抗真菌药物的作用机制及耐药性

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作用机制 药物作用靶位改变 (14α-甾醇去甲基酶 ) 原因 备注
靶位发生改变致使药物不 靶位有活性,但对药物 能与之结合,但不改变与 的亲和力降低 外源底物的结合能力
甾醇生物合成改变
缺乏△5,6-去饱和酶
导致14α-甲基 fecosterol的积累, 而不是麦角甾醇的积累
胞内靶酶合成量减低
细胞膜中脂和甾醇改变, 透过细胞膜的能力降低; 特异性药物外排泵过量表 主动外排泵 达(CDR1、PDR5和BEN) 麦角甾醇过量合成,导 致氟康唑和依曲康唑的 交叉耐药性
抗真菌药物的作用机制及耐药性
第一节
抗真菌药物发展简介
第一个发现并被用于临床的为上世纪30年代 末,从微生物发酵代谢产物中分离得到的灰 黄霉素;
1944年报道了唑类化合物的抗真菌作用;
1949年从微生物代谢产物中分离得到了制霉 菌素;1956年报道了两性霉素B的抗真菌活性; 1958年灰黄霉素被用于临床;同年,上市了 第一个唑类抗真菌药物;1960年两性霉素B被 用于临床; 1962年报道了氟胞嘧啶(flucytosine)的抗 真菌活性;
由于药物首先与外源加入的甾醇物质发生生物化 学作用,而使细胞膜上的甾醇免遭药物的作用。
1、多烯类抗真菌抗生素的作用机制
抗生素发挥作用时首先与膜结合,其结合程度与膜 内甾醇含量成正比。 结合后生成的膜——抗生素复合物,使细胞质膜结 构发生改变,在膜脂质双层中形成由多烯大环内酯 抗生素与胆固醇结合的环状化合物,构成亲水通道, 致使细胞内容物向胞外泄漏。 所泄漏的物质种类与抗生素的性质、浓度及作用 时间有关,如钾离子、无机磷、有机磷、氨基酸、 磷酸酯直至核酸、蛋白等,从而产生杀菌作用。
N N N O
S
H3C
O
Cl
H3C
N
N
O H
O Cl Cl
Cl
特康唑
噻康唑
1)、唑类抗真菌药物的作用机制
麦角甾醇作为构成真菌细胞膜的重要成分,对于维持细胞 膜的流动性、生物调节以及立体结构等起着重要的作用, 而构成细胞膜的甾醇应该是C-14位去甲基的。 已有的研究表明:唑类抗真菌药物的主要作用靶位是血红 素蛋白,该蛋白共催化抑制依赖于细胞色素P450的羊毛甾 醇(lanosterol)的14α-去甲基;而当14α-去甲基酶的活性 受到抑制,则不能合成麦角甾醇而只能累积诸如羊毛甾醇、 4,14-二甲基酵母甾醇(4,14-dimethylzymosterol)、 24-亚甲基二氢羊毛甾醇(24-methylenedihydrolanosterol) 等14α-甲基化的甾醇前体,由这样的甾醇构成的真菌细胞 膜的结构和功能都发生了变化。
产生这一协同效应的原因推测为由于两性霉 素B与细胞膜上麦角甾醇的交互作用导致细胞 膜结构的改变,从而促进了5FC的吸收。
不同抗菌药物的协同作用
合并使用细菌细胞壁抑制剂ß -内酰胺类抗生素和 蛋白质抑制剂氨基糖苷类抗生素,对肠球菌也能 够产生作用机制相似的协同作用如,体外合并使 用青霉素和链霉素于粪肠球菌时,在胞内测得的 链霉素的浓度比单独使用链霉素时的要高。 但是,两性霉素B与5FC的协同作用与上面的机制 有所不同,细菌细胞壁抑制剂ß -内酰胺类抗生素 和蛋白质抑制剂氨基糖苷类抗生素的协同作用是 相继发挥的而不是同时发挥的。
一、作用于真菌细胞膜的抗真菌抗生素 和合成药物
目前在临床上广泛使用的这类抗真菌药物有 三种结构类型:
唑类; 多烯类; 烯丙胺硫代氨基甲酸酯类 (allylaminethiocarbamates)。 这类药物的作用靶位为真菌细胞膜的主要组成— —麦角甾醇。
不同抗真菌药物的作用靶位
(一)、作用于真菌细胞膜中甾醇合成 的抗真菌合成药物
A:由两性霉素B在细胞膜上产生的孔道; B: 两性霉素B与细胞膜上的胆甾醇以氢键的形式结合, 从而破坏细胞膜的结构产生孔道
两性霉素B(AMB)的应用
两性霉素B适用于治疗大多数深部真菌病,如 隐球菌、假丝菌、曲霉菌、毛霉菌、球孢子 菌、膜组织胞浆菌和芽生菌等引起的各种脏 器和全身感染;也可用于治疗皮肤和粘膜真 菌病,以及使用广谱抗生素时预防并发真菌病。 两性霉素B可作为全身或深部真菌感染的首选 药物,如隐球菌脑膜炎、真菌性菌血症、真菌 性心内膜炎、肺部真菌感染、真菌性肠炎、 真菌性角膜溃病及阴道炎等。
耐药机制的不同点
而已有的研究表明:抗真菌药物的作用靶位的改 变,降低药物与作用靶位的接触是真菌产生耐药 性的主要机制。 再则,从基因水平的研究来看,细菌产生高度耐 药的一个主要原因是由于带有耐药性基因的载体 的相互传递所致,如质粒、转座子和噬菌体等;
而对真菌耐药性的研究,目前只发现是由于广泛 与药物接触而产生的选择压力所致。
Cl
N N O O N H 3C N O H O Cl Cl
N
N
酮康唑
克霉唑
N N N O O N N O H O Cl Cl
CH 3 H 3C N
N N
依曲康唑
N N N N N N OH F F
N Cl N Cl O Cl
氟康唑
依康唑
N Cl N Cl O Cl Cl
咪康唑
N Cl N
奥昔康唑
FLU:氟康唑; ITRA:依曲康唑; VOR: voriconazole; TERB:特比萘芬
2)、真菌对唑类抗真菌药物的耐药性机制
真菌对唑类药物产生耐药性的主要作用机制是由 于药物的作用靶酶结构发生修饰,或是降低了这 类药物与靶酶接触的机会,或是两者同时兼之。 还没有发现由于药物结构被修饰而造成耐药性的 作用机制。
CH 3 N
CH 3 N C(CH 3)3
特比萘芬
萘替芬
特比萘芬和萘替芬的化学结构
1、多烯类抗真菌抗生素的作用机制
(二)、作用于真菌细胞膜中甾醇合成的多烯 类抗真菌抗生素
wenku.baidu.com
在早期研究多烯类药物对敏感菌的作用过程中, 通过外源加入甾醇类物质能够明显降低培养物对 药物的敏感性,从而支持了多烯类药物的抗菌作 用是通过与细胞膜上的甾醇作用来实现的这一观 点。
靶酶合成量增加
靶酶拷贝数增加
2、烯丙胺类抗真菌药物 1)、烯丙胺类抗真菌药物的作用机制
虽然与其他麦角甾醇生物合成抑制剂类抗真菌药物的结构 不同,烯丙胺类的特比萘芬和萘替芬的作用机制也是抑制 麦角甾醇的生物合成。 特比萘芬在体内外对皮肤真菌具有很强的抗菌活性,并对 某些唑类抗菌药物产生耐药性的菌株也有效。
第二节 真菌耐药性与细菌耐药性的异同点
主要不同点
一是真菌的细胞结构和生活史与细菌的具有较大 的差别,如大多数真菌具有二倍体性质和其生活 周期较长;
二是药物的作用靶位不同,如大多数抗细菌药物 的作用靶位是抑制细菌细胞壁重要组分肽聚糖的 合成,而大多数抗真菌药物的作用靶位是抑制真 菌细胞膜重要组分麦角甾醇的合成或抑制其功能 的发挥。
1、多烯类抗真菌抗生素的作用机制
利用这一特性,结合使用一些原先不能通过真菌胞膜的药 物,使其发挥作用,菲律宾菌素与甾体结合后形成的复合物 在膜内发生重排,以至膜结构破坏成为碎片,从而使真菌被 杀死。 这类抗生素的毒副作用是由于其对细胞质膜脂质双层中的 固醇类结合专一性不强而损伤正常人体细胞所引起的。
不同抗菌药物的协同作用
单独使用抗细菌药物RNA聚合酶抑制剂利福 平时无抗真菌活性,但当与两性霉素B合并用 药时,对多种真菌具有活性。
产生这一协同作用的原因是由于两性霉素B对 真菌细胞膜的作用而增加了细胞对利福霉素 的吸收。
不同抗菌药物的协同作用
合并使用两性霉素B和核苷类抗真菌药物5-氟 胞嘧啶(5FC)于念珠菌感染的老鼠模型,同 样能够产生协同效应。
第三节 抗真菌药物的作用机制与真菌耐药性 机制
抗真菌药物的作用机制
抗真菌药物的作用靶位集中在细胞表面:干扰细 胞膜的合成如唑类药物氟糠唑等和多烯大环内酯 类如两性霉素B等;
干扰细胞壁中几丁质的合成如日光霉素和多氧霉 素等;
干扰细胞壁中1,3-β-葡聚糖的合成如卡帕芬净等; 干扰细胞表面甘露糖蛋白复合物的合成如 pradimicin等 .
两性霉素B的应用
尽管两性霉素B是一个最为重要的抗真菌药物,但由 于其较窄的治疗指数(therapeutic index),并且肾 毒性较强,使其在临床应用上受到了一定的限制。为 了改变这一不足,近年来,对两性霉素B脂质体的研 究取得了很大的成功。
目前已经有多种两性霉素B脂质体剂型被用于临床, 从而有效地改善了高剂量使用时对哺乳细胞的毒性。
1969年咪康唑和克霉唑(clotrimazole,局部)被 用于临床;1974年依康唑被用于临床;
1978年描述了阿莫罗芬(amorolfine);1979年 咪康唑parenreral制剂在英国上市; 1981年酮康唑口服制剂在美国得到批准上市;同 年第一个烯丙胺类药物萘替芬(naftifine)进入 临床试验; 1987年开始研究开发多烯类药物的脂质体制剂;
1、唑类抗真菌药物
目前应用于临床的这类药物包括有:咪康唑、依 康唑、酮康唑、氟康唑、依曲康唑、奥昔康唑 (oxiconazole)、特康唑(terconazole)、噻康 唑(tioconazole)等,特别是氟康唑,由于其具 有良好的临床效果和安全性,因而被广泛地使用。
但是,随着这类药物的广泛使用,耐药性真菌出 现的频率愈来愈高,从而鞭策人们不断地去开发 征服抗耐药性真菌的新一代药物。
直到20世纪80年代后期和90年代研究开发了咪唑 类和三唑系(triazoles)抗真菌药物,使在临床 上能够有效地控制局部和系统性真菌感染疾病。 特别是三唑系的氟康唑,由于其安全有效和低毒, 在问世不到十年的时间内,仅在美国就已经治疗 了1600多万真菌感染病人,包括30多万AIDS病人。
但随着这类药物的使用,不断有出现耐药性真菌 的报道。 与细菌耐药性的研究比较,对真菌耐药性的研究 还是非常有限的。
1)、唑类抗真菌药物的作用机制
早期的咪康唑、依康唑和酮康唑等除了抑制14α-去甲基 酶的活性外,对存在于膜上的其他一些有关的酶也具有抑 制活性:如用新近开发的voriconazole处理白念珠菌时发 现有酵母甾醇和角鲨烯(squalene)的累积,但还不清楚 造成这一结果的原因是由于voriconazole与细胞膜上的一 些与麦角甾醇合成有关的酶发生交互作用,还是由于 14α-去甲基酶的活性被抑制后产生的次级效应所致。 另外,这类药物的作用机制与作用对象有关如,氟康唑和 依曲康唑除了抑制新型隐球酵母的14α-去甲基酶的活性 外,还能够抑制将钝叶鼠曲草素酮(obtusifolione)还 原成为相应的醇(obtusifoliol),从而导致甲基化的甾 醇前体累积。
1988年开始试验第一个棘白菌素类 (echinocandins)药物;
1990~1992年氟康唑和依曲康唑开始在美国使用; 1993~1995年报道了第二代三唑类抗真菌药物; 1995~1996年通过了第二个烯丙胺类药物特比萘芬 (terbinafine),以及通过了两性霉素B脂质体制 剂;1997年通过了依曲康唑口服溶液制剂;2001 年上市了第一个棘白菌素类药物caspofungin; 2002年上市了第二个棘白菌素类药物magfungin。 在20世纪80年代中叶前的近三十年来,尽管两性 霉素B的神经毒性比较大,但由于没有更好的治 疗药物而一直作为控制临床真菌感染的主要药物。
1:靶酶过量产生;2:药物结构被改变;3:药物被外排蛋白泵出; 4:药物在细胞壁水平/细胞膜水平被阻止;5:细胞由于药物的作用而产 生的补偿途径以使细胞保持活性;6:某些能够将钝化的药物转化为活性 药物的酶被抑制;7:细胞产生某些能够降解药物的酶并分泌至胞外。
真菌对唑类抗菌药物产生耐药性的生物化学机制
耐药机制的不同点
到目前为止,细菌通过改变抗菌药物的分子结构, 以使药物难以到达作用靶位并与之结合而发挥抗 菌作用的耐药性机制(这是细菌对ß-内酰胺类抗 生素、氨基糖苷类抗生素和糖肽类抗生素等药物 产生耐药性的主要作用机制),以及改变抗菌药 物作用靶位的作用机制等,对于真菌耐药性来说, 还没有被确证。 尽管有一篇报道皮肤寄生的真菌能够降解制霉菌 素,但没有足够的理由证明这是造成真菌耐药性 的主要原因。
相关文档
最新文档