轴心受压构件的整体稳定性
第4章结构构件的强度刚度稳定性

2、许用应力
查P12表2-2, 得:
查P45表3-11载荷组合B得:安全系数n=1.34
3、稳定性校核
由于 ,故只需按 计算整体稳定性
查P50表4-2截面属于b类,查P228附表4-2得
所以构件整体稳定性满足要求。
4.2
主要承受横向载荷的构件称为受弯构件,实腹式受弯构件简称梁,格构式受弯构件简称桁架。桁架将在后续介绍,本节仅介绍实腹受弯构件的强度、刚度及整体稳定性。
(4-2)
式中: —构件的计算长度,mm;
—许用长细比,《起重机设计规范》GB/T3811-2008规定结构构件容许长细比见表4-1;
—构件截面的最小回转半径,mm。
(4-3)
式中: —构件毛截面面积,mm2;
-构件截面惯性矩,mm4;
表4-1结构构件容许长细比
构件名称
受拉构件
受压构件
主要承载结构件
5
缀条
-缀条所在平面和x-x轴的夹角
注:1、斜腹杆与构件轴线间的倾角应保持在400~700范围内。
2、缀板组合构件的单肢长细比 不应大于40。
例题4-1
已知如图4-6所示工字形截面轴心压杆,翼缘:2-200×10 ,腹板:1-180×6,杆长 ,两端铰支,按载荷组合B求得构件轴心压力 ,钢材为Q235B钢,焊条为E43型,试验算构件强度、刚度及整体稳定性。
(2)
在起重机械结构中,理想构件是不存在的,构件或多或少存在初始缺陷。如:初变形(包括初弯曲和初扭曲)、初偏心(压力作用点与截面型心存在偏离的情况)等等。这些因素,都使轴心压杆在载荷一开始作用时就发生弯曲,不存在由直线平衡到曲线平衡的分歧点。实际轴心压杆的工作情况犹如小偏心受压构件,其临界力要比理想轴心压杆低(图4-4),当压力不断增加时,压杆的变形也不断增加,直至破坏。载荷和挠度的关系曲线,由稳定平衡的上升和不稳定平衡的下降段组成。在上升段OA,增加载荷才能使挠度加大,内外力处于平衡状态;而在下降阶段AB,由于截面上塑性的发展,挠度不断增加,为了保持内外力的平衡,必须减小载荷。因此,上升阶段是稳定的,下降阶段是不稳定的,上升和下降阶段的分界点A,就是压杆的临界点,所对应的载荷也是压杆稳定的极限承载力 (即压溃力)。
钢结构课件 轴心受压构件的整体稳定性

4.2.6 轴心受压构件扭转和弯扭屈曲
1、扭转屈曲
根据弹性稳定理论,两端铰支且翘曲无约束的杆件,其扭 转屈曲临界力,可由下式计算:
《钢结构稳定理论与设计》 陈骥 著
NE
fy
弹塑性阶段
N A
Nv0
W 1 N
NE
fy
相对初弯曲 ε0 = v0 / ρ = v0 / (W/A)
N [1 A 1
0
N
] NE
fy
N A
1
1000
i
1
1 N
N
E
fy
上式的解即为Perry-Robertson公式(柏利公式)
i0—截面关于剪心的极回转半径。i02
e02
ix2
i
2 y
引进扭转屈曲换算长细比z :
1、扭转屈曲
满足
I 0
z =5.07b/t
x (y) ≥ z =5.07b/t
z2
25.7
Ai02 It
25.7
Ix
Iy It
2t 2b3 12
25.7 4bt3 3
选择计算 §4.6 板件的稳定和屈曲后强度的利用
§4.3 实腹式柱和格构式柱的截面选择计算
4.3.1 实腹式柱的截面选择计算
1、实腹式轴心压杆的截面形式 ①考虑原则 ②常用截面
2、实腹式轴心压杆计算步骤
§4.3 实腹式柱和格构式柱的截面选择计算
B94-实际轴心受压构件整体稳定计算公式

x
x
x
x
格构式
y
x
y
x
y
x
x
x
x 焊接,翼缘为 轧制或剪切边
b类
c类
y
y
y
y
焊接,翼缘为轧
y 焊接,板件
x
制或剪切边 x
宽厚比≤20
c类
c类
轴心受压构件截面分类(板厚t≥40mm)
截面形式
对x轴
b x
y
h
轧制工字形 或H形截面
t<80mm
b类
t≥80mm
c类
y
x
x
y
焊接工字 形形截面
翼缘为焰切边
b类
y
边
轧制等 边角钢
对x轴
y x
y
xx
x
y
x
x
y
y
y
y
y
b类
y 轧制、焊接
x
x
轧制或 焊接
x
板件宽厚比
大于20
y x
y
x 轧制截面和翼 缘为焰切边的 焊接截面
y
x
y
x 焊接,板件 边缘焰切
对y轴 b类
轴心受压构件截面分类(板厚t<40mm)
截面形式
对x轴 对y轴
y
y
y
y
y
x
x
x
x
x
焊接
y
y
y
y
b类 b类
计算 l0
i
据
截面类型
查表
得到
代入公 式验算
N f
A
如何提高轴心受压构件整体稳定性 ?
由公式 N f 及 l0
习题4

(4)一.选择题1.轴心压杆整体稳定公式f AN ≤ϕ的意义为 。
A 、截面平均应力不超过材料的强度设计值;B 、截面最大应力不超过材料的强度设计值;C 、截面平均应力不超过构件的欧拉临界应力值;D 、构件轴心压力设计值不超过构件稳定极限承载力设计值。
2.用Q235钢和Q345钢分别制造一轴心受压柱,其截面和长细比相同,前者的稳定系数 后者的稳定系数。
A.大于B.小于C.等于或接近D.无法比较3. a 类截面的轴心压杆,其整体稳定系数值最高是由于 。
A 、截面是轧制截面;B 、截面的刚度最大;C 、初弯曲的影响最小;D 、残余应力的影响最小。
4.轴心受压构件的整体稳定系数ϕ与 等因素有关。
A.构件截面类别、两端连接构造、长细比B 构件截面类别、钢号、长细比C.构件截面类别、计算长度系数、长细比D.构件截面类别、两个方向的长度、长细比5.为防止钢构件中的板件失稳采取加劲肋措施,这一做法是为了 。
A 、改变板件的宽厚比;B 、增大截面面积;C 、改变截面上的应力分布状态;D 、增加截面的惯性矩。
6.轴心受压格构式构件在验算其绕虚轴的整体稳定时采用换算长细比,这是因为 。
A.格构式构件的整体稳定承载力高于同截面的实腹构件B 考虑强度降低的影响C.考虑剪切变形的影响D.考虑单肢失稳对构件承载力的影响7. 计算格构式压杆对虚轴x 轴的整体稳定性时,其稳定系数应根据 查表确定。
A 、x λB 、ax λC 、y λD 、oy λ8.双肢缀条式轴心受压柱绕实轴和虚轴等稳定的要求是( ),x 轴为虚轴。
A 、12027A A x y +=λλB 、 1227A A x y +=λλ C 、y x 00λλ= D 、y x λλ=9. 实腹式轴心压杆绕x 、y 轴的长细比分别为x λ、y λ,其稳定系数分别为y x ϕϕ,,若y x λλ=,则 。
A 、y x ϕϕ>B 、y x ϕϕ=C 、y x ϕϕ<D 、需根据稳定性分类判别10. 实腹式轴心受压构件应进行 。
4-轴压构件

e0
N
Nk
Nu
v
A B
O
v
Nk e 0
• 初始缺陷对轴心压杆稳定极限承载力的影响: 1)初弯曲和初偏心的影响 初弯曲(初偏心)越大,则变形越大,承载力越小。 压力一开始就产生挠曲,并随荷载增大而增大。
无论初弯曲(初偏心)多么小, Ncr≤ NE
z Nk
z e0
Nk
y0 y
y
y
y
Nk
Nk e 0
N /NE
y 0=0
1.0
y 0=0.3
0.5
y 0=0.1
0
N /NE
1.0
e0 = 0
e 0 = 0.3
0.5
e 0 = 0.1
0
y
2)残余应力的影响 按有效截面的惯性矩 Ie 近似计算两端铰接的 等截面轴压构件的临界力和临界应力:
b t
Ncr
iy
I y 45833 12.5cm A 293.6
第4章 单个构件的承载力-稳定性
l0x l0 y 6m
x l0x iy 600 21.9 27.4 150 y l0y iy 600 12.5 48 150
截面对x轴和y轴都为b类
一、截面几何特性:
毛面积:A 2 50 2 501 250cm2
净面积:An A 4d0t 250 - 4 2.4 2 230.8cm2 二、截面验算:
强度:
N An
4500103 23080
195.0 N
mm2
f 205 N mm2
4.3 轴心受压构件的整体稳定
4.3.1 理想轴心受压构件
轴心受压构件的整体稳定性

2、缀条设计 内力: V1:分配到一个缀材面的剪力。当每根柱子都有两个缀材面时,此时V1为V/2; n 承受剪力V1的斜缀条数,单缀条体系,n =1;双缀条超静定体系,通常简单地认为每根缀条负担剪力V2之半,取n =2; 缀条夹角,在30~60之间采用。 斜缀条常采用单角钢。由于角钢只有一个边和构件的肢件连接,考虑到受力时的偏心作用,计算时可将材料强度设计值乘以折减系数r =0.85。
横缀条主要用于减小肢件的计算长度,其截面尺寸与斜缀条相同,也可按容许长细比确定,取较小的截面。
3、缀板设计
缀板用角焊缝与肢件相连接,搭接的长度一般为20~30 mm。角焊缝承受剪力T和弯矩M的共同作用。
剪力: 弯矩(与肢件连接处):
算例6 P136 例4-5 算例7 P138 例4-6
算例4 P124 例4-3 算例5 P124 例4-4
第五节 格构式轴心受压构件设计
格构式截面
肢件:槽钢、工字钢、角钢
缀件:缀条、缀板
一、 格构式轴心受压构件长细比计算
1、绕实轴长细比计算:同实腹式;
2、绕虚轴长细比计算:考虑剪切变形,采用换算长细比;
换算长细比
式中 y 整个构件对虚轴的长细比; A 整个构件的横截面的毛面积; A1y 构件截面中垂直于y轴各斜缀条的毛截面面积之和; 为防止单肢件失稳先于整体失稳,规范规定: 缀条构件:单肢长细比不大于两方向长细比较大值0.7倍;
轴心受压构件的截面分类(板厚t40mm)
1、轴心受压构件稳定系数表达式 1)当 2)当
1)钢材品种(即fy和E);2)长细比;3)截面分类;
稳定系数影响因素:
式中 N 轴心受压构件的压力设计值; A 构件的毛截面面积; 轴心受压构件的稳定系数,取两主轴稳定系数较小者; f 钢材的抗压强度设计值。
钢结构轴心受压构件稳定性分析

建材发展导&!"构轴%受压构件*定性分.袁业宏摘要:阐述了钢结构体系中的稳定性的概念、分类和基本原理,介绍了钢结构轴心受压构件局部失稳的原理、形式和在钢结构设计中相的解s关键词:钢结构体稳定性;局部稳定性钢构具有度高构震性具有良好的塑性和韧性等特点,随着社会的展,钢结构不断得到了广泛的应用,在钢构设计中,受构件占50%以上,轴受压构件的工作也占50%以上,其中,受压构件稳定性成了钢构设计的一突,钢构体系中的受构件稳定性验算已变成了中。
1钢结构轴心受压构件整体稳定性的概念钢结构轴心受压构件是指轴心方向受到压力等构件,钢结构轴心受压构件体稳定性是指构或者构件处于稳定的平衡状态,处平衡位置的构或构件,在任微小界扰动下,将偏离其平衡位置。
当界扰动去除,仍自动回复到初始平衡位置。
这是一种理想状态,可以说构整体处稳定状态。
2失稳的概念及引起钢结构轴心受压构件失稳的主要原因处平衡位置的构或构件,在当界扰动去除,不回复到初始平衡位置,初始平衡状态就是稳定的平衡状态:随遇平衡状态是从稳定状态向稳定状态渡的一中间状态。
构或构件由平衡形的稳定性.从初始平衡位置转变到另一平衡位置,即称屈曲,或称失稳。
引起钢构轴受压构件失稳的主要原因一般有如下几点:2.1构度不构件面度以引起构件失稳。
度这一,解所具有的…钢结构轴心受构件面度,的塑性变形而失去。
轴受构件度验算公:!!#=N/A(!几是指构或者构件在稳定平衡状态下由所引起的应力(或内力)没有超的极限度,因此是一应。
极限度的取取决的特性,钢常取的屈点作极限度。
而,有极的,或者有的轴受,会因面的平应到设计度而失,是度计算起作用。
2.2构度不构件面度以引起构件失稳。
度这一,解所具有变形的o轴受构件的度是用构件"来度的,考虑到轴受构件的截面2个轴向,取面2轴线方向中一方用"咖表示,由此得到构件长细比计算公式仏)碍!["],由上式可知:长细比愈小,表示I构件的度愈大,反之刚度愈小。
钢结构稳定性例题

Iy
=
2 × tb3 12
=
2× 1 × 2× 503 12
=
41667cm4
ix =
Ix = A
145683 = 24.14cm 250
iy =
Iy = A
41667 = 12.91cm 250
4.2 轴心受压构件的整体稳定性
第4章 单个构件的承载力-稳定性
二、截面验算:
1.强度:σ
=
N An
=
1
y
z0
一个斜缀条的长度为:l
=
l1
sin θ
=
41 sin 450
= 58cm
角钢的最小回转半径为:imin = 0.89cm
x
x
1
y
b
λ = l = 58 = 65.1
imin 0.89
4.2 轴心受压构件的整体稳定性
第4章 单个构件的承载力-稳定性
λ = 65.1 属b类截面,查得ϕ=0.78
I x = 2× 50× 2.2× 24.12 +1.6× 463 /12 = 140756cm4 I y = 2× 2.2× 503 /12 = 45833cm4
ix =
Ix = A
140756 = 21.9cm; 293.6
iy =
Iy = A
45833 = 12.5cm 293.6
4.2 轴心受压构件的整体稳定性
z0 = 2.49cm,I1 = 592cm4
Iy
=
2×
592 +
75×
46 2
−
2.49
2
=
64222cm4
iy =
Iy = A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。