八年级上册数学三角形.ppt
合集下载
数学沪科版八年级(上册)14.1全等三角形(共32张PPT)
(全等三角形对应边相等).
5.如图,△ABC≌△AED,AB是△ABC的最大边,AE是 △AED的最大边, ∠BAC 与∠ EAD是对应角,且 ∠BAC=25°,∠B= 35°,AB=3cm,BC=1cm,求出∠E, ∠ ADE的度数和线段DE,AE 的长度.
解:∵ △ABC≌△AED,(已知)
A
∠A=∠F,∠B=∠D,∠C=∠E(全等三角形对应角相等)
例2 如图,已知△ABC≌△DCB,AB=3,DB=4, ∠A=60°. (1)写出△ABC和△DCB的对应边和对应角; (2)求AC,DC的长及∠D的度数. 解:(1)AB与DC,AC与DB,
BC与CB是对应边; ∠A与∠D,∠ABC与∠DCB, ∠ACB与∠DBC是对应角;
A
B
3.如图,已知△ABC≌△BAD 边 请指出图中的对应边和对应角. 边
AB= BA AC= BD
D
A
边 BC= AD
角 ∠BAC= ∠ABD
B
C
角 ∠ABC= ∠BAD
角 ∠C= ∠D
归纳 有公共边的,公共边一定是对应边.
变式:
D E
B
如图:平移后△ABC≌△ EFD, 若AB=6,AE=2.你能说出AF的 F 长吗?说说你的理由.
∴ ∠E=∠N. ∴ EF∥NM.
当堂练习
1.如图,△ABC≌△BAD,如果AB=5cm, BD=
4cm,AD=6cm,那么BC的长是 ( A )
A.6cm B.5cm C.4cm D.无法确定
2.在上题中,∠CAB的对应角是 ( B )
A.∠DAB B.∠DBA C.∠DBC D.∠CAD
C
D
O
∠A= ∠A ∠B= ∠E ∠ACB= ∠ADE
三角形全等的判定(共18张PPT)数学八年级上册
D
3.已知:点E,C在线段B上,BE=CF,AB=DE,AC=DF. 求证:△ABC≌△DEF.
证明:∵BE=CF, ∴BE+EC=CF+EC,即CB=EF;
∴△ABC≌△DEF(SSS)
1.三边对应相等的两个三角形全等(简写成“边边边”或“SSS”)
注意几何语言规范
2.三角形具有稳定性。房屋的人字架、大桥的钢梁、起重机的支架、自行车的车座等,采用三角形结构,起到稳固的作用。
作图区
尺
规
当三角形的三条边长确定时,三角形的形状、大小完全被确定。
三角形的稳定性
(三角形的特有性质)
思考
你能用SSS来解释三角形的稳定性吗?
因为只要给定了一个三角形的三条边,那么根据全等三角形的判定可知,当两个三角形三条边相等时,两个三角形全等,形状和大小不变,只是位置发生了变化,这样的三角形唯一确定. 故三角形具有稳定性.
2024课件
同学们再见!
授课老师:
时间:2024年9月1日
5.已知:如图,AB=DE,BC=EF,AF=DC.求证:BC∥EF.
提示:由已知可得△ABC≌△DEF(SSS),∴ ∠EFD=∠BCA(全等三角形的对应角相等),∴ ∠EFC=∠BCA(等角的补角相等),∴ EF∥BC(内错角相等,两直线平行).
同学们再见!
授课老师:
时间:2024年9月1日
课本P25-28
钱塘江大桥(Qiantang River Bridge),又名钱江一桥,是中国浙江省杭州市境的一座跨钱塘江双层桁架梁桥,位于西湖之南,六和塔附近钱塘江上,由中国桥梁专家茅以升主持全部结构设计,是中国自行设计、建造的第一座双层铁路、公路两用桥。桥上有许多全等的三角形结构。
全等三角形的定义:能够重合的两个三角形叫做全等三角形。全等三角形的性质:全等三角形对应角相等;对应边相等;
3.已知:点E,C在线段B上,BE=CF,AB=DE,AC=DF. 求证:△ABC≌△DEF.
证明:∵BE=CF, ∴BE+EC=CF+EC,即CB=EF;
∴△ABC≌△DEF(SSS)
1.三边对应相等的两个三角形全等(简写成“边边边”或“SSS”)
注意几何语言规范
2.三角形具有稳定性。房屋的人字架、大桥的钢梁、起重机的支架、自行车的车座等,采用三角形结构,起到稳固的作用。
作图区
尺
规
当三角形的三条边长确定时,三角形的形状、大小完全被确定。
三角形的稳定性
(三角形的特有性质)
思考
你能用SSS来解释三角形的稳定性吗?
因为只要给定了一个三角形的三条边,那么根据全等三角形的判定可知,当两个三角形三条边相等时,两个三角形全等,形状和大小不变,只是位置发生了变化,这样的三角形唯一确定. 故三角形具有稳定性.
2024课件
同学们再见!
授课老师:
时间:2024年9月1日
5.已知:如图,AB=DE,BC=EF,AF=DC.求证:BC∥EF.
提示:由已知可得△ABC≌△DEF(SSS),∴ ∠EFD=∠BCA(全等三角形的对应角相等),∴ ∠EFC=∠BCA(等角的补角相等),∴ EF∥BC(内错角相等,两直线平行).
同学们再见!
授课老师:
时间:2024年9月1日
课本P25-28
钱塘江大桥(Qiantang River Bridge),又名钱江一桥,是中国浙江省杭州市境的一座跨钱塘江双层桁架梁桥,位于西湖之南,六和塔附近钱塘江上,由中国桥梁专家茅以升主持全部结构设计,是中国自行设计、建造的第一座双层铁路、公路两用桥。桥上有许多全等的三角形结构。
全等三角形的定义:能够重合的两个三角形叫做全等三角形。全等三角形的性质:全等三角形对应角相等;对应边相等;
沪科版数学八年级上册14.1全等三角形课件(共19张PPT)
如图,按同一底版印制的两枚邮票,它们的形状相同、大小一样。
全等形定义:能够完全重合的两个图形,叫做全等形.
全等形性质:如果两个图形全等,它们的形状相同,大小相等.
1.与下左图所示图形全等的是 .
①、④
2.下列说法:①用一张底片冲洗出来的2张1寸相片是全等的; ②所有正三角形是全等形; ③面积相等的图形一定是全等形.其中正确的是 .
两个三角形全等是通过什么方法验证的?
平移
解:对应边是:__________________________________
对应角是:__________________________________
AC与DF,AB与DE,BC与EF
∠A与∠D,∠B与∠E,∠C与∠F
A
C
B
如图△AOC≌△BOD
1.对应边是:________________________
2.∠AOC的对应角是________
∠A的对应角是________
OC与OD,AC与BD
∠BOD
∠B
O
D
小结:有对顶角的,对顶角也是对应角.
想一想: 有什么办法判断两个三角形全等?用数学式子表示两个三角形全等,并指出对应角、对应边.
旋转
A
B
C
D
A
A
B
B
D
C
如图△ABD≌△ABC
大角对大角,小角对小角
公共角一定是对应角
对顶角一定是对应角
同学们再见!
授课老师:
时间:2024年9月1日
第十四章 全等三角形
14.1 全等三角形
学习目标
学习重难点
重点
难点
1.了解全等形,明确全等三角形的概念.2.掌握全等三角形的性质,识别全等三角形的对应边和对应角.
全等形定义:能够完全重合的两个图形,叫做全等形.
全等形性质:如果两个图形全等,它们的形状相同,大小相等.
1.与下左图所示图形全等的是 .
①、④
2.下列说法:①用一张底片冲洗出来的2张1寸相片是全等的; ②所有正三角形是全等形; ③面积相等的图形一定是全等形.其中正确的是 .
两个三角形全等是通过什么方法验证的?
平移
解:对应边是:__________________________________
对应角是:__________________________________
AC与DF,AB与DE,BC与EF
∠A与∠D,∠B与∠E,∠C与∠F
A
C
B
如图△AOC≌△BOD
1.对应边是:________________________
2.∠AOC的对应角是________
∠A的对应角是________
OC与OD,AC与BD
∠BOD
∠B
O
D
小结:有对顶角的,对顶角也是对应角.
想一想: 有什么办法判断两个三角形全等?用数学式子表示两个三角形全等,并指出对应角、对应边.
旋转
A
B
C
D
A
A
B
B
D
C
如图△ABD≌△ABC
大角对大角,小角对小角
公共角一定是对应角
对顶角一定是对应角
同学们再见!
授课老师:
时间:2024年9月1日
第十四章 全等三角形
14.1 全等三角形
学习目标
学习重难点
重点
难点
1.了解全等形,明确全等三角形的概念.2.掌握全等三角形的性质,识别全等三角形的对应边和对应角.
人教版八年级数学上册《全等三角形》PPT优质课件
【结论】全等三角形的对应边相等,全
等三角形的对应角相等。
知识梳理
知识点一:全等形
1.能够完全重合的两个图形叫做全等形。
2.全等形关注的是两个图形的形状和大小.一个图形经过平移
、翻折、旋转后,位置变化了,但形状、大小都没有改变,即
平移、翻折、旋转前后的图形全等。
知识梳理
例题 1:请观察图中的6组图案,其中是全等形的是 1、4、5、6
等时,对应的顶点放在对应的位置上.
知识梳理
例题 1:如图所示,△
≌△ ,指出所有的对应边和对应
角.,AC与DB,BC与CB是对应边;
AB与DC
∠ABC与∠DCB,∠A与∠D,∠ACB与∠DBC是对应角。
【解答】(1)已知△ABC≌△DCB,故公共边BC和CB
是对应边,它们所对的∠A和∠D是对应角,最短边
点E平分线段BC;
(3)DE ⊥ BC,
理由如下:因为△ BDE ≌△ CDE,所以BD = CD,
BABC中,点A的坐标为( − 1,1),点C的坐
:
标为 ( − 2,2) ,点 B 的坐标为 ( − 5,1) ,如果 △
ABD与 △ ABC全等,求点D的坐标。
10∠ ,则 =
.
【结论】本题考查全等三角形的性质,解题时应
注重识别全等三角形中的对应边,要根据对应角
去找对应边.
知识梳理
例题 2:如图所示,△ 沿直线 向右平移线段 长的距离后与△
≌
重合,则△△
,
;相等的角有
∠ = ∠
,相等的边有
, =
边,写出其他对应边和对应角.
【解答】对应边:AN与AM,BN与CM;
对应角:∠BAN与∠CAM,∠ANB与∠AMC.
等三角形的对应角相等。
知识梳理
知识点一:全等形
1.能够完全重合的两个图形叫做全等形。
2.全等形关注的是两个图形的形状和大小.一个图形经过平移
、翻折、旋转后,位置变化了,但形状、大小都没有改变,即
平移、翻折、旋转前后的图形全等。
知识梳理
例题 1:请观察图中的6组图案,其中是全等形的是 1、4、5、6
等时,对应的顶点放在对应的位置上.
知识梳理
例题 1:如图所示,△
≌△ ,指出所有的对应边和对应
角.,AC与DB,BC与CB是对应边;
AB与DC
∠ABC与∠DCB,∠A与∠D,∠ACB与∠DBC是对应角。
【解答】(1)已知△ABC≌△DCB,故公共边BC和CB
是对应边,它们所对的∠A和∠D是对应角,最短边
点E平分线段BC;
(3)DE ⊥ BC,
理由如下:因为△ BDE ≌△ CDE,所以BD = CD,
BABC中,点A的坐标为( − 1,1),点C的坐
:
标为 ( − 2,2) ,点 B 的坐标为 ( − 5,1) ,如果 △
ABD与 △ ABC全等,求点D的坐标。
10∠ ,则 =
.
【结论】本题考查全等三角形的性质,解题时应
注重识别全等三角形中的对应边,要根据对应角
去找对应边.
知识梳理
例题 2:如图所示,△ 沿直线 向右平移线段 长的距离后与△
≌
重合,则△△
,
;相等的角有
∠ = ∠
,相等的边有
, =
边,写出其他对应边和对应角.
【解答】对应边:AN与AM,BN与CM;
对应角:∠BAN与∠CAM,∠ANB与∠AMC.
人教版数学八年级上册三角形的内角ppt-课件
三角形有几个内角?它的内 角和是多少?
你是怎么知道的?
做一做
请同学们拿出学具中的三角形纸片, 想一想可以用那些方法来说明三角
形的内角和是180 °? A
C B
a
1 B
b
A 2
e1 A
2
C
C
B
A 从刚才拼角的过程你
1
受到什么启发?
B
C
三角形的内角和等于1800.
证法1:过A作EF∥BA,
∴∠B=∠2
∴ ∠ACD =180 ° -30 ° -90 °=6 0 °
在△BCD中 ∠CBD = 45 ° ∠D =90 °
∴ ∠BCD = 180 °- 90°-45 °=45 °
∴ ∠ACB = ∠ACD - ∠BCD = 6 0 °- 45 °
2. 如图,一种滑翔伞是左右
对称的四边形ABCD,其中 B ∠A=150°,∠B=∠D=40°, 求∠C的度数。
则∠ B=∠ C=___7_0 °
(4)在△ABC中, ∠A+ ∠ B =80°, ∠ C=2 ∠A,
则∠A=_5_0__°__, ∠ B=_3__0__°, ∠ C=__1_0_0 °
(5)在△ABC中, ∠A :∠B:∠C=2:3:4, 求∠A, ∠ B ,∠ C 设∠A =2x度, ∠B=3x度,∠C=4x度
∴∠C+∠B+∠BAC=180° B
C
过A作AE∥BC,
∴∠B=∠BAE
(两直线平行,内错角相等)
∠EAC+∠C=180°
(两直线平行,同旁内角互补)
E
A 即∠ EAB+∠BAC+∠C=180°
∴∠B+∠C+∠BAC=180°
你是怎么知道的?
做一做
请同学们拿出学具中的三角形纸片, 想一想可以用那些方法来说明三角
形的内角和是180 °? A
C B
a
1 B
b
A 2
e1 A
2
C
C
B
A 从刚才拼角的过程你
1
受到什么启发?
B
C
三角形的内角和等于1800.
证法1:过A作EF∥BA,
∴∠B=∠2
∴ ∠ACD =180 ° -30 ° -90 °=6 0 °
在△BCD中 ∠CBD = 45 ° ∠D =90 °
∴ ∠BCD = 180 °- 90°-45 °=45 °
∴ ∠ACB = ∠ACD - ∠BCD = 6 0 °- 45 °
2. 如图,一种滑翔伞是左右
对称的四边形ABCD,其中 B ∠A=150°,∠B=∠D=40°, 求∠C的度数。
则∠ B=∠ C=___7_0 °
(4)在△ABC中, ∠A+ ∠ B =80°, ∠ C=2 ∠A,
则∠A=_5_0__°__, ∠ B=_3__0__°, ∠ C=__1_0_0 °
(5)在△ABC中, ∠A :∠B:∠C=2:3:4, 求∠A, ∠ B ,∠ C 设∠A =2x度, ∠B=3x度,∠C=4x度
∴∠C+∠B+∠BAC=180° B
C
过A作AE∥BC,
∴∠B=∠BAE
(两直线平行,内错角相等)
∠EAC+∠C=180°
(两直线平行,同旁内角互补)
E
A 即∠ EAB+∠BAC+∠C=180°
∴∠B+∠C+∠BAC=180°
人教版八年级上册数学第十一章三角形全章课件
B
D
A DC
C
锐角三角形的三条高
每人画一个锐角三角形. (1) 你能画出这个三角形的三条高吗? (2) 这三条高之间有怎样的位置关系?
将你的结果与同伴进行交流.
锐角三角形的三条高是
B
在三角形的内部还是外部?
A
F
OE
C D
锐角三角形的三条高交于同一点. 锐角三角形的三条高都在三角形的内部.
直角三角形的三条高
(2)它们所在的直线交于一点吗? D
将你的结果与同伴进行交流.
钝角三角形的三条高不相交于 一点. 钝角三角形的三条高所在直线 交于一点.
O
F
B
C
E
从三角形中的一个顶点向它的对边所在直线作垂线, 顶点和垂足之间的线段 叫做三角形这边的高.
三角形的三条高的特性:
•锐角三角形 •直角三角形 •钝角三角形
E,F为AB上一点,CF⊥AD于H,判断下列说法哪些是正确的,
哪些是错误的. A
①AD是△ABE的角平分线( × )
②BE是△ ABD边AD上的中线( × ) ③BE是△ ABC边AC上的中线( × ) F
12 E G
④CH是△ ACD边AD上的高( √ ) B
H
D
C
三角形的高、中线与角平分线都是线段.
3.(滨州中考)若某三角形的两边长分别为3和4,则下列
长度的线段能作为其第三边的是(
)
A.1
B.5
C.7
D.9
【解析】选B.设第三边为x,则1<x<7.
4.若△ABC的三边为a,b,c,则化简︱a+b-c︱+︱ba-c︱的结果是( ). A. 2a-2b B.2a+2b+2c C. 2a D. 2a-2c
12.1 全等三角形 课件 人教版八年级数学上册(22张PPT)
新课讲授
探究:请同学们把课前准备好的三角尺按在纸片上, 划下图形,照图形裁下来的纸片和三角尺的形状、 大小完全一样吗?把三角尺和裁得的纸片放在一起 能够完全重合吗?
归纳总结
全等形的定义: 能够完全重合的两个图形称为全等形. 全等形的性质: 形状相同,大小相等.
练一练 下面哪些图形是全等形?
看大小、形状 是否完全相同
课堂小结
定义
能够完全重合的两个三角形叫做全等三角形
全
对应边相等
等 三
基本性质
对应角相等
角
长对长,短对短,中对中
形
对应边 公共边一般是对应边
对应元素 确定方法
对应角
大角对大角,小角对小角 公共角一般是对应角 对顶角一般是对应角
作业布置
1.完成课本P33页1-4题; 2.复习整理本节课知识框架,预习全等三角 形的判定并尝试整理思维导图; 3.探究性作业:利用全等形设计美丽的图案, 比比看谁的设计最好。
“全等”用符号“≌”表示,读作“全等于”.
A
D
B
C
E
F
△ABC≌△DEF
注意:记两个三角形全等时,通常把表示对应顶点
的字母写在对应的位置上.
全等三角形的性质
A
D
B
C
E
F
∵△ABC≌△DEF,
∴ AB = DE,AC = DF,BC = EF (全等三角形的对应边 相等),
∠A =∠D,∠B =∠E,∠C =∠F(全等三角形对应角相等).
牛刀小试
如图,△ABC 与△ADC 全等,请用数学符号表示出
这两个三角形全等,并写出相等的边和角. D 解:△ABC≌△ADC.
A
人教版八年级上册第十二章 12.1全等三角形 课件(共18张PPT)
今日任务—— 课堂作业:课本P31-32习题1、2 家庭作业:3、4
寻找对应边对应角的规律
(1)有公共边的,公共边是对应边; (2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角; (4)最大边与最大边(最小边与最小边) 为
对应边;最大角与最大角(最小角与最小角)为对 应角;
(5)对应角所对的边为对应边;对应边所对 的角为对应角;
(6)根据书写规范,按照对应顶点找对应边 或对应角.
△ABC≌△BAD的对应边和
角∴
AB∠-BAACE= ∠=AEBFD-EA AF∠=ABEB=C_=_6_-2∠_=_B4AD
对应角
角 ∠C= ∠D
等式的性质1
谈谈你这节课的收获
全等三角形
(1)能够完全重合的两个三角形叫做全等三角形; (2)全等三角形的性质:对应边相等、对应角相等; (3)全等三角形用符号“≌”表示,且一般对应顶点写在对应位置上.
人教版八年级数学上册
12.1全等三角形
教学目标
知识与能力
1.知道什么是全等形、全等三角形及全等三角形的对应元素; 2.知道全等三角形的性质,能用符号正确地表示两个三角形全等.
观察 (1)
(2)
(3)
每组的两个图形有什么特点? 重合
思 考 能够完全重合的两个图形叫做 全等形
2021年8月12日星期四
F
如图:∵△ABC≌△DEF ∴AB=DE,BC=EF,AC=DF ( 全等三角形的对应边相等 )
∠A=∠D,∠B=∠E,∠C=∠F ( 全等三角形的对应角相等 )
A
D
随堂练习:
B
CE
F
第二题图
1、若△ ABC≌ △ DEF,则∠B= ∠E , ∠BAC= ∠EDF ,
人教版数学八年级上册-第11章-三角形-复习(共38张PPT)省公开课获奖课件市赛课比赛一等奖课件
形旳外角中必有两个角是钝角;
D、锐角三角形中两锐角旳和必然不不小于
60O;
随堂检测
• 1.一种三角形旳三边长是整数,周1 长为5,则最
小边为
;
• 2三.木角形工具师有稳傅定做性 完门框后,为预防变形,通常在 角上钉一斜条,根据3是60
•
90O
;
• 3.小明绕五边形各边走一圈,他共转了 度
。
(1)、(2)、(4)
可表达为:五边形ABCDE 或五边形AEDCB
B
内角
E
外角
C
对角线:连接多边形不相邻旳两个 顶点旳线段。
1
D
对角线
10、多边形旳分类
请分别画出下列两个图形各边所在旳直线,你能得到什么结论?
D
E
A
G C
B
(1)
H F
(2)
如图(1)这么,画出多边形旳任何一条边所在旳直线,整个多边形都在这 条直线旳同一侧,那么这个多边形就是凸多边形。本节我们只讨论凸多边形。
那么(C )
A、只有一种截法 B、只有两种截法 C、有三种截法 D、有四种截法
3、等腰三角形旳腰长为a,底为X,则X旳取值范围是( A )
A、0<X<2a B、0<X<a C、0<X<a/2 D、0<X≤2a
随堂检测
4、一种正多边形每一种内角都是120o,这个多边形是( C )
A、正四边形
B、正五边形
随堂检测
101试卷库 三角形旳复习 随堂测试
同学们要仔细答题哦!
随堂检测
1、三角形三个内角旳度数分别是(x+y)o, (x-y)o,xo,且x>y>0,则该三角形有一种
内角为 ( C )
认识三角形(共27张PPT)数学八年级上册
三角形的中线
等底同高的两个三角形面积相等
【议一议】
(1)在纸上画出一个锐角三角形,并画出它的三条中线,它们有怎样的位置关系?与同伴进行交流.
锐角三角形的三条中线交于一点.
钝角三角形和直角三角形的三条中线也交于一点.
(2)钝角三角形和直角三角形的三条中线也有同样的位置关系吗?折一折,画一画,并与同伴进行交流.
1
2
三角形的角平分线
P7做一做第1题
结论:任意三角形的三条角平分线交于同一点.
ቤተ መጻሕፍቲ ባይዱ
三角形的角平分线
【议一议】
在纸上画出一个三角形,并画出它的三条角平分线,它们有怎样的位置关系?与同伴进行交流.
议一议:三角形的角平分线与角的平分线有什么区别和联系?
A
B
F
E
O
C
A
B
E
三角形的角平分线是线段,而角的平分线是一条射线;它们的联系是都是平分角。
课本P9作业讲评
1. 如图,AD,CE分别是△ABC的中线和角平分线,则:
DC BC ∠ECB ∠ACB.
2.如图,在△ABC中,∠ACB=90°,CD是斜边上的高线,CE是△ABC的角平分线,且∠CEB=105°.求∠ECB,∠ECD的大小.
3.如图,AD是△ABC的中线,DE⊥AC,DF⊥AB,E,F 分别是垂足.已知AB=2AC,求DE与DF的长度之比.
1.1 认识三角形
第2课时 三角形的三线
智慧课堂精品课件
知识与技能: 1.了解三角形的角平分线、中线、高线的概念. 2.会利用量角器、刻度尺画三角形的角平分线、中线和高线. 3.会利用三角形的角平分线、中线和高线的概念,解决有关角度、 面积计算等问题.过程与方法:经历三个概念的生成过程,体验锐角、直角、钝角三角 形的高线的位置差异.情感态度与价值观:感受分类讨论的数学思想
等底同高的两个三角形面积相等
【议一议】
(1)在纸上画出一个锐角三角形,并画出它的三条中线,它们有怎样的位置关系?与同伴进行交流.
锐角三角形的三条中线交于一点.
钝角三角形和直角三角形的三条中线也交于一点.
(2)钝角三角形和直角三角形的三条中线也有同样的位置关系吗?折一折,画一画,并与同伴进行交流.
1
2
三角形的角平分线
P7做一做第1题
结论:任意三角形的三条角平分线交于同一点.
ቤተ መጻሕፍቲ ባይዱ
三角形的角平分线
【议一议】
在纸上画出一个三角形,并画出它的三条角平分线,它们有怎样的位置关系?与同伴进行交流.
议一议:三角形的角平分线与角的平分线有什么区别和联系?
A
B
F
E
O
C
A
B
E
三角形的角平分线是线段,而角的平分线是一条射线;它们的联系是都是平分角。
课本P9作业讲评
1. 如图,AD,CE分别是△ABC的中线和角平分线,则:
DC BC ∠ECB ∠ACB.
2.如图,在△ABC中,∠ACB=90°,CD是斜边上的高线,CE是△ABC的角平分线,且∠CEB=105°.求∠ECB,∠ECD的大小.
3.如图,AD是△ABC的中线,DE⊥AC,DF⊥AB,E,F 分别是垂足.已知AB=2AC,求DE与DF的长度之比.
1.1 认识三角形
第2课时 三角形的三线
智慧课堂精品课件
知识与技能: 1.了解三角形的角平分线、中线、高线的概念. 2.会利用量角器、刻度尺画三角形的角平分线、中线和高线. 3.会利用三角形的角平分线、中线和高线的概念,解决有关角度、 面积计算等问题.过程与方法:经历三个概念的生成过程,体验锐角、直角、钝角三角 形的高线的位置差异.情感态度与价值观:感受分类讨论的数学思想
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
B CD F
E 2、如图,已知∠1=∠2 ∠3=∠4 求证:BD=CD
A
12 E
34 BDC
1. 已知:点E是正方形ABCD的边CD上一点,
点F是CB的延长线上一点,且EA⊥AF,
求证:DE=BF
A
D
E
FB
C
2. 如图,CD⊥AB于D,
A
BE⊥AC与E,BE、CD
交于O,且AO平分∠BAC, D
两个三角形是否全等
先任意画一个△ABC,再画一个△DEF
使得EF=BC, ∠E = ∠B ,∠F = ∠C;
A
NM
D
B
C
画法: 1、画EF=BC
E
F
2、画∠MEF = ∠B;再画∠NFE= ∠C EM、FN交于点D.
观察所得的两个三角形是否全等。
公理3(全等三角形判定3)
有两个角和它们夹边对应相等的两个
11.2全等三角形的条件 (ASA)(AAS)
复习
1.什么是全等三角形?
2. 我们已学了那些判定三角形全等的方法?
边边边(SSS):
三边对应相等的两个三角形全等。
边角边(SAS):
有两边和它们夹角对应相等的两个 三角形全等。
创设情景,实例引入
怎么办?可以帮帮 我吗?
一张教学用的三角形硬纸板
不小心被撕坏了,如图,你能制
例2.如图,∠1=∠2,∠3=∠4 求证:AC=AD
如果把已知中的 ∠3=∠4
改成, ∠D=∠C 此题又如何?
填一填
1.如图,AB、CD相交于点O,已知∠A=∠B
添加条件 AO=BO (填一个即可)
就有 △AOC≌ △BOD
B
还有吗?
C
O D
A
1、如图,已知∠1=∠2,∠3=∠4,BD=CE
求证:AB=AC
用符号语言表达为:A Nhomakorabea在△ABC和△DEF中
∠A= ∠D
∠B = ∠E
B
C
BC=EF
D
∴ △ABC≌△DEF (AAS)
E
F
例题讲解:
例1.已知:点D在AB上,点E在AC上,BE和CD
相交于点O,AB=AC,∠B=∠C。
A
求证:BD=CE
DE
O
思考
B
C
探究3
有两个角对应相等,以及一个三角形中两
个对应角的夹边与另一个三角形中一对应角
E
求证:OB=OC
O
B
C
1.你能总结出我们学过哪些判定三角形 全等的方法吗?
2.要根据题意选择适当的方法。
3.证明线段或角相等,就是证明它们所 在的两个三角形全等。
能利用角边角条件证明你的结论吗? A
证明:∵ ∠A+∠B+∠C=180o
∠D+∠E+∠F=180o 又∵ ∠A=∠D, ∠B=∠E
C
∴ ∠C=∠F
在△ABC和△DEF中
B
D
∠B=∠E
BC=EF
∠C=∠F
E
F
∴ △ABC≌△DEF (ASA)
公理3的推论
有两个角和其中一个角的对边对应相等
的两个三角形全等。(简写成“角角边”或“AAS
的对边对应相等的两个三角形是否全等呢?
观 两个三角形并非有两角一边对应相等便能判别它
察 们全等,只有满足(ASA)和(AAS)才行。
如图:△ABC是直角三角形,
C
∠ACB=90o ,CD AB,垂足为D。
则在△ACD与△CBD中便有:
1
∠A= ∠1
∠ADC= ∠CDB=90o A
DB
CD=CD
试想△ACD与△CBD会全等吗?
作一张与原来同样大小的新教具
A
吗?能恢复原来三角形的原貌吗? D
C
E
B
探究1
如果两个三角形具备两角一边对应相等, 有几种可能情况?
1、两角夹边对应相等。 2、有两个角和其中一个角的对边对应相等
3、有两个角对应相等,以及一个三角形中的夹 边与另一个三角形中一对应角的对边对应相等。
共三种情况
我们先来探究两角夹边对应相等时
三角形全等 (简写成“角边角”或“ASA”)。
用符号语言表达为:
A
在△ABC与△DEF中 ∠A= ∠D
B
C
AB=DE
D
∠B = ∠E
∴ △ABC≌△DEF(ASA)
E
F
探究2 有两个角和其中一个角的对边对应相等
的两个三角形是否全等? 如图: 在△ABC和△DEF中,∠A=∠D, ∠B=∠E ,BC=EF,△ABC与△DEF全等吗?
A
12
34 BDE C
2、如图,AB∥CD,AD∥BC,那么AB=CD吗?
为什么?AD与BC呢?
D
C
2
3
4
1 A
B
1.如图,要测量河两岸相对的两点A,B的距离, 可以在AB的垂线BF上取两点C,D,使BC=CD, 再定出BF的垂线DE,使A, C,E在一条直线上, 这时测得DE的长就是AB的长。为什么?
B CD F
E 2、如图,已知∠1=∠2 ∠3=∠4 求证:BD=CD
A
12 E
34 BDC
1. 已知:点E是正方形ABCD的边CD上一点,
点F是CB的延长线上一点,且EA⊥AF,
求证:DE=BF
A
D
E
FB
C
2. 如图,CD⊥AB于D,
A
BE⊥AC与E,BE、CD
交于O,且AO平分∠BAC, D
两个三角形是否全等
先任意画一个△ABC,再画一个△DEF
使得EF=BC, ∠E = ∠B ,∠F = ∠C;
A
NM
D
B
C
画法: 1、画EF=BC
E
F
2、画∠MEF = ∠B;再画∠NFE= ∠C EM、FN交于点D.
观察所得的两个三角形是否全等。
公理3(全等三角形判定3)
有两个角和它们夹边对应相等的两个
11.2全等三角形的条件 (ASA)(AAS)
复习
1.什么是全等三角形?
2. 我们已学了那些判定三角形全等的方法?
边边边(SSS):
三边对应相等的两个三角形全等。
边角边(SAS):
有两边和它们夹角对应相等的两个 三角形全等。
创设情景,实例引入
怎么办?可以帮帮 我吗?
一张教学用的三角形硬纸板
不小心被撕坏了,如图,你能制
例2.如图,∠1=∠2,∠3=∠4 求证:AC=AD
如果把已知中的 ∠3=∠4
改成, ∠D=∠C 此题又如何?
填一填
1.如图,AB、CD相交于点O,已知∠A=∠B
添加条件 AO=BO (填一个即可)
就有 △AOC≌ △BOD
B
还有吗?
C
O D
A
1、如图,已知∠1=∠2,∠3=∠4,BD=CE
求证:AB=AC
用符号语言表达为:A Nhomakorabea在△ABC和△DEF中
∠A= ∠D
∠B = ∠E
B
C
BC=EF
D
∴ △ABC≌△DEF (AAS)
E
F
例题讲解:
例1.已知:点D在AB上,点E在AC上,BE和CD
相交于点O,AB=AC,∠B=∠C。
A
求证:BD=CE
DE
O
思考
B
C
探究3
有两个角对应相等,以及一个三角形中两
个对应角的夹边与另一个三角形中一对应角
E
求证:OB=OC
O
B
C
1.你能总结出我们学过哪些判定三角形 全等的方法吗?
2.要根据题意选择适当的方法。
3.证明线段或角相等,就是证明它们所 在的两个三角形全等。
能利用角边角条件证明你的结论吗? A
证明:∵ ∠A+∠B+∠C=180o
∠D+∠E+∠F=180o 又∵ ∠A=∠D, ∠B=∠E
C
∴ ∠C=∠F
在△ABC和△DEF中
B
D
∠B=∠E
BC=EF
∠C=∠F
E
F
∴ △ABC≌△DEF (ASA)
公理3的推论
有两个角和其中一个角的对边对应相等
的两个三角形全等。(简写成“角角边”或“AAS
的对边对应相等的两个三角形是否全等呢?
观 两个三角形并非有两角一边对应相等便能判别它
察 们全等,只有满足(ASA)和(AAS)才行。
如图:△ABC是直角三角形,
C
∠ACB=90o ,CD AB,垂足为D。
则在△ACD与△CBD中便有:
1
∠A= ∠1
∠ADC= ∠CDB=90o A
DB
CD=CD
试想△ACD与△CBD会全等吗?
作一张与原来同样大小的新教具
A
吗?能恢复原来三角形的原貌吗? D
C
E
B
探究1
如果两个三角形具备两角一边对应相等, 有几种可能情况?
1、两角夹边对应相等。 2、有两个角和其中一个角的对边对应相等
3、有两个角对应相等,以及一个三角形中的夹 边与另一个三角形中一对应角的对边对应相等。
共三种情况
我们先来探究两角夹边对应相等时
三角形全等 (简写成“角边角”或“ASA”)。
用符号语言表达为:
A
在△ABC与△DEF中 ∠A= ∠D
B
C
AB=DE
D
∠B = ∠E
∴ △ABC≌△DEF(ASA)
E
F
探究2 有两个角和其中一个角的对边对应相等
的两个三角形是否全等? 如图: 在△ABC和△DEF中,∠A=∠D, ∠B=∠E ,BC=EF,△ABC与△DEF全等吗?
A
12
34 BDE C
2、如图,AB∥CD,AD∥BC,那么AB=CD吗?
为什么?AD与BC呢?
D
C
2
3
4
1 A
B
1.如图,要测量河两岸相对的两点A,B的距离, 可以在AB的垂线BF上取两点C,D,使BC=CD, 再定出BF的垂线DE,使A, C,E在一条直线上, 这时测得DE的长就是AB的长。为什么?