高中数学-导数的几何意义及应用

合集下载

高中导数知识点总结

高中导数知识点总结

高中导数知识点总结世界一流潜能大师博恩?崔西说:“潜意识的力量比表意识大三万倍”。

追逐高考,我们向往成功,我们希望激发潜能,我们就需要在心中铸造一座高高矗立的、坚固无比的灯塔,它的名字叫信念。

那么接下来给大家分享一些关于高中导数知识点总结,希望对大家有所帮助。

高中导数知识点11、导数的定义:在点处的导数记作.2.导数的几何物理意义:曲线在点处切线的斜率①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。

V=s/(t)表示即时速度。

a=v/(t)表示加速度。

3.常见函数的导数公式:①;②;③;⑤;⑥;⑦;⑧。

4.导数的四则运算法则:5.导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

(2)求极值的步骤:①求导数;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数值与最小值的步骤:ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。

导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。

学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧!导数是微积分中的重要基础概念。

当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx 的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

导数是函数的局部性质。

一个函数在某一点的导数描述了这个函数在这一点附近的变化率。

如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。

导数的本质是通过极限的概念对函数进行局部的线性逼近。

例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

高中数学新人教B版选修1-1第三章导数及其应用3.1.3导数的几何意义课件

高中数学新人教B版选修1-1第三章导数及其应用3.1.3导数的几何意义课件
第三章 §3.1 导 数
3.1.3 导数的几何意义
学习目标
XUEXIMUBIAO
1.了解导函数的概念,理解导数的几何意义. 2.会求简单函数的导函数. 3.根据导数的几何意义,会求曲线上某点处的切线方程. 4.正确理解曲线“过某点”和“在某点”处的切线,并会求其方程.
内容索引
NEIRONGSUOYIN
解析 设点 P(x0,2x20+4x0),
则 f′(x0)= lim Δx→0
fx0+Δx-fx0 Δx
= lim Δx→0
2Δx2+4Δx0x·Δx+4Δx=4x0+4,
令4x0+4=16,得x0=3,∴P(3,30).
12345
课堂小结
KETANGXIAOJIE
1.导数 f′(x0)的几何意义是曲线 y=f(x)在点(x0,f(x0))处切线的斜率,即 k=
线上,则以该点为切点的切线方程为y-f(x0)=f′(x0)(x-x0);若已知点不在 切线上,则应先设出切点(x0,f(x0)),表示出切线方程,然后求出切点.
∴x0=2,∴P(2,8+a). 将x=2,y=8+a代入到8x-y-15=0中,
得a=-7.
反思感悟 利用导数的几何意义将数与形联系起来,根据图象中切线与割线 的倾斜角的大小确定数据的大小.
f2-f1 跟踪训练 4 (1)已知函数 f(x)在 R 上可导,其部分图象如图所示,设
2-1
=a,则下列不等式正确的是
则12a-23a·|a3|=16, 解得a=±1.
核心素养之直观想象
HEXINSUYANGZHIZHIGUANXIANGXIANG
求切线倾斜角的范围
典例 已知点 P 在曲线 y=x3-x+32上,直线 l 为曲线在 P 点处的切线,求直 线 l 的倾斜角的取值范围.

高中数学第六章导数及其应用6.1.导数及其几何意义学案含解析B版选择性第三册 (1)

高中数学第六章导数及其应用6.1.导数及其几何意义学案含解析B版选择性第三册 (1)

6。

1.2 导数及其几何意义必备知识·素养奠基1。

(1)定义:一般地,设函数y=f(x)在x0附近有定义,自变量在x=x0处的改变量为Δx,当Δx无限接近于0时,若平均变化率=无限接近于一个常数k,那么称常数k为函数f(x)在x=x0处的瞬时变化率,此时,也称f(x)在x0处可导,并称k为f(x)在x=x0处的导数,记作f′(x0)=k.“当Δx无限接近于0时,无限接近于常数k”还可以怎样表示?提示:还可以表示为,当Δx→0时,→k,或者写成=k,即f′(x0)=。

(2)瞬时变化率f′(x0)的实际意义:当自变量在x=x0处改变量Δx 很小时,因变量对应的改变量的近似值为f′(x0)Δx。

(1)函数y=f在x=x0处的导数一定存在吗?提示:当Δx→0时,平均变化率的极限存在,则函数y=f在x=x0处可导,否则在x=x0处不可导或无导数。

(2)函数y=f在x=x0处的导数的定义还可以用别的式子表示吗?提示:还可以表示为f′==等。

2.导数的几何意义(1)割线:一般地,设S是平面上的一条曲线,P0是曲线S上的一个定点,P是曲线S上P0附近的点,则称直线PP0为曲线S的割线.(2)切线:如果P无限接近于P0时,割线PP0无限接近于通过P0的一条直线l,则称直线l为曲线S在点P0处的切线.f′(x0)就是曲线y=f(x)在点(x0,f(x0))处(也称在x=x0处)的切线的斜率.切线方程为y-f(x0)=f′(x0)(x-x0)。

(1)曲线的切线与曲线一定只有一个公共点吗?提示:曲线的切线并不一定与曲线只有一个公共点,可以有多个,甚至可以有无穷多个。

(2)曲线的切线与导数有什么关系?提示:①函数f(x)在x=x0处有导数,则函数f(x)在该点处必有切线,并且导数值就是该切线的斜率.②函数f(x)表示的曲线在点(x0,f(x0))处有切线,但函数f(x)在该点处不一定可导,例如f(x)=在x=0处有切线,但不可导.1.思维辨析(对的打“√”,错的打“×")(1)函数y=f(x)在x=x0处的导数f′(x0)的几何意义是函数y=f(x)在点x=x0处的函数值. ()(2)函数y=f(x)在x=x0处的导数f′(x0)的几何意义是函数y=f(x)在点(x0,f(x0))处的切线与x轴所夹锐角的正切值。

高中数学 第一章 导数及其应用 1.1.3 导数的几何意义学案 新人教A版选修2-2-新人教A版高二

高中数学 第一章 导数及其应用 1.1.3 导数的几何意义学案 新人教A版选修2-2-新人教A版高二

1.1.3 导数的几何意义1.理解曲线的切线的含义.2.理解导数的几何意义.3.会求曲线在某点处的切线方程.4.理解导函数的定义,会用定义法求简单函数的导函数.1.导数的几何意义(1)切线的定义如图,对于割线PP n,当点P n趋近于点P时,割线PP n趋近于确定的位置,这个确定位置的直线PT称为点P 处的切线.(2)导数的几何意义当点P n无限趋近于点P时,k n无限趋近于切线PT的斜率.因此,函数f(x)在x=x0处的导数就是切线PT的斜率k,即k=limΔx→0f(x0+Δx)-f(x0)Δx=f′(x0).2.导函数的概念(1)定义:当x变化时,f′(x)便是x的一个函数,我们称它为f(x)的导函数(简称导数).(2)记法:f′(x)或y′,即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx.1.此处切线定义与以前所学过的切线定义的比较(1)初中我们学习过圆的切线:直线和圆有唯一的公共点时,称直线和圆相切,唯一的公共点叫做切点,直线叫做圆的切线.但因为圆是一种特殊的曲线,所以圆的切线定义不适用于一般的曲线.如图中的曲线C ,直线l 1与曲线C 有唯一的公共点M ,但l 1不是曲线C 的切线;l 2虽然与曲线C 有不止一个公共点,但l 2是曲线C 在点N 处的切线.(2)此处是通过逼近方法,将割线趋近于确定的位置的直线定义为切线,适用于各种曲线.所以这种定义才真正反映了切线的本质.2.函数f (x )在x =x 0处的导数f ′(x 0)、导函数f ′(x )之间的区别与联系区别:(1)f ′(x 0)是在x =x 0处函数值的改变量与自变量的改变量之比的极限,是一个常数,不是变量.(2)f ′(x )是函数f (x )的导数,是对某一区间内任意x 而言的,即如果函数y =f (x )在开区间(a ,b )内的每点处都有导数,此时对于每一个x ∈(a ,b ),都对应着一个确定的导数f ′(x ),从而构成了一个新的函数——导函数f ′(x ).联系:函数f (x )在x =x 0处的导数f ′(x 0)就是导函数f ′(x )在x =x 0处的函数值.这也是求函数在x =x 0处的导数的方法之一.判断正误(正确的打“√”,错误的打“×”) (1)函数在一点处的导数f ′(x 0)是一个常数.( )(2)函数y =f (x )在点x 0处的导数f ′(x 0)就是导函数f ′(x )在点x =x 0处的函数值.( )(3)函数f (x )=0没有导数.( )(4)直线与曲线相切,则直线与该曲线只有一个公共点.( ) 答案:(1)√ (2)√ (3)× (4)×如图,直线l 是曲线y =f (x )在x =4处的切线,则f ′(4)=( ) A. 12 B .3 C .4D .5解析:选A.根据导数的几何意义知f ′(4)是曲线y =f (x )在x =4处的切线的斜率k ,注意到k =5-34-0=12,所以f ′(4)=12.已知y =f (x )的图象如图,则f ′(x A )与f ′(x B )的大小关系是( )A .f ′(x A )>f ′(xB ) B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定解析:选B.由图可知,曲线在点A 处的切线的斜率比曲线在点B 处的切线的斜率小,结合导数的几何意义知f ′(x A )<f ′(x B ),选 B.曲线y =-2x 2+1在点(0,1)处的切线的斜率是________. 解析:因为Δy =-2(Δx )2,所以Δy Δx =-2Δx ,lim Δx →0Δy Δx =lim Δx →0(-2Δx )=0,由导数的几何意义知切线的斜率为0.答案:0探究点1 求曲线在定点处的切线方程求曲线y =2x -x 3在点(-1,-1)处的切线方程. 【解】 因为y ′=lim Δx →02(x +Δx )-(x +Δx )3-2x +x3Δx=lim Δx →0[2-3x 2-3x Δx -(Δx )2]=2-3x 2.所以y ′|x =-1=2-3(-1)2=2-3=-1.所以切线方程为y -(-1)=-[x -(-1)], 即x +y +2=0.求过点(-1,-2)且与曲线y =2x -x 3相切的直线方程.解:y ′=lim Δx →0Δy Δx =lim Δx →02(x +Δx )-(x +Δx )3-2x +x 3Δx =lim Δx →0[2-3x 2-3x Δx -(Δx )2]=2-3x 2.设切点坐标为(x 0,2x 0-x 30),则切线方程为y -2x 0+x 30=(2-3x 20)(x -x 0). 因为切线过点(-1,-2),所以-2-2x 0+x 30=(2-3x 20)·(-1-x 0), 即2x 30+3x 20=0,解得x 0=0或x 0=-32.所以切点坐标为(0,0)或⎝ ⎛⎭⎪⎫-32,38. 当切点坐标为(0,0)时,切线斜率k =-2-0-1-0=2,切线方程为y =2x ;当切点坐标为⎝ ⎛⎭⎪⎫-32,38时,切线斜率k =38-(-2)-32-(-1)=-194,切线方程为y +2=-194(x +1),即19x +4y +27=0.综上可知,过点(-1,-2)且与曲线y =2x -x 3相切的直线方程为y =2x 或19x +4y +27=0.解决曲线的切线问题的思路(1)求曲线y =f (x )在点P (x 0,f (x 0))处的切线方程,即点P 的坐标既满足曲线方程,又满足切线方程时,若点P 处的切线斜率存在,则点P 处的切线方程为y =f ′(x 0)(x -x 0)+f (x 0);若曲线y =f (x )在点P 处的切线斜率不存在(此时切线平行于y 轴),则点P 处的切线方程为x =x 0.(2)若切点未知,则需设出切点坐标,再根据题意列出关于切点横坐标的方程,最后求出切点纵坐标及切线的方程,此时求出的切线方程往往不止一个.已知曲线C :y =x 3.(1)求曲线C 上横坐标为1的点处的切线方程;(2)试问(1)中的切线与曲线C 是否还有其他的公共点?若有,求出公共点的坐标;若没有,说明理由.解:(1)将x =1代入曲线C 的方程得y =1,所以切点为(1,1). Δy Δx =(1+Δx )3-13Δx =3Δx +3(Δx )2+(Δx )3Δx =3+3Δx +(Δx )2, 当Δx 趋近于0时,ΔyΔx 趋近于3,所以y ′|x =1=3.故所求切线方程为y -1=3(x -1),即3x -y -2=0.(2)由⎩⎪⎨⎪⎧3x -y -2=0,y =x 3,可得(x -1)2(x +2)=0, 解得x 1=1,x 2=-2.从而求得公共点为(1,1),(-2,-8).故(1)中的切线与曲线C 的公共点除切点(1,1)外,还有点(-2,-8). 探究点2 求切点坐标在曲线y =x 2上取一点,使得在该点处的切线: (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)倾斜角为135°.分别求出满足上述条件的点的坐标.【解】 设y =f (x ),则f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x2Δx =limΔx →0(2x +Δx )=2x .设P (x 0,y 0)是满足条件的点.(1)因为点P 处的切线与直线y =4x -5平行,所以2x 0=4,解得x 0=2,所以y 0=4,即P (2,4).(2)因为点P 处的切线与直线2x -6y +5=0垂直,且直线2x -6y +5=0的斜率为13,所以2x 0·13=-1,解得x 0=-32,所以y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94. (3)因为点P 处的切线的倾斜角为135°,所以切线的斜率为tan 135°=-1,即2x 0=-1,解得x 0=-12,所以y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14.求满足某条件的曲线的切点坐标的步骤(1)先设切点坐标(x 0,y 0). (2)求导函数f ′(x ). (3)求切线的斜率f ′(x 0).(4)由斜率间的关系列出关于x 0的方程,解方程求x 0.(5)点(x 0,y 0)在曲线f (x )上,将(x 0,y 0)代入求y 0得切点坐标.1.已知曲线y =x 24的一条切线的斜率为12,则切点的横坐标为( )A .1B .2C .3D .4解析:选A.因为y ′=lim Δx →0Δy Δx =12x =12, 所以x =1,所以切点的横坐标为 1.2.已知曲线f (x )=x 2+6在点P 处的切线平行于直线4x -y -3=0,求点P 的坐标. 解:设切点P 坐标为(x 0,y 0).f ′(x )=limΔx →0f (x +Δx )-f (x )Δx=lim Δx →0(x +Δx )2+6-(x 2+6)Δx=lim Δx →0(2x +Δx )=2x .所以点P 在(x 0,y 0)处的切线的斜率为2x 0. 因为切线与直线4x -y -3=0平行,所以2x 0=4,x 0=2,y 0=x 20+6=10,即切点为(2,10). 探究点3 导数几何意义的应用我市某家电制造集团为尽快实现家电下乡提出四种运输方案,据预测,这四种方案均能在规定时间T 内完成预期的运输任务Q 0,各种方案的运输总量Q 与时间t 的函数关系如下所示.在这四种方案中,运输效率(单位时间内的运输量)逐步提高的是( )【解析】 从函数图象上看,要求图象在[0,T ]上越来越陡峭,在各选项中,只有B 项中的切线斜率在不断增大,也即运输效率(单位时间内的运输量)逐步提高.【答案】 B(1)曲线f (x )在x 0附近的变化情况可通过x 0处的切线刻画.f ′(x 0)>0说明曲线在x 0处的切线的斜率为正值,从而得出在x 0附近曲线是上升的;f ′(x 0)<0说明在x 0附近曲线是下降的.(2)曲线在某点处的切线斜率的大小反映了曲线在相应点处的变化情况,由切线的倾斜程度,可以判断出曲线升降的快慢.1.已知函数f (x )的图象如图所示,f ′(x )是f (x )的导函数,则下列结论正确的是( )A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(3)<f (3)-f (2)<f ′(2)C .0<f ′(3)<f ′(2)<f (3)-f (2)D .0<f (3)-f (2)<f ′(2)<f ′(3)解析:选B.从图象上可以看出f (x )在x =2处的切线的斜率比在x =3处的斜率大,且均为正数,所以有0<f ′(3)<f ′(2),过此两点的割线的斜率f (3)-f (2)3-2比f (x )在x =2处的切线的斜率小,比f (x )在x =3处的斜率大,所以0<f ′(3)<f (3)-f (2)<f ′(2),故选B.2.李华在参加一次同学聚会时,他用如图所示的圆口杯喝饮料,李华认为:如果向杯子中倒饮料的速度一定(即单位时间内倒入的饮料量相同),那么杯子中饮料的高度h 是关于时间t 的函数h (t ),则函数h (t )的图象可能是( )解析:选B.由于圆口杯的形状是“下细上粗”,则开始阶段饮料的高度增加较快,以后高度增加得越来越慢,仅有B 中的图象符合题意.1.下列说法中正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )在x =x 0处没有切线B .若曲线y =f (x )在x =x 0处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在x =x 0处的切线斜率不存在D .若曲线y =f (x )在x =x 0处的切线斜率不存在,则曲线在该点处没有切线解析:选C.f ′(x 0)的几何意义是曲线y =f (x )在x =x 0处的切线的斜率,切线斜率不存在,但其切线方程可以为x =x 0,所以A ,B ,D 错误.2.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( )A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在解析:选B.由题意可知,f ′(x 0)=-12.3.如图,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)等于________.解析:易得切点P (5,3), 所以f (5)=3,k =-1, 即f ′(5)=-1.所以f (5)+f ′(5)=3-1=2. 答案:2 4.已知曲线y =1t -x 上两点P (2,-1),Q ⎝⎛⎭⎪⎫-1,12. (1)求曲线在点P ,Q 处的切线的斜率; (2)求曲线在点P ,Q 处的切线方程. 解:将点P (2,-1)代入y =1t -x, 得t =1,所以y =11-x.y ′=limΔx →0f (x +Δx )-f (x )Δx=lim Δx →011-(x +Δx )-11-x Δx=limΔx →0Δx[1-(x +Δx )](1-x )Δx=limΔx →01(1-x -Δx )(1-x )=1(1-x )2,(1)曲线在点P 处的切线斜率为y ′|x =2=1(1-2)2=1;曲线在点Q 处的切线斜率为y ′|x =-1=14.(2)曲线在点P 处的切线方程为y -(-1)=x -2, 即x -y -3=0,曲线在点Q 处的切线方程为y -12=14[x -(-1)],即x -4y +3=0.知识结构深化拓展导数与函数图象的关系在x =x 0附近各切线的斜率反映切线的升降变化情况,导数f ′(x 0)反映函数在x =x 0附近的增减情况,而在x =x 0处的切线斜率k =f ′(x 0),所以反映在图形上它们的变化情况是一致的,如图.曲线的升降、切线的斜率与导数符号的关系如下表:曲线f (x )在x =x 0附近切线的斜率k切线的倾斜角 f ′(x 0)>0上升k >0 锐角f ′(x 0)<0下降k <0 钝角 f ′(x 0)=0k =0零角(切线与x 轴平行)[注意] 导数绝对值的大小反映了曲线上升或下降的快慢.[A 基础达标]1.已知二次函数f (x )的图象的顶点坐标为(1,2),则f ′(1)的值为( ) A .1 B .0 C .-1D .2解析:选B.因为二次函数f (x )的图象的顶点坐标为(1,2),所以过点(1,2)的切线平行于x 轴,即切线的斜率为0,所以f ′(1)=0,选B.2.曲线f (x )=9x在点(3,3)处的切线的倾斜角等于( )A .45°B .60°C .135°D .120°解析:选C.f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx =9lim Δx →01x +Δx -1x Δx =-9limΔx →01(x +Δx )x=-9x2,所以f ′(3)=-1.又切线的倾斜角的范围为[0°,180°),所以所求倾斜角为135°.3.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( ) A .1 B. 12 C .-12D .-1解析:选A.因为y ′|x =1=lim Δx →0a (1+Δx )2-a ×12Δx=lim Δx →02a Δx +a (Δx )2Δx =lim Δx →0(2a +a Δx )=2a ,所以2a =2, 所以a =1.4.若曲线f (x )=x 2的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( ) A .4x -y -4=0 B .x +4y -5=0 C .4x -y +3=0D .x +4y +3=0解析:选A.设切点为(x 0,y 0),因为f ′(x )=lim Δx →0(x +Δx )2-x2Δx =lim Δx →0 (2x +Δx )=2x .由题意可知,切线斜率k =4,即f ′(x 0)=2x 0=4,所以x 0=2.所以切点坐标为(2,4),切线方程为y -4=4(x -2),即4x -y -4=0,故选A.5.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-1解析:选A.因为点(0,b )在直线x -y +1=0上,所以b =1.又y ′=lim Δx →0(x +Δx )2+a (x +Δx )+1-x 2-ax -1Δx =2x +a ,所以过点(0,b )的切线的斜率为y ′|x =0=a =1.6.已知函数y =f (x )在点(2,1)处的切线与直线3x -y -2=0平行,则y ′|x =2=________.解析:因为直线3x -y -2=0的斜率为3,所以由导数的几何意义可知y ′|x =2=3. 答案:37.已知f (x )=x 2+ax ,f ′(1)=4,曲线f (x )在x =1处的切线在y 轴上的截距为-1,则实数a 的值为________.解析:由导数的几何意义,得切线的斜率为k =f ′(1)=4.又切线在y 轴上的截距为-1,所以曲线f (x )在x =1处的切线方程为y =4x -1,从而可得切点坐标为(1,3),所以f (1)=1+a =3,即a =2.答案:28.设f (x )存在导函数,且满足lim Δx →0f (1)-f (1-2Δx )2Δx =-1,则曲线y =f (x )上点(1,f (1))处的切线斜率为________.解析:limΔx →0f (1)-f (1-2Δx )2Δx=lim Δx →0f (1-2Δx )-f (1)-2Δx=f ′(x )=-1. 答案:-19.已知曲线y =13x 3上一点P ⎝ ⎛⎭⎪⎫2,83,求: (1)曲线在点P 处的切线方程; (2)过点P 的曲线的切线方程.解:(1)因为函数y =13x 3的导函数为y ′=lim Δx →0ΔyΔx =lim Δx →013(x +Δx )3-13x 3Δx =13lim Δx →03x 2Δx +3x (Δx )2+(Δx )3Δx =13lim Δx →0[3x 2+3x Δx +(Δx )2]=x 2, 所以y ′|x =2=22=4.所以曲线在点P 处的切线的斜率等于4.故曲线在点P 处的切线方程是y -83=4(x -2),即12x -3y -16=0.(2)设切点为(x 0,y 0),由(1)知y ′=x 2,则点(x 0,y 0)处的切线斜率k =x 20,切线方程为y -y 0=x 20(x -x 0).又切线过点P ⎝ ⎛⎭⎪⎫2,83,且(x 0,y 0)在曲线y =13x 3上,所以⎩⎪⎨⎪⎧83-y 0=x 2(2-x 0),y 0=13x 30,整理得x 30-3x 20+4=0,即(x 0-2)2(x 0+1)=0,解得x 0=2或x 0=-1.当x 0=2时,y 0=83,切线斜率k =4,切线方程为12x -3y -16=0;当x 0=-1时,y 0=-13,切线斜率k =1,切线方程为3x -3y +2=0.故过点P 的切线方程为12x -3y -16=0或3x -3y +2=0.10.已知曲线f (x )=ax-x 在x =4处的切线方程为5x +16y +b =0,求实数a 与b 的值.解:因为直线5x +16y +b =0的斜率k =-516,所以f ′(4)=-516.而f ′(4)=lim Δx →0(a 4+Δx -4+Δx )-(a4-4)Δx=limΔx →0(a 4+Δx -a4)-(4+Δx -2)Δx=lim Δx →0[-a 4(4+Δx )-14+Δx +2]=-a +416,所以-a +416=-516,解得a =1. 所以f (x )=1x -x ,所以f (4)=14-4=-74,即切点为(4,-74).因为(4,-74)在切线5x +16y +b =0上,所以5×4+16×(-74)+b =0,即b =8,从而a =1,b =8.[B 能力提升]11.曲线y =x +1x上任意一点P 处的切线斜率为k ,则k 的取值范围是( )A .(-∞,-1)B .(-1,1)C .(-∞,1)D .(1,+∞)解析:选C.y =x +1x上任意一点P (x 0,y 0)处的切线斜率为k =y ′|x =x 0=lim Δx →0(x 0+Δx )+1x 0+Δx -⎝⎛⎭⎪⎫x 0+1x 0Δx=lim Δx →0⎝ ⎛⎭⎪⎫1-1x 20+x 0Δx =1-1x 20<1.即k <1.12.若抛物线y =x 2-x +c 上一点P 的横坐标是-2,在点P 处的切线恰好过坐标原点,则实数c 的值为________.解析:y ′=limΔx →0ΔyΔx =2x -1,在点P 处切线的斜率为2×(-2)-1=-5.因为点P 的横坐标是-2,所以点P 的纵坐标是6+c ,故直线OP 的斜率为-6+c 2,根据题意有-6+c2=-5,解得c =4.答案:413.已知直线l :y =4x +a 与曲线C :y =x 3-2x 2+3相切,求a 的值及切点坐标. 解:设直线l 与曲线C 相切于点P (x 0,y 0), 因为f ′(x )=limΔx →0f (x +Δx )-f (x )Δx=lim Δx →0(x +Δx )3-2(x +Δx )2+3-(x 3-2x 2+3)Δx=3x 2-4x , 由题意可知k =4, 即3x 20-4x 0=4, 解得x 0=-23或x 0=2,所以切点的坐标为(-23,4927)或(2,3).当切点为(-23,4927)时,有4927=4×(-23)+a ,a =12127.当切点为(2,3)时,有3=4×2+a ,a =-5.所以当a =12127时,切点为(-23,4927);当a =-5时,切点为(2,3).14.(选做题)已知曲线y =x 2-1在x =x 0处的切线与曲线y =1-x 3在x =x 0处的切线互相平行,试分别求出这两条平行的切线方程.解:对于曲线y =x 2-1在x =x 0处,y ′|x =x 0=lim Δx →0[(x 0+Δx )2-1]-(x 20-1)Δx=lim Δx →02x 0·Δx +(Δx )2Δx=lim Δx →0(2x 0+Δx )=2x 0.对于曲线y =1-x 3在x =x 0处,y ′|x =x 0=lim Δx →0[1-(x 0+Δx )3]-(1-x 30)Δx=lim Δx →0-3x 20Δx -3x 0(Δx )2-(Δx )3Δx=lim Δx →0[-3x 20-3x 0·Δx -(Δx )2]=-3x 20,又y =1-x 3与y =x 2-1在x =x 0处的切线互相平行, 所以2x 0=-3x 20,解得x 0=0或x 0=-23.(1)当x 0=0时,两条切线的斜率k =0, 曲线y =x 2-1上的切点坐标为(0,-1), 切线方程为y =-1,曲线y =1-x 3上的切点坐标为(0,1),切线方程为y =1. 但直线y =1并不是曲线的切线,不符合题意. (2)当x 0=-23时,两条切线的斜率k =-43,曲线y =x 2-1上的切点坐标为⎝ ⎛⎭⎪⎫-23,-59,切线方程为y +59=-43⎝ ⎛⎭⎪⎫x +23,即12x +9y+13=0,曲线y =1-x 3上的切点坐标为⎝ ⎛⎭⎪⎫-23,3527,切线方程为y -3527=-43⎝ ⎛⎭⎪⎫x +23,即36x +27y-11=0.综上,两曲线的切线方程分别是12x+9y+13=0,36x+27y-11=0.。

高考数学考点导数的几何意义以及应用#

高考数学考点导数的几何意义以及应用#

考点09 导数的几何意义以及应用【高考再现】热点一导数的几何意义1.<2018年高考<课标文))曲线在点(1,1>处的切线方程为________2.<2018年高考<广东理))曲线在点处的切线方程为_______________【答案】【解读】,所以切线方程为,即.热点二导数的几何意义的应用3.<2018年高考<重庆理))设其中,曲线在点处的切线垂直于轴.(Ⅰ> 求的值。

(Ⅱ> 求函数的极值.【解读】(1>因,故因为曲线在点处的切线垂直于轴,故该切线斜率为0,即4.<2018年高考<山东文))已知函数为常数,e=2.71828是自然对数的底数>,曲线在点处的切线与x轴平行.(Ⅰ>求k的值。

(Ⅱ>求的单调区间。

(Ⅲ>设,其中为的导函数.证明:对任意.5.<2018年高考<湖北文))设函数,为正整数,为常数, 曲线在处的切线方程为.(1>求的值。

(2>求函数的最大值。

(3>证明:.【点评】本题考查多项式函数的求导,导数的几何意义,导数判断函数的单调性,求解函数的最值以及证明不等式等的综合应用.考查转化与划归,分类讨论的数学思想以及运算求解的能力. 导数的几何意义一般用来求曲线的切线方程,导数的应用一般用来求解函数的极值,最值,证明不等式等. 来年需注意应用导数判断函数的极值以及求解极值,最值等。

另外,要注意含有等的函数求导的运算及其应用考查.6.<2018年高考<北京文))已知函数(>,.(1>若曲线与曲线在它们的交点(1,>处具有公共切线,求的值。

(2>当时,求函数在区间上的最大值为28,求的取值范围.当时,函数在区间上的最大值小于28.因此,的取值范围是7.<2018年高考<北京理))已知函数(>,.(1>若曲线与曲线在它们的交点(1,>处具有公共切线,求的值。

(人教版)高中数学选修2-2课件:第1章 导数及其应用1.1.3

(人教版)高中数学选修2-2课件:第1章 导数及其应用1.1.3
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
1.1.3 导数的几何意义
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
自主学习 新知突破
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
[思路点拨]
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
求曲线上某点(x0,y0)处切线方程的步骤: 求出f′x0即切线斜率 ↓ 写出切线的点斜式方程 ↓ 化简切线方程
时,割线 PQ 逼近点 P 的切线 l,从而割线的斜率逼近切线 l 的
斜率.因此,函数 f(x)在 x=x0 处的导数就是切线 l 的斜率 k, 即
k= lim Δx→0
fx0+ΔΔxx-fx0=f′(x0).
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
1 . 设 f′(x0) = 0 , 则 曲 线 y = f(x) 在 点 (x0 , f(x0)) 处 的 切 线
()
A.不存在
B.与x轴平行或重合
C.与x轴垂直
D.与x轴相交
解析: 在点(x0,f(x0))处切线斜率为0的直线与x轴平行或 重合,故选B.
答案: B
数学 选修2-2
第一章 导数及其应用

高中数学导数知识点归纳总结

高中数学导数知识点归纳总结

高中导数复习资料一、根本概念1. 导数的定义:设0x 是函数)(x f y =定义域的一点,假如自变量x 在0x 处有增量x ∆,那么函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值x x f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均改变率;假如极限xx f x x f x y x x ∆-∆+=∆∆→∆→∆)()(lim lim 0000存在,那么称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数。

()f x 在点0x 处的导数记作xx f x x f x f y x x x ∆-∆+='='→∆=)()(lim )(00000 2 导数的几何意义:〔求函数在某点处的切线方程〕函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-3.根本常见函数的导数:①0;C '=〔C 为常数〕 ②()1;n n x nx -'=③(sin )cos x x '=; ④(cos )sin x x '=-;⑤();x x e e '= ⑥()ln x x a a a '=;⑦()1ln x x '=; ⑧()1l g log a a o x e x'=. 二、导数的运算1.导数的四那么运算:法那么1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即: ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦法那么2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦常数及函数的积的导数等于常数乘以函数的导数: ).())((''x Cf x Cf =(C 为常数)法那么3:两个函数的商的导数,等于分子的导数及分母的积,减去分母的导数及分子的积,再除以分母的平方:()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦。

人教B版高中数学选择性必修第三册精品课件 第六章 导数及其应用 6.1.2 导数及其几何意义

人教B版高中数学选择性必修第三册精品课件 第六章 导数及其应用 6.1.2 导数及其几何意义

202 =1,∴x0=±
2
.
2
2
2
当 x0=- 时,切线 l 的方程为 y-2× 2
2
2
2
当 x0= 时,切线 l 的方程为 y-2×
2
2
2
2
2
2
-1=4× x-4× 2
2
2
2
-1=4× x-4×
2
2
2
,即 y=-2√2x;
2
,即 y=2√2x.
故过点 P(0,0)且与曲线 C 相切的直线 l 的方程为 y=-2√2x 或 y=2√2x.
Δ (0 +Δ)-(0 )
(2)求平均变化率Δ =
.
Δ
f(x0 +x)-f(x0 )
(3)取极限,得导数 f'(x0)= lim
.
x
Δ→0
【变式训练1】 求函数f(x)=3x2+ax+b在x=1处的导数.
解:当自变量在x=1处的改变量为Δx时,
∵Δf=f(1+Δx)-f(1)=[3(1+Δx)2+a(1+Δx)+b]-(3+a+b)=3(Δx)2+(6+a)Δx,
则Δ =
=
Δ
Δ
=(Δx)2+3x0Δx+302 .
所以 f'(x0)= lim [(Δx)2+3x0Δx+3x02 ]=3x02 .
Δ→0
故切线方程为 y-x03 =3x02 (x-x0).
而该切线经过点(1,1),所以 1-x03 =3x02 (1-x0),
1
解得 x0=1 或 x0=-2.

人教A版高中数学选择性必修第二册习题课导数的几何意义及其应用课件

人教A版高中数学选择性必修第二册习题课导数的几何意义及其应用课件
所以 f′(1)=ln 1+a+1=a+1=2,a=1.
[方法技巧]
一般已知曲线上一点P(x0,y0)的切线与已知直线的关系(平行或垂直),确定 该切线的斜率k,再求出函数的导函数,然后利用导数的几何意义得到k=f′(x0) =tan α,其中倾斜角α∈[0,π),根据范围进一步求得角α或有关参数的值.
数 f(x)的图象在点(0,1)处的切线斜率为-1,∴函数 f(x)的图象在点(0,f(0))处的
切线方程为 y=-x+1,即 x+y-1=0.故选 B.
答案:B
2.(2022·新课标Ⅱ卷)曲线 y=ln|x|过坐标原点的两条切线的方程为________, ________.
解析:先求当 x>0 时,曲线 y=ln x 过原点的切线方程,设切点为(x0,y0), 则由 y′=1x,得切线斜率为x10,又切线的斜率为xy00,所以x10=xy00,解得 y0=1, 代入 y=ln x,得 x0=e,所以切线斜率为1e,切线方程为 y=1ex.同理可求得当 x<0 时的切线方程为 y=-1ex.综上可知,两条切线方程为 y=1ex,y=-1ex.
答案:y=1ex y=-1ex
高频考点二|求切点坐标
[例2] 已知函数f(x)=xln x在点P(x0,f(x0))处的切线与直线x+y=0垂直, 则切点P(x0,f(x0))的坐标为________.
[解析] ∵f(x)=xln x,∴f′(x)=ln x+1,由题意得f′(x0)·(-1)=-1,即 f′(x0)=1,∴ln x0+1=1,ln x0=0,∴x0=1,∴f(x0)=0,即P(1,0).
2.若函数f(x)=ln x+ax存在与直线2x-y=0平行的切线,则实数a的取值范围是
()

高中数学第三章导数及其应用3.1.3导数的几何意义课件新人教A版选修1_1

高中数学第三章导数及其应用3.1.3导数的几何意义课件新人教A版选修1_1

• (2)导数的几何意义:函数f(x)在x=x0处的导数
f(x0+Δ x)-f(x0)
就 是 切 线 PT 的 斜 率 Δkx , 即 k =
____________________= f′(x0).
• 2.导函数的概念 f′(x)
• (1)定义:当x变化时,_____便是x的一个函数,
f(x+Δ x)-f(x)
所以 2x30-3x20+1=(x0-1)2(2x0+1)=0, 解得 x0=1 或 x0=-12.(6 分) 第二步,求切点横坐标 故所求直线斜率为 k=3x20-3=0 或 k=3x20-3=-94, 于是 y-(-2)=0·(x-1)或 y-(-2)=-94(x-1), 即 y=-2 或 y=-94x+14.(10 分) 故过点 P(1,-2)的切线方程为 y第=三-步2 ,或求y=过-P的94x切+线14.(方12程分)
• (1)与导数的几何意义相关的题目往往涉及解 析几何的相关知识,如直线的方程、直线间的 位置关系等,因此要综合应用所学知识解题.
• (2)与导数的几何意义相关的综合问题解题的 关键是函数在某点处的导数,已知切点可以求 斜率,已知斜率也可以求切线,切点的坐标是 常设的未知量.
◎变式训练 • 3.设函数f(x)=x3+ax2-9x-1(a<0),若曲线 y=f(x)的斜率最小的切线与直线12x+y=6平行, 求a的值.
即 f′(x0)=3x20+2ax0-9=3x0+a32-9-a32. 当 x0=-a3时,f′(x0)取最小值-9-a32. ∵斜率最小的切线与 12x+y=6 平行, ∴该切线斜率为-12.∴-9-a32=-12. 解得 a=±3.又 a<0,∴a=-3.
短板补救案·核心素养培优

《高中数学导数讲解》课件

《高中数学导数讲解》课件

积分
导数是积分的基础,通过 求导可以推导出原函数的 表达式。
微分方程
导数在解决微分方程问题 中起到关键作用,如物理 中的动力学问题。
THANKS
感谢观看
பைடு நூலகம்
高中数学导数讲解
目录
• 导数的基本概念 • 导数的计算 • 导数的应用 • 导数的实际应用 • 导数的扩展知识
01
导数的基本概念
导数的定义
总结词
导数是函数在某一点的变化率,表示函数在该点的切线斜率。
详细描述
导数是微积分中的一个基本概念,用于描述函数在某一点附近的变化率。对于可导函数$f(x)$,其在点$x_0$处 的导数定义为$f'(x_0) = lim_{Delta x to 0} frac{Delta y}{Delta x}$,其中$Delta y = f(x_0 + Delta x) - f(x_0)$ 。导数表示函数在点$x_0$处的切线斜率。
01
02
03
起源
导数最初由牛顿和莱布尼 茨在17世纪分别独立发现 ,为微积分学奠定了基础 。
早期发展
18世纪,欧拉、拉格朗日 等数学家进一步发展了导 数理论,将其应用于函数 研究。
现代应用
随着数学的发展,导数在 物理、工程、经济等领域 得到广泛应用,成为解决 实际问题的重要工具。
导数的其他性质
导数的几何意义
详细描述
在物理中,导数具有实际意义。例如,物体运动的瞬时速度 可以由速度函数的导数表示,物质扩散的瞬时速度可以由扩 散函数的导数表示。导数可以描述物体或物质在极短时间内 速度或加速度的变化。
02
导数的计算
切线斜率与导数
切线斜率
导数描述了函数在某一点的切线斜率 ,即函数在该点的变化率。

高中数学导数知识点总结

高中数学导数知识点总结

高中数学导数知识点总结一、导数的基础1. 导数的定义- 导数表示函数在某一点的切线斜率。

- 符号表示:$f'(x)$ 或 $\frac{df}{dx}$。

2. 极限表达- 导数可以用极限表达:$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$。

3. 几何意义- 导数的几何意义是曲线在某一点的切线斜率。

二、导数的计算1. 基本导数公式- 常数函数:$(C)' = 0$。

- 幂函数:$(x^n)' = nx^{n-1}$(其中n为实数)。

- 指数函数:$(a^x)' = a^x \ln(a)$(其中a > 0且a ≠ 1)。

- 对数函数:$(\ln(x))' = \frac{1}{x}$。

- 三角函数:- $(\sin(x))' = \cos(x)$- $(\cos(x))' = -\sin(x)$- $(\tan(x))' = \sec^2(x)$2. 导数的运算法则- 和/差的导数:$(u \pm v)' = u' + v'$。

- 乘积的导数:$(uv)' = u'v + uv'$。

- 商的导数:$(\frac{u}{v})' = \frac{u'v - uv'}{v^2}$。

3. 链式法则- 如果有一个复合函数$g(f(x))$,则其导数为:$(g(f(x)))' = g'(f(x)) \cdot f'(x)$。

三、高阶导数1. 高阶导数的定义- 第二导数:函数的导数的导数,表示为$f''(x)$。

- 更高阶导数:同理,可以计算第三导数、第四导数等。

2. 高阶导数的计算- 通过重复应用导数的基本运算法则来计算。

四、导数的应用1. 切线问题- 利用导数求曲线在某一点的切线方程。

高中数学选择性必修二 5 1 2导数的概念及其几何意义(知识梳理+例题+变式+练习)(含答案)

高中数学选择性必修二 5 1 2导数的概念及其几何意义(知识梳理+例题+变式+练习)(含答案)

5.1.2导数的概念及其几何意义要点一 导数的概念1.平均变化率:对于函数y =f (x ),设自变量x 从x 0变化到x 0+Δx ,则把Δy Δx =f (x 0+Δx )-f (x 0)Δx 叫做函数y =f (x )从x 0到x 0+Δx 的平均变化率.2.导数:如果Δx →0时,平均变化率Δy Δx 无限趋近于一个确定的值,即ΔyΔx 有极限,则称y =f (x )在x =x 0处可导,并把这个确定的值叫做y =f (x )在x =x 0处的导数(也称瞬时变化率),记作f ′(x 0)或y ′|0x x = ,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →f (x 0+Δx )-f (x 0)Δx . 【重点小结】(1)当Δx ≠0时,比值Δy Δx 的极限存在,则f(x)在x =x 0处可导;若ΔyΔx的极限不存在,则f(x)在x =x 0处不可导或无导数.(2)在x =x 0处的导数的定义可变形为f ′(x 0)=lim Δx →0 f (x 0-Δx )-f (x 0)-Δx 或f ′(x 0)=lim x →x 0 f (x )-f (x 0)x -x 0.要点二 导数的几何意义对于曲线y =f (x )上的点P 0(x 0,f (x 0))和P (x ,f (x )),当 点P 0趋近于点P 时,割线P 0P 趋近于确定的位置,这个确定位置的直线P 0T 称为点P 0处的切线.割线P 0P 的斜率是k =f (x )-f (x 0)x -x 0.当点P 无限趋近于点P 0时,k 无限趋近于切线P 0T 的斜率.因此,函数f (x )在x =x 0处的导数就是切线P 0T 的斜率k ,即k =li m Δx →0f (x 0+Δx )-f (x 0)Δx 【重点总结】(1)曲线的切线与割线①曲线的切线是由割线绕一点转动,当另一点无限接近这一点时割线趋于的直线. ②曲线的切线就是割线趋近于某一确定位置的直线,体现了无限趋近的思想. (2)曲线的切线与导数①函数f(x)在x =x 0处有导数,则在该点处函数f(x)表示的曲线必有切线,且导数值是该切线的斜率. ②函数f(x)表示的曲线在点(x 0,f(x 0))处有切线,但函数f(x)在该点处不一定可导,如f(x)=3x 在x =0处有切线,但不可导.曲线的切线并不一定与曲线只有一个交点,可以有多个,甚至可以有无穷多个.与曲线只有一个公共点的直线也不一定是曲线的切线. 要点三 导函数对于 函数y =f (x ),当x =x 0时,f ′(x 0)是一个确定的数,当x 变化时,f ′(x )便是一个关于x 的函数,我们称它为函数y=f(x)的导函数(简称为导数),即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx【重点总结】函数在某点处的导数与导函数的区别(1)函数在某点处的导数是一个定值,导函数是一个函数.(2)函数f(x)在x0处的导数就是导函数f ′(x)在x=x0处的函数值.【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)函数f(x)在x=x0处有意义,则f′(x0)存在.()(2)直线与曲线相切,则直线与已知曲线只有一个公共点.()(3)导函数f′(x)的定义域与函数f(x)的定义域相等.()(4)曲线f(x)=x2在原点(0,0)处的切线方程为y=0.()【答案】(1)×(2)×(3)×(4)√2.若函数f(x)=-3x-1,则f′(x)=()A.0 B.-3xC.3 D.-3【答案】D【解析】k=li mΔx→0-3(x+Δx)-1-(-3x-1)Δx=-3.3.设曲线y=x2+x-2在点M处的切线斜率为3,则点M的坐标为() A.(0,-2) B.(1,0)C.(0,0) D.(1,1)【答案】B【解析】设点M(x0,y0),∴k=limΔx→0(x0+Δx)2+(x0+Δx)-2-(x20+x0-2)Δx=2x0+1,令2x0+1=3,∴x0=1,则y0=0.故选B.4.如图,函数y=f(x)的图象在点P处的切线方程是y=-x+8,则f(5)+f′(5)=________.【答案】2【解析】点(5,f(5))在切线y=-x+8上,∴f(5)=-5+8=3.且f′(5)=-1,∴f(5)+f′(5)=2.题型一 求函数在某点处的导数【例1】(1)已知函数f (x )=2x 2+4x ,则f ′(3)=________. 【答案】(1)16【解析】(1)Δy =2(3+Δx )2+4(3+Δx )-(2×32+4×3) =12Δx +2(Δx )2+4Δx =2(Δx )2+16Δx , ∴Δy Δx =2(Δx )2+16Δx Δx=2Δx +16. ∴f ′(3)=li m Δx →0(2Δx +16)=16.(2)已知函数f (x )=2x 2+4x ,若f ′(x 0)=12,则x 0=________. 【答案】(2)2【解析】(2)根据导数的定义f ′(x 0)=li m Δx →0ΔyΔx =li m Δx →f (x 0+Δx )-f (x 0)Δx=li m Δx →2(x 0+Δx )2+4(x 0+Δx )-(2x 20+4x 0)Δx=li m Δx →04x 0·Δx +2(Δx )2+4ΔxΔx =li m Δx →(4x 0+2Δx +4)=4x 0+4,∴f ′(x 0)=4x 0+4=12,解得x 0=2.【方法归纳】用导数定义求函数在某一点处的导数的三个步骤 (1)作差Δy =f (x 0+Δx )-f (x 0). (2)作比Δy Δx =f (x 0+Δx )-f (x 0)Δx .(3)取极限f ′(x 0)=li m Δx →0ΔyΔx. 简记为一差、二比、三极限.【跟踪训练1】已知函数f (x )=x +1x,则f ′(1)=________.【答案】0【解析】f ′(1)=lim Δx →f (1+Δx )-f (1)Δx=lim Δx →0⎣⎡⎦⎤(1+Δx )+11+Δx -(1+1)Δx=lim Δx →0⎝⎛⎭⎫Δx +11+Δx -1Δx=lim Δx →0⎝⎛⎭⎫1-11+Δx =0题型二 求曲线的切线方程【例2】已知曲线y =13x 3,求曲线在点P (3,9)处的切线方程.【解析】由y =13x 3,得y ′=li m Δx →0 ΔyΔx =li m Δx →013(x +Δx )3-13x 3Δx=13li m Δx →3x 2Δx +3x (Δx )2+(Δx )3Δx=13li m Δx →[3x 2+3xΔx +(Δx )2]=x 2, y ′|x =3=32=9,即曲线在P (3,9)处的切线的斜率等于9. 由直线的点斜式方程可得,所求切线方程为y -9=9(x -3), 即9x -y -18=0.【变式探究】本例条件不变,求曲线过点M (1,0)的切线方程.【解析】设切点坐标为⎝⎛⎭⎫x 0,13x 30,由例2知切线方程为:y -13x 30=x 20(x -x 0) ∵切线过点(1,0), ∴-13x 30=x 20(1-x 0)即23x 30-x 20=0,解得x 0=0或x 0=32. ∴切点坐标为(0,0)或⎝⎛⎭⎫32,98,∴切线方程为:y =0或y -98=94⎝⎛⎭⎫x -32. 即y =0或9x -4y -9=0. 设切点,写出切线方程,已知点代入,求切点. 【方法归纳】1.求曲线上某点切线方程的三个步骤2.过曲线外的点P (x 1,y 1)求曲线的切线方程的步骤 (1)设切点为Q (x 0,y 0).(2)求出函数y =f (x )在点x 0处的导数f ′(x 0).(3)利用Q 在曲线上和f ′(x 0)=k PQ ,解出x 0,y 0及f ′(x 0). (4)根据直线的点斜式方程,得切线方程为y -y 0=f ′(x 0)(x -x 0). 【跟踪训练2】已知曲线C :y =x 3.(1)求曲线C 上横坐标为1的点处的切线方程;(2)试问(1)中的切线与曲线C 是否还有其他的公共点?若有,求出公共点的坐标;若没有,说明理由. 【解析】将x =1代入曲线C 的方程得y =1,所以切点为(1,1). Δy Δx =(1+Δx )3-13Δx =3Δx +3(Δx )2+(Δx )3Δx=3+3Δx +(Δx )2, 当Δx 趋近于0时,ΔyΔx趋近于3,所以y ′|x =1=3.故所求切线方程为y -1=3(x -1),即3x -y -2=0.(2)由⎩⎪⎨⎪⎧3x -y -2=0,y =x 3,可得(x -1)2(x +2)=0,解得x 1=1,x 2=-2.从而求得公共点为(1,1),(-2,-8).故(1)中的切线与曲线C 的公共点除切点(1,1)外,还有点(-2,-8). 题型三 导数几何意义的应用 探究1 求切点坐标【例3】已知曲线y =x 2+6的切线分别符合下列条件,求切点. (1)平行于直线y =4x -3; (2)垂直于直线2x -y +5=0. 【解析】设切点坐标为(x 0,y 0).f ′(x )=li m Δx →f (x +Δx )-f (x )Δx=li m Δx →0 (x +Δx )2+6-(x 2+6)Δx=li m Δx →0(2x +Δx )=2x .∴过(x 0,y 0)的切线的斜率为2x 0.(1)∵切线与直线y =4x -3平行,∴2x 0=4,x 0=2,y 0=x 20+6=10, 即过曲线y =x 2+6上点(2,10)的切线与直线y =4x -3平行. (2)∵切线与直线2x -y +5=0垂直,∴2x 0×2=-1,得x 0=-14,y 0=9716,即过曲线y =x 2+6上点⎝⎛⎭⎫-14,9716的切线与直线2x -y +5=0垂直. 【方法归纳】求满足某条件的曲线的切点坐标的步骤(1)先设切点坐标(x 0,y 0); (2)求导函数f ′(x ); (3)求切线的斜率f ′(x 0);(4)由斜率间的关系列出关于x 0的方程,解方程求x 0; (5)点(x 0,y 0)在曲线f (x )上,将(x 0,y 0)代入求y 0得切点坐标.探究2 与曲线的切点相关的问题【例4】已知直线l 1为曲线y =x 2+x -2在(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2. (1)求直线l 2的方程;(2)求由直线l 1,l 2和x 轴围成的三角形面积.【解析】(1)y ′=lim Δx →0(x +Δx )2+(x +Δx )-2-x 2-x +2Δx=lim Δx →02xΔx +(Δx )2+ΔxΔx=lim Δx →0(2x +Δx +1)=2x +1.所以y ′|x =1=2×1+1=3,所以直线l 1的方程为y =3(x -1),即y =3x -3.设直线l 2过曲线y =x 2+x -2上的点B (b ,b 2+b -2), 则l 2的方程为y =(2b +1)x -b 2-2.因为l 1⊥l 2,则有2b +1=-13,b =-23,B ⎝⎛⎭⎫-23,-209,所以直线l 2的方程为y =-13x -229.(2)解方程组⎩⎪⎨⎪⎧y =3x -3,y =-13x -229,得⎩⎨⎧x =16,y =-52.所以直线l 1和l 2的交点坐标为⎝⎛⎭⎫16,-52. l 1,l 2与x 轴交点的坐标分别为(1,0),⎝⎛⎭⎫-223,0. 所以所求三角形的面积S =12×253×52=12512.(1)先由已知求出l 1的斜率,再由l 1⊥l 2,求出l 2的斜率,进而求出切点坐标,得出l 2的方程. (2)求出l 1与l 2的交点坐标,l 1,l 2与x 轴的交点,求出直线l 1,l 2和x 轴围成的三角形的面积. 【方法归纳】利用导数的几何意义处理综合应用题的两种思路(1)与导数的几何意义相关的题目往往涉及解析几何的相关知识,如直线的方程、直线间的位置关系等,因此要综合应用所学知识解题.(2)与导数的几何意义相关的综合问题解题的关键是函数在某点处的导数,已知切点可以求斜率,已知斜率也可以求切点,切点的坐标是常设的未知量.【跟踪训练3】(1)已知y =f (x )的图象如图所示,则f ′(x A )与f ′(x B )的大小关系是( ) A .f ′(x A )>f ′(x B ) B .f ′(x A )=f ′(x B ) C .f ′(x A )<f ′(x B )D .f ′(x A )与f ′(x B )大小不能确定 【答案】A【解析】由y =f (x )的图象可知,k A >k B ,根据导数的几何意义有f ′(x A )>f ′(x B ).故选A.(2)曲线f (x )=x 3在点(a ,a 3)(a ≠0)处的切线与x 轴,直线x =a 围成的三角形的面积为16,则a =________.【答案】(2)±1【解析】(2)因为f ′(a )=li m Δx →(a +Δx )3-a 3Δx =3a 2,所以曲线在点(a ,a 3)处的切线方程为y -a 3=3a 2(x -a ).令y =0,得切线与x 轴的交点为⎝⎛⎭⎫23a ,0,由题意知三角形面积为12⎪⎪⎪⎪a -23a ·|a 3|=12×⎪⎪⎪⎪a 3·|a 3|=16a 4=16.∴a 4=1,即a =±1. 【易错辨析】求切线方程时忽略“过”与“在”的差异致错【例5】已知抛物线y =x 2+x +1,则过抛物线原点的切线方程为________. 【答案】3x -y =0或x +y =0【解析】设切点坐标为(x 0,y 0),则f ′(x 0)=lim Δx →(x 0+Δx )2+(x 0+Δx )+1-(x 20+x 0+1)Δx=lim Δx →0(2x 0+1+Δx )=2x 0+1,所以斜率k =2x 0+1,故所求的切线方程为y -y 0=(2x 0+1)(x -x 0),将(0,0)及y 0=x 20+x 0+1代入上式得:-(x 20+x 0+1)=-x 0(2x 0+1), 解得x 0=1或x 0=-1,所以k =3或k =-1,所以切线方程为y =3x 或y =-x , 即3x -y =0或x +y =0. 【易错警示】 1.出错原因把原点当作切点,易求的是在原点处的切线方程. 2.纠错心得(1)看清楚求的是原点处的切线,还是过原点的切线. (2)过原点的切线,原点不一定是切点,需设切点为(x 0,y 0).一、单选题1.设()f x 在0x x =处可导,则()()000lim2h f x h f x h h→+--=( ). A .()02f x ' B .()012f x ' C .()0f x ' D .()04f x '【答案】C 【分析】根据导数的定义即可求解. 【解析】解:∵()f x 在0x 处可导, ∵()()()0000lim2h f x h f x h f x h→+--'=,故选:C.2.函数()y f x =在0x x =处的导数可表示为0x x y =',即( ). A .()()()000f x f x x f x =+∆-' B .()()()0000lim x f x f x x f x ∆→'=+∆-⎡⎤⎣⎦ C .()()()0000lim x f x x f x f x x∆→+∆-'=∆D .()()()000f x x f x f x x+∆-'=∆【答案】C 【分析】结合导数定义直接选择即可. 【解析】x x y ='是()0f x '的另一种记法,根据导数的定义可知C 正确.故选:C3.若函数()f x 在0x x =处可导,则()()000limh f x h f x h→+-的结果( ).A .与0x ,h 均无关B .仅与0x 有关,而与h 无关C .仅与h 有关,而与0x 无关D .与0x ,h 均有关【答案】B 【分析】根据导数的定义即可求解. 【解析】 解:因为()()()0000limh f x h f x f x h→+-'=,所以结果仅与0x 有关,而与h 无关, 故选:B.4.设()f x 为可导函数,且满足0(1)(12)lim12x f f x x→--=-,则'(1)f 为( )A .1B .1-C .2D .2-【答案】B 【分析】利用导数的定义进行求解. 【解析】 因为0(1)(12)lim12x f f x x →--=-,所以20(1)(12)lim =12x f f x x→---,即20(12)(1)lim12x f x f x-→--=--所以'(1)1f =-. 故选:B.5.已知函数f (x )可导,且满足0(3)l (m 2i 3)x f f x x∆→-+∆=∆,则函数y =f (x )在x =3处的导数为( )A .-1B .-2C .1D .2【分析】根据导数的定义即可得到答案. 【解析】 由题意,()()()()()003333lim lim3x x f f x f x f f xx∆→∆→-+∆+∆-=-=-∆'∆,所以()32f '=-.故选:B.6.已知函数()f x 的图像如图所示,()f x '是()f x 的导函数,则下列结论正确的是( )A .()()()()310132f f f f '<-'<< B .()()()()310312f f f f -''<<< C .()()()()310312f f f f '<-'<< D .()()()()310132f f f f ''<<-< 【答案】B 【分析】结合图象,判断出()()()()310,3,,12f f f f ''-的大小关系. 【解析】由题图可知函数()f x 的图像在1x =处的切线的斜率比在3x =处的切线的斜率大,且均为正数,所以()()031f f ''<<. AB 的斜率为()()3131f f --,其比在1x =处的切线的斜率小,但比在3x =处的切线的斜率大,所以()()()()310312f f f f -''<<<. 故选:B7.已知函数()2ln 8f x x x =+,则()()121lim x f x f x∆→+∆-∆的值为( )A .20-B .10-C .10D .20【分析】根据导数的定义可得()()()0121lim 21x f x f f x∆→+∆='-∆,再用求导公式可得()28f x x'=+,代入1x =即可得解. 【解析】因为()2ln 8f x x x =+,所以()28f x x'=+, 所以()()()()()020121121lim2lim 21202x x f x f f x f f xx∆→∆→+∆-+∆-=∆'==∆.故选:D8.下列说法正确的是( )A .曲线的切线和曲线有且只有一个交点B .过曲线上的一点作曲线的切线,这点一定是切点C .若()0f x '不存在,则曲线()y f x =在点()()00,x f x 处无切线D .若曲线()y f x =在点()()00,x f x 处有切线,但()0f x '不一定存在 【答案】D 【分析】根据瞬时变化率和导数的基本概念对各选项逐一判断即可. 【解析】对于A ,曲线的切线和曲线除有一个公共切点外,还可能有其他的公共点,故A 错误;对于B ,过曲线上的一点作曲线的切线,由于曲线的切线和曲线除有一个公共切点外,还可能有其他的公共点,所以这个点不一定是切点,故B 错误;对于C ,()0f x '不存在,曲线()y f x =在点()()00,x f x 处切线的斜率不存在,但切线可能存在,故C 错误; 对于D ,曲线()y f x =在点()()00,x f x 处有切线,但切线斜率可能不存在,所以()0f x '不一定存在,故D 正确. 故选:D二、多选题9.已知函数()f x 的图象如图所示,()f x '是()f x 的导函数,则下列数值的排序正确的是( )A .()()32f f ''<B .()()()332f f f '<-C .()()()232f f f '<-D .()()320f f -<【答案】AB 【分析】根据导数的几何意义可得()()23f f ''>,记()()22A f ,,()()33B f ,,作直线AB ,根据两点坐标求出直线AB 的斜率,结合图形即可得出()()()323f f f '->. 【解析】由函数的图象可知函数()f x 是单调递增的,所以函数图象上任意一点处的导函数值都大于零,并且由图象可知,函数图象在2x =处的切线斜率1k 大于在3x =处的切线斜率2k ,所以()()23f f ''>; 记()()22A f ,,()()33B f ,,作直线AB ,则直线AB 的斜率()()()()323232f f k f f -==--,由函数图象,可知120k k k >>>,即()()()()23230f f f f ''>->>. 故选:AB10.(多选题)若函数f (x )在x =x 0处存在导数,则000()()limh f h x f x h→+-的值( )A .与x 0有关B .与h 有关C .与x 0无关D .与h 无关【答案】AD 【分析】由导数的定义进行判定. 【解析】由导数的定义,得:'0000()()lim()h f x f x f x hh →-=+,即函数f (x )在x =x 0处的导数与x 0有关,与h 无关. 故选:AD.11.甲、乙两个学校同时开展节能活动,活动开始后两学校的用电量()W t 甲(单位:kW h ⋅),()W t 乙(单位:kW h ⋅)与时间t (单位:h )的关系如图所示,则一定有( )A .甲校比乙校节能效果好B .甲校的用电量在[]00,t 上的平均变化率比乙校的用电量在[]00,t 上的平均变化率小C .两学校节能效果一样好D .甲校与乙校在活动期间的用电量总是一样大 【答案】AB 【分析】根据切线斜率的实际意义判断AC 选项的正确性.根据平均变化率的知识确定B 选项的正确性.根据图象判断用电量是否“总是一样大”,由此判断D 选项的正确性. 【解析】由图可知,对任意的()100,t t ∈,曲线()W t 甲在1t t =处的切线斜率的绝对值比曲线()W t 乙在1t t =处的切线斜率的绝对值大,所以甲校比乙校节能效果好,A 正确,C 错误; 由图可知,()() 000W t W t -甲甲()()000W t W t -<乙乙,则甲校的用电量在[]00,t 上的平均变化率比乙校的用电量在[]00,t 上的平均变化率小,B 正确;由于曲线()W t 甲和曲线()W t 乙不重合,故D 错误. 故选:AB.12.(多选)设()f x 在0x 处可导,下列式子中与()0f x '相等的是( ) A .()()0002lim2x f x f x x x∆→--∆∆B .()()000limx f x x f x x x∆→+∆--∆∆C .()()0002limx f x x f x x x∆→+∆-+∆∆D .()()0002limx f x x f x x x∆→+∆--∆∆【答案】AC 【分析】利用导数的定义对各选项逐一分析计算并判断作答. 【解析】 对于A ,()()()()()000000202222lim lim 22x x f x f x x f x x x f x x f x x x ∆→∆→--∆-∆+∆--∆'==∆∆,A 满足; 对于B ,()()()()()000000202lim 2lim 22x x f x x f x x f x x x f x x f x x x ∆→∆→+∆--∆-∆+∆--∆'==∆∆,B 不满足; 对于C ,()()()00002limx f x x f x x f x x∆→+∆-+∆'=∆,C 满足;对于D ,()()()()()000000302232lim 3lim 33x x f x x f x x f x x x f x x f x x x∆→∆→+∆--∆-∆+∆--∆'==∆∆,D 不满足. 故选:AC第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题13.某生物种群的数量Q 与时间t 的关系近似地符合10()9tt e Q t e =+.给出下列四个结论:①该生物种群的数量不会超过10;②该生物种群数量的增长速度先逐渐变大后逐渐变小; ③该生物种群数量的增长速度与种群数量成正比; ④该生物种群数量的增长速度最大的时间()02,3t ∈. 根据上述关系式,其中所有正确结论的序号是__________. 【答案】①②④ 【分析】对解析式上下同时除以t e ,结合反比例函数模型可判断①正确;对10()9tt e Q t e =+求导,()Q t '即为该生物种群数量的增长速度与时间的关系式,结合导函数特征和对勾函数模型可判断③错,②④正确 【解析】1010()991t t t e Q t e e ==++,因为0te >,故()911,t e+∈+∞,()100,1091t e ∈+,故该生物种群的数量不会超过10,①正确;由()28109090()()89191t tt t t t e e Q t Q t e e e e=⇒'=+++=+,显然该生物种群数量的增长速度与种群数量不成正比,③错;因为81tt e e +为对勾函数模型,故81tt e e+≥,当且仅当9t e =时取到等号,故811890t t e e++整体先增加后减小,当()03ln92,t =∈时,()Q t '最大,故②④正确, 综上所述,①②④正确, 故答案为:①②④ 14.若02)(=f x ',则00Δ0()(Δ)lim2Δx f x f x x x→-+=________.【答案】1- 【分析】利用导数的定义进行求解. 【解析】00Δ0()(Δ)lim2Δx f x f x x x→-+00Δ0(Δ)()1lim 2Δx f x x f x x →+-=- '01()2f x =-1=-.故答案为1-.15.已知函数f (x ),则()1f '=________. 【答案】12 【分析】根据导数的定义即可得到答案. 【解析】()()()001111lim lim 21x x f x f f x x →→+∆-'====∆+∆+.故答案为:12.16.函数()f x 在R 上可导,且()02f '=,x y R ∀∈,,若函数()()()f x y f x f y +=成立,则()0f =________.【答案】1 【分析】令0y =,则有()()()0f x f x f =,再根据条件即可求出答案. 【解析】解:令0y =,则有()()()0f x f x f =,()02f '=, ()f x ∴不恒为0, ()01f ∴=,故答案为:1.四、解答题17.已知2()f x x =,利用2'(1)11,(1)2,Δ0.03f f x ====,求(1.03)f 的近似值. 【答案】1.06 【分析】将'(1)1,(1)2,Δ0.03f f x ===代入'000()()()f x x f x f x x +∆≈+⋅∆中计算即可得到答案.【解析】由'000()()()f x x f x f x x +∆≈+⋅∆,可知'(1.03)(1)(1)0.03120.03 1.06f f f ≈+⨯=+⨯=.18.已知某产品的总成本函数为22C Q Q =+,总成本函数在0Q 处导数()0f Q '称为在0Q 处的边际成本,用()0MC Q 表示.求边际成本(500)MC 并说明它的实际意义.【答案】(500)1002MC =,其实际意义是:此时多生产1件产品,成本要增加1002. 【分析】利用导数的定义计算即可. 【解析】设500Q =时,产量的改变量为Q ∆,22(500)2(500)(5002500)C Q Q Q Q ∆+∆++∆-+⨯=∆∆ 1002Q =∆+,则0(500)lim (1002)1002Q MC Q ∆→=∆+=,即产量为500时的边际成本为1002,其实际意义是:此时多生产1件产品,成本要增加1002.。

【高中数学】高中数学导数的定义,公式及应用总结

【高中数学】高中数学导数的定义,公式及应用总结

【高中数学】高中数学导数的定义,公式及应用总结高中数学导数的定义,公式及应用总结导数的定义:当自变量的增量δx=x-x0,δx→0时函数增量δy=f(x)-f(x0)与自变量增量之比的音速存有且非常有限,就说道函数f在x0点可微,称作f在x0点的导数(或变化率).函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在p0[x0,f(x0)]点的切线斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。

通常地,我们得出结论用函数的导数去推论函数的多寡性(单调性)的法则:设y=f(x)在(a,b)内可微。

如果在(a,b)内,f'(x)>0,则f(x)在这个区间就是单调减少的(该点切线斜率减小,函数曲线显得“平缓”,持续上升状)。

如果在(a,b)内,f'(x)<0,则f(x)在这个区间就是单调增大的。

所以,当f'(x)=0时,y=f(x)存有极大值或极小值,极大值中最大者就是最大值,极小值中最轻者就是最小值求导数的步骤:求函数y=f(x)在x0处为导数的步骤:①求函数的增量δy=f(x0+δx)-f(x0) ②求平均变化率③取极限,得导数。

导数公式:①c'=0(c为常数函数); ②(x^n)'=nx^(n-1)(n∈q*);熟记1/x的导数③(sinx)'=cosx;(cosx)'=-sinx; (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2-(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx(cscx)'=-cotx·cscx(arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=-1/(1+x^2) (arcsecx)'=1/(x(x^2-1)^1/2) (arccscx)'=-1/(x(x^2-1)^1/2) ④(sinhx)'=hcoshx(coshx)'=-hsinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2(sechx)'=-tanhx·sechx(cschx)'=-cothx·cschx(arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2 (artanhx)'=1/(x^2-1)(x<1) (arcothx)'=1/(x^2-1)(x>1) (arsechx)'=1/(x(1-x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2)⑤(e^x)'=e^x;(a^x)'=a^xlna(ln为自然对数) (inx)'=1/x(ln为自然对数) (logax)'=(xlna)^(-1),(a>0且a不等于1)(x^1/2)'=[2(x^1/2)]^(-1) (1/x)'=-x^(-2)导数的应用领域:1.函数的单调性(1)利用导数的符号推论函数的多寡性利用导数的符号推论函数的多寡性,这就是导数几何意义在研究曲线变化规律时的一个应用领域,它体现了数形融合的思想.通常地,在某个区间(a,b)内,如果f'(x)>0,那么函数y=f(x)在这个区间内单调递减;如果f'(x)<0,那么函数y=f(x)在这个区间内单调递增. 如果在某个区间内恒存有f'(x)=0,则f(x)就是常数函数. 特别注意:在某个区间内,f'(x)>0就是f(x)在此区间上以增函数的充分条件,而不是必要条件,如f(x)=x3在r内就是增函数,但x=0时f'(x)=0。

高中数学《导数及其应用》知识点总结

高中数学《导数及其应用》知识点总结

《导数及其应用》知识点总结一、导数的概念和几何意义1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为:2121()()f x f x x x --。

2. 导数的定义:设函数()y f x =在区间(,)a b 上有定义,0(,)x a b ∈,若x ∆无限趋近于0时,比值00()()f x x f x y x x+∆-∆=∆∆无限趋近于一个常数A ,则称函数()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作0()f x '。

函数()f x 在0x x =处的导数的实质是在该点的瞬时变化率。

3. 求函数导数的基本步骤:(1)求函数的增量00()()y f x x f x ∆=+∆-;(2)求平均变化率:00()()f x x f x x +∆-∆;(3)取极限,当x ∆无限趋近与0时,00()()f x x f x x+∆-∆无限趋近与一个常数A ,则0()f x A '=. 4. 导数的几何意义:函数()f x 在0x x =处的导数就是曲线()y f x =在点00(,())x f x 处的切线的斜率。

由此,可以利用导数求曲线的切线方程,具体求法分两步:(1)求出()y f x =在x 0处的导数,即为曲线()y f x =在点00(,())x f x 处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为000()()y y f x x x '-=-。

当点00(,)P x y 不在()y f x =上时,求经过点P 的()y f x =的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P 点的坐标代入确定切点。

特别地,如果曲线()y f x =在点00(,())x f x 处的切线平行与y 轴,这时导数不存在,根据切线定义,可得切线方程为0x x =。

5. 导数的物理意义:质点做直线运动的位移S 是时间t 的函数()S t ,则()V S t '=表示瞬时速度,()a v t '=表示瞬时加速度。

完整版)高中数学导数知识点归纳总结

完整版)高中数学导数知识点归纳总结

完整版)高中数学导数知识点归纳总结导数的定义:对于函数y=f(x),在点x处的导数f'(x)定义为:f'(x)=\lim_{\Delta x\to 0}\frac{\Delta y}{\Deltax}=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}其中,$\Delta x$表示自变量的增量,$\Delta y$表示函数值的增量。

函数的连续性和可导性的关系:如果函数y=f(x)在点x处可导,则它在该点处必然连续。

但是,反过来并不成立,即函数在某点处连续并不一定可导。

导数的几何意义:函数y=f(x)在点x处的导数f'(x)表示曲线在该点处的切线的斜率。

因此,切线方程为:y-y_0=f'(x_0)(x-x_0)其中,$y_0=f(x_0)$表示曲线在点$(x_0,y_0)$处的纵坐标。

导数的四则运算法则:对于任意可导函数f(x)和g(x),有以下四则运算法则:1.$(f+g)'(x)=f'(x)+g'(x)$2.$(f-g)'(x)=f'(x)-g'(x)$3.$(fg)'(x)=f'(x)g(x)+f(x)g'(x)$4.$\left(\frac{f}{g}\right)'(x)=\frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}$其中,除法的分母$g(x)$不能为0.导数的应用:导数可以用来求函数的单调性、极值和最值。

函数单调递增的条件是导数大于0,函数单调递减的条件是导数小于0.函数在极值点处的导数为0,但反之不一定成立。

函数的最值可以通过求导数来确定。

注①:若点x是可导函数f(x)的极值点,则f'(x)=0.但反过来不一定成立。

对于可导函数,其一点x是极值点的必要条件是若函数在该点可导,则导数值为零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学
导数及其应用复习学案
例2、若函数y f(x)的导函数在区间[a,b]上是增函数,则函数y f(x)在区间[a,b]上的图象
练习1.如右图:是f (x)的导函数
,
例3、(1)求曲线y
2x 1 在点1,1 处的切线方程。

2
5
(2)求抛物线y= x过点一,6的切线方程
2
(C)
(A)(B)
f/(x)
的图象如右图所示,则 f ( X)的图象只可能是(
练习:若存在过点(1,0)的直线y X 3和y ax 2 15 X 9都相切,则a 等于( )
4
25
21
_ 7 25 7 . A.-1 或- B. 1 或 C.—或- D.—或 7 64 4
4 64 4
7.曲线y = x 2— 2x + a 与直线y = 3x + 1相切时,常数a 的值是 ____________ .
类型三:利用导数研究函数的单调性
例4、已知a , b 为常数,且 0,函数f (x ) =-ax+b+axInx , f(e)=2 (e=2.71828…是自然对数的底数) (I) 求实数b 的值;
(II) 求函数f (x )的单调区间;
例5、已知函数f(x)= ax _1在(一2,+^ )内单调递减,求实数 a 的取值范围
x 2
1 1
练习:若函数y= — x 3— ax 2+ (a — 1) x+1在区间(1, 4)内为减函数,在区间(6, +1 内为增函数,试 3 2
求实数a 的取值范围
类型四:导数与极值
ln x
例6求函数f x 的极值。

x
3 2 2 例7、已知f x x 3ax bx a 在x
2、直线y = a 与函数f(x) = x 3 — 3x 的图象有相异的三个公共点,则求 a 的取值范围。

类型五:导数与最值
例8、已知函数f(x)=(x-k)e
(1)求f(x)的单调区间;
1有极值0,求常数a,b 的值
_ 3 2
练习 1、已知 f(x)=x +ax +(a+6)x+1 有极大值和极小值,则 a 的取值范围是()
(A ) -1 v a v 2 (B ) -3 v a v 6
(C ) a v -1 或 a > 2 (D ) a v -3 或 a > 6
⑵求f(x)在区间[0,1 ]上的最小值
练习:已知函数f(x) = ax3—6ax2+ b,问是否存在实数a、b,使f(x)在[—1,2]上取得最大值3,最小值—29? 若存在,求出a、b的值;若不存在,请说明理由.
类型六:导数的综合应用
例9、设函数f(x) x ax2bln x,曲线y f (x)过点P (1, 0),且在P点处的切斜线率为2.
(I)求a , b的值;
(II)证明:f(x) 2x 2 .
例10、已知函数f(x)= 在x=1处取得极值2.
x b
(1)求函数f(x)的表达式;
(2)当m满足什么条件时,函数f(x)在区间(m,2m+1)上单调递增?
例11、设f(x) ln x , g(x) f (x) f (x).
(I)求g(x)的单调区间和最小值;
1
(n)讨论g(x)与g(—)的大小关系;
x
1
(川)求a的取值范围,使得g(a) g(x) v 对任意x >0成立.
a
类型七:生活中的导数
例12、用半径为R的圆铁皮剪一个内接矩形,再将内接矩形卷成一个圆柱(无底、无盖),问使矩形边长为多少时,其体积最大?。

相关文档
最新文档