时间,然后回学校;回学校途中,匀速骑行0.5h 后减速,继续匀速骑行回到学校.给出的图象反映了这个过程中李华离学校的距离km y 与离开学校的时间h x 之间的对应关系.请根据相关信息,解答下列问题: (Ⅰ)填表 离开学校的时间/h 0.1 0.5 0.8 1 3离学校的距离/km 212(Ⅱ)填空:①书店到陈列馆的距离为________km ; ②李华在陈列馆参观学的时间为_______h ;③李华从陈列馆回学校途中,减速前的骑行速度为______km/h ; ④当李华离学校的距离为4km 时,他离开学校的时间为_______h . (Ⅲ)当0 1.5x ≤≤时,请直接写出y 关于x 的函数解析式.12.(2021•浙江省丽水市)李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s(千米)与行驶时间t(小时)的关系如图所示(中途休息、加油的时间不计.当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出工厂离目的地的路程;(2)求s关于t的函数表达式;(3)当货车显示加油提醒后,问行驶时间t在怎样的范围内货车应进站加油?13.(2021•浙江省宁波市)某通讯公司就手机流量套餐推出三种方案,如下表:A方案B方案C方案每月基本费用(元)20 56 266每月免费使用流量(兆)1024 m 无限超出后每兆收费(元)n nA,B,C三种方案每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系如图所示.(1)请直接写出m,n的值.(2)在A方案中,当每月使用的流量不少于1024兆时,求每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系式.(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C方案最划算?14.(2021•浙江省台州)电子体重科读数直观又便于携带,为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻R1,R1与踏板上人的质量m之间的函数关系式为R1=km+b(其中k,b为常数,0≤m≤120),其图象如图1所示;图2的电路中,电源电压恒为8伏,定值电阻R0的阻值为30欧,接通开关,人站上踏板,电压表显示的读数为U0 ,该读数可以换算为人的质量m,温馨提示:①导体两端的电压U,导体的电阻R,通过导体的电流I,满足关系式I=U R;②串联电路中电流处处相等,各电阻两端电压之和等于总电压.(1)求k,b的值;(2)求R1关于U0的函数解析式;(3)用含U0的代数式表示m;(4)若电压表量程为0~6伏,为保护电压表,请确定该电子体重秤可称的最大质量.15.(2021•湖北省荆门市)某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,如表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的三组对应值数据.x407090y1809030W360045002100(1)求y关于x的函数解析式(不要求写出自变量的取值范围);(2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;(3)因疫情期间,该商品进价提高了m(元/件)(m>0),公司为回馈消费者,规定该商品售价x不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m的值.16.(2021•贵州省铜仁市)某品牌汽车销售店销售某种品牌汽车,每辆汽车的进价16(万元).当每辆售价为22(万元)时,每月可销售4辆汽车.根据市场行情,现在决定进行降x )满足价销售.通过市场调查得到了每辆降价的费用1y(万元)与月销售量x(辆)(4某种函数关系的五组对应数据如下表:(1)请你根据所给材料和初中所学的函数知识写出1y与x的关系式1y=________;(2)每辆原售价为22万元,不考虑其它成本,降价后每月销售利润y=(每辆原售价-1y-进价)x,x x≥为多少时,销售利润最大?最大利润是多少?请你根据上述条件,求出月销售量()417.(2021•浙江省衢州卷)如图1是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD 均为24m,在距离D点6米的E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱项部O离水面的距离.(2)如图2,桥面上方有3根高度均为4m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m.①求出其中一条钢缆抛物线的函数表达式.②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.18.(2021•贵州省贵阳市)为庆祝“中国共产党的百年华诞”,某校请广告公司为其制作“童心向党”文艺活动的展板、宣传册和横幅,其中制作宣传册的数量是展板数量的5倍,广告公司制作每件产品所需时间和利润如表:产品展板宣传册横幅1制作一件产品所需时间(小时)制作一件产品所获利润20310(元)(1)若制作三种产品共计需要25小时,所获利润为450元,求制作展板、宣传册和横幅的数量;(2)若广告公司所获利润为700元,且三种产品均有制作,求制作三种产品总量的最小值.19.(2021•贵州省贵阳市)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA可视为抛物线的一部分,在某一时刻,桥拱内的水面宽OA=8m,桥拱顶点B到水面的距离是4m.(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m的打捞船径直向桥驶来,当船驶到桥拱下方且距O点0.4m时,桥下水位刚好在OA处,有一名身高1.68m的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平).(3)如图③,桥拱所在的函数图象是抛物线y=ax2+bx+c(a≠0),该抛物线在x轴下方部分与桥拱OBA在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移m(m >0)个单位长度,平移后的函数图象在8≤x≤9时,y的值随x值的增大而减小,结合函数图象,求m的取值范围.20.(2021•绥化市)小刚和小亮两人沿着直线跑道都从甲地出发,沿着同一方向到达乙地,甲乙两地之间的距离是720米,先到乙地的人原地休息,已知小刚先从甲地出发4秒后,小亮从甲地出发,两人均保持匀速前行.第一次相遇后,保持原速跑一段时间,小刚突然加速,速度比原来增加了2米/秒,并保持这一速度跑到乙地(小刚加速过程忽略不计).小刚与小亮两人的距离S(米)与小亮出发时间t(秒)之间的函数图象,如图所示.根据所给信息解决以下问题.(1)m=_______,n=______;(2)求CD和EF所在直线的解析式;(3)直接写出t为何值时,两人相距30米.21.(2021•浙江省金华市)某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣5)2+6.(1)求雕塑高OA.(2)求落水点C,D之间的距离.(3)若需要在OD上的点E处竖立雕塑EF,OE=10m,EF=1.8m,EF⊥OD.问:顶部F是否会碰到水柱?请通过计算说明.22.(2021•浙江省绍兴市)小聪设计奖杯,从抛物线形状上获得灵感,在平面直角坐标系中画出截面示意图,杯体ACB是抛物线的一部分,抛物线的顶点C在y轴上,且点A,B 关于y轴对称,杯高DO=8,杯底MN在x轴上.(1)求杯体ACB所在抛物线的函数表达式(不必写出x的取值范围);(2)为使奖杯更加美观,小敏提出了改进方案,如图2,杯口直径A′B′∥AB,杯脚高CO不变,求A′B′的长.。

二次函数实际应用例题

二次函数实际应用例题

二次函数实际应用例题:例1 某商场以每件42元的价钱购进一种服装,根据试销得知:这种服装每天的销售量t(件),与每件的销售价x(元/件)可看成是一次函数关系:t=-3x+2041.写出商场卖这种服装每天的销售利润y与每件的销售价x之间的函数关系式(每天的销售利润是指所卖出服装的销售价与购进价的差);2.通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适;最大销售利润为多少?分析:商场的利润是由每件商品的利润乘每天的销售的数量所决定。

在这个问题中,每件服装的利润为(x-42),而销售的件数是(-3x+204),那么就能得到一个y与x之间的函数关系,这个函数是二次函数.要求销售的最大利润,就是要求这个二次函数的最大值.解:(1)由题意,销售利润y与每件的销售价x之间的函数关系为y=(x-42)(-3x+204),即y=-3x2+330x-8568(2)配方,得y=-3(x-55)2+507∴当每件的销售价为55元时,可取得最大利润,每天最大销售利润为507元.答:省略。

例2 某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.(1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为米,问此次跳水会不会失误?并通过计算说明理由.分析:(1)在给出的直角坐标系中,要确定抛物线的解析式,就要确定抛物线上三个点的坐标,如起跳点O(0,0),入水点(2,-10),最高点的纵点标为.(2)求出抛物线的解析式后,要判断此次跳水会不会失误,就是要看当该运动员在距池边水平距离为米.,时,该运动员是不是距水面高度为5米.解:(1)在给定的直角坐标系下,设最高点为A,入水点为B,抛物线的解析式为.由题意,知O(0,0),B(2,-10),且顶点A的纵坐标为.解得或∵抛物线对称轴在轴右侧,∴又∵抛物线开口向下,∴.∴抛物线的解析式为(2)当运动员在空中距池边的水平距离为米时,即时,∴此时运动员距水面的高为因此,此次跳水会失误.例3.一男生掷铅球,铅球行进高度(m),与水平距离(m)之间的关系是1.在直角坐标系画出函数图象,并求出铅球掷出的距离;2.在体育加试中,男生铅球的优秀成绩为11m,若上述抛物线顶点不变,开口方向不变,试计算成绩优秀时,铅球出手的最低高度是多少?分析:求铅球掷出的距离,就是求时,的值是多少.当铅球掷出的距离为11m时,抛物线过点(11,0),并且抛物线的顶点不变,那么求出这条抛物线的解析式,并且求出出手高度(抛物线与轴交点).解:(1)当时,,解得.不合题意,舍去. 铅球推出的距离为10米.(2)抛物线配方成, 顶点坐标为(4,3)如果抛物线过(11,0),顶点为(4,3),设抛物线为,,..因此出手高度最低为米.例4.某公园草坪的护栏是由50段形状相同的抛物线形组成的、为牢固起见,每段护拦需按间距0.4m加设不锈钢管(如图)作成的立柱,为了计算所需不锈钢管立柱的总长度,设计人员利用如图所示的直角坐标计算.1.求该抛物线的解析式;2.计算所需不锈钢管立柱的总长度.分析:为了求出抛物线的解析式,把抛物线放在直角坐标系中,根据题意可知道,C(1,0),A(-1,0),B(0,0.5),且B为抛物线的顶点,从而可以求出抛物线的解析式.要求不锈钢立柱的总长度,就要求出B1、B2、B3、B4的纵坐标,而B3与C3的横坐标为0.2,则可求出B3的纵坐标,同理,C4的横坐标为0.6,从而可求出所有立柱的长及所需钢管的总长度.解:(1)在直角坐标系中,设函数解析式为,B点坐标为(0,0.5),C点坐标为(1,0)抛物线的解析式为(2)分别过AC的五等分点C 1、C2、C3、C4作轴的垂线,交抛物线于B1B2、B3、B4点,则C1 B1、C2 B2、C3 B3、C4 B4的长就是一段护栏内的四条立柱的长,点C3、C4的坐标为(0.2,0)(0.6,0),则B3、B4的横坐标分别为把分别代入,得. 由对称性可求得B1、B2的纵坐标.所以四条立柱的长为C1 B1=C4 B4=0.32(m), C2 B2=C3 B3=0.48(m).所需不锈钢立柱的总长为答:所需不锈钢立柱的总为长80m.。

2024年中考数学《二次函数的实际应用》真题含解析版

2024年中考数学《二次函数的实际应用》真题含解析版

二次函数的实际应用(21题)一、单选题1(2024·天津·中考真题)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t-5t20≤t≤6.有下列结论:①小球从抛出到落地需要6 s;②小球运动中的高度可以是30 m;③小球运动2 s时的高度小于运动5 s时的高度.其中,正确结论的个数是()A.0B.1C.2D.3【答案】C【分析】本题考查二次函数的图像和性质,令�=0解方程即可判断①;配方成顶点式即可判断②;把t=2和t=5代入计算即可判断③.【详解】解:令�=0,则30t-5t2=0,解得:t1=0,t2=6,∴小球从抛出到落地需要6 s,故①正确;∵�=30t-5t2=-5x-32+45,∴最大高度为45m,∴小球运动中的高度可以是30 m,故②正确;当t=2时,�=30×2-5×22=40;当t=5时,�=30×5-5×52=25;∴小球运动2 s时的高度大于运动5 s时的高度,故③错误;故选C.2(2024·黑龙江齐齐哈尔·中考真题)如图,在等腰Rt△ABC中,∠BAC=90°,AB=12,动点E,F同时从点A出发,分别沿射线AB和射线AC的方向匀速运动,且速度大小相同,当点E停止运动时,点F也随之停止运动,连接EF,以EF为边向下做正方形EFGH,设点E运动的路程为x0<x<12,正方形EFGH和等腰Rt△ABC重合部分的面积为下列图像能反映y与x之间函数关系的是()A. B.C. D.【答案】A 【分析】本题考查动态问题与函数图象,能够明确y 与x 分别表示的意义,并找到几何图形与函数图象之间的关系,以及对应点是解题的关键,根据题意并结合选项分析当HG 与BC 重合时,及当x ≤4时图象的走势,和当x >4时图象的走势即可得到答案.【详解】解:当HG 与BC 重合时,设AE =x ,由题可得:∴EF =EH =2x ,BE =12-x ,在Rt △EHB 中,由勾股定理可得:BE 2=BH 2+EH 2,∴2x 2+2x 2=12-x 2,∴x =4,∴当0<x ≤4时,y =2x 2=2x 2,∵2>0,∴图象为开口向上的抛物线的一部分,当HG 在BC 下方时,设AE =x ,由题可得:∴EF =2x ,BE =12-x ,∵∠AEF =∠B =45°,∠A =∠EOB =90°,∴△FAE ∽△EOB ,∴AE EF =EO EB ,∴x 2x=EO 12-x ,∴EO =12-x 2,∴当4<x <12时,y =2x ·12-x 2=12-x x =-x 2+12x ,∵-1<0,∴图象为开口向下的抛物线的一部分,综上所述:A 正确,故选:A .3(2024·山东烟台·中考真题)如图,水平放置的矩形ABCD 中,AB =6cm ,BC =8cm ,菱形EFGH 的顶点E ,G 在同一水平线上,点G 与AB 的中点重合,EF =23cm ,∠E =60°,现将菱形EFGH 以1cm/s 的速度沿BC 方向匀速运动,当点E 运动到CD 上时停止,在这个运动过程中,菱形EFGH 与矩形ABCD重叠部分的面积S cm 2 与运动时间t s 之间的函数关系图象大致是()A. B.C. D.【答案】D 【分析】本题考查了解直角三角形的应用,菱形的性质,动点问题的函数图象,二次函数的图象的性质,先求得菱形的面积为63,进而分三种情形讨论,重合部分为三角形,重合部分为五边形,重合部分为菱形,分别求得面积与运动时间的函数关系式,结合选项,即可求解.【详解】解:如图所示,设EG ,HF 交于点O ,∵菱形EFGH ,∠E =60°,∴HG =GF又∵∠E =60°,∴△HFG 是等边三角形,∵EF =23cm ,∠HEF =60°,∴∠OEF =30°∴EG =2EO =2×EF cos30°=3EF =6∴S 菱形EFG H =12EG ⋅FH =12×6×23=63当0≤x ≤3时,重合部分为△MNG ,如图所示,依题意,△MNG 为等边三角形,运动时间为t ,则NG =t cos30°=233t ,∴S =12×NG ×NG ×sin60°=34233t 2=33t 2当3<x≤6时,如图所示,依题意,EM=EG-t=6-t,则EK=EMsin60°=6-t32=2336-t∴S△EKJ=12EJ⋅EM=12×2336-t2=336-t2∴S=S菱形EFGH-S△EKJ=6-336-t2=-33t2+43t-123+6∵EG=6<BC∴当6<x≤8时,S=63当8<x≤11时,同理可得,S=6-33t-82当11<x≤14时,同理可得,S=336-t-82=3314-t2综上所述,当0≤x≤3时,函数图象为开口向上的一段抛物线,当3<x≤6时,函数图象为开口向下的一段抛物线,当6<x≤8时,函数图象为一条线段,当8<x≤11时,函数图象为开口向下的一段抛物线,当11<x≤14时,函数图象为开口向上的一段抛物线;故选:D.二、填空题4(2024·广西·中考真题)如图,壮壮同学投掷实心球,出手(点P 处)的高度OP 是74m ,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .若实心球落地点为M ,则OM =m .【答案】353【分析】本题考查的是二次函数的实际应用,设抛物线为y =a x -5 2+4,把点0,74,代入即可求出解析式;当y =0时,求得x 的值,即为实心球被推出的水平距离OM .【详解】解:以点O 为坐标原点,射线OM 方向为x 轴正半轴,射线OP 方向为y 轴正半轴,建立平面直角坐标系,∵出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .设抛物线解析式为:y =a x -5 2+4,把点0,74 代入得:25a +4=74,解得:a =-9100,∴抛物线解析式为:y =-9100x -5 2+4;当y =0时,-9100x -5 2+4=0,解得,x 1=-53(舍去),x 2=353,即此次实心球被推出的水平距离OM 为353m .故答案为:3535(2024·甘肃·中考真题)如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y (单位:m )与距离停车棚支柱AO 的水平距离x (单位:m )近似满足函数关系y =-0.02x 2+0.3x +1.6的图象,点B 6,2.68 在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长CD =4m ,高DE =1.8m 的矩形,则可判定货车完全停到车棚内(填“能”或“不能”).【答案】能【分析】本题主要考查了二次函数的实际应用,根据题意求出当x =2时,y 的值,若此时y 的值大于1.8,则货车能完全停到车棚内,反之,不能,据此求解即可.【详解】解:∵CD =4m ,B 6,2.68 ,∴6-4=2,在y =-0.02x 2+0.3x +1.6中,当x =2时,y =-0.02×22+0.3×2+1.6=2.12,∵2.12>1.8,∴可判定货车能完全停到车棚内,故答案为:能.6(2024·四川自贡·中考真题)九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙AB ⊥CD 于点O (如图),其中AB 上的EO 段围墙空缺.同学们测得AE =6.6m ,OE =1.4m ,OB =6m ,OC =5m ,OD =3m .班长买来可切断的围栏16m ,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是cm 2.【答案】46.4【分析】本题考查了二次函数的应用.要利用围墙和围栏围成一个面积最大的封闭的矩形菜地,那就必须尽量使用原来的围墙,观察图形,利用AO 和OC 才能使该矩形菜地面积最大,分情况,利用矩形的面积公式列出二次函数,利用二次函数的性质求解即可.【详解】解:要使该矩形菜地面积最大,则要利用AO 和OC 构成矩形,设矩形在射线OA 上的一段长为xm ,矩形菜地面积为S ,当x ≤8时,如图,则在射线OC 上的长为16-x -1.4+52=19.6-x 2则S =x ⋅19.6-x 2=-12x 2+9.8x =-12x -9.8 2+48.02,∵-12<0,∴当x ≤9.8时,S 随x 的增大而增大,∴当x =8时,S 的最大值为46.4;当x >8时,如图,则矩形菜园的总长为16+6.6+5 =27.6m ,则在射线OC 上的长为27.6-2x 2则S =x ⋅13.8-x =-x 2+13.8x =-x -6.9 2+47.61,∵-1<0,∴当x <6.9时,S 随x 的增大而减少,∴当x >8时,S 的值均小于46.4;综上,矩形菜地的最大面积是46.4cm 2;故答案为:46.4.三、解答题7(2024·陕西·中考真题)一条河上横跨着一座宏伟壮观的悬索桥.桥梁的缆索L 1与缆索L 2均呈抛物线型,桥塔AO 与桥塔BC 均垂直于桥面,如图所示,以O 为原点,以直线FF 为x 轴,以桥塔AO 所在直线为y 轴,建立平面直角坐标系.已知:缆索L 1所在抛物线与缆索L 2所在抛物线关于y 轴对称,桥塔AO 与桥塔BC 之间的距离OC =100m ,AO =BC =17m ,缆索L 1的最低点P 到FF 的距离PD =2m (桥塔的粗细忽略不计)(1)求缆索L 1所在抛物线的函数表达式;(2)点E 在缆索L 2上,EF ⊥FF ,且EF =2.6m ,FO <OD ,求FO 的长.【答案】(1)y =3500x -50 2+2;(2)FO 的长为40m .【分析】本题考查了二次函数的应用,待定系数法求二次函数解析式,根据题意求得函数解析式是解题的关键.(1)根据题意设缆索L 1所在抛物线的函数表达式为y =a x -50 2+2,把0,17 代入求解即可;(2)根据轴对称的性质得到缆索L 2所在抛物线的函数表达式为y =3500x +50 2+2,由EF =2.6m ,把y =2.6代入求得x 1=-40,x 2=-60,据此求解即可.【详解】(1)解:由题意得顶点P 的坐标为50,2 ,点A 的坐标为0,17 ,设缆索L 1所在抛物线的函数表达式为y =a x -50 2+2,把0,17 代入得17=a 0-50 2+2,解得a =3500,∴缆索L 1所在抛物线的函数表达式为y =3500x -50 2+2;(2)解:∵缆索L 1所在抛物线与缆索L 2所在抛物线关于y 轴对称,∴缆索L 2所在抛物线的函数表达式为y =3500x +50 2+2,∵EF =2.6,∴把y =2.6代入得,2.6=3500x +50 2+2,解得x 1=-40,x 2=-60,∴FO=40m或FO=60m,∵FO<OD,∴FO的长为40m.8(2024·湖北·中考真题)学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m,篱笆长80m.设垂直于墙的边AB长为x米,平行于墙的边BC为y米,围成的矩形面积为Scm2.(1)求y与x,s与x的关系式.(2)围成的矩形花圃面积能否为750cm2,若能,求出x的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时x的值.【答案】(1)y=80-2x19≤x<40;s=-2x2+80x(2)能,x=25(3)s的最大值为800,此时x=20【分析】本题主要考查一元二次方程的应用和二次函数的实际应用:(1)根据AB+BC+CD=80可求出y与x之间的关系,根据墙的长度可确定x的范围;根据面积公式可确立二次函数关系式;(2)令s=750,得一元二次方程,判断此方程有解,再解方程即可;(3)根据自变量的取值范围和二次函数的性质确定函数的最大值即可.【详解】(1)解:∵篱笆长80m,∴AB+BC+CD=80,∵AB=CD=x,BC=y,∴x+y+x=80,∴y=80-2x∵墙长42m,∴0<80-2x≤42,解得,19≤x<40,∴y=80-2x19≤x<40;又矩形面积s=BC⋅AB=y⋅x=80-2xx=-2x2+80x;(2)解:令s=750,则-2x2+80x=750,整理得:x2-40x+375=0,此时,Δ=b 2-4ac =-40 2-4×375=1600-1500=100>0,所以,一元二次方程x 2-40x +375=0有两个不相等的实数根,∴围成的矩形花圃面积能为750cm 2;∴x =--40 ±1002,∴x 1=25,x 2=15,∵19≤x <40,∴x =25;(3)解:s =-2x 2+80x =-2x -20 2+800∵-2<0,∴s 有最大值,又19≤x <40,∴当x =20时,s 取得最大值,此时s =800,即当x =20时,s 的最大值为8009(2024·河南·中考真题)从地面竖直向上发射的物体离地面的高度h m 满足关系式h =-5t 2+v 0t ,其中t s 是物体运动的时间,v 0m/s 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后s 时离地面的高度最大(用含v 0的式子表示).(2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由.【答案】(1)v 010(2)20m/s (3)小明的说法不正确,理由见解析【分析】本题考查了二次函数的应用,解题的关键是:(1)把函数解析式化成顶点式,然后利用二次函数的性质求解即可;(2)把t =v 010,h =20代入h =-5t 2+v 0t 求解即可;(3)由(2),得h =-5t 2+20t ,把h =15代入,求出t 的值,即可作出判断.【详解】(1)解:h =-5t 2+v 0t=-5t -v 010 2+v 0220,∴当t =v 010时,h 最大,故答案为:v 010;(2)解:根据题意,得当t =v 010时,h =20,∴-5×v 0102+v 0×v 010=20,∴v 0=20m/s (负值舍去);(3)解:小明的说法不正确.理由如下:由(2),得h =-5t 2+20t ,当h =15时,15=-5t 2+20t ,解方程,得t 1=1,t 2=3,∴两次间隔的时间为3-1=2s ,∴小明的说法不正确.10(2024·湖北武汉·中考真题)16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线y =ax 2+x 和直线y =-12x +b .其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km .①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离.(2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .【答案】(1)①a =-115,b =8.1;②8.4km (2)-227<a <0【分析】本题考查了二次函数和一次函数的综合应用,涉及待定系数法求解析式,二次函数的图象和性质,一次函数的图象与性质等知识点,熟练掌握二次函数和一次函数的图象与性质是解题的关键.(1)①将9,3.6 代入即可求解;②将y =-115x 2+x 变为y =-115x -152 2+154,即可确定顶点坐标,得出y =2.4km ,进而求得当y =2.4km 时,对应的x 的值,然后进行比较再计算即可;(2)若火箭落地点与发射点的水平距离为15km ,求得a =-227,即可求解.【详解】(1)解:①∵火箭第二级的引发点的高度为3.6km∴抛物线y=ax2+x和直线y=-12x+b均经过点9,3.6∴3.6=81a+9,3.6=-12×9+b解得a=-115,b=8.1.②由①知,y=-12x+8.1,y=-115x2+x∴y=-115x2+x=-115x-1522+154∴最大值y=154km当y=154-1.35=2.4km时,则-115x2+x=2.4解得x1=12,x2=3又∵x=9时,y=3.6>2.4∴当y=2.4km时,则-12x+8.1=2.4解得x=11.44-3=8.4km∴这两个位置之间的距离8.4km.(2)解:当水平距离超过15km时,火箭第二级的引发点为9,81a+9,将9,81a+9,15,0代入y=-12x+b,得81a+9=-12×9+b,0=-12×15+b解得b=7.5,a=-2 27∴-227<a<0.11(2024·四川内江·中考真题)端午节吃粽子是中华民族的传统习俗.市场上猪肉粽的进价比豆沙粽的进价每盒多20元,某商家用5000元购进的猪肉粽盒数与3000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价52元时,可售出180盒;每盒售价提高1元时,少售出10盒.(1)求这两种粽子的进价;(2)设猪肉粽每盒售价x元52≤x≤70,y表示该商家销售猪肉粽的利润(单位:元),求y关于x的函数表达式并求出y的最大值.【答案】(1)猪肉粽每盒50元,豆沙粽每盒30元(2)y=-10x2+1200x-35000或y=-10x-602+1000,当x=60时,y取得最大值为1000元【分析】本题考查列分式方程解应用题和二次函数求最值,解决本题的关键是正确寻找本题的等量关系及二次函数配方求最值问题.(1)设豆沙粽每盒的进价为n元,则猪肉粽每盒的进价为n+20元.根据“用5000元购进的猪肉粽盒数与3000元购进的豆沙粽盒数相同”即可列出方程,求解并检验即可;(2)根据题意可列出y关于x的函数解析式,再根据二次函数的性质即可解答.【详解】(1)解:设豆沙粽每盒的进价为n元,则猪肉粽每盒的进价为n+20元由题意得:5000n+20=3000n解得:n=30经检验:n=30是原方程的解且符合题意∴n+20=50答:猪肉粽每盒50元,豆沙粽每盒30元.(2)解:设猪肉粽每盒售价x元52≤x≤70,y表示该商家销售猪肉粽的利润(单位:元),则y=x-50180-10x-52=-10x2+1200x-35000=-10x-602+1000∵52≤x≤70,-10<0,∴当x=60时,y取得最大值为1000元.12(2024·贵州·中考真题)某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y(盒)与销售单价x(元)是一次函数关系,下表是y与x的几组对应值.销售单价x/元⋯1214161820⋯销售量y/盒⋯5652484440⋯(1)求y与x的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m的值.【答案】(1)y=-2x+80(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元(3)2【分析】本题考查了二次函数的应用,解题的关键是:(1)利用待定系数法求解即可;(2)设日销售利润为w元,根据利润=单件利润×销售量求出w关于x的函数表达式,然后利用二次函数的性质求解即可;(3)设日销售利润为w元,根据利润=单件利润×销售量-m×销售量求出w关于x的函数表达式,然后利用二次函数的性质求解即可.【详解】(1)解∶设y与x的函数表达式为y=kx+b,把x=12,y=56;x=20,y=40代入,得12k+b=56 20k+b=40 ,解得k =-2b =80 ,∴y 与x 的函数表达式为y =-2x +80;(2)解:设日销售利润为w 元,根据题意,得w =x -10 ⋅y=x -10 -2x +80=-2x 2+100x -800=-2x -25 2+450,∴当x =25时,w 有最大值为450,∴糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元;(3)解:设日销售利润为w 元,根据题意,得w =x -10-m ⋅y=x -10-m -2x +80=-2x 2+100+2m x -800-80m ,∴当x =-100+2m 2×-2=50+m 2时,w 有最大值为-250+m 2 2+100+2m 50+m 2 -800-80m ,∵糖果日销售获得的最大利润为392元,∴-250+m 22+100+2m 50+m 2 -800-80m =392,化简得m 2-60m +116=0解得m 1=2,m 2=58当m =58时,x =-b 2a=54,则每盒的利润为:54-10-58<0,舍去,∴m 的值为2.13(2024·广东·中考真题)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)【答案】当定价为4.5万元每吨时,利润最大,最大值为312.5万元【分析】本题主要考查了二次函数的实际应用,设每吨降价x 万元,每天的利润为w 万元,根据利润=每吨的利润×销售量列出w 关于x 的二次函数关系式,利用二次函数的性质求解即可.【详解】解:设每吨降价x 万元,每天的利润为w 万元,由题意得,w =5-x -2 100+50x=-50x 2+50x +300=-50x-122+312.5,∵-50<0,∴当x=12时,w有最大值,最大值为312.5,∴5-x=4.5,答:当定价为4.5万元每吨时,利润最大,最大值为312.5万元.14(2024·四川遂宁·中考真题)某酒店有A、B两种客房、其中A种24间,B种20间.若全部入住,一天营业额为7200元;若A、B两种客房均有10间入住,一天营业额为3200元.(1)求A、B两种客房每间定价分别是多少元?(2)酒店对A种客房调研发现:如果客房不调价,房间可全部住满;如果每个房间定价每增加10元,就会有一个房间空闲;当A种客房每间定价为多少元时,A种客房一天的营业额W最大,最大营业额为多少元?【答案】(1)A种客房每间定价为200元,B种客房每间定价为为120元;(2)当A种客房每间定价为220元时,A种客房一天的营业额W最大,最大营业额为4840元.【分析】(1)设A种客房每间定价为x元,B种客房每间定价为为y元,根据题意,列出方程组即可求解;(2)设A种客房每间定价为a元,根据题意,列出W与a的二次函数解析式,根据二次函数的性质即可求解;本题考查了二元一次方程组的应用,二次函数的应用,根据题意,正确列出二元一次方程组和二次函数解析式是解题的关键.【详解】(1)解:设A种客房每间定价为x元,B种客房每间定价为为y元,由题意可得,24x+20y=7200 10x+10y=3200,解得x=200 y=120 ,答:A种客房每间定价为200元,B种客房每间定价为为120元;(2)解:设A种客房每间定价为a元,则W=24-a-200 10a=-110a2+44a=-110a-2202+4840,∵-110<0,∴当a=220时,W取最大值,W最大值=4840元,答:当A种客房每间定价为220元时,A种客房一天的营业额W最大,最大营业额为4840元.15(2024·四川南充·中考真题)2024年“五一”假期期间,阆中古城景区某特产店销售A,B两类特产.A类特产进价50元/件,B类特产进价60元/件.已知购买1件A类特产和1件B类特产需132元,购买3件A类特产和5件B类特产需540元.(1)求A类特产和B类特产每件的售价各是多少元?(2)A类特产供货充足,按原价销售每天可售出60件.市场调查反映,若每降价1元,每天可多售出10件(每件售价不低于进价).设每件A类特产降价x元,每天的销售量为y件,求y与x的函数关系式,并写出自变量x的取值范围.(3)在(2)的条件下,由于B类特产供货紧张,每天只能购进100件且能按原价售完.设该店每天销售这两类特产的总利润为w元,求w与x的函数关系式,并求出每件A类特产降价多少元时总利润w最大,最大利润是多少元?(利润=售价-进价)【答案】(1)A类特产的售价为60元/件,B类特产的售价为72元/件(2)y=10x+60(0≤x≤10)(3)A类特产每件售价降价2元时,每天销售利润最犬,最大利润为1840元【分析】本题主要考查一元一次方程的应用、函数关系式和二次函数的性质,1 根据题意设每件A类特产的售价为x元,则每件B类特产的售价为132-x元,进一步得到关于x的一元一次方程求解即可;2 根据降价1元,每天可多售出10件列出函数关系式,结合进价与售价,且每件售价不低于进价得到x得取值范围;3 结合(2)中A类特产降价x元与每天的销售量y件,得到A类特产的利润,同时求得B类特产的利润,整理得到关于x的二次函数,利用二次函数的性质求解即可.【详解】(1)解:设每件A类特产的售价为x元,则每件B类特产的售价为132-x元.根据题意得3x+5132-x=540.解得x=60.则每件B类特产的售价132-60=72(元).答:A类特产的售价为60元/件,B类特产的售价为72元/件.(2)由题意得y=10x+60∵A类特产进价50元/件,售价为60元/件,且每件售价不低于进价∴0≤x≤10.答:y=10x+60(0≤x≤10).(3)w=(60-50-x)(10x+60)+100×(72-60)=-10x2+40x+1800=-10(x-2)2+1840.∵-10<0,∴当x=2时,w有最大值1840.答:A类特产每件售价降价2元时,每天销售利润最大,最大利润为1840元.16(2024·江苏盐城·中考真题)请根据以下素材,完成探究任务.制定加工方案生产背景背景1◆某民族服装厂安排70名工人加工一批夏季服装,有“风”“雅”“正”三种样式.◆因工艺需要,每位工人每天可加工且只能加工“风”服装2件,或“雅”服装1件,或“正”服装1件.◆要求全厂每天加工“雅”服装至少10件,“正”服装总件数和“风”服装相等.背景2每天加工的服装都能销售出去,扣除各种成本,服装厂的获利情况为:①“风”服装:24元/件;②“正”服装:48元/件;③“雅”服装:当每天加工10件时,每件获利100元;如果每天多加工1件,那么平均每件获利将减少2元.信息整理现安排x名工人加工“雅”服装,y名工人加工“风”服装,列表如下:探究任务任务1探寻变量关系求x、y之间的数量关系.任务2建立数学模型设该工厂每天的总利润为w元,求w关于x的函数表达式.任务3拟定加工方案制定使每天总利润最大的加工方案.【答案】任务1:y=-13x+703;任务2:w=-2x2+72x+3360(x>10);任务3:安排17名工人加工“雅”服装,17名工人加工“风”服装,34名工人加工“正”服装,即可获得最大利润【分析】题目主要考查一次函数及二次函数的应用,理解题意,根据二次函数的性质求解是解题关键.任务1:根据题意安排x名工人加工“雅”服装,y名工人加工“风”服装,得出加工“正”服装的有70-x-y人,然后利用“正”服装总件数和“风”服装相等,得出关系式即可得出结果;任务2:根据题意得:“雅”服装每天获利为:x100-2x-10,然后将2种服装的获利求和即可得出结果;任务3:根据任务2结果化为顶点式,然后结合题意,求解即可.【详解】解:任务1:根据题意安排70名工人加工一批夏季服装,∵安排x名工人加工“雅”服装,y名工人加工“风”服装,∴加工“正”服装的有70-x-y人,∵“正”服装总件数和“风”服装相等,∴70-x-y×1=2y,整理得:y=-13x+703;任务2:根据题意得:“雅”服装每天获利为:x100-2x-10,∴w=2y×24+70-x-y×48+x100-2x-10,整理得:w=-16x+1120+-32x+2240+-2x2+120x∴w=-2x2+72x+3360(x>10)任务3:由任务2得w=-2x2+72x+3360=-2x-182+4008,∴当x=18时,获得最大利润,y=-13×18+703=523,∴x≠18,∵开口向下,∴取x=17或x=19,当x=17时,y=533,不符合题意;当x=19时,y=513=17,符合题意;∴70-x-y=34,综上:安排17名工人加工“雅”服装,17名工人加工“风”服装,34名工人加工“正”服装,即可获得最大利润.17(2024·山东烟台·中考真题)每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x元,每天的销售利润为y元.(1)求y与x的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?【答案】(1)y=-25x2+20x+12000,每辆轮椅降价20元时,每天的利润最大,为12240元(2)这天售出了64辆轮椅【分析】本题考查二次函数的实际应用,正确的列出函数关系式,是解题的关键:(1)根据总利润等于单件利润乘以销量,列出二次函数关系式,再根据二次函数的性质求最值即可;(2)令y=12160,得到关于x的一元二次方程,进行求解即可.【详解】(1)解:由题意,得:y=200-x60+x10×4=-25x2+20x+12000;∵每辆轮椅的利润不低于180元,∴200-x≥180,∴x≤20,∵y=-25x2+20x+12000=-25x-252+12250,∴当x<25时,y随x的增大而增大,∴当x=20时,每天的利润最大,为-25×20-252+12250=12240元;答:每辆轮椅降价20元时,每天的利润最大,为12240元;(2)当y=12160时,-25x2+20x+12000=12160,解得:x1=10,x2=40(不合题意,舍去);∴60+1010×4=64(辆);答:这天售出了64辆轮椅.18(2024·江西·中考真题)如图,一小球从斜坡O点以一定的方向弹出球的飞行路线可以用二次函数y=ax2+bx a<0刻画,斜坡可以用一次函数y=14x刻画,小球飞行的水平距离x(米)与小球飞行的高度y(米)的变化规律如下表:x012m4567⋯y07261528152n72⋯(1)①m =,n =;②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系y =-5t 2+vt .①小球飞行的最大高度为米;②求v 的值.【答案】(1)①3,6;②152,158;(2)①8,②v =410【分析】本题主要考查二次函数的应用以及从图象和表格中获取数据,(1)①由抛物线的顶点坐标为4,8 可建立过于a ,b 的二元一次方程组,求出a ,b 的值即可;②联立两函数解析式求解,可求出交点A 的坐标;(2)①根据第一问可知最大高度为8米;②将小球飞行高度与飞行时间的函数关系式化简为顶点式即可求得v 值.【详解】(1)解:①根据小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律表可知:抛物线顶点坐标为4,8 ,∴-b 2a =4-b 24a =8 ,解得:a =-12b =4 ,∴二次函数解析式为y =-12x 2+4x ,当y =152时,-12x 2+4x =152,解得:x =3或x =5(舍去),∴m =3,当x =6时,n =y =-12×62+4×6=6,故答案为:3,6.②联立得:y =-12x 2+4x y =14x ,解得:x =0y =0 或x =152y =158,∴点A 的坐标是152,158,(2)①由题干可知小球飞行最大高度为8米,故答案为:8;②y =-5t 2+vt =-5t -v 10 2+v 220,则v 220=8,解得v =410(负值舍去).19(2024·江苏苏州·中考真题)如图,△ABC 中,AC =BC ,∠ACB =90°,A -2,0 ,C 6,0 ,反比例函数y =k xk ≠0,x >0 的图象与AB 交于点D m ,4 ,与BC 交于点E .(1)求m ,k 的值;(2)点P 为反比例函数y =k xk ≠0,x >0 图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM ∥AB ,交y 轴于点M ,过点P 作PN ∥x 轴,交BC 于点N ,连接MN ,求△PMN 面积的最大值,并求出此时点P 的坐标.【答案】(1)m =2,k =8(2)S △PMN 最大值是92,此时P 3,83【分析】本题考查了二次函数,反比例函数,等腰三角形的判定与性质等知识,解题的关键是:(1)先求出B 的坐标,然后利用待定系数法求出直线AB 的函数表达式,把D 的坐标代入直线AB 的函数表达式求出m ,再把D 的坐标代入反比例函数表达式求出k 即可;(2)延长NP 交y 轴于点Q ,交AB 于点L .利用等腰三角形的判定与性质可得出QM =QP ,设点P 的坐标为t ,8t ,2<t <6 ,则可求出S △PMN =12⋅6-t ⋅t ,然后利用二次函数的性质求解即可.【详解】(1)解:∵A -2,0 ,C 6,0 ,∴AC =8.又∵AC =BC ,∴BC =8.∵∠ACB =90°,∴点B 6,8 .设直线AB 的函数表达式为y =ax +b ,将A -2,0 ,B 6,8 代入y =ax +b ,得-2a +b =06a +b =8 ,。

函数的应用题库及答案

函数的应用题库及答案

函数的应用题库及答案函数是数学中描述变量之间关系的基本概念,广泛应用于解决实际问题。

以下是一些函数的应用题库及答案,供学生练习和理解函数的应用。

# 题库1. 人口增长问题某城市2010年的人口是100万,预计每年增长率为2%,求2020年该城市的人口。

2. 投资收益问题如果某人投资1000元,年利率为5%,计算5年后的总收益。

3. 物理运动问题一个物体从静止开始,以匀加速运动,加速度为2m/s²,求10秒后物体的速度和位移。

4. 几何问题一个圆的半径是r,求该圆的面积和周长。

5. 温度转换问题如果华氏温度是98.6°F,求对应的摄氏温度。

6. 利润最大化问题一家公司生产产品的成本是每件10元,市场价格是每件20元,如果公司想要利润最大化,求每件产品的最佳售价。

7. 函数图像问题给定函数f(x) = x² - 4x + 3,求该函数的图像顶点坐标。

8. 线性规划问题某工厂有100吨原料,生产A产品需要1吨原料,生产B产品需要2吨原料,A产品的利润是每吨100元,B产品的利润是每吨200元,求最大利润。

9. 函数的奇偶性问题判断函数g(x) = x³ - 2x是否为奇函数或偶函数。

10. 函数的周期性问题给定函数h(x) = sin(x),求该函数的周期。

# 答案1. 答案2020年的人口 = 100万× (1 + 2%)¹⁰ ≈ 100万× 1.02¹⁰≈ 108.36万。

2. 答案5年后的总收益= 1000 × (1 + 5%)⁵ ≈ 1000 × 1.27628 ≈ 1276.28元。

3. 答案10秒后的速度= 0 + 2 × 10 = 20m/s,位移= 0.5 × 2 × 10² = 100m。

4. 答案圆的面积= πr²,周长= 2πr。

5. 答案摄氏温度 = (98.6 - 32) × 5/9 ≈ 37°C。

二次函数的实际应用解答题专项练习(原卷版)—2024-2025学年九年级数学上册(人教版)

二次函数的实际应用解答题专项练习(原卷版)—2024-2025学年九年级数学上册(人教版)

二次函数实际应用解答题专项训练类型一:几何图形的面积问题类型二:销售中的利润问题类型三:抛物线形的形状问题类型四:抛物线形的运动轨迹问题类型一:几何图形的面积问题1.如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃.设花圃的一边AB为x m,面积为y m2.(1)若要围成面积为63m2的花圃,则AB的长是多少?(2)求AB为何值时,使花圃面积最大,并求出花圃的最大面积.2.某养殖户准备围建一个矩形鸡舍,其中一边靠墙MN,另外的边(虚线部分)用长为28米的篱笆围成,并将矩形鸡舍分成两个相同的房间,每个房间并各留出宽1米的门方便进出.已知墙的长度为12米,设这个鸡舍垂直于墙的一边的长为x米,鸡舍的面积为S.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)求出鸡舍的面积S的最大值,此时x为多少米?3.如图,是400米跑道示意图,中间的足球场ABCD是矩形,两边是半圆,直道AB的长是多少?你一定知道是100米!可你也许不知道,这不仅仅为了比赛的需要,还有另外一个原因,等你做完本题就明白了.设AB=x米.(1)请用含x的代数式表示BC.(2)设矩形ABCD的面积为S.①求出S关于x的函数表达式.②当直道AB为多少米时,矩形ABCD的面积最大?4.春回大地,万物复苏,又是一年花季到.某花圃基地计划将如图所示的一块长40m,宽20m的矩形空地划分成五块小矩形区域.其中一块正方形空地为育苗区,另一块空地为活动区,其余空地为种植区,分别种植A,B,C三种花卉.活动区一边与育苗区等宽,另一边长是10m.A,B,C三种花卉每平方米的产值分别是2百元、3百元、4百元.(1)设育苗区的边长为x m,用含x的代数式表示下列各量:花卉A的种植面积是 m2,花卉B的种植面积是 m2,花卉C的种植面积是 m2.(2)育苗区的边长为多少时,A,B两种花卉的总产值相等?(3)若花卉A与B的种植面积之和不超过560m2,求A,B,C三种花卉的总产值之和的最大值.5.如图1,用一段长为33米的篱笆围成一个一边靠墙并且中间有一道篱笆隔墙的矩形ABCD菜园,墙长为12米.设AB的长为x米,矩形ABCD菜园的面积为S平方米.(1)分别用含x的代数式表示BC与S;(2)若S=54,求x的值;(3)如图2,若在分成的两个小矩形的正前方各开一个1.5米宽的门(无需篱笆),当x为何值时,S取最大值,最大值为多少?6.如图,某农户计划用篱笆围成一个矩形场地养殖家禽,为充分利用现有资源,该矩形场地一面靠墙(墙的长度为18m),另外三面用篱笆围成,中间再用篱笆把它分成三个面积相等的矩形分别养殖不同的家禽,计划购买篱笆的总长度为32m,设矩形场地的长为x m,宽为y m,面积为s m2.(1)分别求出y与x,s与x的函数解析式;(2)当x为何值时,矩形场地的总面积最大?最大面积为多少?(3)若购买的篱笆总长增加8m,矩形场地的最大总面积能否达到100m2?若能,请求出x的值;若不能,请说明理由.7.某家禽养殖场,用总长为200m的围栏靠墙(墙长为65m)围成如图所示的三块矩形区域,矩形EAGH 与矩形HGBF面积相等,矩形EAGH面积等于矩形DEFC面积的二分之一,设AD长为x m,矩形区域ABCD的面积为y m2.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,y有最大值?最大值是多少?(3)现需要在矩形EAGH和矩形DEFC区域分别安装不同种类的养殖设备,单价分别为40元/平方米和20元/平方米,若要使安装成本不超过30000元,请直接写出x的取值范围.8.小明准备给长16米,宽12米的长方形空地栽种花卉和草坪,图中I、II、III三个区域分别栽种甲、乙、丙三种花卉,其余区域栽种草坪.四边形ABCD和EFGH均为正方形,且各有两边与长方形边重合,矩形MFNC(区域II)是这两个正方形的重叠部分,如图所示.(1)若花卉均价为450元/米2,种植花卉的面积为S(米2),草坪均价为300元/米2,且花卉和草坪裁种总价不超过65400元,求S的最大值;(2)若矩形MFNC满足MF:FN=1:3.①求MF,FN的长;②若甲、乙、丙三种花卉单价分别为150元/米2,80元/米2,150元/米2,且边BN的长不小于边ME长的倍.求图中I、II、II三个区域栽种花卉总价W元的最大值.9.阅读下列材料:利用完全平方公式,将多项式x2+bx+c变形为(x+m)2+n的形式,然后由(x+m)2≥0就可求出多项式x2+bx+c的最小值.例题:求多项式x2﹣4x+5的最小值.解:x2﹣4x+5=x2﹣4x+4+1=(x﹣2)2+1,因为(x﹣2)2≥0,所以(x﹣2)2+1≥1.当x=2时,(x﹣2)2+1=1.因此(x﹣2)2+1有最小值,最小值为1,即x2﹣4x+5的最小值为1.通过阅读,理解材料的解题思路,请解决以下问题:(1)【理解探究】已知代数式A=x2+10x+20,则A的最小值为 ;(2)【类比应用】张大爷家有甲、乙两块长方形菜地,已知甲菜地的两边长分别是(3a+2)米,(2a+5)米,乙菜地的两边长分别是5a米,(a+5)米,试比较这两块菜地的面积S甲和S乙的大小,并说明理由;(3)【拓展升华】如图,△ABC中,∠C=90°,AC=8cm,BC=12cm,点M、N分别是线段AC和BC上的动点,点M 从A点出发以1cm/s的速度向C点运动;同时点N从C点出发以2cm/s的速度向B点运动,当其中一点到达终点时,两点同时停止运动,设运动的时间为t秒,请直接写出△MCN的面积最大值.10.综合与实践,研究小组想利用在前面的空地围出一个,矩的函数表达式,同时求出自变量的取值范围,再结合函数性质求出的最大值:比较并判断矩形种植园的面积最类型二:销售中的利润问题11.麻花是我国的一种特色油炸面食小吃,其色、香、味俱全,品种多样,十分畅销.阳光超市购进了一批麻花礼盒进行销售,成本价为30元/件,根据市场预测,在一段时间内,销售单价为40元/件时,每天的销售量为300件,销售单价每提高10元/件,将少售出50件.(1)求超市销售该麻花礼盒每天的销售量y(件)与销售单价x(元/件)之间的函数关系式,并求出出变量取值范围;(2)当销售单价定为多少时,超市销售该麻花礼盒每天获得的利润最大?并求出最大利润.12.某乡镇贸易公司开设了一家网店,销售当地某种农产品,已知该农产品成本为每千克10元,调查发现,每天销售量y(kg)与销售单价x(元)满足如图所示的函数关系(其中10<x≤30)(1)写出y与x之间的函数关系式及自变量的取值范围;(2)当销售单价x为多少元时,每天的销售利润最大?最大利润是多少元?13.某文具商店用销售进价为28元/盒的彩色铅笔,市场调查发现,若以每盒40元的价格销售,平均每天销售80盒,价格每提高1元,平均每天少销售2盒,设每盒彩色铅笔的销售,价为x(x>40)元,平均每天销售y盒,平均每天的销售利润为W元.(1)直接写出y与x之间的函数关系式: .(2)求W与x之间的函数关系式.(3)为稳定市场,物价部门规定每盒彩色铅笔的售价不得高于50元,当每盒的销售价为多少元时,平均每天获得的利润最大?最大利润是多少元?14.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件,如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于65元),设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)若每件商品的售价定价为55元,则每个月可卖出 件;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)若在销售过程中每一件商品有a(a>2)元的其他费用,商家发现当售价每件不低于57元时,每月的销售利润随x的增大而减小,请求出a的取值范围.15.为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.小柳按照政策投资销售本市生产的一种网红螺蛳粉.已知这种网红螺蛳粉的成本价为每箱80元,出厂价为每箱100元,每月销售量y(箱)与销售单价x(元)之间满足函数关系:y=﹣2x+400.(1)小柳在开始销售的第1月将螺蛳粉的销售单价定为120元,这个月他销售该螺蛳粉可获利 元.(2)设小柳销售螺蛳粉获得的月利润为w(元),当销售单价为多少元时,月利润最大,最大利润是多少元?(3)物价部门规定,这种网红螺蛳粉的销售单价不得高于150元,那么政府每个月为他承担的总差价最少为多少元?16.某商场某商品现在的售价为每件60元,每星期可以卖出300件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出10件.已知商品的进价为每件40元.设售价为x元/件(x为正整数),每星期销售量为y件,每星期销售利润为W元.(1)直接写出y与x,W与x的函数解析式以及自变量x的取值范围;(26000元,那么该商品的售价是多少?(3)当该商品的售价定为多少时,每星期的销售利润最大?最大利润是多少?17.某食品厂生产一种半成品食材,成本为2元/千克,每天的产量p(百千克)与销售价格x(元/千克)满足函数关系式p=x+8,从市场反馈的信息发现,该半成品食材每天的市场需求量q(百千克)与销售价格x(元/千克)满足一次函数关系,部分数据如表:销售价格x(元/千克)24 (10)市场需求量q(百千克)1210 (4)当每天的产量不大于市场需求量时,这种半成品食材能全部售出;而当每天的产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃.已知销售价格不低于2元/千克,不得高于10元/千克.(1)直接写出q与x的函数关系式,并注明自变量x的取值范围;(2)当每天的产量不大于市场需求量时,求厂家每天获得的利润的最大值;(3)当每天的产量大于市场需求量时,求厂家每天获得的最大利润.18.某商场以每件20元的价格购进一种商品,规定这种商品每件售价不低于进价,又不高于36元,经市场调查发现:该商品每天的销售量y(件)与每件售价x(元)之间符合一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)该商场销售这种商品要想每天获得600元的利润,每件商品的售价应定为多少元?(3)设商场销售这种商品每天获利w(元),当每件商品的售价定为多少元时,每天销售利润最大?最大利润是多少?19.端午节是中华民族的传统节日,吃粽子是端午节的风俗之一.在今年端午节即将到来之际,某食品店以15元/盒的价格购进某种粽子,为了确定售价,食品店安排人员调查了附近A,B,C,D,E五个食品店近期该种粽子的售价与日销量情况.【数据整理】将调查数据按照一定顺序进行整理,得到下列表格:(1)分析数据的变化规律,发现日销售量与售价间存在我们学过的某种函数关系,请求出这种函数关系式(不要求写出自变量的取值范围);【拓广应用】(2)①要想每天获得198元的利润,应如何定价?②售价定为多少时,每天能获得最大利润?最大利润是多少?20.某农户在30天内采用线下店面和抖音平台带货两种方式销售一批农产品.其中一部分农产品在抖音平台带货销售,已知抖音平台带货销售日销售量y1(件)与时间x(天)关系如图所示.另一部分农产品在线下店铺销售,农产品的日销售量y2(件)与时间x(天)之间满足函数关系,其中部分对应值如表所示.销售时间x(天)0102030日销售量y2(件)07510075(1)写出y1与x的函数关系式及自变量x的取值范围;(2)试确定线下店铺日销售量y2与x的函数关系式并求出线下店铺日销售量y2的最大值;(3)已知该农户线下销售该农产品每件利润为20元,在抖音平台销售该农产品每件利润为30元,设该农户销售农产品的日销售总利润为w,写出w与时间x的函数关系式,并判断第几天日销售总利润w最大,并求出此时最大值.类型三:抛物线形的形状问题21.蔬菜大棚是一种具有出色的保温性能的框架覆膜结构,它的出现使人们可以吃到反季节蔬菜.如图,某菜农搭建了一个横截面为抛物线的大棚,宽度AB为8米,棚顶最高点距离地面高度OC为4米.以AB所在直线为x轴,OC所在直线为y轴建立平面直角坐标系.(1)求该抛物线的函数表达式;(2)若借助横梁DE(DE∥AB)在大棚正中建一个2米高的门(DE到地面AB的距离为2米),求横梁DE的长度是多少米?(结果保留根号)22.一条河上横跨着一座宏伟壮观的悬索桥.桥梁的缆索L1与缆索L2均呈抛物线型,桥塔AO与桥塔BC 均垂直于桥面,如图所示,以O为原点,以直线FF′为x轴,以桥塔AO所在直线为y轴,建立平而直角坐标系.已知:缆索L1所在抛物线与缆索L2所在抛物线关于y轴对称,桥塔AO与桥塔BC之间的距离OC=100m,AO=BC=17m,缆索L1的最低点P到FF′的距离PD=2m.(桥塔的粗细忽略不计)(1)求缆索L1所在抛物线的函数表达式;(2)点E在缆索L2上,EF⊥FF′,且EF=2.6m,FO<OD,求FO的长.23.如图①为某景区一长廊,该长廊顶部的截面可近似看作抛物线型,其跨度AB为2m,长廊顶部的最高点与地面的距离CD为3m,两侧的柱子OA、BE均垂直于地面,且高度为2.5m,线段OE表示水平地面,建立如图②所示的平面直角坐标系.(1)求该抛物线的函数表达式;(2)为了夜间美观,景区工作人员计划分别在距离A,B两端水平距离为0.5m处的抛物线型长廊顶部各悬挂一盏灯笼,且灯笼底部要保持离地面至少2.6m的安全距离,现市面上有一款长度为0.2m的小灯笼,试通过计算说明该款灯笼是否符合要求(忽略悬挂处长度).24.如图1某桥拱截面OBA可视为抛物线的一部分,在某一时刻,桥拱内的水面宽OA=8m,桥拱顶点B 到水面的距离是4m.(1)按如图1所示的坐标系,求该桥拱OBA的函数表达式;(2)要保证高2.26米的小船能够通过此桥(船顶与桥拱的距离不小于0.3米),求小船的最大宽度是多少?(3)如图2,桥拱所在的函数图象的抛物线的x轴下方部分与桥拱OBA在平静水面中的倒影组成一个新函数图象.现将新函数图象向右平移m(m>0)个单位长度,使得平移后的函数图象在9≤x≤10之间,且y随x的增大而减小,请直接写出m的取值范围.25.某一抛物线形隧道,一侧建有垂直于地面的隔离墙,其横截面如图所示,并建立平面直角坐标系.已知抛物线经过(0,3),,三点.(1)求抛物线的解析式(不考虑自变量的取值范围);(2)有一辆高5m,顶部宽4m的工程车要通过该隧道,该车能否正常通过?并说明理由;(3)现准备在隧道上A处安装一个直角形钢架BAC,对隧道进行维修.B,C两点分别在隔离墙和地面上,且AB与隔离墙垂直,AC与地面垂直,求钢架BAC的最大长度.26.古往今来,桥给人们的生活带来便利,解决跨水或者越谷的交通,便于运输工具或行人在桥上畅通无阻,中国桥梁的桥拱线大多采用圆弧形、抛物线形和悬链形,坐落在河北省赵县汶河上的赵州桥建于隋朝,距今已有约1400年的历史,是当今世界上现存最早、保存最完整的古代敞肩石拱桥,赵州桥的主桥拱便是圆弧形.(1)某桥A主桥拱是圆弧形(如图①中),已知跨度AC=40m,拱高BD=10m,则这条桥主桥拱的半径是 m;(2)某桥B的主桥拱是抛物线形(如图②),若水面宽MN=10m,拱顶P(抛物线顶点)距离水面4m,求桥拱抛物线的解析式;(3)如图③,某时桥A和桥B的桥下水位均上升了2m,求此时两桥的水面宽度.27.开封黑岗口引黄调蓄水库上的东京大桥,又名“彩虹桥”.夜晚在桥上彩灯的映衬下好似彩虹般绚丽.主景观由三个抛物线型钢拱组成(如图①所示),其中最高的钢拱近似看成二次函数的图象抛物线,钢拱最高处C点与路面的距离OC为50米,若以点O为原点,OC所在的直线为y轴,建立如图②所示的平面直角坐标系,抛物线与x轴相交于A、B两点,且AB两点间的距离为80米.(1)求这条抛物线的解析式;(2)钢拱最高处C点与水面的距离CD为72米,请求出此时这条钢拱之间水面的宽度;(3)当﹣32<x<16时,求y的取值范围.28.根据以下素材,探索完成任务.)种植技术已十分成熟,一块土地上有一个蔬菜大棚,其横截面顶部上,根支DE根中棚顶向上调整,支架总数不变,对应支架上升(接问题解决29.综合与实践主题:设计高速公路的隧道高速公路隧道设计及行驶常识:为了行驶安全,高速公路的隧道设计一般是单向行驶车道,要求货车,车货总高度从地.为了保证行驶的安全,货车右侧某高速公路准备修建一个单向双车道(两个车道的宽度一样)的隧道,隧道的截面近似看成由抛物线3.5)与隧道两侧的距离类型四:抛物线形的运动轨迹问题30.某小区花园新安装了一排音乐喷泉装置,其中位于中间的喷水装置OA喷水能力最强,水流在各个方向上沿形状相同的抛物线路径落下,若喷出的水流高度为y(m),水流与OA之间的水平距离为x(m),y 与x之间满足二次函数关系.如图所示,经测量,喷水装置OA高度为3.5米,水流最高处离喷水装置OA的水平距离为3米,离地面竖直距离为8米.(1)求水流喷出的高度y(m)与水平距离x(m)之间的函数关系式;(2)若在音乐喷泉四周摆放花盆,不计其它因素,花盆需至少离喷水装置OA多少米处,才不会被喷出的水流击中?31.“急行跳远”是田径运动项目之一.运动员起跳后的腾空路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从起跳到落入沙坑的过程中,运动员的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=a(x﹣h)2+k(a<0).某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x与竖直高度y的几组数据如下:水平距离x/m02 2.53 3.54竖直高度y/m00.80.8750.90.8750.8根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系y=a(x﹣h)2+k(a<0);(2)第二次训练时,该运动员的竖直高度y与水平距离x近似满足函数关系y=﹣0.25(x﹣2.2)2+1.21,记该运动员第一次训练落入沙坑点的水平距离为l1,第二次训练落入沙坑点的水平距离为l2,请比较l1,l2的大小.32.如图1,某公园一个圆形喷水池,在喷水池中心O处竖直安装一根高度为1m的水管OA,A处是喷头,喷出水流沿形状相同的曲线向各个方向落下,喷出水流的运动路线可以看作是抛物线的一部分.建立如图2所示的平面直角坐标系,测得喷出水流距离喷水池中心O的最远水平距离OB为3m,水流竖直高度的最高处位置C距离喷水池中心O的水平距离OD为1m.(1)求喷出水流的竖直高度y(m)与距离水池中心O的水平距离x(m)之间的关系式,并求水流最大竖直高度CD的长;(2)安装师傅调试时发现,喷头竖直上下移动时,抛物线形水流随之竖直上下移动(假设抛物线水流移动时,保持对称轴及形状不变),若要使水流离喷水池中心O的最远水平距离增大至4m,则水管OA的高度增加多少米?33.高楼火灾越来越受到重视,某区消防中队开展消防技能比赛,如图,在一废弃高楼距地面10m的点A 和其正上方点B处各设置了一个火源.消防员来到火源正前方,水枪喷出的水流看作抛物线的一部分(水流出口与地面的距离忽略不计),第一次灭火时,站在水平地面上的点C处,水流恰好到达点A处,且水流的最大高度为12m.待A处火熄灭后,消防员退到点D处,调整水枪进行第二次灭火,使水流恰好到达点B处,已知点D到高楼的水平距离为12m,假设两次灭火时水流的最高点到高楼的水平距离均为3m.建立如图所示的平面直角坐标系.(1)求消防员第一次灭火时水流所在抛物线的解析式;(2)若两次灭火时水流所在抛物线的形状相同,求A、B之间的距离;(3)若消防员站在到高楼水平距离为9m的地方,想要扑灭距地面高度12~18m范围内的火苗,当水流最高点到高楼的水平距离始终为3m时,直接写出a的取值范围.34.甲、乙两名同学进行羽毛球比赛,羽毛球发出并飞行一段距离后,其飞行路线可以看作是抛物线的一部分.如图建立平面直角坐标系,羽毛球从点O 的正上方发出,飞行过程中羽毛球与地面的垂直高度y (单位:m )与水平距离x (单位:m )之间近似满足二次函数关系.比赛中,甲同学某次发球时如图1,羽毛球飞出一段距离后,抛物线部分的飞行高度y 与此时水平距离x 的对应七组数据如下:水平距离x /m23 3.54 4.556…竖直高度y /m3.444.15 4.2 4.154 3.4…根据以上数据,回答下列问题:(1)①当羽毛球飞行到最高点时,距地面 m ,此时水平距离是 m ;②在水平距离5m 处,放置一个高1.55m 的球网,羽毛球  (填“是”或“否”)可以过网;(2)求出y 与x 的函数解析式;(3)若甲发球过网后,乙在羽毛球飞行的水平距离为7m 的点Q 处接住球(如图2).此时如果乙选择扣球,羽毛球的飞行高度y(m )与水平距离x (m )近似满足一次函数关系y =0.4x +m .如果乙选择吊球,羽毛球的飞行高度 y (m ) x (m ) 近似满足二次函数关系y =n (x ﹣6)2+3.2.上面两种击球方式均能使球过网.要使球的落地点到O 点的距离更远,请通过计算判断乙应选择哪种击球方式更合适.35.如图1,某广场要修建一个景观喷水池,水从喷头喷出后呈抛物线形状先向上至最高点后落下.将中间立柱近似看作一条线,以其为y轴建立如图2所示直角坐标系.已知中间立柱顶端C到地面的距离为6m,喷水头D恰好是立柱OC的中点.若水柱上升到最高点E时,高度为4m,到中间立柱的距离为1m.(1)求图2中第一象限内抛物线的函数表达式.(2)为了使水落下后全部进入水池中,请判断圆形水池的直径不能小于多少米?(3)实际施工时,决定对喷水设施做如下设计改进,把水池的直径修成7m,在不改变喷出的抛物线形水柱形状的情况下,且喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,需对水管的长度进行调整,求调整后水管的最大长度.36.如图,某跳水运动员进行10米跳台跳水训练,水面边缘点E(﹣1.5,﹣10),运动员(可视为一质点)在空中运动的路线是经过原点O的抛物线,在跳某个规定动作时,运动员在空中最高处点A(1,1.25),正常情况下,运动员在距水面高度5米前必须完成规定的翻腾,打开动作,并调整好入水姿势,否则就为失误.运动员入水后,运动路线为另一条抛物线.(1)求该运动员在空中运动时所对应抛物线的解析式;(2)若运动员在空中调整好入水姿势时,入水点恰好距点E的水平距离为5米,问该运动员此次跳水是否失误?请通过计算说明理由;(3)在该运动员入水点B的正前方M,N两点,且EM=10.5,EN=13.5,该运动员入水后运动路线对应的抛物线解析式为y=a(x﹣h)2+k且顶点C距水面4米.若该运动员的出水点D在MN之间(含M,N两点),求a的取值范围.。

中考数学函数的实际应用

中考数学函数的实际应用

函数的实际应用基础题1. [跨学科背景](2022郴州)科技小组为了验证某电路的电压U(V)、电流I(A)、电阻R(Ω)三者之间的关系:I=UR,测得数据如下:R(Ω)100200220400I(A) 2.2 1.110.55那么,当电阻R=55 Ω时,电流________________________________________________________A.2. (2022呼和浩特)某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了________千克糯米;设某人的付款金额为x元,购买量为y千克,则购买量y关于付款金额x(x>10)的函数解析式为______________.3. (2022聊城)某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y(个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为________元(利润=总销售额-总成本).第3题图4. (2022宁波)为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y千克与每平方米种植的株数x(2≤x≤8,且x为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y关于x的函数表达式;(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克?5. (2022恩施州)某校计划租用甲、乙两种客车送180名师生去研学基地开展综合实践活动.已知租用一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元.甲型客车每辆可坐15名师生,乙型客车每辆可坐25名师生.(1)租用甲、乙两种客车每辆各多少元?(2)若学校计划租用8辆客车,怎样租车可使总费用最少?拔高题6. (2022自贡)九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形,等腰三角形(底边靠墙),半圆形这三种方案,最佳方案是()第6题图A. 方案1B. 方案2C. 方案3D. 方案1或方案27. (2022荆州)某企业投入60万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产量等于销售量).经测算,该产品网上每年的销售量y(万件)与售价x(元/件)之间满足函数关系式y=24-x,第一年除60万元外其他成本为8元/件.(1)求该产品第一年的利润w(万元)与售价x之间的函数关系式;(2)该产品第一年利润为4万元,第二年将它全部作为技改资金再次投入(只计入第二年成本)后,其他成本下降2元/件.①求该产品第一年的售价;②若第二年售价不高于第一年,销售量不超过13万件,则第二年利润最少是多少万元?创新题8. (2022潍坊)某市在盐碱地种植海水稻获得突破性进展,小亮和小莹到海水稻种植基地调研.小莹根据水稻年产量数据,分别在直角坐标系中描出表示2017-2021年①号田和②号田年产量情况的点(记2017年为第1年度,横轴表示年度,纵轴表示年产量),如下图.第8题图小亮认为,可以从y =kx +b (k >0),y =m x(m >0),y =-0.1x 2+ax +c 中选择适当的函数模型,模拟①号田和②号田的年产量变化趋势.(1)小莹认为不能选y =m x(m >0).你认同吗?请说明理由; (2)请从小亮提供的函数模型中,选择适当的模型分别模拟①号田和②号田的年产量变化趋势,并求出函数表达式;(3)根据(2)中你选择的函数模型,请预测①号田和②号田总年产量....在哪一年最大?最大是多少?。

中考数学复习---函数的实际应用之利润最值问题专项练习(含答案)

中考数学复习---函数的实际应用之利润最值问题专项练习(含答案)

中考数学复习---函数的实际应用之利润最值问题专项练习(含答案)1.某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y 是销售价格x (单位:元)的一次函数.(1)求y 关于x 的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.【答案】(1)()y 309601032x x =−+≤≤(2)价格为21元时,才能使每月获得最大利润,最大利润为3630元【分析】(1)设()0y kx b k =+≠,把20x =,360y =和30x =,60y =代入求出k 、b 的值,从而得出答案;(2)根据总利润=每件利润×每月销售量列出函数解析式,配方成顶点式,利用二次函数的性质求解可得答案.(1)解:设()0y kx b k =+≠,把20x =,360y =和30x =,60y =代入可得203603060k b k b +⎧⎨+⎩==,解得30960k b =−⎧⎨=⎩, 则()y 309601032x x =−+≤≤;(2)解:每月获得利润()()3096010P x x =−+−()()303210x x =−+−()23042320x x =−+−()230213630x =−−+. ∵300−<,∴当21x =时,P 有最大值,最大值为3630.答:当价格为21元时,才能使每月获得最大利润,最大利润为3630元.【点睛】本题主要考查了一次函数解析式的求法和二次函数的应用,解题的关键是理解题意找到其中蕴含的相等关系,并据此得出函数解析式及二次函数的性质,然后再利用二次函数求最值.2.某服装店以每件30元的价格购进一批T 恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T 恤的销售单价提高x 元.(1)服装店希望一个月内销售该种T 恤能获得利润3360元,并且尽可能减少库存,问T 恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T 恤获得的利润最大?最大利润是多少元?【答案】(1)2元;(2)当服装店将销售单价50元时,得到最大利润是4000元【分析】(1)根据题意,通过列一元二次方程并求解,即可得到答案;(2)设利润为M 元,结合题意,根据二次函数的性质,计算得利润最大值对应的x 的值,从而得到答案.【详解】(1)由题意列方程得:(x +40-30) (300-10x )=3360解得:x 1=2,x 2=18∵要尽可能减少库存,∴x 2=18不合题意,故舍去∴T 恤的销售单价应提高2元;(2)设利润为M 元,由题意可得:M =(x +40-30)(300-10x )=-10x 2+200x +3000=()210104000x −−+∴当x =10时,M 最大值=4000元∴销售单价:40+10=50元∴当服装店将销售单价50元时,得到最大利润是4000元.【点睛】本题考查了一元二次方程、二次函数的知识;解题的关键是熟练掌握一元二次方程、二次函数的性质,从而完成求解.3.某企业投入60万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产量等于销售量).经测算,该产品网上每年的销售量y (万件)与售价x (元/件)之间满足函数关系式y =24-x ,第一年除60万元外其他成本为8元/件.(1)求该产品第一年的利润w (万元)与售价x 之间的函数关系式;(2)该产品第一年利润为4万元,第二年将它全部作为技改资金再次投入(只计入第二年成本)后,其他成本下降2元/件.①求该产品第一年的售价;②若第二年售价不高于第一年,销售量不超过13万件,则第二年利润最少是多少万元?【答案】(1)232252w x x =-+-(2)①第一年的售价为每件16元,②第二年的最低利润为61万元.【分析】(1)由总利润等于每件产品的利润乘以销售的数量,再减去投资成本,从而可得答案;(2)①把4w =代入(1)的函数解析式,再解方程即可,②由总利润等于每件产品的利润乘以销售的数量,再减去投资成本,列函数关系式,再利用二次函数的性质求解利润范围即可得到答案.(1)解:由题意得:()860w x y =--()()82460x x =---232252,x x =-+-(2)①由(1)得:当4w =时,则2322524,x x -+-=即2322560,x x -+=解得:1216,x x ==即第一年的售价为每件16元, ② 第二年售价不高于第一年,销售量不超过13万件,16,2413x x ì£ï\í-?ïî解得:1116,x # 其他成本下降2元/件,∴()()2624430148,w x x x x =---=-+-对称轴为()3015,21x =-=? 10,a =-<∴ 当15x =时,利润最高,为77万元,而1116,x #当11x =时,513461w =?=(万元)当16x =时,108476w =?= (万元)6177,w \#所以第二年的最低利润为61万元.【点睛】本题考查的是二次函数的实际应用,二次函数的性质,理解题意,列出函数关系式,再利用二次函数的性质解题是关键.4.某水果店将标价为10元/斤的某种水果.经过两次降价后,价格为8.1元/斤,并且两次降价的百分率相同.(1)求该水果每次降价的百分率;(2)从第二次降价的第1天算起,第x 天(x 为整数)的销量及储藏和损耗费用的相关信息如下表所示: 时间(天)x 销量(斤)120﹣x 储藏和损耗费用(元) 3x 2﹣64x+400已知该水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (1≤x <10)之间的函数解析式,并求出第几天时销售利润最大,最大利润是多少?【答案】(1)10%;(2)y =﹣3x 2+60x+80,第9天时销售利润最大,最大利润是377元【解析】【分析】(1)根据题意,可以列出相应的方程,从而可以求得相应的百分率;(2)根据题意和表格中的数据,可以求得y 与x (1≤x <10)之间的函数解析式,然后利用二次函数的性质可以求出第几天时销售利润最大,最大利润是多少.【详解】解:(1)设该水果每次降价的百分率为x ,10(1﹣x )2=8.1,解得,x 1=0.1,x 2=1.9(舍去),答:该水果每次降价的百分率是10%;(2)由题意可得,y =(8.1﹣4.1)×(120﹣x )﹣(3x 2﹣64x+400)=﹣3x 2+60x+80=﹣3(x ﹣10)2+380, ∵1≤x <10,∴当x =9时,y 取得最大值,此时y =377,由上可得,y 与x (1≤x <10)之间的函数解析式是y =﹣3x 2+60x+80,第9天时销售利润最大,最大利润是377元.【点睛】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质和方程的知识解答.5.国庆节前,某超市为了满足人们的购物需求,计划购进甲、乙两种水果进行销售.经了解,甲种水果和乙种水果的进价与售价如下表所示: 水果单价甲 乙 进价(元/千克)x 4x + 售价(元/千克) 20 25已知用1200元购进甲种水果的重量与用1500元购进乙种水果的重量相同.(1)求x 的值; (2)若超市购进这两种水果共100千克,其中甲种水果的重量不低于乙种水果重量的3倍,则超市应如何进货才能获得最大利润,最大利润是多少?【答案】(1)16;(2)购进甲种水果75千克,则乙种水果25千克,获得最大利润425元【分析】(1)根据用1200元购进甲种水果的重量与用1500元购进乙种水果的重量相同列出分式方程,解之即可;(2)设购进甲种水果m 千克,则乙种水果100-m 千克,利润为y ,列出y 关于m 的表达式,根据甲种水果的重量不低于乙种水果重量的3倍,求出m 的范围,再利用一次函数的性质求出最大值.【详解】解:(1)由题意可知:120015004x x =+,解得:x=16,经检验:x=16是原方程的解;(2)设购进甲种水果m千克,则乙种水果100-m千克,利润为y,由题意可知:y=(20-16)m+(25-16-4)(100-m)=-m+500,∵甲种水果的重量不低于乙种水果重量的3倍,∴m≥3(100-m),解得:m≥75,即75≤m<100,在y=-m+500中,-1<0,则y随m的增大而减小,∴当m=75时,y最大,且为-75+500=425元,∴购进甲种水果75千克,则乙种水果25千克,获得最大利润425元.【点睛】本题考查了分式方程和一次函数的实际应用,解题的关键是读懂题意,列出方程和函数表达式.6.某公司生产的一种营养品信息如下表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.营养品信息表营养成份每千克含铁42毫克配料表原料每千克含铁甲食材50毫克乙食材10毫克规格每包食材含量每包单价A包装1千克45元B包装0.25千克12元(1)问甲、乙两种食材每千克进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.①问每日购进甲、乙两种食材各多少千克?②已知每日其他费用为2000元,且生产的营养品当日全部售出.若A 的数量不低于B 的数量,则A 为多少包时,每日所获总利润最大?最大总利润为多少元?【答案】(1)甲、乙两种食材每千克进价分别为40元、20元;(2)①每日购进甲食材400千克,乙食材100千克;②当A 为400包时,总利润最大.最大总利润为2800元【分析】(1)设乙食材每千克进价为a 元,根据用80元购买的甲食材比用20元购买的乙食材多1千克列分式方程即可求解;(2)①设每日购进甲食材x 千克,乙食材y 千克.根据每日用18000元购进甲、乙两种食材并恰好全部用完,利用进货总金额为180000元,含铁量一定列出二元一次方程组即可求解;②设A 为m 包,根据题意,可以得到每日所获总利润与m 的函数关系式,再根据A 的数量不低于B 的数量,可以得到m 的取值范围,从而可以求得总利润的最大值.【详解】解:(1)设乙食材每千克进价为a 元,则甲食材每千克进价为2a 元, 由题意得802012a a−=,解得20a =. 经检验,20a =是所列方程的根,且符合题意.∴240a =(元).答:甲、乙两种食材每千克进价分别为40元、20元.(2)①设每日购进甲食材x 千克,乙食材y 千克.由题意得()402018000501042x y x y x y +=⎧⎨+=+⎩,解得400100x y =⎧⎨=⎩ 答:每日购进甲食材400千克,乙食材100千克.②设A 为m 包,则B 为()500200040.25m m −=−包. 记总利润为W 元,则 ()45122000418000200034000W m m m =+−−−=−+.A 的数量不低于B 的数量,∴20004m m ≥−,400m ≥.30k =−<,∴W 随m 的增大而减小。

2024年九年级中考数学专题复习:二次函数实际应用(抛物线型问题)(含答案)

2024年九年级中考数学专题复习:二次函数实际应用(抛物线型问题)(含答案)

2024年九年级中考数学专题复习:二次函数实际应用(抛物线型问题)一、单选题 1.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是21.560s t t =-+.飞机着陆后到停下来滑行的距离是( )mA .300B .400C .500D .6002.如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数2142y x x =-刻画,斜坡可以用一次函数12y x =刻画.下列结论错误的是( )A .小球距O 点水平距离超过4米呈下降趋势B .当小球水平运动2米时,小球距离坡面的高度为6米C .小球落地点距O 点水平距离为7米D .当小球拋出高度达到8m 时,小球距O 点水平距离为4m3.小康在体育训练中掷出的实心球的运动路线呈如图所示的抛物线形,若实心球运动的抛物线的解析式为()2116399y x =--+,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离,则小康此次掷球的成绩(即OA 的长度)是( )A .8mB .7mC .6mD .5m4.如图,要修建一个圆形喷水池,在池中心O 点竖直安装一根水管,在水管的顶端A 处安一个喷水头,使喷出的抛物线形水柱与水池中心O 点的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心O 点3m ,则水管OA 的高是( )A.2m B.2.25m C.2.5m D.2.8m5.学校组织学生去同安进行研学实践活动,小王同学发现在宾馆房间的洗手盘台面上有一瓶洗手液(如图①).于是好奇的小王同学进行了实地测量研究.当小王用一定的力按住顶部A下压如图②位置时,洗手液从喷口B 流出,路线近似呈抛物线状,且喷口B为该抛物线的顶点.洗手液瓶子的截面图下面部分是矩形CGHD.小王同学测得:洗手液瓶子的底面直径12cmGH=,喷嘴位置点B距台面的距离为16cm,且B、D、H三点共线.小王在距离台面15.5cm处接洗于液时,手心Q到直线DH的水平距离为3cm,若小王不去接,则洗手液落在台面的位置距DH的水平距离是()A.122cm B.123cm C.62cm D.6cm6.某公园有一个圆形喷水池,喷出的水流呈抛物线形,一条水流的高度h(单位:m)与水流运动时间t(单位:s)之间的函数解析式为2305h t t=-,那么水流从喷出至回落到地面所需要的时间是()A.6s B.4s C.3s D.2s7.如图所示,某工厂的大门是抛物线形水泥建筑物,大门的地面宽度为8m,两侧距地面3m高处各有一壁灯,两壁灯间的水平距离为6m,则厂门的高度约为()A.307B.387C.487D.5078.如图,一座拱桥的轮廓是抛物线型,桥高10米,拱高8米,跨度24米,相邻两支柱间的距离均为6米,则支柱MN的长度为()A.6米B.5米C.4.5米D.4米二、填空题9.如图,已知一抛物线形大门,其地面宽度AB长10米,一位身高1.8米的同学站在门下离门角B点1米的D 处,其头顶刚好顶在抛物线形门上C处.则该大门的最高处离地面高h为米.10.如图所示,抛物线形拱桥的顶点距水面2m时,测得拱桥内水面宽为12m.当水面升高1m后,拱桥内水面的宽度减少m.11.从地面竖直向上抛出一小球,小球的高度h(米)与小球的运动时间(秒)之间的关系式是()2h t t t=-≤≤,若抛出小球1秒钟后再抛出同样的第二个小球.则第二个小球抛出秒时,两个30506小球在空中相撞.12.从地面竖直向上跑出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是()2=-≤≤,小球运动到s时,达到最大高度.h t t t3020613.如图,以40m/s的速度将小球沿与地面成30︒角的方向击出时,小球的飞行路线将是一条抛物线,如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系2=-+,小520h t t球飞行过程中能达到的最大高度为m.14.如图,在喷水池的中心A处竖直安装一个水管AB,水管的顶端B处有一个喷水孔,喷出的抛物线形水柱在与池中心A的水平距离为1m处达到A最高点C,高度为3m,水柱落地点D离池中心A处3m,则水管AB的长为m.15.如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高8m时,水柱落点距O点为m.16.某次踢球,足球的飞行高度h(米)与水平距离x(米)之间满足2=-+,则足球从离地到落地的560h x x水平距离为米.三、解答题AA的17.如图,隧道的截面由抛物线和长方形构成,长方形的长为16m,宽为6m,抛物线的最高点C离地面1距离为8m.(1)按如图所示的直角坐标系,求该抛物线的函数表达式.(2)一大型汽车装载某大型设备后,高为7m ,宽为4m ,如果该隧道内设双向行车道,那么这辆货车能否安全通过?18.掷实心球是中考体育考试的项目.如图是一男生所掷实心球的行进路线(抛物线的一部分)的高度()y m 与水平距离()x m 之间的函数图象,且掷出时起点处高度为2m ,当到起点的水平距离为4m 时,实心球行进至最高点,此时实心球与地面的距离为3m .(1)求抛物线的函数解析式;(2)在该市的评分标准中,实心球从起点到落地点的水平距离大于等于10m 时,即可得满分,试判断该男生在此项考试中能否得满分,并说明理由(参考数据:3 1.73≈).19.南湖大桥作为我市首个全面采用数控技术的桥体音乐喷泉项目,历经多年已经成为长春市民夜间休闲放松的网红打卡地.其中喷水头喷出的水柱轨迹呈抛物线形状,喷水头P 距水面7.5m ,水柱喷射水平距离为5m 时,达到最大高度,此时距水面10m ,水柱落在水面A 点处.将收集到数据建立如图所示的平面直角坐标系,水柱喷出的高度()m y 与水平距离()m x 之间的函数关系式是21()y a x h k =-+.(1)求抛物线的表达式.(2)现调整P 的出水角度,其喷出的水柱高度()m y 与水平距离()m x 之间的函数关系式是220.1 1.2y x x m =-++,落点恰好在A 点右边的B 点处,求AB 的长.(结果精确到0.1m ,参考数据:11110.54=)20.图①是古代的一种远程投石机,其投出去的石块运动轨迹是抛物线的一部分.据《范蠡兵法》记载:“飞石重十二斤,为机发,行二百步”,其原理蕴含了物理中的“杠杆原理”.在如图②所示的平面直角坐标系中,将投石机置于斜坡OA 的底部点O 处,石块从投石机竖直方向上的点C 处被投出,已知石块运动轨迹所在抛物线的顶点坐标是()50,25,5OC =.(1)求抛物线的表达式;(2)在斜坡上的点A 建有垂直于水平线OD 的城墙AB ,且75OD =,12AD =,9AB =,点D ,A ,B 在一条直线上.通过计算说明石块能否飞越城墙AB .参考答案:1.D2.B3.B4.B。

函数的实际应用题目

函数的实际应用题目

函数的实际应用题目1. 已知函数f(x) = x^2 - 4x + 3,求f(x)的值域。

2. 已知函数g(x) = 2x^2 - 4x + 1,求g(x)的顶点坐标。

3. 已知函数h(x) = -x^2 + 4x - 3,求h(x)的零点。

4. 已知函数f(x) = x^2 - 4x + 3,求f(x)的导数。

5. 已知函数f(x) = x^2 - 4x + 3,求f(x)的反函数。

6. 已知函数f(x) = x^2 - 4x + 3,求f(x)的极值点。

7. 已知函数f(x) = x^2 - 4x + 3,求f(x)的单调区间。

8. 已知函数f(x) = x^2 - 4x + 3,求f(x)的周期。

9. 已知函数f(x) = x^2 - 4x + 3,求f(x)的图像。

10. 已知函数f(x) = x^2 - 4x + 3,求f(x)的系数。

11. 已知函数f(x) = x^2 - 4x + 3,求f(x)的判别式。

12. 已知函数f(x) = x^2 - 4x + 3,求f(x)的根。

13. 已知函数f(x) = x^2 - 4x + 3,求f(x)的奇偶性。

14. 已知函数f(x) = x^2 - 4x + 3,求f(x)的单调性。

15. 已知函数f(x) = x^2 - 4x + 3,求f(x)的极值。

16. 已知函数f(x) = x^2 - 4x + 3,求f(x)的连续性。

17. 已知函数f(x) = x^2 - 4x + 3,求f(x)的凹凸性。

18. 已知函数f(x) = x^2 - 4x + 3,求f(x)的最大值。

19. 已知函数f(x) = x^2 - 4x + 3,求f(x)的最小值。

20. 已知函数f(x) = x^2 - 4x + 3,求f(x)的切线。

21. 已知函数f(x) = x^2 - 4x + 3,求f(x)的导数图像。

22. 已知函数f(x) = x^2 - 4x + 3,求f(x)的单调增区间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题复习(十) 函数的实际应用题1.(2016·合肥蜀山区二模)为加强公民的节水意识,合理利用水资源.某市对居民用水实行阶梯水价,居民家庭用水量划分为两个阶梯,一、二级阶梯用水的单价之比等于1∶2.如图折线表示实行阶梯水价后每月水费y(元)与用水量x(m 3)之间的函数关系.其中射线AB 表示第二阶梯时y 与x 之间的函数关系. (1)写出点B 的实际意义;(2)求射线AB 所在直线的表达式.解:(1)图中B 点的实际意义表示当用水量为25 m 3时,所交水费为70元.(2)设第一阶梯用水的单价为m 元/m 3,则第二阶梯用水单价为2m 元/m 3,设A(a ,30),则⎩⎪⎨⎪⎧am =30,am +2m (25-a )=70.解得⎩⎪⎨⎪⎧a =15,m =2. ∴A(15,30),B(25,70).设线段AB 所在直线的表达式为y =kx +b ,则⎩⎪⎨⎪⎧15k +b =30,25k +b =70.解得⎩⎪⎨⎪⎧k =4,b =-30.∴线段AB 所在直线的表达式为y =4x -30.2.(2016·芜湖南陵县一模)某电子商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y =-2x +100.(1)写出每月的利润z(万元)与销售单价x(元)之间函数解析式(利润=售价-制造成本);(2)当销售单价为多少元时,厂商每月能够获得350万元的利润?当销售单价为多少元时,厂商每月能够获得最大利润?最大利润是多少? 解:(1)z =(x -18)y =(x -18)(-2x +100)=-2x 2+136x -1 800.∴z 与x 之间的函数解析式为z =-2x 2+136x -1 800(18≤x≤50).(2)由z =350,得350=-2x 2+136x -1 800, 解得x 1=25,x 2=43.将z =-2x 2+136x -1 800配方,得z =-2(x -34)2+512(18≤x≤50). ∴当x =34时,z 最大=512.答:销售单价定为25元或43元时,厂商每月能获得350万元的利润;当销售单价为34元时,每月能获得最大利润,最大利润是512万元.3.(2016·合肥十校联考)某企业生产一种节能产品,投放市场供不应求.若该企业每月的产量保持在一定的范围,每套产品的售价不低于120万元.已知这种产品的月产量x(套)与每套的售价y 1(万元)之间满足关系式y 1=190—2x ,月产量x(套)与生产总成本y 2(万元)存在如图所示的函数关系. (1)直接写出y 2与x 之间的函数关系式; (2)求月产量x 的取值范围;(3)当月产量x(套)为多少时,这种产品的利润W(万元)最大?最大利润是多少?解:(1)y 2=30x +500.(2)由题意,得190-2x≥120,解得x≤35. 又x >0,∴月产量x 的范围是0<x≤35 . (3)由题意,得W =(190-2x)x -(30x +500)=-2x 2+160x -500=-2(x -40)2+2 700.∵-2<0,且对称轴为直线x =40, ∴当0<x≤35时,W 随x 的增大而增大. ∴当x =35时,W 有最大值,最大值是2 650.故当月产量为35套时,这种产品的利润最大,最大利润是2 650万元. 4.(2016·晋江模拟)如图,把一张长15 cm ,宽12 cm 的矩形硬纸板的四个角各剪去一个同样大小的小正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).设剪去的小正方形的边长为x cm . (1)请用含x 的代数式表示长方体盒子的底面积;(2)当剪去的小正方形的边长为多少时,其底面积130 cm 2?(3)试判断折合而成的长方体盒子的侧面积是否有最大值?若有,试求出最大值和此时剪去的小正方形的边长;若没有,试说明理由.解:(1)(15-2x)(12-2x)cm 2.(2)依题意,得(15-2x)(12-2x)=130,即2x 2-27x +25=0, 解得x 1=1,x 2=252(不合题意,舍去).答:当剪去的小正方形的边长为1 cm 时,其底面积是130 cm 2.(3)设长方体盒子的侧面积S ,则S =2[(15-2x)x +(12-2x)x],即S =54x -8x 2=-8⎝⎛⎭⎪⎫x -2782+7298(0<x<6).当x =278时,S 最大值=7298.即当剪去的小正方形的边长为278 cm 时,长方体盒子的侧面积有最大值7298cm 2.5.(2016·安徽十校联考四模)某科技开发公司研制出一种新型产品,每件产品的成本为2 400元,销售单价定为3000元.在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3 000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2 600元.(1)商家一次购买这种产品多少件时,销售单价恰好为2 600元?(2)设商家一次购买这种产品x 件,开发公司所获的利润为y 元,求y(元)与x(件)之间的函数关系式,并写出自变量x 的取值范围;(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元(其他销售条件不变)? 解:(1)设件数为x ,根据题意,得 3 000-10(x -10)=2 600. 解得x =50.答:商家一次购买这种产品50件时,销售单价恰好为2 600元. (2)由题意,得3 000-10(x -10)≥2 600.解得x≤50. 当0≤x≤10时,y =(3 000-2 400)x =600x ;当10<x≤50时,y =[3 000-2 400-10(x -10)]x =-10x 2+700x ; 当x >50时,y =(2 600-2 400)x =200x.(3)由y =-10x 2+700x 可知抛物线开口向下.∴当x =-7002×(-10)=35时,利润y 有最大值,此时销售单价为3 000-10×(35-10)=2 750(元).答:公司应将最低销售单价调整为2 750元.6.(2016·临朐县一模)家用电灭蚊器的发热部分使用了PTC 发热材料,它的电阻R(k Ω)随温度t(℃)(在一定范围内)变化的大致图象如图所示.通电后,发热材料的温度在由室温10 ℃上升到30 ℃的过程中,电阻与温度成反比例关系,且在温度达到30 ℃时,电阻下降到最小值;随后电阻随温度升高而增加,温度每上升1 ℃,电阻增加415k Ω.(1)求当10≤t≤30时,R 和t 之间的关系式;(2)求温度在30 ℃时电阻R 的值;并求出t≥30时,R 和t 之间的关系式;(3)家用电灭蚊器在使用过程中,温度在什么范围内时,发热材料的电阻不超过6 k Ω?解:(1)∵温度在由室温10 ℃上升到30 ℃的过程中,电阻与温度成反比例关系, ∴设R 和t 之间的关系式为R =kt .将(10,6)代入上式中得6=k10,解得k =60. ∴当10≤t≤30时,R =60t.(2)将t =30代入上式中,得R =6030,解得R =2.∴温度在30 ℃时,电阻R =2 k Ω.∵在温度达到30 ℃时,电阻下降到最小值;随后电阻随温度升高而增加,温度每上升1 ℃,电阻增加415 k Ω,∴当t≥30时,R =2+415(t -30),即R =415t -6.(3)把R =6代入R =415t -6,得t =45.∴温度在10~45 ℃时,电阻不超过6 k Ω.7.(2016·合肥高新区一模)音乐喷泉(图1)可以使喷水造型随音乐的节奏起伏变化而变化,某种音乐喷泉形状如抛物线,设其出水口为原点,出水口离岸边18 m ,音乐变化时,抛物线的顶点在直线y =kx 上变动,从而产生一组不同的抛物线(图2),这组抛物线的统一形式为y =ax 2+bx.(1)若已知k =1,且喷出的抛物线水线最大高度达3 m ,求此时a ,b 的值;(2)若k =1,喷出的水恰好达到岸边,则此时喷出的抛物线水线最大高度是多少m? (3)若k =2,且要求喷出的抛物线水线不能到岸边,求a 的取值范围.解:(1)当k =1时,y =x.由题意,得抛物线的顶点坐标为(3,3).∴设抛物线的解析式为y =a(x -3)2+3. 又∵抛物线过原点(0,0).∴a ×(-3)2+3=0, 解得a =-13.∴y =-13(x -3)2+3,即y =-13x 2+2x.∴a =-13,b =2.(2)∵k=1,喷出的水恰好达到岸边,出水口离岸边18 m ,抛物线的顶点在直线y =kx 上, ∴此时抛物线的对称轴为x =9,y =x =9,即顶点坐标为(9,9). 故此时喷出的抛物线水线最大高度是9 m .(3)∵y=ax 2+bx 的顶点为⎝ ⎛⎭⎪⎫-b2a,-b 24a ,抛物线的顶点在直线y =2x 上,∴-b 2a ·2=-b24a,解得b =4.∵喷出的抛物线水线不能到岸边,出水口离岸边18 m , ∴-b 2a <9,即-42a <9.又∵a<0,∴a <-29.8.(2016·芜湖繁昌县一模)某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月份中,公司前x 个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数关系式y =a(x -h)2+k ,二次函数y =a(x -h)2+k 的一部分图象如图所示,点A 为抛物线的顶点,且点A ,B ,C 的横坐标分别为4,10,12,点A ,B 的纵坐标分别为-16,20.(1)试确定函数关系式y =a(x -h)2+k ;(2)分别求出前9个月公司累计获得的利润以及10月份一个月内所获得的利润;(3)在前12个月中,哪个月该公司一个月内所获得的利润最大?最大利润是多少万元?解:(1)根据题意可设y =a(x -4)2-16.当x =10时,y =20.∴a(10-4)2-16=20,解得a =1.∴所求函数关系式为y =(x -4)2-16.(2)当x =9时,y =(9-4)2-16=9,∴前9个月公司累计获得的利润为9万元. 当x =10时,y =20,而20-9=11.答:10月份一个月内所获得的利润为11万元.(3)设在前12个月中,第n 个月该公司一个月内所获得的利润为s(万元),则有s =(n -4)2-16-[(n -1-4)2-16]=2n -9. ∵s 是关于n 的一次函数,且2>0, ∴s 随着n 的增大而增大.又∵1≤n≤12,∴当n =12时,s 最大=15.答:12月份该公司一个月内所获得的利润最大,最大利润是15万元.9.(2016·安庆二模)某玩具店试销售一种进价为20元的新型玩具,根据物价部门规定:该玩具售价不得超过90元. 在连续七天的试销售过程中,玩具店就销售量y(个)与售价x(元)之间的变化关系做了如下记录.第1天 第2天 第3天 第4天 第5天 第6天 第7天 售价x 30 30 35 40 40 40 45 销售量y1001009590909085(1)运用所学过的函数知识,试判断y 与x 之间的函数关系,并求y 与x 的函数关系式; (2)该玩具店若想每天获得2 400元的利润,应将售价定为多少元?(3)这种新型玩具的售价定为多少元时,玩具店每天能够获得的利润w(元)最大?此时的最大利润为多少元? 解:(1)建立平面直角坐标系,并将表格中的数据看成点的坐标,并在坐标系中描出各点,根据点的排列趋势,可判断y 与x 之间满足一次函数关系,故设y =kx +b(k≠0),分别将(30,100)和(40,90)代入,可得⎩⎪⎨⎪⎧30k +b =100,40k +b =90.解得⎩⎪⎨⎪⎧k =-1,b =130.∴y 与x 的函数关系式为y =-x +130 .(2)根据题意,得(x -20)(-x +130)=2 400. 解得x 1=50,x 2=100. ∵x 2=100>90,故x =50. 答:应将售价定为50元.(3)根据题意,得w =(x -20)(-x +130)=-x 2+150x -2 600=-(x -75)2+3 025. ∵a =-1<0,∴当x =75时,w 最大=3 025.答:当售价定为75元时,能够获得最大利润为3 025元.10.(2016·阜阳二模)某市决定对欲引进种植的A ,B 两种绿色蔬果实行政府补贴,分析得到以下两条信息: 信息一:对于A 种蔬果,所获收益y A (万元)与补贴金额x(万元)之间满足正比例函数关系:y A =kx ;信息二:对于B 种蔬果,所获收益y B (万元)与补贴金额x(万元)之间满足二次函数关系:y B =ax 2+bx.x/万元 1 2 y A /万元 0.6 1.2 y B /万元2.44.4其中,y A ,y B (万元)与补贴金额x(万元)(1)填空:y A =0.6x ;y B =-0.2x 2+2.6x ;(2)如果政府对两种蔬果种植补贴总额共15万元,设总收益为W(万元),对种植B 种蔬果的补贴金额为x(万元),试求出W 与x 之间的函数关系式,并求出W 的最大值;(3)如果政府对两种蔬果种植补贴的总额在10~16万元(含10,16万元),那么补贴总额是多少万元时才能获得最大收益率?(收益率=收益(万元)补贴金额(万元)×100%)解:(2)W =y A +y B=0.6(15-x)+(-0.2x 2+2.6x)=-0.2x 2+2x +9.∵-0.2<0,∴当x =-22×(-0.2)=5时,W 最大=14.(3)设政府对两种蔬果种植补贴总额为n 万元,其中对于种植B 种蔬果的补贴金额为x 万元,总收益为W 万元.则W =y A +y B =0.6(n -x)+(-0.2x 2+2.6x)=-0.2x 2+2x +0.6n=-0.2(x -5)2+5+0.6n. ∴x =5时,W 最大=5+0.6n∴收益率为5+0.6n n =5n +0.6,显然n 越小,收益率越大.∴当补贴总额为10万元时,能获得最大收益率.。

相关文档
最新文档