八年级数学下册第十九章一次函数19.1函数变量与函数说课稿(新版)新人教版
《19.1 变量与函数》课件(含习题)
讲授新课
一 函数的相关概念
情景一
想一想,如果你坐 在摩天轮上,随着 时间的变化,你离 开地面的高度是如 何变化的?
下图反映了摩天轮上的一点的高度h (m)与旋转时间t(min) 之间的关系.
(1)根据左图填表:
t/分 0 1 2 3 4 5 … h/米 3 10 37 45 37 11 … (2)对于给定的时间t ,相 应的高度h能确定吗?
方法 区分常量与变量,就是看在某个变化过程中,该 量的值是否可以改变,即是否可以取不同的值.
二 确定两个变量之间的关系
例3 弹簧的长度与所挂重物有关.如果弹簧原长为10cm, 每1千克重物使弹簧伸长0.5cm,试填下表:
重物的质量 1 2 3 4 5 (kg)
弹簧长度 (cm)
10.5 11
11.5 12 12.5
4x 8 0 x 2
(3) y x 3
x 3 0 x 3
(4) y x 1 1 1 x
x 1且 x 1
x 1 0
1 x 0
即 xx
1 1
... -1 0 1
5.我市白天乘坐出租车收费标准如下:乘坐里程不超过3公 里,一律收费8元;超过3公里时,超过3公里的部分,每公里 加收1.8元;设乘坐出租车的里程为x(公里)(x为整数), 相对应的收费为y(元).
4.收音机上的刻度盘的波长和频率分别是用米(m)和 千赫兹(kHz)为单位标刻的.下面是一些对应的数:
波长l(m) 300 500 600 1000 1500 频率 1000 600 500 300 200 f(khz)
你能发现每一组l,f 的值之间的关系吗?并指出变量与 常量.
19.1.2 一次函数的图象与性质 说课稿-人教版八年级数学下册
19.1.2 一次函数的图象与性质一、教材分析《人教版八年级数学下册》第19章是关于一次函数的内容,本节课主要介绍了一次函数的图象与性质。
通过本节课的学习,学生将会掌握一次函数的图象特点以及对应的性质,培养学生对一次函数图象的观察和描述能力,同时提高学生解决实际问题的能力。
二、教学目标1.知识目标:–了解一次函数的定义和特点。
–掌握一次函数的图象特征。
–理解一次函数图象的斜率与函数的性质之间的关系。
2.能力目标:–能够绘制一次函数的图象。
–能够根据一次函数的图象确定相应函数的性质。
3.情感目标:–培养学生对数学的兴趣和学习的主动性。
–培养学生观察和分析问题的能力。
三、教学重点1.理解一次函数的图象特征。
2.掌握一次函数图象的斜率与函数性质的关系。
四、教学内容与步骤1. 一次函数的定义与特点(10分钟)•引入:通过一个例子引出一次函数的定义和特点。
小明去超市买东西,他购买的商品数量与总价之间存在一定的关系,我们用函数来表示这个关系。
假设每个商品的价格是5元,小明购买的商品数量用x表示,总价用y表示。
那么,这个关系可以表示为:y = 5x。
这就是一个一次函数。
•定义:一次函数(线性函数)是指函数的自变量和因变量之间存在一个一次关系的函数。
•特点:–一次函数的图象是一条直线。
–一次函数的定义域是所有实数。
–一次函数的值域也是所有实数。
2. 一次函数图象的斜率与函数性质的关系(15分钟)•引入:通过一个例子引出斜率与函数性质的关系。
小明用自行车从学校骑到家里,中间有一段上坡路和一段下坡路。
我们可以用一次函数来描述小明的行驶过程。
假设小明骑车的时间用x表示,距离用y表示。
上坡路的一次函数表示为y = 5x,下坡路的一次函数表示为y = -5x。
这两个一次函数的斜率分别为5和-5,你能猜出这两条路的特点吗?•斜率与函数性质的关系:–斜率为正数的一次函数,图象上的点由左下方向右上方倾斜,对应的函数表示一个增长函数。
2019版八年级数学下册 第十九章 一次函数 19.1 变量与函数 19.1.1 变量与函数教案 (新版)新人教版
第十九章一次函数19.1函数19.1.1变量与函数【教学目标】知识与技能:1.掌握常量和变量、自变量和函数的基本概念.2.了解函数值的概念,能用解析式表示函数关系.会确定函数自变量的取值范围.过程与方法:结合实例,了解常量、变量的意义,体会“变化与对应”的思想.通过动手实践与探索,让学生参与变量发现的过程,以提高分析问题和解决问题的能力.情感态度与价值观:引导学生探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情.在解决问题的过程中体会数学的应用价值并感受成功的喜悦,建立自信心.【重点难点】重点:了解常量与变量的含义.理解函数的有关概念,能用解析式表示函数关系.确定自变量的取值范围.难点:理解函数的有关概念,能用解析式表示函数关系.会确定自变量的取值范围.【教学过程】一、创设情境,导入新课:1.在学习与生活中,经常要研究一些数量关系,先看下面的问题.如图是某地一天内的气温变化图.看图回答:(1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.(2)这一天中,最高气温是多少?最低气温是多少?(3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其他类似的数量关系呢?2.五一假期,李想和朋友从学校门口出发,骑自行车去沙河游玩,假设他们匀速行驶,每分钟骑200米,骑车的总路程为s米,骑车的时间为t分钟.填一填:问题:(1)在这个行程问题中,我们所研究的对象有几个量?(2)几个所研究的对象中,哪些是变化的量,哪些是固定不变的量?它们之间存在什么样的关系?这一节我们就来探究这一问题.二、探究归纳活动1:变量与常量1.出示问题,师生探究有如下几个变化过程,请找出各变化过程中的量,并填表:(教材P71四个问题)(师生活动:教师引导学生填表,并分析问题中出现的量,发现其中有些量的数值是变化的,分析问题中的量并分类,领会“变量”、“常量”的含义.发现在同一个变化过程中,始终保持不变的量为常量,而数值发生变化的量为变量.并根据发现自己试着下定义.)2.形成概念(1)(2)定义:在一个变化过程中,数值发生变化的量,称为变量,数值始终不变的量称为常量.活动2:函数的概念1.问题:在前面的每个问题和实验中,是否各有两个变量?同一个问题中的变量之间有什么联系?师生分析得出:上面的每个问题和实验中的两个变量互相联系.当其中一个变量取定一个值时,另一个变量就有唯一确定的值.2.思考:分组讨论教科书“思考”中的两个问题.注:使学生加深对各种表示函数关系的表达方式的印象.3.归纳:一般来说,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么,我们就说x是自变量,y是x的函数.如果当x=a时,y=b,那么,b叫做当自变量的值为a时的函数值.例如在问题1中,时间t是自变量,里程s是t的函数.t=1时,其函数值s为60,t=2时,其函数值s为120.同样,在心电图中,时间x是自变量,心脏电流y是x的函数;在人口数统计表中,年份x是自变量,人口数y 是x的函数.当x=1999时,函数值y=12.52.活动3:例题讲解【例1】读下面这段有关“龟兔赛跑”的寓言故事,并指出所涉及的量中,哪些是常量,哪些是变量.一次乌龟与兔子举行500 m赛跑,比赛开始不久,兔子就遥遥领先.当兔子以20 m/min的速度跑了10 min时,往回一看,乌龟远远地落在后面呢!兔子心想:“我就是睡一觉,你乌龟也追不上我,我为何不在此美美地睡上一觉呢?”可是,当骄傲的兔子正做着胜利者的美梦时,勤勉的乌龟却从它身边悄悄爬过,并以10 m/min的速度匀速爬向终点.40 min后,兔子梦醒了,而此时乌龟刚好到达终点.兔子悔之晚矣,等它再以30 m/min的速度跑向终点时,它比乌龟足足晚了10 min.分析:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.解:500 m、乌龟的速度10 m/min等在整个变化过程中是常量,兔子的速度是变量.总结:“常量”与“变量”:“常量”是数值始终不变的量,一般是用具体数表示的量;“变量”是数值发生变化的量,变量是可以变化的:(1)可以取不同的数值,(2)一般用字母表示.【例2】我们知道,海拔高度每上升1 km,温度下降6 ℃.某时刻,益阳地面温度为20 ℃,设高出地面x km 处的温度为y℃.(1)写出y与x之间的函数解析式.(2)已知益阳碧云峰高出地面约500 m,求这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过益阳上空,若机舱内仪表显示飞机外面的温度为-34 ℃,求飞机离地面的高度为多少千米?分析:(1)根据题意,按照等量关系:高出地面x km处的温度=地面温度-6 ℃×高出地面的距离;列出函数解析式.(2)把给出的自变量高出地面的距离0.5 km代入函数解析式求得.(3)把给出的函数值高出地面x km处的温度-34 ℃代入函数解析式求得x.解:(1)由题意得,y与x之间的函数解析式y=20-6x(x≥0).(2)由题意得x=0.5 km, y=20-6×0.5=17(℃)答:这时山顶的温度大约是17 ℃.(3)由题意得y=-34 ℃时,-34=20-6x,解得x=9 km.答:飞机离地面的高度为9 km.总结:求函数值的方法:就是将自变量x的值代入解析式,求代数式的值.【例3】函数y=自变量x的取值范围是()A.x≥1且x≠3B.x≥1C.x≠3D.x>1且x≠3分析:求自变量取值范围时,要考虑两个方面:一是被开方数非负;二是分式的分母不为零,通过建立不等式组解决问题.解:选A.根据题意可知:x-1≥0且x-3≠0,解得x≥1且x≠3.总结:确定自变量取值范围的方法(1)整式:其自变量的取值范围是全体实数.(2)分式:其自变量的取值范围是使得分母不为0的实数.(3)二次根式:其自变量的取值范围是使得被开方数为非负的实数.(4)实际问题:其自变量的取值必须使实际问题有意义.三、交流反思这节课我们学习了变量与常量、函数的概念,函数自变量的取值范围的确定方法.四、检测反馈1.在三角形面积公式S=ah,a=2 cm中,下列说法正确的是()A.S,a是变量,h是常量B.S,h是变量,是常量C.S,h是变量,a是常量D.S,h,a是变量,是常量2.函数y=+3中自变量x的取值范围是()A.x>1B.x≥1C.x≤1D.x≠13.下面每个选项中给出了某个变化过程中的两个变量x和y,其中y不是x的函数的选项是()A.y:正方形的面积,x:这个正方形的周长B.y:某班学生的身高,x:这个班学生的学号C.y:圆的面积,x:这个圆的直径D.y:一个正数的平方根,x:这个正数4.对于圆的面积公式S=πR2,下列说法中,正确的为()A.π是自变量B.R2是自变量C.R是自变量D.πR2是自变量5.函数y=中的自变量x的取值范围是()A.x≥0B.x≠-1C.x>0D.x≥0且x≠-16.根据如图所示程序计算函数值,若输入的x的值为,则输出的函数值为()A.B.C.D.7.一支演唱队第一排有20人,后面每排比前排多1人,则第n排的人数s与n的函数解析式为________.8.一个小球从静止开始在一个斜坡上向下滚动,通过仪器观察得到了小球滚动的距离s(m)与时间t(s)的数据如下表:(1)这一变化过程中的自变量是________.(2)写出用t表示s的关系是________.(3)求第6秒时,小球滚动的距离为________m.(4)小球滚动200 m用的时间为________.五、布置作业教科书第81页习题19.1第1,2,3,4,5题六、板书设计七、教学反思本节课学习了常量与变量,函数的概念及函数自变量的取值范围的确定,关于变量与常量概念:要通过实例引导学生分析运动变化过程中出现的数量关系,它们都刻画了某些变化规律.这里出现了各种各样的量,值得注意的是出现了一些数值会发生变化的量,有些是数值始终不变的量,总结得出并通过实例练习巩固.关于函数概念的教学,通过实例引导学生分析总结得出,并明确表示函数关系的方法通常有三种:①解析法.②列表法.③图象法.关于函数自变量的取值范围的教学,通过实例引导学生分析得出:求函数自变量取值范围的两个依据:(1)要使函数的解析式有意义.①函数的解析式是整式时,自变量可取全体实数;②函数的解析式分母中含有字母时,自变量的取值应使分母≠0;③函数的解析式是二次根式时,自变量的取值应使被开方数≥0.(2)对于反映实际问题的函数关系,应使实际问题有意义.。
人教版八年级数学下册教案第十九章一次函数19.1
备课人:黄慧敏韦小丽审核人:黄亚明第十九章一次函数19.1 变量教学过程设计板书设计19.1.2 函数2、通过以上几个问题,你能说出在这几个问题中存在的共同点吗?上面每个问题中的两个变量互相联系,当其中的一个变量取一定的值时,另一个变量就___________。
3、如何确定自变量的取值范围?4、什么叫函数值,如何确定函数值?举例说明。
如果当x =a 时y =b ,那么b 叫做当自变量x 的值为a 时的函数值.5、出示教材中的探究。
在计算器上按照下面的程序进行操作:填表:x 13-4 0101 y 显示的数y 是输入的数x 的函数吗?如果是,写出它的关系表达式.归纳:每给出一个自变量的值x ,y 有唯一的值和它对应。
三、例题讲解(一)一辆汽车油箱现有汽油50L ,如果再加油,那么油箱中的油量y (L )随行驶里程x (km )的增加而减小。
平均耗油量为0.1L/km 。
1、 写出表示y 与x 的函数关系式。
2、 指出自变量x 的取值范围。
33、 汽车行驶200km 时,油箱中还有多少汽油。
分析:(1)油箱中的油量y 随行驶里程x 的增加而减少,所以x 是自变量,y 是x 的函数,y 与x 的函数解析式是x y 1.050-=;(2)自变量x 的取值,首先要考虑其表示的意义,即x表示行驶里程,因此x ≥0;其次要考虑本题的实际情况,必须保证50-0.1x ≥0,所以自变量x 的取值范围是5000≤≤x .是否答出每个问题中的两个变量的单值对应。
师生共同归纳之后教师给出函数的概念并板书。
教师强调:确定自变时,不仅要考虑函数关系式有意义,而且注意问题实际意义。
以例他s 和它对应。
让学生细心阅读计算交换意见、讨论结果。
教师引导学生分析题意,学生写出表达式。
注意际意义确定自变量取值范围为负。
19.1.3函数的图象s… 0.25 1 2.25 4 6.25 9 … 自变量X 的一个确定值与它所对应的唯一的函数值S 是否确定一个点(X,S)呢?把x 的值作为横坐标, S 的对应值作为纵坐标在平面直角坐标系中, 将上面表格中各对数值所对应的点画出来.即描点.按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来.即连线.归纳:描点法画函数的图象一般步骤: 1、列表:列出自变量与函数的对应值表.注意:自变量的值(满足取值范围),并取适当.2、描点:建立直角坐标系,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点.3、连线:按照横坐标从小到大的顺序把描出的点用平滑曲线依次连接起来. (三)、识函数的图象1.这个图是自动测温仪记录的图象,它反映了我们地区春季某天气温 T 随时间 t 变化而变化的规律.你从图象中能得到什么信息? 学生回答: (1)这一天中凌晨4时气温最低为-3℃,14时气温最高为8℃. (2) 从0时至4时气温呈下降状态,即温度随时间的增加而下降.从4时至14•时气温呈上升状态,从14时至24时气温又呈下降状态. (3)一天中每时刻t 都有唯一的气温T与之对用描点法画函数的图象一般步骤和体现数形结合思想师板书步认识函数意义.观性、趋势找出一天内最高、低气温及时间;些时间段的变化趋势;性及优缺点;化规律.应.可以认为,气温T是时间t 的函数. (4)我们可以从图象中直观看出一天中气温变化情况及任一时刻的气温大约是多少. (5)气温为0℃时大约是哪一时刻. 三、课堂训练(一).下图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.•其中x 表示时间,y 表示小明离他家的距离.根据图象回答下列问题:1.菜地离小明家多远?小明走到菜地用了多少时间?2.小明给菜地浇水用了多少时间?3.菜地离玉米地多远?小明从菜地到玉米地用了多少时间?4.小明给玉米地锄草用了多长时间?5.玉米地离小明家多远?小明从玉米地走回家平均速度是多少?归纳解答函数图象题主要步骤如下:1. 了解横、纵轴的意义2. 从函数图象上判定函数与自变量的关系3. 抓住特殊点的实际意义一看坐标轴,二看特殊点,三看变化趋势;四看如果有两个图象就看交点。
初二数学人教版八年级下册第十九章《一次函数》教材分析文字讲稿
第十九章《一次函数》教材分析一、本章的地位和作用1.“函数”概念的引入使得数学从“常量数学”转化为“变量数学”,这正是近代数学的一个标志。
2.以函数概念可以统一数学教育内容:以函数为中心,将全部数学教材集中在它的周围,可以进行充分的综合;3. 数学教育改革的重要观点是:一般受教育者在数学课上应该学会的重要事情是用变量和函数来思考问题;4. 初等函数知识是中学数学的固定内容,是引进现代数学的基础和前提,是联系实际生活的重要内容。
在数学教育的现代化中,函数教育的重要性不容分说;5. 本章通过对初等函数“一次函数”的学习,使学生经历学习和探究一个具体函数的一般过程,即从定义、图象、性质、函数与方程及不等式的关系、不同函数之间的关系等方面进行研究。
二、教学要求解读1.课标要求:教学总目标(因用而学、学以致用、以学导用、以用促学)(1)以探索实际问题中的数量关系和变化规律为背景,经历“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型;(2)结合实例,了解常量、变量和函数的概念,体会“变化与对应”的思想,了解函数的三种表示方法,能利用图像数形结合地分析简单的函数关系;(3)理解正比例函数和一次函数的概念,会画它们的图像,能结合图像讨论这些函数的基本性质,能利用这些函数分析和解决简单实际问题;(4)通过讨论一次函数与方程(组)及不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程(组)及不等式等内容的认识,构建和发展相互联系的知识体系.2.教学要求建议:注重对基本知识和基本技能的掌握,提高基本能力.函数的基本概念、函数的一般表示法和一次函数的概念图象性质等是基础知识,能画一次函数的图象,能结合图象讨论这些函数的基本性质等是基本技能,能利用一次函数解决简单实际问题是基本能力。
基本要求(1)能在简单问题中列出变量之间的关系式;(2)能根据函数的三种表示方法解读自变量和函数值的对应关系;(3)能根据已知的函数解析式,在自变量和函数值中知一求一;(4)能用描点法画出简单函数图象;(5)能结合图像对简单实际问题中的函数关系进行分析;(6)能确定简单代数和实际问题中的函数的自变量取值范围;(7)能根据简单已知条件确定一次函数表达式;(8)会画一次函数的图象,理解一次函数的性质;(9)能用一次函数解决较简单实际问题.略高要求(1)探索问题中的数量关系和变化规律;(2)能根据线段长面积等几何的条件确定一次函数解析式;(3)结合对函数关系的分析,尝试对变量的变化规律进行初步预测;(4)能根据一次函数的图象求二元一次方程组的近似解、一元一次不等式的解集.较高要求(1)能根据复杂的条件完整的求解;(2)能用一次函数解决较复杂实际问题,分析决策方案.三、学情分析1.学生已有的基础学生在小学时已接触到的观察与分析、数字推理、正比例与反比例等内容就渗透了变化的思想;七年级的代数式求值、探索规律等加强了学生对量的变化的“规律意识”,因此相对传统教材的使用者,使用课标教科书的学生在对事物规律的发现和探究上有明显的优势.《一次函数》一章则是在前述基础之上第一次集中的讨论变量间的关系.2.学生学习本章常见错误与不易掌握的内容初次接触函数概念,学生常有一种很“虚”的感觉,常常不知从何入手,思考以往的教学,不断总结中发现,学生接受函数概念困难重要在于(1)没有很好地理解有序实数对,从而也就认识不到:函数不是数,在同一变化过程中,变量之间不是孤立的,而是相互联系,一个变量的变化会引起其他变量的相应变化,这些变化之间存在对应关系。
八年级数学下册第19章一次函数19.1变量与函数19.1.1变量与函数课件(新版)新人教版
例2 下列变量间的关系是函数关系的是
.
①长方形的长与面积;②圆的面积与半径;
③y=± x ;④S= 1 ah中的S与h.
2
解析 ①因为长方形的长、宽、面积都不确定,有三个变量,所以长方
形的长与面积不是函数关系.②因为圆的面积公式为S=πr2,当半径r取一
个确定的值时,面积S就唯一确定,所以圆的面积与半径是函数关系.③当
解析 (1)根据函数的定义可知,对于底面半径的每个值,都有一个确定 的体积的值按照一定的法则与之相对应,所以自变量是底面半径,因变 量是体积. (2)体积增加了(π×102-π×12)×3=297π cm3.
2.(2018湖北咸宁咸安模拟)若函数y=
x
2
2(
x
2),
则当函数值y=8时,自
答案 B 把h=2代入T=21-6h,得T=21-6×2=9.故选B.
5.在函数y=3x+4中,当x=1时,函数值为 为10.
,当x=
时,函数值
答案 7;2
解析 当x=1时,y=3x+4=3×1+4=7.当函数值为10时,3x+4=10,解得x=2.
知识点三 自变量的取值范围
6.(2018江苏宿迁中考)函数y= 1 中,自变量x的取值范围是( )
知识点一 常量与变量 1.(2017河北唐山乐亭期中)一辆汽车以50 km/h的速度行驶,行驶的路程 s(km)与行驶的时间t(h)之间的关系式为s=50t,其中变量是 ( ) A.速度与路程 B.速度与时间 C.路程与时间 D.三者均为变量
答案 C 在s=50t中路程随时间的变化而变化,所以行驶时间是自变 量,行驶路程是因变量,速度为50 km/h,是常量.故选C.
八年级数学下册 第19章 一次函数 19.1 变量与函数 19.1.1 变量与函数教案
售出票数x
100
120
140
160
180
……
票房收入y
①找一名学生填表,让学生一起分析y与x是不是单值对应关系;
②描述y与x的单值对应关系.
【设计意图】通过模仿训练,尝试初步理解单值对应的含义.
3、圆形水波慢慢地扩大,在这一过程中,圆的半径r 厘米 ,圆的面积为S 平方厘米,圆周率(圆周长与直径之比)为π.
(4)思考问题4中,矩形的宽y为自变量,矩形的长x是y的函数是否正确
①强调辨别函数的关键是:是否有两个变量,并且变量是否是单值对应关系;
②补充说明:一般地,主动变化的量是自变量,随之变化的量是函数。
【设计意图】借此例,将自变量与函数互换,说明只要满足单值对应,就可以用函数来表示这种关系,灵活理解函数的定义。
【设计意图】通过这三道例题,使学生学会根据定义判断函数关系,经过反复训练,突破难点.
4、P是数轴上的一个动点,它到原点的距离记为 x,它的坐标记为 y,y 是 x 的函数吗?为什么?
【设计意图】通过这道题,说明点的坐标y与绝对值x不是单值对应关系,所以不是函数;但反过来,x却是y的函数,采用小组讨论的方式,升华对函数定义的理解.
练习1:指出下列变化过程中的变量和常量:
1、某市的自来水价为4元/吨,现要抽取若干户居民调查水费支出情况,记某户月用水量为 x 吨,月应交水费为 y 元;
2、某地手机通话费为0.2元/分,李明在手机话费卡中存入30元,记此后他的手机通话时间为t 分,话费卡中的余额为w 元;
3、水中涟漪(圆形水波)不断扩大,记它的半径为r,圆周长为C,圆周率(圆周长与直径之比)为π;
八年级数学下册第19章一次函数 函数第1课时变量说课稿新版新人教版
变量各位领导各位老师,你们好!今天我将要为大家说课的内容九义初中数学人教版的第19章第一节第一课时《变量》首先,我对本节教材进行一些分析一、教材结构与内容简析本节内容的地位和作用:《变量》是本章的第一课,本节知识是理解函数概念的前提知识,是学习正比例函数、一次函数、反比例函数、二次函数的基础。
学好本届知识为过渡到学习本章正比例函数、一次函数起着铺垫作用。
本节内容是第一部分,因此,在本章中,占据重要的地位。
二、教学理念及学情分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识;在新的课改理念的指导下如何调动学生的学习激情和让学生自主学习、合作探究成为课堂教学的主流。
考虑到初二学生已有的认知结构心理特征 ,以及本章知识与生活和生产实践联系非常紧密,教师要抓住这一特点让学生感知数学即生活,生活即数学,同时让学生感受数学的有用性,从而更加热爱数学学习。
三、教学目标1、知识与技能:在具体情境中了解变量、自变量、因变量等概念,理解反映变量之间关系的实例;能够从表格中获得有关变量之间关系的信息;2、过程与方法:经历探索具体情境中两个变量之间关系的过程,体验变量之间的辩证关系;3、情感与价值观:在探索的过程中,感知数学即生活,培养学生参与数学活动的积极性和良好的学习态度。
四、重点、难点本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点重点:能从具体事件中分清什么是变量、自变量与因变量,理解因变量随自变量的变化的规律。
通过让学生自主学习与合作探究的方式突出重点难点:理解两个变量之间的依赖关系。
通过小组交流,课堂展示,和试一试,做一做的习题训练突破难点五、教法数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。
我采用了启发式教学法,让学生成为课堂的主人,学生自主学习、合作探究。
从而激活课堂开启学生智慧。
六、学法我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。
19.1.1 变量与函数 课件(共16张PPT) 人教版初中数学八年级下册
当堂检测
指出下列问题中的变量和常量: (1)购买一些铅笔,单价为0.2元/支,记某同学购买铅笔 的数量为x支,应付的总价为y元;关系式为 y=0.2x 。 其中的变量是 x、y ,常量是 0.2 。
例3、根据销售记录,某型号的服装每天的售价x(元/件 )与当日的销售量y(件)的变化关系如下表:
每天的销售价 x(元/件) 200 190 180 170 160 150 140 …
每天的销售量 y(件) 80 90 100 110 120 130 140 …
(1)在这个变化过程中,有哪些变量?是哪一个量随 哪一个量的变化而变化?并指出其中的常量. 变量有:服装每天的售价x(元/件)和当日的销售量y(件), 当日的销售量y随服装每天的售价x的变化而变化.
t/h s/km
1 2345 60 120 180 240 300
在这个变化的过程中,行驶的 速度 60km/h 是固
定不变的,行驶的 路程s和时间t
是不断变化的.
路程s 着 时间t 的变化而变化.
试用含t的式子表示s 是__s_=6_0_t____
探究 (2)电影票售价为10元/张,第一场售出150张票,第二场售出205 张票,第三场售出310张票,三场电影的票房收入各多少元?设一场 电影售出x张票,票房收入y元. y的值随x的值的变化而变化吗?
x
a
图1
图2
瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数 y与层数x之间的关系式.
x1 2 3 …
x
y 1 1+2 1+2+3 … 1+2+3+ …+x
人教版八年级下册数学教案-第19章 一次函数-19.1.1 变量与函数
19.1函数19.1.1变量与函数第1课时常量与变量教学目标一、基本目标【知识与技能】1.认识变量、常量.2.学会用含一个变量的代数式表示另一个变量.【过程与方法】经历观察、分析、思考等数学活动过程,发展合情推理,有条理地、清晰地阐述自己观点.【情感态度与价值观】培养学生积极参与数学活动,对数学产生好奇心和求知欲.二、重难点目标【教学重点】1.认识变量、常量.2.用式子表示变量间关系.【教学难点】用含有一个变量的式子表示另一个变量.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P71的内容,完成下面练习.【3 min反馈】1.在一个变化的过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量.2.判断一个量是常量还是变量,需要看两个方面:一是看它是否在一个变化过程中;二是看它在这个变化过程中的取值是否发生变化.3.每张电影票售价为10元,如果早场售出150张,日场售出205张,晚场售出310张.三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.怎样用含x的式子表示y?解:早场电影票房收入:150×10=1500(元),日场电影票房收入:205×10=2050(元),晚场电影票房收入:310×10=3100(元), 关系式:y =10x .4.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10 cm ,每1 kg 重物使弹簧伸长0.5 cm ,怎样用含有重物质量m 的式子表示受力后的弹簧长度?解:挂1 kg 重物时弹簧长度:1×0.5+10=10.5(cm), 挂2 kg 重物时弹簧长度:2×0.5+10=11(cm), 挂3 kg 重物时弹簧长度:3×0.5+10=11.5(cm), 关系式:L =0.5m +10. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】分析并指出下列关系中的变量与常量: (1)球的表面积S 与球的半径R 的关系式是S =4πR 2;(2)以固定的速度v 0米/秒向上抛一个小球,小球的高度h 米与小球运动的时间t 秒之间的关系式是h =v 0t -4.9t 2;(3)一物体自高处自由落下,这个物体运动的距离h (m)与它下落的时间t (s)的关系式是h =12gt 2(其中g 取9.8 m/s 2); (4)已知橙子每千克的售价是1.8元,则购买数量x 千克与所付款W 元之间的关系式是W =1.8x .【互动探索】(引发学生思考)在一个变化的过程中,常量和变量怎样区分? 【解答】(1)S =4πR 2,常量是4,π,变量是S ,R . (2)h =v 0t -4.9t 2,常量是v 0,4.9,变量是h ,t .(3)h =12gt 2(其中g 取9.8 m/s 2),常量是12,g ,变量是h ,t .(4)W =1.8x ,常量是1.8,变量是x ,W .【互动总结】(学生总结,老师点评)常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是看它是否在一个变化过程中;二是看它在这个变化过程中的取值情况是否发生变化.活动2 巩固练习(学生独学)1.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q (元)与他买这种笔记本的本数x 之间的关系是( C )A .Q =8xB .Q =8x -50C .Q =50-8xD .Q =8x +502.甲、乙两地相距s 千米,某人行完全程所用的时间t (时)与他的速度v (千米/时)满足v t =s ,在这个变化过程中,下列判断中错误的是 ( A )A .s 是变量B .t 是变量C .v 是变量D .s 是常量3.某种报纸的价格是每份0.4元,买x 份报纸的总价为y 元,先填写下表,再用含x 的式子表示y .份数/份 1 2 3 4 5 6 7 100 价钱/元0.40.81.21.62.02.42.840x 与y 之间的关系是y =0.4x ,在这个变化过程中,常量是报纸的单价,变量是报纸的份数.4.先写出下列问题中的函数关系式,然后指出其中的变量和常量: (1)直角三角形中一个锐角α与另一个锐角β之间的关系;(2)一个铜球在0 ℃的体积为1000 cm 3,加热后温度每增加1 ℃,体积增加0.051 cm 3,t ℃时球的体积为V cm 3;(3)等腰三角形的顶角为x 度,试用x 表示底角y 的度数. 解:(1)α=90°-β.90°是常量,α、β是变量.(2)V =1000+0.051t .其中1000,0.051是常量,t 、V 是变量.(3)y =180-x 2 =90-x 2(0<x <180°).其中90,12 是常量,x 、y 是变量.活动3 拓展延伸(学生对学)【例2】如图,等腰直角三角形ABC 的直角边长与正方形MNPQ 的边长均为10 cm ,AC 与MN 在同一直线上,开始时A 点与M 点重合,让△ABC 向右运动,最后A 点与N 点重合.试写出重叠部分的面积y cm 2与MA 的长度x cm 之间的关系式,并指出其中的常量与变量.【互动探索】根据图形及题意所述可得出重叠部分是等腰直角三角形,从而根据MA 的长度可得出y 与x 的关系,再根据变量和常量的定义得出常量与变量.【解答】由题意知,开始时A 点与M 点重合,让△ABC 向右运动,两图形重合的长度为AM =x cm.∵∠BAC =45°,∴S 阴影=12·AM ·h =12AM 2=12x 2,则y =12x 2,0≤x ≤10.其中的常量为12,变量为重叠部分的面积y cm 2与MA 的长度x cm.【互动总结】(学生总结,老师点评)通过分析题干中的信息得到等量关系并用字母表示是解题的关键,区分其中常量与变量可根据其定义判别.环节3 课堂小结,当堂达标 (学生总结,老师点评)常量与变量⎩⎪⎨⎪⎧定义判断练习设计请完成本课时对应训练!第2课时 函 数教学目标一、基本目标 【知识与技能】1.认识变量中的自变量与函数. 2.进一步掌握确定函数关系式的方法. 3.会确定自变量的取值范围. 【过程与方法】1.经历回顾思考过程,提高归纳总结概括能力.2.通过从图或表格中寻找两个变量间的关系,提高识图及读表能力,体会函数的不同表达方式.【情感态度与价值观】积极参与活动,提高学习兴趣,并形成合作交流意识及独立思考的习惯. 二、重难点目标 【教学重点】1.进一步掌握确定函数关系的方法. 2.确定自变量的取值范围. 【教学难点】认识函数、领会函数的意义.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P72~P74的内容,完成下面练习. 【3 min 反馈】1.函数的概念:一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数.2.用关于自变量的数学式子表示函数与自变量之间的关系的式子叫做函数的解析式. 3.对函数的理解,要抓住三点:(1)两个变量;(2)一个变量的数值随着另一个变量数值的变化而发生变化;(3)自变量的每一个确定的值,函数都有唯一的一个值与其对应.4.使得函数有意义的自变量的取值的全体叫做自变量的取值范围.确定自变量取值范围的条件:(1)使函数解析式有意义;(2)使函数所代表的实际问题有意义.5.对于自变量的取值范围内的一个确定的值,如当x =a 时,y =b ,函数有唯一的值b 与之对应,则这个对应值b 叫做x =a 时的函数值.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】下列变量间的关系不是函数关系的是( ) A .长方形的宽一定,其长与面积 B .正方形的周长与面积 C .等腰三角形的底边长与面积 D .圆的周长与半径【互动探索】(引发学生思考)如何判断两个变量是否是函数关系?【分析】长方形的宽一定,它是常量,而面积=长×宽,长与面积是两个变量,若长改变,则面积也改变,故A 选项是函数关系;正方形的面积=(正方形的周长)216,正方形的周长与面积是两个变量,16是常量,故B 选项是函数关系;等腰三角形的面积=12×高×底,底边长与面积虽然是两个变量,但面积公式中还有底边上的高,而这里高也是变量,有三个变量,故C 选项不是函数关系;圆的周长=2π×半径,圆的周长与其半径是函数关系,故D 选项是函数关系.【答案】C【互动总结】(学生总结,老师点评)判断两个变量是否是函数关系,就看是否存在两个变量,并且在这两个变量中,确定哪个是自变量,哪个是函数,然后再看看这两个变量是否是一一对应关系.【例2】根据如图所示程序计算函数值,若输入x 的值为52,则输出的函数值y 为( )A .32B .25C .425D .254【互动探索】(引发学生思考)已知函数解析式,怎样求函数值?自变量的取值范围不同,对应的函数关系式不同,又怎样求函数值呢?【分析】∵2<52<4,∴将x =52代入函数y =1x ,得y =25.【答案】B【互动总结】(学生总结,老师点评)根据所给的自变量的值结合各个函数关系式所对应的自变量的取值范围,确定其对应的函数关系式,再代入计算.【例3】写出下列函数中自变量x 的取值范围: (1)y =2x -3; (2)y =31-x ; (3)y =4-x ; (4)y =x -1x -2. 【互动探索】(引发学生思考)怎样确定自变量的取值范围? 【解答】(1)全体实数. (2)分母1-x ≠0,即x ≠1. (3)被开方数4-x ≥0,即x ≤4.(4)由题意,得⎩⎪⎨⎪⎧x -1≥0,x -2≠0, 解得x ≥1且x ≠2.【互动总结】(学生总结,老师点评)本题考查了函数自变量的取值范围:有分母的要满足分母不能为0,有根号的要满足被开方数为非负数.活动2 巩固练习(学生独学)1.下列变量之间的关系是函数关系的是( C ) A .水稻的产量与用肥量 B .小明的身高与饮食 C .球的半径与体积 D .家庭收入与支出2.如图,△ABC 底边BC 上的高是6 cm ,当三角形的顶点C 沿底边所在直线向点B 运动时,三角形的面积发生了变化.(1)在这个变化过程中,自变量是BC ,因变量是 △ABC 的面积; (2)如果三角形的底边长为x (cm),三角形的面积y (cm 2)可以表示为y =3x ; (3)当底边长从12 cm 变到3 cm 时,三角形的面积从36cm 2变到9cm 2; (4)当点C 运动到什么位置时,三角形的面积缩小为原来的一半? 解:当点C 运动到中点时,三角形的面积缩小为原来的一半.3.下列问题中哪些量是自变量?哪些量是自变量的函数?试写出用自变量表示函数的式子.(1)一个弹簧秤最大能称不超过10 kg 的物体,它的原长为10 cm ,挂上重物后弹簧的长度y (cm)随所挂重物的质量x (kg)的变化而变化,每挂1 kg 物体,弹簧伸长0.5 cm ;(2)设一长方体盒子高为30 cm ,底面是正方形,底面边长a (cm)改变时,这个长方体的体积V (cm 3)也随之改变.解:(1)y =10+12x (0<x ≤10),其中x 是自变量,y 是自变量的函数.(2)V =30a 2(a >0),其中a 是自变量,V 是自变量的函数.4.一辆小汽车在高速公路上从静止到启动10秒后的速度经测量如下表: 时间 (秒) 012345678910速度 (米/秒)0.31.32.84.97.611.014.118.424.228.9(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)如果用t 表示时间,v 表示速度,那么随着t 的变化,v 的变化趋势是什么? (3)当t 每增加1秒时,v 的变化情况相同吗?在哪1秒时,v 的增加量最大? (4)若高速公路上小汽车行驶速度的上限为120千米/时,试估计大约还需几秒这辆小汽车速度就将达到这个上限?解:(1)上表反映了时间和速度之间的关系,时间是自变量,速度是因变量.(2)如果用t 表示时间,v 表示速度,那么随着t 的变化,v 的变化趋势是v 随着t 的增大而增大.(3)当t 每增加1秒,v 的变化情况不相同,在第9秒时,v 的增加量最大. (4)120×10003600=1003≈33.3(米/秒),由33.3-28.9=4.4,且28.9-24.2=4.7>4.4,所以估计大约还需1秒.活动3 拓展延伸(学生对学)【例4】水箱内原有水200升,7:30打开水龙头,以2升/分的速度放水,设经t 分钟时,水箱内存水y 升.(1)求y 关于t 的函数关系式和自变量的取值范围; (2)7:55时,水箱内还有多少水? (3)何时水箱内的水恰好放完?【互动探索】(1)根据水箱内存有的水等于原有水减去放掉的水列式整理即可,再根据剩余水量不小于0列不等式求出t 的取值范围;(2)当7:55时,t =55-30=25,将t =25代入(1)中的关系式即可;(3)令y =0,求出t 的值即可.【解答】(1)∵水箱内存有的水=原有水-放掉的水, ∴y =200-2t .∵y ≥0,∴200-2t ≥0, 解得t ≤100, ∴0≤t ≤100,∴y 关于t 的函数关系式为y =200-2t (0≤t ≤100). (2)∵7:55-7:30=25(分钟),∴当t =25时,y =200-2t =200-50=150(升), ∴7:55时,水箱内还有水150升. (3)令y =0,即200-2t =0,解得t =100. 100分=1时40分,7时30分+1时40分=9时10分, 故9:10水箱内的水恰好放完.【互动总结】(学生总结,老师点评)(1)已知函数解析式求函数值,就是将自变量x 的值带入解析式,求代数式的值;(2)已知函数解析式并给出函数值,求相应的自变量x 的值,实际上就是解方程.环节3 课堂小结,当堂达标 (学生总结,老师点评) 函数⎩⎪⎨⎪⎧概念自变量的取值范围函数值练习设计请完成本课时对应训练!。
人教版八年级下册数学第十九章《 19.1变量与函数》优课件(共28张PPT)
在问题三中,是否各有两个变量?同一 个问题中的变量之 间有什么联系?
问题三
在一根弹簧的下端挂重物,改变并记录重物的质量, 观察并记录弹簧长度的变化,探索它们的变化规律。如 果弹簧长原长为10cm,每1千克重物使弹簧伸长0.5cm,
怎样用含重物质量x(单位:kg)的式子表示受力后的
弹簧长度 L(单位:cm)?
八年级 数学
第十九章 一次函数
19.1.1变量与函数
解:∵花盆图案形如三角形,每边花有n个,总共有3n个, 其中重复了算3个。
∴ s 与 n 的函数关系式为: s = 3n-3
八年级 数学
第十九章 一次函数
19.1.1变量与函数 课堂练习(备用)
4、节约资源是当前最热门的话题,我市居民每月用电 不超过100度时,按0.57元/度计算;超过100度电时,其中不 超过100度部分按0.57元/度计算,超过部分按0.8元/度计算.
常量:在一个变化过程中,数值始终不变的量为常量。
请指出上面各个变化过程中的常量、变量。
八年级 数学
第十九章 一次函数
19.1 .1 变量与函数
探究:指出下列关系式中的变量与常量:
(1) y = 5x -6
6
(2) y= x
(3) y= 4x2+5x-7 (4) S = Лr2
巩固练习
• 填空:
• 1、计划购买50元的乒乓球,所能购买的总数
2.圆的周长公式C2r,这里的变量是 r和C ,常量
是 2 。
3.下列表格是王辉从4岁到10岁的体重情况
年龄(岁) 4 5 6 7 8 9
10 …
体重(千克)15.4 16.7 18.0 19.6 21.5 23.2 25.2 …
19.1.1变量与函数(第一课时)说课稿
《19.1.1变量与函数》说课稿各位评委,大家好!今天我要说课的内容是义务教育教科书人教版八年级下册第十九章《一次函数》第一节《变量与函数》。
下面我将从教材、教法、学法、教学程序四个方面来进行阐述。
一、说教材1、教材的地位及作用人教版八年级下册第十九章《一次函数》是《课程标准》中“数与代数”领域的重要内容。
函数是研究运动变化的重要数学模型,它来源于客观实际,又服务于客观实际。
而本节课是一次函数的启蒙课,在这里学生初步接触了变量的概念,它是函数学习的入门,也为以后学习一次函数、二次函数、反比例函数的内容打下基础。
本节课内容不但对培养学生比较、分析、概括的思维能力有作用,而且对培养学生运动变化等辨证唯物主义观点和形成良好的个性品质也有一定的帮助。
2、根据课程标准的要求和基于对教材的理解与分析,考虑到学生已有的知识水平和认知经验,我制定了如下的教学目标。
知识和能力:(1)掌握常量、变量的概念,体验在一个过程中常量与变量是相对存在的;(2)会在较复杂问题中辨别常量与变量。
过程和方法:通过实践与探索,让学生参与变量的发现过程,强化数学的应用意识,学会将实际问题抽象成数学问题。
情感态度价值观:通过学生列举身边的事例,激发学生探究问题的兴趣,体会数学应用价值,在探索活动中获得成功的体验。
为达成以上的教学目标,结合学生实际情况,确定本节课的教学重点为,常量和变量的概念;要突破的教学难点是:较复杂问题中常量与变量的识别。
二、说教法现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点,根据这一教学理论,结合本节课的内容特点和八年级学生的认知特征,本节课我采用自主学习、合作探究、引领提升的方式展开教学,从实例出发,通过创设情境,引导学生自主探究、思考、归纳、应用,激发学生的好奇心,调动学生的求知欲。
在新知识学习中,给学生提供足够的思考时间和空间,教师始终以引导者的形象出现并在恰当的时候给予点拨、归纳。
洛阳市第九中学八年级数学下册 第十九章 一次函数19.1 函数19.1.1 变量与函数教案 新人教版
19.1 函数变量与函数【知识与技能】运用丰富的实例,使学生了解常量与变量的含义,理解函数的概念,能根据所给条件写出简单的函数关系式.【过程与方法】通过丰富的实例,分析变化过程中的常量与变量,经历从实际问题中得到函数关系式的过程,发展学生的数学应用能力.【情感态度】引导学生探索实际问题中的数量关系,培养学习数学的兴趣和积极参与数学活动的热情.在解决问题的过程中体会数学的应用价值并感受成功的喜悦,建立自信心.【教学重点】理解常量、变量和函数的概念,并能根据具体问题得出相应的函数关系式.【教学难点】确定函数关系式及自变量的取值范围.一、情境导入,初步认识【教学说明】选取学生熟悉的生活情境,让学生感受其中的变化,从这些感受中逐渐领悟知识.情境1 汽车以60km/h的速度匀速行驶,行驶里程为s km,行驶时间为t h.填写下列表格,再试着用含t的式子表示s.情境2 已知每张电影票的售价为10元,如果早场售出150张,午场售出205张,晚场售出310张,那么三场电影的票房收入各为多少元?设一场电影售出x张票,票房收入y元,怎样用含x的式子表示y?情境3 要画一个面积为10cm2的圆,圆的半径应取多少?画面积为20cm2的圆呢?怎样用含圆面积S的式子表示圆半径r?二、思考探究,获取新知问题1 在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,填入下表:如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用含重物质量m(kg)的式子表示受力后的弹簧长度l(cm)?问题2 用10cm长的绳子围成长方形.试改变长方形的长度,观察长方形的面积怎样变化.记录不同的长方形的长度值,计算相应的长方形面积的值,探索它们的变化规律(用表格表示).设长方形的长为xcm,面积为Scm2,怎样用含x的式子表示S?将学生分成若干小组,分别探究两个问题,再汇总交流.【教学说明】在小组实践探究时,教师应参与小组活动,然后再作出总结.上面的问题和探究都反映了不同事物的变化过程,其中有些量(时间t,里程s;出售票数x,票房收入y;……)的值是按照某种规律变化的.在一个变化过程中,数值发生变化的量,我们称为变量.也有些量是始终不变的,如上面问题中的速度60(km/h),票价10(元)等,即为常量.一般来说,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一的值与其对应,那么我们就说x是自变量,y是x的函数.如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值.提出自变量取值范围的概念,总结求自变量取值范围的规律:(1)自变量以整式形式出现,取值范围是全体实数.(2)自变量以分式形式出现,取值范围是使分母不为0的数.(3)自变量以偶次方根形式出现,取值范围为使被开方数为非负数的实数;自变量以立方根形式出现,取值为全体实数.(4)自变量以零次幂形式出现,取值范围为使底数不为0的数.(5)自变量取值范围还应考虑实际意义.三、典例精析,掌握新知例1 根据下列题意写出适当的关系式,并指出其中的变量和常量.(1)多边形的内角和W 与边数n 的关系.(2)甲、乙两地相距y km,一自行车以10km/h 的速度从甲地驶向乙地,试用行驶时间t(h)表示自行车离乙地的距离 s(km).【分析】弄清题意,找准其中的等量关系,并注意字母表示的量不一定是变量,如(2)中的y. 解:根据题意列表为:例2 求下列函数中自变量的取值范围.(1)y=x 2-2x-1; (2)24y x =-; (3)24y x =- (4)3y x =+; (5)1362y x x =--; (6)y=(x-1)0. 【教学说明】观察含自变量的式子,进行归类,再依各自特征求范围.【答案】(1)一切实数; (2)x≠4; (3)x≥2; (4)x>-3; (5)1≤x≤3; (6)x≠1.【归纳总结】含自变量的式子有时包含多种特征(如有分母,有被开方数等),这时要综合考虑各种要求,准确界定范围.例3 小强在劳动技术课中要制作一个周长为80cm 的等腰三角形,请你写出底边长y(cm)与一腰长x(cm)的函数关系式,并求出自变量x 的取值范围.【分析】(1)周长等于三边的长度和,由此求得函数关系式;(2)自变量x 要使腰、底为正数,即x>0,y>0.同时还要满足任意两边的和大于第三边,得到不等式组求解.解:由题意,得2x+y=80,所以y=80-2x.由解析式本身有意义,得x 为全体实数.又由使实际问题有意义,则要考虑到边长为正数,且要满足三边关系定理,故有0,0,2.x y x y >⎧⎪>⎨⎪>⎩.即0,2800,2280.x x x x >-⎧+>>-+⎪⎨⎪⎩解得20<x<40.故y=80-2x(20<x<40).四、运用新知,深化理解1.分别指出下列关系式中的变量与常量:(1)一个物体从高处自由落下,该物体下落的距离h(m)与它下落的时间t(s)的关系式为212h gt (其中g≈9.8m/s 2); (2)等腰三角形的顶角y 与底角x 存在关系y=180°-2x ;(3)长方体的体积V(cm 3)与长a (cm ),宽b(cm),高h(cm)之间的关系式为V=abh.2.人心跳速度通常和人的年龄有关,如果a 表示一个人的年龄,b 表示正常情况下每分钟心跳的最高次数.经过大量试验,有如下的关系:b=0.8(220-a).(1)上述关系中的常量和变量各是什么?(2)一个15岁的学生正常情况下每分钟心跳的最高次数是多少?3.(1)齿轮每分钟转120转,如果用n 表示总转数,t(分)表示时间,那么n 关于t 的函数关系式是_____________.(2)火车离开A 站10km 后,以55km/h 的平均速度前进了t(h)小时,那么火车离开A 站的距离s(km)与时间t(h)之间的函数关系式是_____________________.4.某水果店卖苹果,其售出质量x(kg)与售价y(元)之间的关系如表:(1)试写出售价y(元)与售出质量x(kg)之间的函数关系式;(2)计算当x=6时,y 的值;(3)求售价为19.4元时,售出苹果的质量.【教学说明】用字母表示的量不一定是变量,如π、g 等表示的是常量,要从变与不变的实质出发来分辨变量和常量.【答案】1.(1)时间t 可以取不同值,随t 的变化,h 值也改变,因此时间t 、距离h 是变量,12、g 的值始终不变,是常量.(2)底角x 可以取不同值,y 随x 的改变而改变,因此x 、y 是变量,而180°与2是常量.(3)长a ,宽b ,高h 都可以取不同的值,V 的对应值也是变化的,故a 、b 、h 、V 都是变量.2.(1)变量是b 、a ,常量是0.8、220.(2)把a=15代入b=0.8(220-a),得b=0.8×(220-15)=164.3.(1)n=120t;(2)s=10+55t.4.(1)根据信息:售出质量每增加1千克,售价则增加2.4元,售价中另一部分0.2元不变,可求出y与x之间的函数关系式.(2)把x=6代入函数关系式可求出y值;(3)实际上是求当y=19.4时,它所对应的x的值.解:(1)从表中提供的信息看,质量每增加1千克,售价增加2.4元,所以y=2.4x+0.2.(2)当x=6时,y=2.4×6+0.2=14.6.五、师生互动,课堂小结由学生谈本节课的收获及仍存在的疑问等.教师根据学生的发言,予以点评总结.1.布置作业:从教材“习题19.1”中选取.2.完成练习册中本课时练习.本课时内容是学生的认识,由常量到变量的一个飞跃,教学时应根据学生的认知基础,创设丰富的现实情境,使学生感知变量存在的意义,体会变量间的相互依存关系和变化规律,掌握函数的知识.教学重在引导学生探究新知,在观察、分析后归纳、概括,注重学生的过程经历和体验,让学生领悟到现实生活中存在着多姿多彩的数学问题,提高研究与应用能力.《分式》说课稿尊敬的各位评委老师:大家好!我是____号考生,今天我说课的内容是《分式》。
一次函数全章教案新人教版[1]1
第十九章一次函数教案19.1.1变量教具;课件, 直尺, 三角板教学目标知识与技能: 理解变量与函数的概念以与相互之间的关系。
增强对变量的理解过程与方法: 师生互动, 讲练结合情感态度世界观:渗透事物是运动的, 运动是有规律的辨证思想重点: 变量与常量难点: 对变量的判断教学媒体: 多媒体电脑, 绳圈,教学说明:本节渗透找变量之间的简单关系, 试列简单关系式教学设计:引入:新课:问题: (1)每张电影票的售价为10元, 如果早场售出票150张, 日场售出票205张, 晚场售出票310张, 三场电影的票房收入各多少元?设一场电影受出票x张, 票房收入为y元, 怎样用含x的式子表示y?(2)在一根弹簧的下端悬挂中重物, 改变并记录重物的质量, 观察并记录弹簧长度的变化规律, 如果弹簧原长10cm, 每1kg重物使弹簧伸长0.5cm, 怎样用含重物质量 m(单位: kg)的式子表示受力后弹簧长度l(单位: cm)?(3)要画一个面积为10cm2的圆, 圆的半径应取多少?圆的面积为20cm2呢?怎样用含圆面积S的式子表示圆的半径r?(4)用10m长的绳子围成长方形, 试改变长方形的长度, 观察长方形的面积怎样变化。
记积的值, 探索它们的变化规律, 设长方形的长为xm,面积为Sm2,怎样用含x的式子表示S?在一个变化过程中, 我们称数值发生变化的量为变量(variable).数值始终不变的量为常量。
指出上述问题中的变量和常量。
(1)范例: 写出下列各问题中所满足的关系式, 并指出各个关系式中, 哪些量是变量, 哪些量是常量?(2)用总长为60m的篱笆围成矩形场地, 求矩形的面积S (m2)与一边长x(m)之间的关系式;(3)购买单价是0.4元的铅笔, 总金额y(元)与购买的铅笔的数量n(支)的关系;运动员在4000m一圈的跑道上训练, 他跑一圈所用的时间t(s)与跑步的速度v(m/s)的关系;银行规定: 五年期存款的年利率为2.79%,则某人存入x元本金与所得的本息和y(元)之间的关系。
新版人教版八年级数学下册第十九章一次函数教学案
(2)因为ห้องสมุดไป่ตู้点有且只有一条直线,我们在画正比例函数图象时,只需确定两点,通常是(,)和(,)
(3)当k > 0时,直线经过象限, 随 的增大而
当k〈0时,直线经过象限, 随 的减小而
3、既然正比例函数的图像是一条直线,那么最少几个点就可以画出这条直线?怎样画最简单?
如果两条直线互相平行,那么两一次函数的k值相同。
3、一次函数与正比例函数的图象与性质(总结表)。
无、练一练
1、函数y=kx(k≠0)的图像过P(-3,7),则k=____,图像过_____象限。
2、在函数y=2x的自变量中任意取两个点x ,x ,若x <x ,则对应的函数值y 与y 的大小关系是y ___y .
A
C
B
x
y
x
y
x
y
x
y
o
o
o
o
D
3、当 时,正比例函数y=kx的大致图像是()
4、当k________时,y=(k—3)x—5是一次函数。
5、对于函数y=5x+6,y的值随x值的减小而___________。
6、一次函数y=-2x+4的图象经过的第___________象限,它与x轴的交点坐标是(,),与y轴的交点坐标是(,)。
四、一次函数:
1、一次函数的定义:一般地,形如,(k、b是常数,k≠0)的函数叫做一次函数,当时,一次函数y=kx+b(k≠0)也叫正比例函数。
2、一次函数的性质:①一次函数y=kx+b(k≠0)的图象是,称为y=kx=b;
②直线y=kx+b(k≠0)可以看做直y=kx(k≠0)平移个单位长度而得到,当b>0时,向平移;当b<0时,向____平移。
人教版八年级数学下册变量与函数优质教学设计教案
人教版八年级数学下册变量与函数教案2023年4月第十九章一次函数19.1 函数19.1.1 变量与函数课时1 变量与常量教学目标【知识与技能】借助简单实例,学生初步感知用常量与变量来刻画一些简单的数学问题,能指出具体问题中的常量、变量.初步理解存在一类变量可以用函数方式来刻画,能举出涉及两个变量的实例,并指出由哪一个变量确定另一个变量,这两个变量是否具有函数关系。
初步理解对应的思想,体会函数概念的核心是两个变量之间的特殊对应关系,能判断两个变量间是否具有函数关系。
【过程与方法】借助简单实例,引领学生参与变量的发现和函数概念的形成过程,体会从生活实例抽象出数学知识的方法,感知现实世界中变量之间联系的复杂性,数学研究从最简单的情形入手,化繁为简。
【情感态度与价值观】从学生熟悉、感兴趣的实例引入课题,引领学生参与变量的发现和函数概念的形成过程,体验“发现、创造”数学知识的乐趣。
学生初步感知实际生活蕴藏着丰富的数学知识,感知数学是有用、有趣的学科。
教学重点正方形的定义及正方形与平行四边形、矩形、菱形的联系.教学难点正方形与矩形、菱形的关系及正方形的性质与判定的灵活运用..教学准备多媒体课件一、创设情境、导入新课我们生活在一个运动的世界中,周围的事物都是运动的。
例如,地球在宇宙中的运动这一问题,此时地球在宇宙中的位置随着时间的变化而变化,这是生活中的常识,学生都很容易理解。
再例如,气温随着高度的升高而降低,年龄随着时间的增长而增长。
这几个问题中都涉及两个量的关系,地球的位置与时间,温度与高度,年龄与时间。
教学过程:二、合作交流、解读探究1、气温问题:下图是北京春季某一天的气温T随时间t变化的图象,看图回答:(1)这天的8时的气温是℃,14时的气温是℃,最高气温是℃,最低气温是℃;(2)这一天中,在4时~12时,气温(),在16时~24时,气温()。
A.持续升高B.持续降低C.持续不变思考:(1)气温随的变化而变化,即T随的变化而变化;(2)当时间t取定一个确定的值时,对应的温度T的取值是否唯一确定?2、当正方形的边长x分别取1、2、3、4、5、6、7,……时,正方形的面积S分别是多少?3、某城市居民用的天然气,1m3收费2.88元,使用xm3天然气应缴纳费用y=2.88x ,当x=10时,缴纳的费用为多少?思考:上述三个问题,分别涉及哪些量的关系?哪些量是变化的?哪些量是不变的?哪个量的变化导致另一个量的变化而变化?在一个问题中,当一个量取了确定的值之后,另一个量对应的能取几个值?在上面的三个问题中,其中一个量的变化引起另一个量的变化(按照某种规律变化),变化的量叫作变量;有些量的值始终不变(如正方形的面积……).并且当其中一个变量取定一个值时,另一个变量就随之确定,且它的对应值只有一个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变量与函数尊敬的各位领导和同仁们:大家好,今天我说课的内容是《变量与函数》第二课时。
下面我从教材分析、教法学法、学情分析、教学流程、板书设计、课后反思六个方面进行设计说明。
第一部分:教材分析(一)说教材地位和作用本节课是义务教育课程标准人教版数学八年级下册第十九章一次函数《变量与函数》中第二节课的内容。
变量与函数的概念把学生由常量数学引入变量数学,是学生数学认识上的一次飞跃。
遵循从具体到抽象、感性到理性的渐进认识规律和以教师为主导、学生为主体的教学原则这一部分对于初中生来说是一块新的领域,但涉及的内容又与生活的实际联系非常密切,可以补充大量的实例来充实本课,进而吸引学生的学习兴趣,让学生感受数学在生活中可以广泛的应用到。
所举的实例也都能在认识函数的时候用到,有助于教师帮助学生在现实情境中,感受函数作为刻画现实世界的模型的意义,为下一节课奠定重要基础。
(二)说教学目标综上分析,本课时教学目标制定如下:教学目标:1.了解函数的概念。
2.能结合具体实例概括函数概念。
3.在函数概念形成的过程中体会运动变化与对应的思想。
(三)教学重点和难点【学习重点】概括并理解函数概念中的单值对应关系。
【学习难点】用含有一个变量的式子表示另一个变量.以及结合实际问题表示自变量的取值范围。
第二部分:教法与学法分析:1.说教法方法与手段:本节课从学生熟悉的实际问题开始,将实际问题“数学化”,有利于学生体会与实验,思考与探索。
在概念教学设计中,注意遵循人们认识事物的规律,从具体到抽象,从特殊到一般,由浅入深。
采用教师引导,学生自主探索、合作交流的教学方式,让学生充分发挥聪明才智,去发现问题,提出问题,进而分析、解决问题,充分调动学生的积极性,培养学生的应用意识。
2.说学法根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法。
通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考问题、发现问题,充分发挥学生的主体作用,让学生成为学习的主人。
第三部分:学情分析初二(17)班学生基础较好,求知欲强,思维活跃,有较好的接受能力,学生能够较为有条理的思考.本节课所教授的内容与学生的生活之际和以前学习的知识都有较为密切的联系,所以在教授过程中大可以利用这一特点,让学生举出大量的例子,通过这些例子,让学生积极思考,主动探究,并且与同学间合作发现变量与常量这一事实。
第四部分:说教学流程创设情境,提出问题。
引言通过前面的学习,我们体会到万物皆变,在运动变化过程中往往蕴含着量的变化,研究变量之间的关系是我们把握变化规律的关键。
【设计意图】通过引言教学,复习上节课所学内容,提出本节课需要研究的问题,引起合理的选择性注意,起先行组织者作用。
(二)合作探究,形成概念。
问题1.下面各题的变化过程中,各有几个变量?其中一个变量的变化是怎样影响另一个量的变化的?(1)汽车以60km/h的速度匀速行驶,行驶的时间为t h,行驶的里程为s km。
(2)每张电影票的售价为10元,设某场电影售出x张票,票房收入为y元。
(3)圆形水波慢慢地扩大,在这一过程中,圆的半径为r,面积为s。
(4)用10米长的绳子围一个矩形,矩形的一边长为x,它的邻边长为y。
师生活动:教师与学生一起分析变化过程(1)中变量之间的关系。
在变化过程(1)的分析中,首先引导学生得出有两个变量t,s,然后是s随着t的变化而变化。
【设计意图】初步概括变量的联动性,为函数概念的出现做了很好的铺垫。
追问:s是怎样随着t的变化而变化呢?能用数值加以说明吗?师生活动:教师引导学生取定t的一些值,计算s的对应值并列表:当t的值取定后,s的值有且只有一个。
也就是说,当t 取定一个值时,s的值由t的值完全确定,而且唯一确定。
师生活动:引导学生对变化过程(2)(3)(4)进行类似于变化过程(1)的变量关系分析,并得到结论:【设计意图】通过师生共同讨论,分析问题(1)中一个变量的变化对另一个变量变化的影响。
在此基础上,学生独立进行问题(1)(2)(3)(4)变量之间对应关系的分析,为发现这些对应关系的共同特征,实现函数概念的第一次概括提供归纳的样例。
问题2.能用自己的语言说说这些问题中变量之间的关系的共同特征吗?试一试!师生活动:教师引导学生归纳,变化过程中有两个变量,当一个变量取定一个值时另一个变量有唯一确定的值与之对应。
如由s=60t,当t=1,2,3时能分别求出唯一的s的值。
【设计意图】对能用解析式表示的变量之间的对应关系的共同特点进行初步概括。
问题3.下面是我国体育代表团在第23——30届夏季奥运会上获得的金牌数统计表。
把届数和金牌数分别记作两个变量x和y,对于表中的每一个确定的届数x,都对应着一个确定的金牌数吗?师生活动:引导学生说出届数与金牌数的对应关系,体会用表格也可以由一个变量的值确定出另一个相关变量的值。
【设计意图】让学生感受到当一个变量取定一个值时,可以通过查表唯一确定出另一个变量的值。
突出函数的本质属性,剥离“用公式表示变量关系”这一非本质属性。
问题4.下图是北京某天的气温变化图,你能说出9:00,10:00,13:00的气温吗?师生活动:教师打开天气预报图,引导学生阅读气温变化图,体会由气温图可以根据时间确定气温数值,体会这也是变量之间的单值对应关系。
追问:一天中,当时间确定,气温的数值是否也是唯一确定的?【设计意图】让学生体会到,当一个变量取定一个值时,通过图像也可以唯一确定另一个变量的值,突出函数的本质属性,剥离“用公式表示变量关系”这一非本质属性。
问题5.上述实际问题中两个变量之间的关系,当一个变量取定一个值时,既有通过公式确定另一个变量唯一的值,又有通过对应表格确定另一变量唯一的值,还有通过图像确定另一个变量唯一的值。
综合这些现象,你能归纳出上面实例变量之间关系的共同特点吗?请大家相互讨论。
师生活动:学生分组讨论归纳出如下结论:在一个变化过程中,有两个变量,当一个变量取定一个值时另一个变量有唯一确定的值与之对应。
教师与学生一起概括出函数概念:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
师生活动:学生交流,教师引导学生进行点评,并顺势带出函数值的概念:设y是x的函数,如果x=a时,对应的y=b,那么b叫做当自变量的值为a时的函数值。
【设计意图】在前面分步概括的基础上,概括出三类不同表现形式的变量对应关系的共同特征,形成函数概念。
初步辨析,了解概念练习1.下表是我国大陆地区若干年份的人口统计表,表中的人口数y是年份x的函数吗?练习2.下列问题中哪些是自变量?那些是自变量的函数?试写出自变量表示函数的式子:每分钟向池水注水0.13m,注水量y(单位3m)随注水时间x(单位min)的变化而变化。
改变正方形的边长x,正方形的面积y 随之变化。
(3)秀水村的耕地面积是106 m2,这个村人均占有耕地面积 y (单位:m2)随这个村人数 n 的变化而变化;(4)P是数轴上的一个动点,它到原点的距离记为 x,它的坐标记为 y,y 随 x 的变化而变化.【设计意图】形成函数概念后,及时进行概念辨析。
综合应用,深化理解练习3.图中是一只蚂蚁在墙上爬行的路线图,请问:蚂蚁离地面的高度h是离起点的水平距离t的函数吗?为什么?反过来,t是h的函数吗?为什么?练习4.请举出一个函数的实例。
师生活动:学生独立完成,教师个别指导,并引导学生进行自我评价和相互评价。
【设计意图】通过正反两方面的例子,进行函数概念的进一步辨析,深化对函数概念的理解。
(五)实例分析,确定自变量取值范围问题1.什么叫函数?请用含自变量的式子表示下列问题中的函数关系:(1)汽车以60 km/h 的速度匀速行驶,行驶的时间为 t(单位:h),行驶的路程为 s(单位:km);(2)多边形的边数为 n,内角和的度数为 y.们与同桌一起,探究下列问题.函数的定义是,某一变化过程中有两个变量x,y,对于变量x每取一个确定的值,y 都有唯一确定的值与之对应.问题1(1)中,t 取-2 有实际意义吗?问题1(2)中,n 取2 有意义吗?根据刚才问题的思考,你认为函数的自变量可以取任意值吗?在实际问题中,函数的自变量取值范围往往是有限制的,在限制的范围内,函数才有实际意义;超出这个范围,函数没有实际意义,我们把这种自变量可以取的数值范围叫函数的自变量取值范围.例:一辆汽车油箱中现有汽油50 L,它在高速公路上匀速行驶时每千米的耗油量固定不变.行驶了100 km 时,油箱中剩下汽油40 L.假设油箱中剩下的油量为 y(单位:L),已行驶的里程为 x(单位:km)。
(1)在这个变化过程中,y 是x 的函数吗?(2)能写出表示 y 与 x 的函数关系的式子吗?(3)这个变化过程中,自变量 x 的取值范围是什么?(4)汽车行驶了200 km 时,油箱中还剩下多少汽油?行驶了320 km 呢?用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法.这种式子叫做函数的解析式.【设计意图】初步培养学生的创新思维,进而激发学生学习数学的兴趣。
(六)课堂小结,收获成长(1)什么叫函数?(2)本课学习了哪些表示函数的方法?(3)在实际问题中,函数的自变量取值往往是有限制的,怎样确定由实际问题抽象出的函数的自变量取值范围?(七)布置作业教科书第81页习题19.1第1~4题;举出一个函数的实例.第五部分:板书设计第六部分:教学反思。