九年级上册圆的切线证明题练习题
专题 证明圆的切线的常用方法(六大题型)(解析版)

(苏科版)九年级上册数学《第2章对称图形---圆》专题证明圆的切线的常用的方法★★★方法指引:证明一条直线是圆的切线的方法及辅助线作法:1、有交点:连半径、证垂直:当直线和圆有一个公共点时,把圆心和这个公共点连接起来,然后证明直线垂直于这条半径,简称:“有交点,连半径,证垂直”.2、无交点:作垂直、证半径:当直线和圆的公共点没有明确时,可以过圆心作直线的垂线,再证圆心到直线的距离等于半径,简称:“无交点,作垂直,证半径”.类型一:有公共点:连半径,证垂直●●【典例一】(2022•雁塔区校级模拟)如图,AB 是⊙O 的直径,点D 在直径AB 上(D 与A ,B 不重合),CD ⊥AB ,且CD =AB ,连接CB ,与⊙O 交于点F ,在CD 上取一点E ,使得EF =EC .求证:EF 是⊙O 的切线;【分析】连接OF ,根据垂直定义可得∠CDB =90°,从而可得∠B +∠C =90°,然后利用等腰三角形的性质可得∠B =∠OFB ,∠C =∠EFC ,从而可得∠OFB +∠EFC =90°,最后利用平角定义可得∠OFE =90°,即可解答;【解答】证明:连接OF ,∵CD ⊥AB ,∴∠CDB =90°,∴∠B +∠C =90°,∵OB =OF ,EF =EC ,∴∠B =∠OFB ,∠C =∠EFC,∴∠OFB+∠EFC=90°,∴∠OFE=180°﹣(∠OFB+∠EFC)=90°,∵OF是⊙O的半径,∴EF是⊙O的切线:【点评】本题考查了切线的判定与性质,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.【变式1-1】(2022•澄城县三模)如图,AB是△ABC外接圆⊙O的直径,过⊙O外一点D作BC的平行线分别交AC,AB于点G,E,交⊙O于点F,连接DB,CF,∠BAC=∠D.求证:BD是⊙O的切线;【分析】证明∠ABD=90°,根据切线的判定可得BD与⊙O相切;【解答】证明:∵AB是⊙O的直径,∴∠ACB=90°,∵DG∥BC,∴∠AGE=∠ACB=90°,∴∠A+∠AEG=90°,又∵∠A=∠D,∠AEG=∠DEB,∴∠D+∠DEB=90°,∴∠DBE=90°,∴AB⊥BD,∵AB为直径,∴BD与⊙O相切;【点评】此题考查了切线的判定,垂径定理,解答本题需要我们熟练掌握切线的判定.【变式1-2】如图,AB是⊙O的直径,点C是圆上一点,CD⊥AB于点D,点E是圆外一点,CA平分∠ECD.求证:CE是⊙O的切线.【分析】利用切线的判定定理证明∠OCE=90°即可得出结论.【解答】证明:∵CA平分∠ECD,∴∠ECA=∠DCA.∵CD⊥AB,∴∠CAD+∠DCA=90°,∴∠ECA+∠CAD=90°.∵OA=OC,∴∠CAD=∠ACO,∴∠ECA+∠ACO=90°,即∠OCE=90°,∴OC⊥EC,∵OC是⊙O的半径,∴CE是⊙O的切线.【点评】本题主要考查了圆的切线的判定,熟练应用圆的切线的判定定理是解题的关键.【变式1-3】(2022秋•阳谷县校级期末)如图,△ABC内接于半圆,AB是直径,过A作直线MN,∠MAC=∠ABC,D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F.(1)求证:MN是半圆的切线.(2)求证:FD=FG.【分析】(1)欲证明MN是半圆的切线,只需证得∠MAB=90°,即MA⊥AB即可;(2)根据圆周角定理推论得到∠ACB=90°,由DE⊥AB得到∠DEB=90°,则∠1+∠5=90°,∠3+∠4=90°,又D是弧AC的中点,即弧CD=弧DA,得到∠3=∠5,于是∠1=∠4,利用对顶角相等易得∠1=∠2,则有FD=FG.【解答】证明:(1)如图,∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°.又∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即∠MAB=90°,∴MA⊥AB.∴MN是半圆的切线.(2)∵AB为直径,∴∠ACB=90°,而DE⊥AB,∴∠DEB=90°,∴∠1+∠5=90°,∠3+∠4=90°,∵D是弧AC的中点,即弧CD=弧DA,∴∠3=∠5,∴∠1=∠4,而∠2=∠4,∴∠1=∠2,∴FD=FG.【点评】本题考查了切线的判定:经过半径的外端点,并且与半径垂直的直线是圆的切线.也考查了圆周角定理及其推论、三角形外角的性质以及等腰三角形的判定.【变式1-4】如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接OC,PB,已知PB=6,DB=8,∠EDB=∠EPB.(1)求证:PB是⊙O的切线;(2)求⊙O的半径.(3)连接BE,求BE的长.【分析】(1)由已知角相等及直角三角形的性质得到∠OBP为直角,即可得证;(2)在直角三角形PBD中,由PB与DB的长,利用勾股定理求出PD的长,由切线长定理得到PC=PB =6,由PD﹣PC求出CD的长,在直角三角形OCD中,设OC=r,则有OD=8﹣r,利用勾股定理列出关于r的方程,求出方程的解得到r的值,即为圆的半径.(3)延长PB、DE相交于点F,证明△PED≌△PEF(ASA),由全等三角形的性质得出PD=PF=10,DE =EF,求出DF的长,则可得出答案.【解答】(1)证明:∵DE⊥PE,∴∠DEO=90°,∵∠EDB=∠EPB,∠BOE=∠EDB+∠DEO,∠BOE=∠EPB+∠OBP,∴∠OBP=∠DEO=90°,∴OB⊥PB,∴PB为⊙O的切线;(2)解:在Rt△PBD中,PB=6,DB=8,根据勾股定理得:PD=10,∵PD与PB都为⊙O的切线,∴PC=PB=6,∴DC=PD﹣PC=10﹣6=4;在Rt△CDO中,设OC=r,则有OD=8﹣r,根据勾股定理得:(8﹣r)2=r2+42,解得:r=3,则圆的半径为3.(3)延长PB、DE相交于点F,∵PD与PB都为⊙O的切线,∴OP平分∠CPB,∴∠DPE=∠FPE,∵PE⊥DF,∴∠PED=∠PEF=90°,又∵PE=PE,∴△PED ≌△PEF (ASA ),∴PD =PF =10,DE =EF ,∴BF =PF ﹣PB =10﹣6=4,在Rt △DBF 中,DF==∴BE =12DF =【点评】本题考查了切线的判定和性质,勾股定理,平行线的性质,全等三角形的判定和性质,熟练掌握性质定理是解题的关键.●●【典例二】 如图,△ABC 是直角三角形,点O 是线段AC 上的一点,以点O 为圆心,OA 为半径作圆.O 交线段AB 于点D ,作线段BD 的垂直平分线EF ,EF 交线段BC 于点.(1)若∠B =30°,求∠COD 的度数;(2)证明:ED 是⊙O 的切线.【分析】(1)根据三角形的内角和定理得到∠A =60°,根据等腰三角形的性质得到∠ODA =∠A =60°,于是得到∠COD =∠ODA +∠A =120°;(2)根据线段垂直平分线的性质得到∠EDB =∠B =30°,求得ED ⊥DO ,根据切线的判定定理即可得到结论.【解答】(1)解:∵∠C =90°,∠B =30°,∴∠A =60°,∵OD =OA,∴∠COD=∠ODA+∠A=120°;(2)证明:∵EF垂直平分BD,∴∠EDB=∠B=30°,∴∠EDO=180°﹣∠EDB﹣∠ODA=180°﹣30°﹣60°=90°,∴ED⊥DO,∵OD是⊙O的半径,∴ED是⊙O的切线.【点评】本题考查了切线的判定,等腰三角形的性质,线段垂直平分线的性质,熟练掌握切线的判定定理是解题的关键.【变式2-1】如图,AB为⊙O的直径,点C,D在⊙O上,AC=CD=DB,DE⊥AC.求证:DE是⊙O的切线.【分析】连接OD,根据已知条件得到∠BOD=13×180°=60°,求得∠EAD=∠DAB=12∠BOD=30°,根据等腰三角形的性质得到∠ADO=∠DAB=30°,求得∠EDA=60°,根据切线的判定定理即可得到结论.【解答】证明:连接OD,∵AC=CD=DB,∴∠BOD=13×180°=60°,∵CD=DB,∴∠EAD=∠DAB=12∠BOD=30°,∵OA=OD,∴∠ADO=∠DAB=30°,∵DE⊥AC,∴∠E=90°,∴∠EDA=60°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线.【点评】本题考查了切线的判定,等腰三角形的性质,正确的作出辅助线是解题的关键.【变式2-2】如图,AC是⊙O的直径,B在⊙O上,BD平分∠ABC交⊙O于点D,过点D作DE∥AC交BC的延长线于点E.求证:DE是⊙O的切线.【分析】连接OD,根据圆周角定理的推论得到∠ABC=90°,根据角平分线的性质求出∠DBE=45°,根据圆周角定理得到∠DOC,根据平行线的性质求出∠ODE=90°,根据切线的判定定理证明结论;【解答】证明:连接OD,∵AC是⊙O的直径,∴∠ABC=90°,∵BD平分∠ABC,∴∠DBE=45°,∴∠DOC=2∠DBE=90°,∵DE∥AC,∴∠ODE=∠DOC=90°,∴DE是⊙O的切线;【点评】本题考查的是切线的判定定理、圆周角定理以及正方形的判定和性质,掌握经过半径的外端且垂直于这条半径的直线是圆的切线是解题的关键.【变式2-3】(2023•鼓楼区校级模拟)如图,在⊙O中,AB为⊙O的直径,AC为弦,OC=4,∠OAC=60°.(1)求∠AOC的度数;(2)在图(1)中,P为直径BA的延长线上一点,且S△PAC=PC为⊙O的切线;【分析】(1)根据等腰三角形中有一角为60度时是等边三角形得到△ACO是等边三角形,则∠AOC=60°;(2)由等边三角形的性质以及勾股定理得出CD的长,再利用三角形外角的性质以及等腰三角形的性质得出∠PCA=30°,进而得出答案;【解答】(1)解:在△OAC中,∵OA=OC=4,∠OAC=60°,∴△OAC是等边三角形,∴∠AOC=60°;(2)证明:过点C作CD⊥AO于点D,∵△AOC是等边三角形,CD⊥AO,∴AD=DO=12OA=2,∠ACO=60°,∴CD∵S △PAC =∴12PA •CD =∴PA =4,∴PA =AC ,∴∠P =∠PCA =12∠OAC =30°,∴∠PCO =∠PCA +∠ACO =30°+60°=90°,∴OC ⊥PC ,∵OC 是⊙O 的半径,∴PC 为⊙O 的切线.【点评】本题考查了等边三角形的判定和性质,切线的判定,熟练掌握相关的性质和判定是解决问题的关键.【变式2-4】(2023•门头沟区二模)如图,AB 是⊙O 直径,弦CD ⊥AB 于E ,点F 在CD 上,且AF =DF ,连接AD ,BC .(1)求证:∠FAD =∠B(2)延长FA 到P ,使FP =FC ,作直线CP .如果AF ∥BC .求证:直线CP 为⊙O 的切线.【分析】(1)根据垂径定理、圆周角定理可得∠ACD =∠ACD =∠B ,根据等腰三角形的性质可得∠FAD=∠FDA,进而可得∠FAD=∠B;(2)根据平行线的性质以及三角形内角和定理可得∠FAB=∠FAD=∠FDA=30°,进而得到∠CFP=60°,再利用等边三角形的性质可得∠PCO=60°+30°=90°,由切线的判定方法可得结论.【解答】证明:(1)如图,连接AC,∵AB是⊙O直径,弦CD⊥AB,∴AC=AD,∴∠ACD=∠ACD=∠B,∵AF=FD,∴∠FAD=∠FDA,∴∠FAD=∠B;(2)如图,连接OC,∵AF∥BC,∴∠FAB=∠B,∴∠FAB=∠FAD=∠FDA,∵∠AED=90°,∴∠FAB=∠FAD=∠FDA=30°,∴∠CFP=60°,∵FP=FC,∴△CFP是等边三角形,∴∠PCF=60°,∵OB=OC,∴∠B=∠OCB=30°,∴∠OCD=30°,∴∠PCO=60°+30°=90°,即OC⊥PC,∵OC是半径,∴PC是⊙O的切线.【点评】本题考查切线的判定,圆周角定理、平行线的性质以及三角形内角和定理,掌握切线的判定方法,圆周角定理是正确解答的前提.●●【典例三】如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,过点C 作CE ⊥AD 交AD 的延长线于点E ,延长EC ,AB 交于点F ,∠ECD =∠BCF .求证:CE 为⊙O 的切线;【分析】连接OC ,BD ,可推出EF ∥BD ,进而可证CD =BC ,进而得出CE 为⊙O 的切线;【解答】证明:如图1,连接OC ,BD ,∵AB 是⊙O 的直径,∴∠ADB =90°,∵CE ⊥AE,∴∠E=∠ADB,∴EF∥BD,∴∠ECD=∠CDB,∠BCF=∠CBD,∵∠ECD=∠BCF,∴∠CDB=∠CBD,∴CD=BC,∴半径OC⊥EF,∴CE为⊙O的切线;【点评】本题考查了圆周角定理及其推论,圆的切线判定,解决问题的关键是作合适的辅助线.【变式3-1】(2022秋•阿瓦提县校级期末)已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB=AC,连结AC,过点D作DE⊥AC,垂足为E.求证:DE为⊙O的切线.【分析】连接OD,根据OA=OB,CD=BD,得出OD∥AC,∠ODE=∠CED,再根据DE⊥AC,即可证出OD⊥DE,从而得出答案.【解答】证明:如图,连接OD.∵AB是⊙O的直径,∴∠ADB=90°,∴CD=BD,∵OA=OB,∴OD∥AC.∴∠ODE=∠CED.∵DE⊥AC,∴∠CED=90°.∴∠ODE=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线.【点评】本题考查了切线的判定与性质,解决本题的关键是掌握圆周角定理的推论、线段垂直平分线的性质以及等边三角形的判定,是一道常考题型.【变式3-2】已知,如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.(1)求证:点D是AB的中点;(2)判断DE与⊙O的位置关系,并证明你的结论.【分析】(1)连接CD,如图,根据圆周角定理,由BC为直径得到∠BDC=90°,然后根据等腰三角形的性质得AD=BD;(2)连接OD,先得到OD为△ABC的中位线,再根据三角形中位线性质得OD∥AC,而DE⊥AC,则DE⊥OD,然后根据切线的判定定理可得DE为⊙O的切线.【解答】(1)证明:连接CD,如图,∵BC为直径,∴∠BDC=90°,∴CD⊥AB,∵AC=BC,∴AD=BD,即点D是AB的中点;(2)解:DE与⊙O相切.理由如下:连接OD,∵AD=BD,OC=OB,∴OD为△ABC的中位线,∴OD∥AC,而DE⊥AC,∴DE⊥OD,∴DE为⊙O的切线.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.【变式3-3】如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE为直径的⊙O上.(1)求证:BC是⊙O的切线;(2)已知∠B=30°,CD=4,求线段AB的长.【分析】(1)连接OD,根据角平分线的定义得到∠BAD=∠CAD,而∠OAD=∠ODA,则∠ODA=∠CAD,于是判断OD∥AC,由于∠C=90°,所以∠ODB=90°,然后根据切线的判定定理即可得到结论;(2)由∠B=30°得到∠BAC=60°,则∠CAD=30°,在Rt△ADC中,根据含30度的直角三角形三边的关系得到AC=Rt△ABC中,根据含30度的直角三角形三边的关系可得到AB=【解答】(1)证明:连接OD,如图,∵∠BAC的平分线交BC于点D,∴∠BAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,∴OD⊥BC,∴BC是⊙O的切线;(2)解:∵∠B=30°,∴∠BAC=60°,∴∠CAD=30°,在Rt△ADC中,DC=4,∴AC==在Rt△ABC中,∠B=30°,∴AB=2AC=【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了含30度的直角三角形三边的关系.【变式3-4】如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE=1cm,求BD的长.【分析】(1)连接OA,根据角之间的互余关系可得∠OAE=∠DEA=90°,故AE⊥OA,即AE是⊙O的切线;(2)根据圆周角定理,可得在Rt△AED中,∠AED=90°,∠EAD=30°,有AD=2DE;在Rt△ABD中,∠BAD=90°,∠ABD=30°,有BD=2AD=4DE,即可得出答案.【解答】(1)证明:连接OA,∵DA平分∠BDE,∴∠BDA=∠EDA.∵OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠EDA,∴OA∥CE.∵AE⊥CE,∴AE⊥OA.∴AE是⊙O的切线.(2)解:∵BD是直径,∴∠BCD=∠BAD=90°.∵∠DBC=30°,∠BDC=60°,∴∠BDE=120°.∵DA平分∠BDE,∴∠BDA=∠EDA=60°.∴∠ABD=∠EAD=30°.∵在Rt△AED中,∠AED=90°,∠EAD=30°,∴AD=2DE.∵在Rt△ABD中,∠BAD=90°,∠ABD=30°,∴BD=2AD=4DE.∵DE的长是1cm,∴BD的长是4cm.【点评】此题主要考查了切线的判定,角平分线的性质,含30°的直角三角形的性质,勾股定理,矩形的判定和性质,构造出直角三角形是解本题的关键,是一道中等难度的中考常考题.●●【典例四】(2022•城关区一模)如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为6,PB=4,PC=8.求证:PC是⊙O的切线;【分析】可以证明OC2+PC2=OP2得△OCP是直角三角形,即OC⊥PC,PC是⊙O的切线;【解答】解:如图,连接OC、BC,∵⊙O的半径为6,PB=4,PC=8.∴OC=OB=6,OP=OB+BP=6+4=10,∴OC2+PC2=62+82=100,OP2=102=100,∴OC2+PC2=OP2,∴△OCP是直角三角形,∴OC⊥PC,∴PC是⊙O的切线;【点评】本题考查圆的切线的判定和勾股定理逆定理,利用勾股定理的逆定理证明垂直是解决问题的关键.【变式4-1】如图,AD, BD是⊙O的弦,AD⊥BD,且BD=2AD=8 ,点C是BD的延长线上的一点,CD=2,求证:AC是⊙O的切线.【分析】先由勾股定理的逆定理证明垂直,再由切线的判断进行解答即可.【解答】证明:连接AB,∵AD⊥BD,且BD=2AD=8 ,∴AB为直径,AB2 =82+42 =80,∵CD=2,AD=4 ,∴AC2 =22 +42=20,∵CD=2,BD=8,∴BC=102=100,∴AC2+AB2=CB2,∴∠BAC=90° ,∴AC是⊙O的切线【点评】本题考查切线的判定,圆周角定理的推论,勾股定理的逆定理,解题关键是作出辅助线构造直角三角形.【变式4-2】如图,AD,BD是⊙O的弦,AD⊥BD,且BD=2AD=8,点C是BD的延长线上的一点,CD=2,求证:AC是⊙O的切线.【分析】先根据圆周角定理得到AB为⊙O的直径,再利用勾股定理计算出AB、AC,接着利用勾股定理的逆定理证明△ABC为直角三角形,∠BAC=90°,所以AC⊥AB,然后根据切线的判定定理得到结论.【解答】证明:∵AD⊥BD,∴∠ADB=90°,∴AB为⊙O的直径,∵BD =2AD =8,∴AD =4,在Rt △ADB 中,AB 2=AD 2+BD 2=42+82=80,在Rt △ADC 中,AC 2=AD 2+CD 2=42+22=20,∵BC 2=(2+8)2=10,∴AC 2+AB 2=BC 2,∴△ABC 为直角三角形,∠BAC =90°,∴AC ⊥AB ,∵AB 为直径,∴AC 是⊙O 的切线.【点评】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理、勾股定理和勾股定理的逆定理.●●【典例五】(2022•鄞州区校级开学)如图,AB 为⊙O 的直径,点C 和点D 是⊙O 上的两点,连接BC ,DC ,BC =CD ,CE ⊥DA 交DA 的延长线于点E .求证:CE 是⊙O 的切线;【分析】连接OD ,OC ,证得△COD ≌△COB ,可得∠OCD =∠BCO ,从而得到∠ADC =∠DCO ,进而得到DA ∥CO ,利用切线的判定定理即可求证;【解答】证明:连接OD ,OC,如图,在△COD和△COB中,OD=OBOC=OC,CD=CB∴△COD≌△COB(SSS),∴∠OCD=∠BCO,∵CO=BO,∴∠B=∠BCO,∵∠B=∠ADC,∴∠ADC=∠DCO.∴DA∥CO,∴∠E+∠ECO=180°.∵CE⊥EA,∴∠E=90°.∴∠ECO=90°,∴EC⊥CO,∵CO是⊙O的半径,∴EC是⊙O的切线;【点评】本题主要考查了切线的判定,圆周角定理等知识,熟练掌握切线的判定,相似三角形的判定和性质,圆周角定理等知识是解题的关键.【变式5-1】如图,已知AB是⊙O的直径,BC⊥AB,连接OC,弦AD∥OC,直线CD交BA的延长线于点E.求证:CD是⊙O的切线;【分析】连接OD,利用SAS得到三角形COD与三角形COB全等,利用全等三角形的对应角相等得到∠ODC 为直角,即可得证;【解答】证明:如图,连接OD.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD,又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB,在△COD和△COB中,OC=OC∠COD=∠COB,OD=OB∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°,∵OD是⊙O的半径,∴CD是⊙O的切线;【点评】此题考查了切线的判定和性质,以及全等三角形的判定与性质,熟练掌握各自的性质是解本题的关键.【变式5-2】(2022秋•新抚区期末)如图,AB为⊙O的直径,四边形OBCD是矩形,连接AD,延长AD 交⊙O于E,连接CE.求证:CE为⊙O的切线.【分析】连接OC、BE,根据矩形性质和圆半径相等,推出∠CDE=∠AEO,进而得到OP=CP,然后根据OB∥CD,可以推出∠COE=∠BOC,最后通过证明△BOC≌△EOC即可求解.【解答】证明:如图:连接OC、BE,OE,CD交于点P,∵四边形OBCD是矩形,∴OB∥CD,∠OBC=90°,OB=CD,∵OB∥CD,∴∠A=∠CDE,∵在⊙O中,OA=OB=OE,∴OE=CD,∵OA=OE,∴∠A=∠AEO,∴∠CDE=∠AEO,∴DP=PE,∵OE=CD,∴OP=CP,∴∠COE=∠DCO,∵OB∥CD,∴∠DCO=∠BOC,∴∠COE=∠BOC,在△BOC和△EOC中,OB=OECO=CO,∠BOC=∠COE∴△BOC≌△EOC(SAS),∴∠CEO=∠OBC=90°,∴CE⊥OE,又∵OE为⊙O的半径,∴CE为⊙O的切线.【点评】本题考查圆周角定理,全等三角形的判定和性质,矩形的性质等众多知识点,熟悉掌握以上知识点是解题关键.【变式5-3】(2022•建邺区二模)如图,四边形ABCD是菱形,以AB为直径作⊙O,交CB于点F,点E在CD上,且CE=CF,连接AE.(1)求证:AE是⊙O的切线;(2)连接AC交⊙O于点P,若AP BF=1,求⊙O的半径.【分析】(1)连接AF,根据菱形的性质得到∠ACF=∠ACE,根据全等三角形的性质得到∠AFC=∠AEC,推出OA⊥AE,根据切线的判定定理即可得到结论;(2)连接BP,根据圆周角定理得到∠APB=90°,求得AC=2AP=【解答】(1)证明:连接AF,∵四边形ABCD为菱形,∴∠ACF=∠ACE,在△ACF与△ACE中,CF=CE∠ACF=∠ACEAC=AC,∴△ACF≌△ACE(SAS),∴∠AFC=∠AEC,∵AB是⊙O的直径,∴∠AFB=∠AFC=90°,∴∠AEC=90°,∵AB∥DC,∴∠BAE+∠AEC=90°,∴∠BAE=90°,∴OA⊥AE,∵OA是⊙O的半径,∴AE是⊙O的切线;(2)解:连接BP,∵AB是⊙O的直径,∴∠APB=90°,∵AB=CB,AP=∴AC=2AP=设⊙O的半径为R,∵AC2﹣CF2=AF2,AB2﹣BF2=AF2,∴2−(2R−1)2=(2R)2−12,∴R=32(负值舍去),∴⊙O的半径为3 2.【点评】本题考查了切线的判定和性质,圆周角定理,菱形的性质,三角形全等的性质和判定,勾股定理等知识,解答本题的关键是根据勾股定理列方程解决问题.类型二:无公共点:作垂直,证半径●●【典例六】如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D.求证:AC是⊙O的切线.【分析】过点O作OE⊥AC于点E,连接OD,OA,根据切线的性质得出AB⊥OD,根据等腰三角形三线合一的性质得出AO是∠BAC的平分线,根据角平分线的性质得出OE=OD,从而证得结论.【解答】证明:过点O作OE⊥AC于点E,连接OD,OA,∵AB与⊙O相切于点D,∴AB⊥OD,∵△ABC为等腰三角形,O是底边BC的中点,∴AO是∠BAC的平分线,∴OE=OD,即OE是⊙O的半径,∵圆心到直线的距离等于半径,∴AC是⊙O的切线.【点评】本题考查了切线的判定和性质,等腰三角形的性质,角平分线的性质,熟练掌握性质定理是解题的关键.【变式6-1】如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.求证:CD与⊙O相切.【分析】利用正方形的性质得出AC平分角∠BCD,再利用角平分线的性质得出OM=ON,即可得出答案.【解答】证明:如图所示,连接OM,过点O作ON⊥CD于点N,∵⊙O与BC相切于点M,∴OM⊥BC,又∵ON⊥CD,O为正方形ABCD对角线AC上一点,∴OM=ON,∴ON为⊙O的半径,∴CD与⊙O相切.【点评】此题主要考查了正方形的性质以及角平分线的性质,得出OM=ON是解题关键.【变式6-2】如图,OC平分∠AOB,D是OC上任意一点,⊙D和OA相切于点E,连接CE.(1)求证:OB与⊙D相切;(2)若OE=4,⊙D的半径为3,求CE的长.【分析】(1)过点D作DF⊥OB于点F,先由切线的性质得DE⊥OA,则由角平分线的性质得DF=DE,即可证得结论;(2)过E作EG⊥OD于G,先由勾股定理求出OD=5,再由面积法求出EG=125,然后由勾股定理求出DG=95,最后由勾股定理求出CE即可.【解答】(1)证明:连接DE,过点D作DF⊥OB于点F,如图所示:∵⊙D与OA相切于点E,∴DE⊥OA,∵OC平分∠AOB,∴DF=DE,又∵DF⊥OB,∴OB与⊙D相切;(2)解:过E作EG⊥OD于G,如图所示:由(1)得:DE⊥OA,∴∠OED=90°,∵OE=4,DE=3,∴OD=5,∵EG⊥OD,∴12OD×EG=12OE×DE,∴EG=OE×DEOD=4×35=125,∴DG===9 5,∴CG=CD+DG=3+95=245,∴CE=【点评】此题考查了切线的判定与性质、勾股定理以及角平分线的性质等知识,解题的关键是准确作出辅助线.【变式6-3】如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD交AM,BN于点D,C,DO平分∠ADC.(1)求证:CD是⊙O的切线;(2)若AD=4,BC=9,求⊙O的半径R.【分析】(1)过O点作OE⊥CD于点E,通过角平分线的性质得出OE=OA即可证得结论.(2)过点D作DF⊥BC于点F,根据切线的性质可得出DC的长度,继而在Rt△DFC中利用勾股定理可得出DF的长,继而可得出半径.【解答】(1)证明:过O点作OE⊥CD于点E,∵AM切⊙O于点A,∴OA⊥AD,又∵DO平分∠ADC,∴OE=OA,∵OA为⊙O的半径,∴OE是⊙O的半径,且OE⊥DC,∴CD是⊙O的切线.(2)解:过点D作DF⊥BC于点F,∵AM,BN分别切⊙O于点A,B,∴AB⊥AD,AB⊥BC,∴四边形ABFD是矩形,∴AD=BF,AB=DF,又∵AD=4,BC=9,∴FC=9﹣4=5,∵AM,BN,DC分别切⊙O于点A,B,E,∴DA=DE,CB=CE,∴DC=AD+BC=4+9=13,在Rt△DFC中,DC2=DF2+FC2,∴DF=12,∴AB=12,∴⊙O的半径R是6.【点评】此题考查了切线的性质、角平分线的性质及勾股定理的知识,证明第一问关键是掌握切线的判定定理,解答第二问关键是熟练切线的性质.【变式6-4】(2022秋•清原县期末)如图,在△ABC中,∠ACB=90°,点D是AB边的中点,点O在AC边上,⊙O 经过点C 且与AB 边相切于点E ,∠FAC =12∠BDC .(1)求证:AF 是⊙O 的切线;(2)若BC =6,AB =10,求⊙O 的半径长.【分析】(1)作OH ⊥FA ,垂足为点H ,连接OE ,证明AC 是∠FAB 的平分线,进而根据OH =OE ,OE ⊥AB ,可得AF 是⊙O 的切线;(2)勾股定理得出AC ,设⊙O 的半径为r ,则OC =OE =r ,进而根据切线的性质,在Rt △OEA 中,勾股定理即可求解.【解答】(1)证明:如图,作OH ⊥FA ,垂足为点H ,连接OE ,∵∠ACB =90°,D 是AB 的中点,∴CD =AD =12AB ,∴∠CAD =∠ACD ,∵∠BDC =∠CAD +∠ACD =2∠CAD ,又∵∠FAC =12∠BDC ,∴∠FAC =∠CAD ,即AC 是∠FAB 的平分线,∵点O 在AC 上,⊙O 与AB 相切于点E ,∴OE ⊥AB ,且OE 是⊙O 的半径,∴OH =OE ,OH 是⊙O 的半径,∴AF 是⊙O 的切线;(2)解:如图,在△ABC中,∠ACB=90°,BC=6,AB=10,∴AC==8,∵BE,BC是⊙O的切线,∴BC=BE=6,∴AE=10﹣6=4设⊙O的半径为r,则OC=OE=r,在Rt△OEA中,由勾股定理得:OE2+AE2=OA2,∴16+r2=(8﹣r)2,∴r=3.∴⊙O的半径长为3.【点评】本题考查了切线的性质与判定,勾股定理,熟练掌握切线的性质与判定是解题的关键.1.如图,已知AB是⊙O的直径,AB=BE,点P在BA的延长线上,连接AE交⊙O于点D,过点D作PC⊥BE垂足为点C.求证:PC与⊙O相切;【分析】连接OD,根据等腰三角形的性质得到∠BAE=∠BEA,∠BAE=∠ODA,等量代换得到∠ODA=∠BEA,证明OD∥BE,根据平行线的性质得到PC⊥OD,根据切线的判定定理证明结论;【解答】证明:连接OD,∵AB=BE,∴∠BAE=∠BEA,∵OA=OD,∴∠BAE=∠ODA,∴∠ODA=∠BEA,∴OD∥BE,∵PC⊥BE,∴PC⊥OD,∵OD是⊙O的半径,∴PC与⊙O相切;【点评】本题考查的是切线的判定、解直角三角形,掌握经过半径的外端且垂直于这条半径的直线是圆的切线是解题的关键.2.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,点D是BC的中点,DE∥BC交AC的延长线于点E.(1)求证:直线DE与⊙O相切;(2)若⊙O的直径是10,∠A=45°,求CE的长.【分析】(1)连接OD,如图,先利用垂径定理得到OD⊥BC,再根据平行线的性质得到OD⊥DE,然后根据切线的判定方法得到结论;(2)先根据圆周角定理得到∠B=90°,则∠ACB=45°,再根据平行线的性质得到∠E=45°,则可判断△ODE 为等腰直角三角形,于是可求出OE,然后计算OE﹣OC即可.【解答】(1)证明:连接OD,如图,∵点D是BC的中点,∴OD⊥BC,∵DE∥BC,∴OD⊥DE,∴直线DE与⊙O相切;(2)解:∵AC是⊙O的直径,∴∠B=90°,∵∠A=45°,∴∠ACB=45°,∵BC∥DE,∴∠E=45°,而∠ODE=90°,∴△ODE为等腰直角三角形,∴OE==∴CE=OE﹣OC=5.【点评】本题考查了切线的性质与判定:圆的切线垂直于经过切点的半径.也考查了垂径定理、圆周角定理和等腰直角三角形的性质.3.(2023•东城区校级模拟)如图,⊙O的半径OC与弦AB垂直于点D,连接BC,OB.(1)求证:2∠ABC+∠OBA=90°;(2)分别延长BO、CO交⊙O于点E、F,连接AF,交BE于G,过点A作AM⊥BC,交BC延长线于点M,若G是AF的中点,求证:AM是⊙O的切线.【分析】(1)先根据垂径定理得到AC=BC,再根据圆周角定理得到∠BOC=2∠ABC,然后利用互余关系得∠BOD+∠OBD=90°,从而得到结论;(2)如图,连接OA,根据垂径定理得到BE⊥AF,再根据圆周角定理得到∠CAF=90°,则可判断BE ∥AC,所以∠ABE=∠BAC,接着证明∠BAO=∠CBA得到OA∥BC,根据平行线的性质得到AM⊥OA,然后根据切线的判断方法得到结论.【解答】证明:(1)∵OD⊥AB,∴AC=BC,∠ODB=90°,∴∠BOC=2∠ABC,∵∠BOD+∠OBD=90°,∴2∠ABC+∠OBA=90°;(2)如图,连接OA,∵G是AF的中点,∴BE⊥AF,∵CF为直径,∴∠CAF=90°,∴CA⊥AF,∴BE∥AC,∴∠ABE=∠BAC,∴AC=BC,∴∠CAB=∠CBA,∵OA=OB,∴∠BAO=∠ABO,∴∠BAO=∠CBA,∴OA∥BC,∵AM⊥BC,∴AM⊥OA,而OA为⊙O的半径,∴AM是⊙O的切线.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理、垂径定理.4.(2022•思明区校级二模)如图,四边形ABCD是⊙O的内接四边形,AC是⊙O直径,BE∥AD交DC 延长线于点E,若BC平分∠ACE.(1)求证:BE是⊙O的切线;(2)若BE=3,CD=2,求⊙O的半径.【分析】(1)连接OB,由条件可以证明OB∥DE,从而证明OB⊥BE;(2)由垂径定理求出AD长,从而由勾股定理可求AC长.【解答】(1)证明:连接OB,∵″OB=OC,∴∠OBC=∠OCB,∵∠BCE=∠OCB,∴∠OBC=∠BCE,∴OB∥DE,∵AC是⊙O直径,∴AD⊥DE,∵BE∥AD,∴BE⊥DE,∴OB⊥BE,∵OB是⊙O半径,∴BE是⊙O切线;(2)解:延长BO交AD于F,∵∠D=∠DEB=∠EBF=90°,∴四边形BEDF是矩形,∴BF⊥AD,DF=BE=3,∴AD=2DF=6,∵AC2=AD2+CD2,∴AC2=62+22=40,∴AC=∴⊙O【点评】本题考查切线的判定,矩形的判定和性质,垂径定理,勾股定理,用到的知识点较多,关键是熟练掌握知识点,并能灵活应用.5.(2023•封开县一模)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)当AB=5,BC=6时,求DE的长.【分析】(1)连接OD,由AC=AB,根据等边对等角得到一对角相等,再由OD=OB,根据等边对等角得到又一对角相等,等量代换可得一对同位角相等,根据同位角相等两直线平行可得OD与AC平行,又EF垂直于AC,根据垂直于两平行线中的一条,与另一条也垂直,得到EF与OD也垂直,可得EF为圆O的切线;(2)连接AD,由AB为圆的直径,根据直径所对的圆周角为直角可得∠ADB=90°,即AD与BC垂直,又AC=AB,根据三线合一得到D为BC中点,由BC求出CD的长,再由AC的长,利用勾股定理求出AD的长,三角形ACD的面积有两种求法,AC乘以DE除以2,或CD乘以AD除以2,列出两个关系式,两关系式相等可求出DE的长.【解答】(1)证明:连接OD,∵AB=AC,∴∠C=∠OBD,∵OD=OB,∴∠1=∠OBD,∴∠1=∠C,∴OD∥AC,∵EF⊥AC,∴EF⊥OD,∴EF是⊙O的切线;(2)连接AD,∵AB为⊙O的直径,∴∠ADB=90°,又∵AB=AC,且BC=6,∴CD=BD=12BC=3,在Rt△ACD中,AC=AB=5,CD=3,根据勾股定理得:AD=4,又S△ACD =12AC•ED=12AD•CD,即12×5×ED=12×4×3,∴ED=12 5.【点评】此题考查了等腰三角形的性质,圆周角定理,平行线的性质,勾股定理,三角形面积的求法,以及切线的判定,其中证明切线的方法为:有点连接圆心与此点,证垂直;无点过圆心作垂线,证明垂线段长等于圆的半径.本题利用的是第一种方法.6.(2023•宁德模拟)如图,OM 为⊙O 的半径,且OM =3,点G 为OM 的中点,过点G 作AB ⊥OM 交⊙O 于点A ,B ,点D 在优弧AB 上运动,将AB 沿AD 方向平移得到DC ;连接BD ,BC .(1)求∠ADB 的度数;(2)如图2,当点D 在MO 延长线上时,求证:BC 是⊙O 的切线.【分析】(1)连接AO ,BO ,先根据特殊角的正弦值可得∠OAG =30°,再根据等腰三角形的性质可得∠OAG =∠OBG =30°,从而可得∠AOB =120°,然后根据圆周角定理即可得;(2)连接AO ,BO ,CO ,先证出四边形ABCD 是平行四边形,再根据等边三角形的判定与性质可得AB =AD ,根据菱形的判定可得四边形ABCD 是菱形,根据菱形的性质可得CB =CD ,然后根据SSS 定理证出△COB ≌△COD ,根据全等三角形的性质可得∠OBC =∠ODC =90°,最后根据圆的切线的判定即可得证.【解答】(1)解:如图1,连接AO ,BO .∵点G 为OM 的中点,且OM =3,∴OG =12OM =32,OA =OB =OM =3,∵AB ⊥OM ,在Rt △AOG 中,OG =12OA .∴∠OAG =30°,又∵OA =OB ,∴∠OAG=∠OBG=30°,∴∠AOB=120°,∴∠ADB=12∠AOB=60°.(2)证明:如图2,连接AO,BO,CO,由平移得:AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∵OM⊥AB,点D在MO延长线上,∴DM⊥CD,∵OA=OB,AB⊥OM,∴AG=BG,∴DM垂直平分AB,∴AD=BD,∵∠ADB=60°,∴△ABD为等边三角形,∴AB=AD,∴平行四边形ABCD是菱形,∴CB=CD,在△COB和△COD中,CB=CDOB=ODOC=OC,∴△COB≌△COD(SSS),∴∠OBC=∠ODC=90°,又∵OB是⊙O的半径,。
人教版九年级上《24.2.3切线的判定和性质》同步练习(含答案)

2022-2023人教版数学九年级上册同步练习24.2.3 切线的判定和性质一.选择题(共15小题)1.如图,在以点O为圆心的两个同心圆中,大圆的弦AB与小圆相切,切点为C,若大圆的半径是13,AB=24,则小圆的半径是()A.4B.5C.6D.72.如图,AB、AC、BD是⊙O的切线,切点分别为P、C、D,若AB=5,AC=3,则BD的长是()A.1.5B.2C.2.5D.33.如图,⊙O中,CD是切线,切点是D,直线CO交⊙O于B、A,∠A=20°,则∠C的度数是()A.25°B.65°C.50°D.75°4.如图,直线AB与⊙O相切于点A,⊙O的半径为1,若∠OBA=30°,则OB长为()A.1B.2C.D.25.如图,∠NAM=30°,O为边AN上一点,以点O为圆心,2为半径作⊙O,交AN边于D、E两点,则当⊙O与AM相切时,AD等于()A.4B.3C.2D.16.如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD 分别交于点E、点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF与DE的交点是圆O的圆心;(3)BC与圆O相切,其中正确说法的个数是()A.0B.1C.2D.37.已知⊙O的半径为5,直线EF经过⊙O上一点P(点E,F在点P的两旁),下列条件能判定直线EF与⊙O相切的是()A.OP=5B.OE=OFC.O到直线EF的距离是4D.OP⊥EF8.如图,网格中的每个小正方形的边长是1,点M,N,O均为格点,点N在⊙O上,若过点M作⊙O的一条切线MK,切点为K,则MK=()A.3B.2C.5D.9.如图,AB是⊙O的直径,点P是⊙O外一点,PO交⊙O于点C,连接BC,PA.若∠P=40°,当∠B等于()时,PA与⊙O相切.A.20°B.25°C.30°D.40°10.如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(﹣3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为()A.1B.3C.5D.1或511.如图,⊙O的半径为3,四边形ABCD是⊙O的内接四边形,∠A=60°,∠D=110°,的度数是70°,直线l与⊙O相切于点A.在没有滑动的情况下,将⊙O沿l向右滚动,使O点向右移动70π,则此时⊙O与直线l相切的切点所在的劣弧是()A.B.C.D.12.如图,在等边△ABC中,点O在边AB上,⊙O过点B且分别与边AB、BC 相交于点D、E、F是AC上的点,判断下列说法错误的是()A.若EF⊥AC,则EF是⊙O的切线B.若EF是⊙O的切线,则EF⊥ACC.若BE=EC,则AC是⊙O的切线D.若BE=EC,则AC是⊙O的切线13.如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D 是⊙O上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=CD;(4)弧AC=弧AD.其中正确的个数为()A.1个B.2个C.3个D.4个14.如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B.直线MN与l1相交于M;与l2相交于N,⊙O的半径为1,∠1=60°,直线MN从如图位置向右平移,下列结论①l1和l2的距离为2 ②MN=③当直线MN与⊙O相切时,∠MON=90°④当AM+BN=时,直线MN与⊙O相切.正确的个数是()A.1B.2C.3D.415.如图,直线AB、CD相交于点O,∠AOD=30°,半径为1cm的⊙P的圆心在射线OA上,且与点O的距离为6cm.如果⊙P以1cm/s的速度沿由A向B 的方向移动,那么()秒钟后⊙P与直线CD相切.A.4B.8C.4或6D.4或8二.填空题(共6小题)16.在平面直角坐标系中,点P的坐标为(﹣4,0),半径为1的动圆⊙P沿x 轴正方向运动,若运动后⊙P与y轴相切,则点P的运动距离为.17.如图,直线PA是⊙O的切线,AB是过切点A的直径,连接PO交⊙O于点C,连接BC,若∠ABC=25°,则∠P的度数为.18.如图,已知PA、PB是⊙O的切线,A、B分别为切点,∠OAB=30°.(1)∠APB=;(2)当OA=2时,AP=.19.如图所示,直线y=x﹣2与x轴、y轴分别交于M,N两点,⊙O的半径为1,将⊙O以每秒1个单位的速度向右作平移运动,当移动s时,直线MN 恰好与圆O相切.20.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向以0.5个单位/秒的速度平移,使⊙P与y轴相切,则平移的时间为秒.21.已知,如图,AB是⊙O的直径,点P在BA的延长线上,弦CD交AB于E,连接OD、PC、BC,∠AOD=2∠ABC,∠P=∠D,过E作弦GF⊥BC交圆于G、F两点,连接CF、BG.则下列结论:①CD⊥AB;②PC是⊙O的切线;③OD∥GF;④弦CF的弦心距等于BG.则其中正确的是(只需填序号)三.解答题(共9小题)22.如图,AB是半圆O的直径,C是半圆O上的一点,CF切半圆O于点C,BD ⊥CF于为点D,BD与半圆O交于点E.(1)求证:BC平分∠ABD.(2)若DC=8,BE=4,求圆的直径.23.如图,一圆与平面直角坐标系中的x轴切于点A(8,0),与y轴交于点B (0,4),C(0,16),求该圆的直径.24.如图,在△ABC中,AB=AC,∠A=30°,以AB为直径的⊙O交BC于点D,交AC于点E,连结DE,过点B作BP平行于DE,交⊙O于点P,连结EP、CP、OP.(1)BD=DC吗?说明理由;(2)求∠BOP的度数;(3)求证:CP是⊙O的切线.25.如图,▱ABCD中,⊙O过点A、C、D,交BC于E,连接AE,∠BAE=∠ACE.(1)求证:AE=CD;(2)求证:直线AB是⊙O的切线.26.已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.(1)如图①,若∠P=35°,求∠ABP的度数;(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.27.如图(1),在△ABC中,∠ACB=90°,以AB为直径作⊙O;过点C作直线CD交AB的延长线于点D,且BD=OB,CD=CA.(1)求证:CD是⊙O的切线.(2)如图(2),过点C作CE⊥AB于点E,若⊙O的半径为8,∠A=30°,求线段BE.28.如图,在△ABC中,∠C=90°,∠ABC的平分线BE交AC于点E,过点E作直线BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB于点H,求证:EF平分∠AEH;(3)求证:CD=HF.29.如图,已知A是⊙O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=OB.(1)求证:AB是⊙O的切线;(2)若∠ACD=45°,OC=2,求弦CD的长.30.如图,AB是半径为2的⊙O的直径,直线m与AB所在直线垂直,垂足为C,OC=3,点P是⊙O上异于A、B的动点,直线AP、BP分别交m于M、N两点.(1)当点C为MN中点时,连接OP,PC,判断直线PC与⊙O是否相切并说明理由.(2)点P是⊙O上异于A、B的动点,以MN为直径的动圆是否经过一个定点,若是,请确定该定点的位置;若不是,请说明理由.参考答案与试题解析一.选择题(共15小题)1.【解答】解:∵AB=24,OB=OA=13,∴BC=12;在Rt△OCB中,∴OC==5.故选:B.2.【解答】解:∵AC、AP为⊙O的切线,∴AC=AP,∵BP、BD为⊙O的切线,∴BP=BD,∴BD=PB=AB﹣AP=5﹣3=2.故选:B.3.【解答】解:连接OD,∵CD是⊙O的切线,∴∠ODC=90°,∠COD=2∠A=40°,∴∠C=90°﹣40°=50°,故选:C.4.【解答】解:∵直线AB与⊙O相切于点A,连接OA则∠OAB=90°.∵OA=1,∴OB=.故选:B.5.【解答】解:设直线AM与⊙O相切于点K,连接OK.∵AM是⊙O的切线,∴OK⊥AK,∴∠AKO=90°∵∠A=30°,∴AO=2OK=4,∵OD=2,∴AD=OA﹣OD=2,故选:C.6.【解答】解:连接DG、AG,作GH⊥AD于H,连接OD,如图,∵G是BC的中点,∴AG=DG,∴GH垂直平分AD,∴点O在HG上,∵AD∥BC,∴HG⊥BC,∴BC与圆O相切;∵OG=OD,∴点O不是HG的中点,∴圆心O不是AC与BD的交点;而四边形AEFD为⊙O的内接矩形,∴AF与DE的交点是圆O的圆心;∴(1)错误,(2)(3)正确.故选:C.7.【解答】解:∵点P在⊙O上,∴只需要OP⊥EF即可,故选:D.8.【解答】解:如图所示:MK=,故选:B.9.【解答】解:∵PA是⊙O的切线,∴∠PAO=90°,∴∠AOP=90°﹣∠P=50°,∵OB=OC,∴∠AOP=2∠B,∴∠B=∠AOP=25°,故选:B.10.【解答】解:当圆P在y轴的左侧与y轴相切时,平移的距离为3﹣2=1,当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,故选:D.11.【解答】解:连结OC、OD、OA,如图,∵∠D=110°,∴∠B=180°﹣∠D=70°,∴∠AOC=2∠B=140°,∵∠A=60°,∴∠BOD=120°,∵的度数是70°,∴∠COD=70°,∴∠AOD=70°,∠BOC=50°,∴AD弧的长度==π,∴BC弧的长度==π,∵70π=6π•12﹣2π,而2π>π,∴向右移动了70π,此时与直线l相切的弧为.故选:C.12.【解答】解:A、如图1,连接OE,则OB=OE,∵∠B=60°∴∠BOE=60°,∵∠BAC=60°,∴∠BOE=∠BAC,∴OE∥AC,∵EF⊥AC,∴OE⊥EF,∴EF是⊙O的切线∴A选项正确;B、∵EF是⊙O的切线,∴OE⊥EF,由A知:OE∥AC,∴AC⊥EF,∴B选项正确;C、∵∠B=60°,OB=OE,∴BE=OB,∵BE=CE,∴BC=AB=2BO,∴AO=OB,如图2,过O作OH⊥AC于H,∵∠BAC=60°,∴OH=AO≠OB,∴C选项错误;D、如图2,∵BE=EC,∴CE=BE,∵AB=BC,BO=BE,∴AO=CE=OB,∴OH=AO=OB,∴AC是⊙O的切线,∴D选项正确.故选:C.13.【解答】解:(1)连接CO,DO,∵PC与⊙O相切,切点为C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD与⊙O相切,故(1)正确;(2)由(1)得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四边形PCBD是菱形,故(2)正确;(3)连接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直径,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴AC=CO,∴AC=CO=AO,∴∠COA=60°,∴∠CPO=30°,∴CO=PO=AB,∴PO=AB,∵AB是⊙O的直径,CD不是直径,∴AB≠CD,∴PO≠DC,故(3)错误;(4)由(2)证得四边形PCBD是菱形,∴∠ABC=∠ABD,∴弧AC=弧AD,故(4)正确;故选:C.14.【解答】解:如图1,∵⊙O与l1和l2分别相切于点A和点B,∴OA⊥l1,OB⊥l2,∵l1∥l2,∴点A、B、O共线,∴l1和l2的距离=AB=2,所以①正确;作NH⊥AM,如图1,则四边形ABNH为矩形,∴NH=AB=2,在Rt△MNH中,∵∠1=60°,∴MH=NH=,∴MN=2MH=,所以②正确;当直线MN与⊙O相切时,如图2,∠1=∠2,∠3=∠4,∵l1∥l2,∴∠1+∠2+∠3+∠4=180°,∴∠1+∠3=90°,∴∠MON=90°,所以③正确;过点O作OC⊥MN于C,如图2,=S△OAM+S△OMN+S△OBN,∵S四边形ABNM∴•1•AM+•1•BN+MN•OC=(BN+AM)•2,即(AM+BN)+MN•OC=AM+BN,∵AM+BN=,MN=,∴OC=1,而OC⊥MN,∴直线MN与⊙O相切,所以④正确.故选:D.15.【解答】解:由题意CD与圆P1相切于点E,点P1只能在直线CD的左侧,∴P1E⊥CD又∵∠AOD=30°,r=1cm∴在△OEP1中OP1=2cm又∵OP=6cm∴P1P=4cm∴圆P到达圆P1需要时间为:4÷1=4(秒),或P1P=8cm∴圆P到达圆P1需要时间为:8÷1=8(秒),∴⊙P与直线CD相切时,时间为4或8秒.故选:D.二.填空题(共6小题)16.【解答】解:若运动后⊙P与y轴相切,则点P到y轴的距离为1,此时P点坐标为(﹣1,0)或(1,0),而﹣1﹣(﹣4)=3,1﹣(﹣4)=5,所以点P的运动距离为3或5.故答案为3或5.17.【解答】解:由圆周角定理得,∠AOP=2∠ABC=50°,∵PA是⊙O的切线,AB是过切点A的直径,∴∠PAO=90°,∴∠P=90°﹣∠AOP=40°,故答案为:40°.18.【解答】解:(1)∵在△ABO中,OA=OB,∠OAB=30°,∴∠AOB=180°﹣2×30°=120°,∵PA、PB是⊙O的切线,∴OA⊥PA,OB⊥PB,即∠OAP=∠OBP=90°,∴在四边形OAPB中,∠APB=360°﹣120°﹣90°﹣90°=60°,故答案为:60°.(2)如图,连接OP;∵PA、PB是⊙O的切线,∴PO平分∠APB,即∠APO=∠APB=30°,又∵在Rt△OAP中,OA=3,∠APO=30°,∴AP===2,故答案为:2.19.【解答】解:作EF平行于MN,且与⊙O切,交x轴于点E,交y轴于点F,如图所示.设直线EF的解析式为y=x+b,即x﹣y+b=0,∵EF与⊙O相切,且⊙O的半径为1,∴b2=×1×|b|,解得:b=或b=﹣,∴直线EF的解析式为y=x+或y=x﹣,∴点E的坐标为(,0)或(﹣,0).令y=x﹣2中y=0,则x=2,∴点M(2,0).∵根据运动的相对性,且⊙O以每秒1个单位的速度向右作平移运动,∴移动的时间为2﹣秒或2+秒.故答案为:2﹣或2+.20.【解答】解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.故答案为2或1021.【解答】解:连接BD、OC、AG,过O作OQ⊥CF于Q,OZ⊥BG于Z,∵OD=OB,∴∠ABD=∠ODB,∵∠AOD=∠OBD+∠ODB=2∠OBD,∵∠AOD=2∠ABC,∴∠ABC=∠ABD,∴弧AC=弧AD,∵AB是直径,∴CD⊥AB,∴①正确;∵CD⊥AB,∴∠P+∠PCD=90°,∵OD=OC,∴∠OCD=∠ODC=∠P,∴∠PCD+∠OCD=90°,∴∠PCO=90°,∴PC是切线,∴②正确;假设OD∥GF,则∠AOD=∠FEB=2∠ABC,∴3∠ABC=90°,∴∠ABC=30°,已知没有给出∠B=30°,∴③错误;∵AB是直径,∴∠ACB=90°,∵EF⊥BC,∴AC∥EF,∴弧CF=弧AG,∴AG=CF,∵OQ⊥CF,OZ⊥BG,∴CQ=AG,OZ=AG,BZ=BG,∴OZ=CQ,∵OC=OB,∠OQC=∠OZB=90°,∴△OCQ≌△BOZ,∴OQ=BZ=BG,∴④正确.故答案为:①②④.三.解答题(共9小题)22.【解答】(1)证明:连结OC,如图,∵CD为切线,∴OC⊥CD,∵BD⊥DF,∴OC∥BD,∴∠1=∠3,∵OB=OC,∴∠1=∠2,∴∠2=∠3,∴BC平分∠ABD;(2)解:连结AE交OC于G,如图,∵AB为直径,∴∠AEB=90°,∵OC∥BD,∴OC⊥CD,∴AG=EG,易得四边形CDEG为矩形,∴GE=CD=8,∴AE=2EG=16,在Rt△ABE中,AB==4,即圆的直径为4.23.【解答】解:过圆心O′作y轴的垂线,垂足为D,连接O′A,∵O′D⊥BC,∴D为BC中点,∴BC=16﹣4=12,OD=6+4=10,∵⊙O′与x轴相切,∴O′A⊥x轴,∴四边形OAO′D为矩形,半径O′A=OD=10,24.【解答】解:(1)BD=DC.理由如下:连接AD,∵AB是直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=DC;(2)∵AD是等腰△ABC底边上的中线,∴∠BAD=∠CAD,∴,∴BD=DE.∴BD=DE=DC,∴∠DEC=∠DCE,△ABC中,AB=AC,∠A=30°,∴∠DCE=∠ABC=(180°﹣30°)=75°,∴∠DEC=75°,∴∠EDC=180°﹣75°﹣75°=30°,∵BP∥DE,∴∠PBC=∠EDC=30°,∴∠ABP=∠ABC﹣∠PBC=75°﹣30°=45°,∵OB=OP,∴∠OBP=∠OPB=45°,∴∠BOP=90°;(3)设OP交AC于点G,如图,则∠AOG=∠BOP=90°,在Rt△AOG中,∠OAG=30°,∴=,又∵==,∴=,∴=,又∵∠AGO=∠CGP,∴△AOG∽△CPG,∴∠GPC=∠AOG=90°,∴OP⊥PC,∴CP是⊙O的切线;25.【解答】解:(1)∵四边形ABCD是平行四边形∴AB=CD,∠B=∠ADC∵四边形ADCE是⊙O内接四边形∴∠ADC+∠AEC=180°∵∠AEC+∠AEB=180°∴∠ADC=∠AEB∴∠B=∠AEB∴AE=CD(2)如图:连接AO,并延长AO交⊙O交于点F,连接EF.∵AF是直径∴∠AEF=90°∴∠AFE+∠EAF=90°∵∠BAE=∠ECA,∠AFE=∠ACE∴∠AFE=∠BAE∴∠BAE+∠EAF=90°∴∠BAF=90°且AO是半径∴直线AB是⊙O的切线26.【解答】(1)解:∵AB是⊙O的直径,AP是⊙O的切线,∴AB⊥AP,∴∠BAP=90°;又∵∠P=35°,∴∠AB=90°﹣35°=55°.(2)证明:如图,连接OC,OD、AC.∵AB是⊙O的直径,∴∠ACB=90°(直径所对的圆周角是直角),∴∠ACP=90°;又∵D为AP的中点,∴AD=CD(直角三角形斜边上的中线等于斜边的一半);在△OAD和△OCD中,,∴△OAD≌△OCD(SSS),∴∠OAD=∠OCD(全等三角形的对应角相等);又∵AP是⊙O的切线,A是切点,∴AB⊥AP,∴∠OAD=90°,∴∠OCD=90°,即直线CD是⊙O的切线.27.【解答】(1)证明:如图1,连结OC,∵点O为直角三角形斜边AB的中点,∴OC=OA=OB.∴点C在⊙O上,∵BD=OB,∴AB=DO,∵CD=CA,∴∠A=∠D,∴△ACB≌△DCO,∴∠DCO=∠ACB=90°,∴CD是⊙O的切线;(2)解:如图2,在Rt△ABC中,BC=ABsin∠A=2×8×sin30°=8,∵∠ABC=90°﹣∠A=90°﹣30°=60°,∴BE=BCcos60°=8×=4.28.【解答】(1)证明:(1)如图,连接OE.∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径,∴OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠CBE=∠OBE,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC是⊙O的切线;(2)证明:∵∠C=∠BHE=90°,∠EBC=∠EBA,∴BEC=∠BEH,∵BF是⊙O是直径,∴∠BEF=90°,∴∠FEH+∠BEH=90°,∠AEF+∠BEC=90°,∴∠FEH=∠FEA,∴FE平分∠AEH.(3)证明:如图,连结DE.∵BE是∠ABC的平分线,EC⊥BC于C,EH⊥AB于H,∴EC=EH.∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,∴∠CDE=∠HFE,∵∠C=∠EHF=90°,∴△CDE≌△HFE(AAS),∴CD=HF,29.【解答】解:(1)如图,连接OA;∵OC=BC,AC=OB,∴OC=BC=AC=OA.∴△ACO是等边三角形.∴∠O=∠OCA=60°,∵AC=BC,∴∠CAB=∠B,又∠OCA为△ACB的外角,∴∠OCA=∠CAB+∠B=2∠B,∴∠B=30°,又∠OAC=60°,∴∠OAB=90°,∴AB是⊙O的切线;(2)解:作AE⊥CD于点E,∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,CE=AE=;∵∠D=30°,∴AD=2,∴DE=AE=,∴CD=DE+CE=+.30.【解答】解:(1)直线PC与⊙O相切,理由是:如图1,∵AC⊥MN,∴∠ACM=90°,∴∠A+∠AMC=90°,∵AB是⊙O的直径,∴∠APB=∠NPM=90°,∴∠PNM+∠AMC=90°=∠A+∠ABP,∴∠ABP=∠AMC,∵OP=OB,∴∠ABP=∠OPB,Rt△PMN中,C为MN的中点,∴PC=CN,∴∠PNM=∠NPC,∴∠OPC=∠OPB+∠NPC=∠ABP+∠PNM=∠AMC+∠PNM=90°,即OP⊥PC,∴直线PC与⊙O相切;(2)如图2,设该圆与AC的交点为D,连接DM、DN,∵MN为直径,∴∠MDN=90°,则∠MDC+∠NDC=90°,∵∠DCM=∠DCN=90°,∴∠MDC+∠DMC=90°,∴∠NDC=∠DMC,则△MDC∽△DNC,∴,即DC2=MC•NC∵∠ACM=∠NCB=90°,∠A=∠BNC,∴△ACM∽△NCB,∴,即MC•NC=AC•BC;即AC•BC=DC2,∵AC=AO+OC=2+3=5,BC=3﹣2=1,∴DC2=5,∴DC=,∵MN⊥DD',∴D'C=DC=,∴以MN为直径的一系列圆经过两个定点D和D',此定点在C的距离都是.。
2023年中考九年级数学高频考点拔高训练-圆的切线的证明

2023年中考九年级数学高频考点拔高训练-圆的切线的证明1.如图,△ABD是△O的内接三角形,E是弦BD的中点,点C是△O外一点,且△DBC=△A=60°,连接OE并延长与△O相交于点F,与BC相交于点C.(1)求证:BC是△O的切线;(2)若△O的半径为6cm,求弦BD的长.2.如图,AB是⊙O的直径,点C是⊙O上一点,∠BAC的平分线AD交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)如果∠BAC=60°,AE=4√3,求AC长.3.如图,AC与△O相切,切点为C,点B在CO的延长线上,BD△AO,垂足为D,△ABD=△BO D.(1)求证:AB为△O的切线;(2)若BC=4,AC=3,求BD的长.4.如图,AB 是△O 的直径,点E 在△O 上,连接AE 和BE ,BC 平分△ABE 交△O 于点C ,过点C 作CD△BE ,交BE 的延长线于点D ,连接CE .(1)请判断直线CD 与△O 的位置关系,并说明理由;(2)若sin△ECD =35,CE =5,求△O 的半径. 5.如图,AB 为△O 的直径,C 、D 为△O 上不同于A 、B 的两点,△ABD =2△BAC ,连接CD ,过点C 作CE△DB ,垂足为E ,直径AB 与CE 的延长线相交于F 点.(1)求证:CF 是△O 的切线;(2)当BD = 185 ,sinF = 35时,求OF 的长. 6.如图,线段AB 经过圆心O ,交△O 于点A 、C ,点D 为△O 上一点,连结AD 、OD 、BD ,△A =△B =30°.(1)求证:BD 是△O 的切线.(2)若OA =5,求OA 、OD 与AD 围成的扇形的面积.7.如图,在Rt△ABC 中,△ACB =90°,CD 是斜边AB 上的中线,以CD 为直径的△O 分别交AC 、BC 于点M 、N ,过点N 作NE△AB ,垂足为E(1)若△O的半径为52,AC=6,求BN的长;(2)求证:NE与△O相切.8.如图,AB是△O的弦,OP△OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB.(1)求证:BC是△O的切线;(2)若△O的半径为√5,OP=1,求BC的长.9.如图,AB是△O的直径,点C在AB的延长线上,AD平分△CAE交△O于点D,且AE△CD,垂足为点E.(1)求证:直线CE是△O的切线.(2)若BC=3,CD=3 √2,求弦AD的长.10.如图,AB为圆的直径,C是△O上一点,过点C的直线交AB的延长线于点M.作AD△MC,垂足为D,已知AC平分△MAD .(1)求证:MC是△O的切线:(2)若AB=BM=4,求tan△MAC的值11.如图,AB是△O的直径,点C在△O上,BD平分∠ABC交△O于点D,过点D作DE⊥BC,垂足为E.(1)求证:DE与△O相切;(2)若AB=10,AD=6,求DE的长.12.如图,点O在△APB的平分线上,△O与PA相切于点C.(1)求证:直线PB与△O相切;(2)PO的延长线与△O交于点E.若△O的半径为3,PC=4.求弦CE的长.13.如图,已知A(﹣5,0)、B(﹣3,0),点C在y轴的正半轴上,△CBO=45°,CD△AB,△CDA=90°点,P从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时间ts.(1)求点C的坐标;(2)当△BCP=15°时,且△OPC中最长边是最短边的2倍,求t的值;(3)以点P为圆心,PC为半径的△P随点P的运动而变化,当△P与四边形ABCD的边(或边所在的直线)相切时,求t的值.14.已知AB为⊙O的直径,C为⊙O上一动点,连接AC,BC,在BA的延长线上取一点D,连接CD,使CD=CB.(1)如图1,若AC=AD,求证:CD是⊙O的切线;(2)如图2,延长DC交⊙O于点E,连接AE.①若⊙O的直径为√10,sinB=√10,求AD的长;10②若CD=2CE,求cosB的值.15.如图,AB、AC分别是△O的直径和弦,OD△AC于点D,过点A作△O的切线与OD的延长线交于点P,PC、AB的延长线交于点F.(1)求证:PC是△O的切线;(2)若△ABC=60°,AB=10,求线段CF的长,16.如图,在平面直角坐标系中,O为原点,平行四边形ABCD的边BC在x轴上,D点在y轴上,C点坐标为(2,0),BC=6,△BCD=60°,点E是AB上一点,AE=3EB,△P过D,O,C三点,抛物线y=ax2+bx+c过点D,B,C三点.(1)求抛物线的解析式;(2)求证:ED是△P的切线;(3)若点M为此抛物线的顶点,平面上是否存在点N,使得以点B,D,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.答案解析部分1.【答案】(1)证明:连接OB ,如图所示:∵E 是弦BD 的中点,∴BE =DE ,OE△BD , BF ⌢=12BD ⌢ , ∴△BOE =△A ,△OBE+△BOE =90°,∵△DBC =△A ,∴△BOE =△DBC ,∴△OBE+△DBC =90°,∴△OBC =90°,即BC△OB ,∴BC 是△O 的切线;(2)解:∵OB =6,△DBC =△A =60°,BC△OB , ∴OC =12,∵△OBC 的面积= 12 OC•BE = 12OB•BC , ∴BE = OB×BC OC =6×6√312=3√3 , ∴BD =2BE =6 √3 ,即弦BD 的长为6 √3 .2.【答案】(1)证明:连接 OD ,如图,∵∠BAC 的平分线 AD 交 ⊙O 于点 D ,∴∠BAD=∠DAC,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠DAC,∴OD//AE,∵DE⊥AE,∴DE⊥OD,OD为半径,∴DE是⊙O的切线(2)解:作OF⊥AC于F∵∠BAC=60°,∴∠DAE=30°,在RtΔADE中,DE=AE⋅tan30°=4四边形ODEF为矩形,∴OF=DE=4,在RtΔOAF中,∵∠OAF=60°∴AF=√3=4√33∴AC=2AF=8√3 33.【答案】(1)证明:作OH△AB,垂足为H∵AC与△O相切,切点为C,∴△ACO=90°∴△OAC+△AOC=90°又BD△AO∴△BDO=90°∴△BOD+△DBO=90°,△BAD+△ABD=90°又△BOD=△AOC,△ABD=△BOD∴△OAC=△BAD∴OH=OC又OC为△O半径∴AB为△O的切线(2)解:在Rt△BOH和Rt△BAC中AB=√BC2+AC2=5sin∠ABC=OHOB=ACAB=354−OB OB=35,解得OB=52,OC=32,OA=√OC2+AC2=32√5∵△AOC=△BOD,△C=△D=90°∴△AOC△△BOD∴OAOB=ACBD∴32√552=3BD,解得:BD=√5.4.【答案】(1)解:结论:CD是△O的切线.理由:连接OC.∵OC=OB,∴△OCB=△OBC,∵BC平分△ABD,∴△OBC=△CBE,∴△OCB=△CBE,∴OC//BD ,∵CD△BD ,∴CD△OC ,∵OC 是半径,∴CD 是△O 的切线;(2)解:设OA =OC =r ,设AE 交OC 于点J .∵AB 是直径,∴△AEB =90°,∵OC△DC ,CD△DB ,∴△D =△DCJ =△DEJ =90°,∴四边形CDEJ 是矩形,∴△CJE =90°,CD =EJ ,CJ =DE ,∴OC△AE ,∴AJ =EJ ,∵sin△ECD =DE CE =35,CE =5, ∴DE =3,CD =4,∴AJ =EJ =CD =4,CJ =DE =3,在Rt△AJO 中,r 2=(r ﹣3)2+42,∴r =256, ∴△O 的半径为256. 5.【答案】(1)解:连接OC .如图1所示:∵OA=OC,∴△1=△2.又∵△3=△1+△2,∴△3=2△1.又∵△4=2△1,∴△4=△3,∴OC△DB.∵CE△DB,∴OC△CF.又∵OC为△O的半径,∴CF为△O的切线;(2)解:连接AD.如图2所示:∵AB是直径,∴△D=90°,∴CF△AD,∴△BAD=△F,∴sin△BAD=sinF=BDAB=35,∴AB=53BD=6,∴OB=OC=3,∵OC△CF,∴△OCF=90°,∴sinF=OCOF=35,解得:OF=5.6.【答案】(1)证明:∵△ADO=△BAD=30°,∴△DOB=60°∵△ABD=30°,∴△ODB=90°∴OD△BD.∵点D为△O上一点,∴BD是△O的切线.(2)解:∵△DOB=60°,∴△AOD=120°.∵OA=5,∴OA、OD与AD围成的扇形的面积为120·π·52360=253π.7.【答案】(1)解:∵ △O 的半径为52,则CD=5,AB=10,BC=√AB2−AC2=√100−36=8CD为直径,得DN△BC,D为AB的中点,则BD=CD,则△BDC为等腰三角形,由三线合一知,BN=NC=12BC=4。
圆的切线的判定与性质练习题

圆的切线的判定与性质一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.求证:EF与⊙O相切.例2如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切.二、若直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A为垂足,证明OA是⊙O的半径就行了,简称:“作垂直;证半径”例3 如图,AB=AC,D为BC中点,⊙D与AB切于E点.求证:AC与⊙D相切.例3已知:如图,AC,BD与⊙O切于A、B,且AC∥BD,若∠COD=900.求证:CD是⊙O的切线.练习题1.如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M求证:DM与⊙O相切.3(2008黄冈市)已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点E.求证:DE是⊙O的切线.4. 如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F.求证:CE与△CFG的外接圆相切.5.如图,AB是⊙O的直径,∠BAC=30°,M是OA上一点,过M作AB的垂线交AC于点N,交BC 的延长线于点E,直线CF交EN于点F,且∠ECF=∠E.(1)证明CF是⊙O的切线;(2)设⊙O的半径为1,且AC=CE,求MO的长.6.如图,已知⊙O1与⊙O2交于A,B,⊙O1的半径为17,⊙O 2的半径为10,O 1O 2=21,求AB 的长.7.如图,已知⊙O 1与⊙O 2交于A ,B 两点,过A 的直线交两圆于C ,D 两点,•G•为CD 的中点,BG 及其延长线交⊙O 1,⊙O 2于E ,F ,连结DF ,CE ,求证:CE=DF .8.某人用如下方法测一钢管的内径:将一小段钢管竖直放在平台上,向内放入两个半径为5cm 的钢球,测得上面一个钢球顶部高DC=16cm(钢管的轴截面如图所示), 求钢管的内直径AD 的长9.如图,⊙O 1和⊙O 2交于A 、B ,⊙O 1弦交⊙O 2于E ,⊙O 2弦AD 交⊙O 1于F ,若∠CAB=∠DAB ,求证:CE=DF 。
人教版九年级数学上册作业课件 第二十四章 圆 专题训练(十三) 与圆的切线有关的计算与证明

第二十四章 圆
专题训练(十三) 与圆的切线有关的计算与证明
类型1 已知圆的切线,求角的度数或线段长 1.(山西中考)如图,四边形OABC是平行四边形,以点O为圆心,OC 为半径的⊙O与AB相切于点B,与AO相交于点D,AO的延长线交⊙O于 点E,连接EB交OC于点F.求∠C和∠E的度数.
解:连接 OB,∵⊙O 与 AB 相切于点 B,∴OB⊥AB,∵四边形 ABCO 为平行四边形,∴AB∥OC,OA∥BC,∴OB⊥OC,∴∠BOC=90°, ∵OB=OC,∴△OCB 为等腰直角三角形,∴∠C=∠OBC=45°,∵
则点 D 为⊙M 与 x 轴的切点,即 PM=MD,设 P(x,-34 x2+94 x+3), M(x,-34 x+3),则 PD=-34 x2+49 x+3,MD=-34 x+3,∴(-43 x2 +49 x+3)-(-34 x+3)=-34 x+3,解得 x1=1,x2=4(不合题意舍去), ∴⊙M 的半径为 MD=-43 +3=94 ;当⊙M 与 y 轴相切时,如图②所示, 延长 PM 交 AB 于点 D,过点 M 作 ME⊥y 轴于点 E,则点 E 为⊙M 与 y 轴的切点,即 PM=ME,PD-MD=EM=x,
6.(天水中考)如图,AB,AC分别是⊙O的直径和弦,OD⊥AC于点D. 过点A作⊙O的切线与OD的延长线交于点P,PC,AB的延长线交于点F.
(1)求证:PC是⊙O的切线; (2)若∠ABC=60°,AB=10,求线段CF的长.
解:(1)证明:连接OC,∵OD⊥AC,OD经过圆心O,∴AD=CD, ∴PA=PC,∵OP=OP,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP, ∵PA是⊙O的切线,∴∠OAP=90°.∴∠OCP=90°,即OC⊥PC, ∴PC是⊙O的切线
圆切线练习题(含答案)

圆切线练习题(含答案)XXX∠OAD,又∠OAD=90°,∴∠XXX°。
又因为CD与半径OD重合,∴CD垂直于过切点D的半径,即CD是⊙O的切线。
例5.证明:由点悟可知,须证OD=OA。
XXX是⊙O的直径,∴∠OAB=90°,又∠XXX°,因此O、B、D三点共线。
OBD是直角三角形,∴OD=OB×sin∠OBD=r×sin∠OAB=OA。
又因为OD是⊙O的半径,∴OD=r。
OA=r,即AC与⊙O相切。
例6.证明:如图所示。
OA⊥OB,∴∠XXX°,又∠OAD=∠DPB,∴∠DPB=90°。
CD是⊙O的切线,∴PC=CD。
例7.解:如图所示。
O是内心,∴∠BOC=2∠A=140°。
答案:∠BOC=140°。
题目:证明在一个圆中,若一条直径的一端点与圆上一点相连,且与该点相连的两条切线分别与直径所在直线交于不同点,则这两个交点和圆上的该点构成一个等腰三角形。
证明:连接直径的另一端点和圆上的该点,得到三角形ACD。
由于OA=OD,所以∠ODA=∠OAD,从而∠COB=∠COD。
又因为OD=OB,所以三角形COB≌三角形COD,从而∠B=∠XXX。
由于BC是切线,而AB是直径,所以∠B=90°,∠ODC=90°,因此CD是圆的切线。
在证明中,我们先利用“切线的性质定理”和“全等三角形”的基本图形,构造辅助线OD。
然后利用切线的判定定理,得到CD是圆的切线。
这样就证明了∠COB=∠COD和CD是圆的切线。
接下来,我们连接直径的另一端点和圆上的该点,得到三角形ACD。
由于OA=OD,所以∠ODA=∠OAD,从而∠COB=∠COD。
又因为OD=OB,所以三角形COB≌三角形COD,从而∠B=∠XXX。
由于BC是切线,而AB是直径,所以∠B=90°,∠ODC=90°,因此CD是圆的切线。
2023年中考九年级数学高频考点提升练习--切线的证明(含解析)

2023年中考九年级数学高频考点提升练习--切线的证明1.在Rt△ABC中,∠A=90°,AB=AC=4,O是BC边上的点,⊙O与AB相切,切点为D,AC与⊙O相交于点E,且AD=AE.(1)求证:AC是⊙O的切线;(2)如果F为DE弧上的一个动点(不与D、E重合),过点F作⊙O的切线分别与边AB、AC相交于G、H,连接OG、OH,有两个结论:①四边形BCHG的周长不变,②∠GOH的度数不变.已知这两个结论只有一个符合题意,找出正确的结论并证明;(3)探究:在(2)的条件下,设BG=x,CH=y,试问y与x之间满足怎样的函数关系,写出你的探究过程并确定变量x的取值范围,并说明当x=y时F点的位置.2.如图,AB是⊙O的直径,点C、D在⊙O上,且CD平分⊙ACB,过点D作DE∥AB交CB延长线于点E.(1)求证:DE是⊙O的切线;(2)若AC=4,tan∠BAC=12,求DE的长.3.如图,以BC为直径的⊙O交⊙CFB的边CF于点A,BM平分⊙ABC交AC于点M,AD⊙BC于点D,AD交BM于点N,ME⊙BC于点E,AB2=AF·AC,cos⊙ABD=35,AD=12.(1)求证:⊙ABF⊙⊙ACB;(2)求证:FB是⊙O的切线;(3)证明四边形AMEN是菱形,并求该菱形的面积S.4.如图1,AB为⊙O直径,CB与⊙O相切于点B,D为⊙O上一点,连接AD、OC,若AD//OC.(1)求证:CD为⊙O的切线;(2)如图2,过点A作AE⊥AB交CD延长线于点E,连接BD交OC于点F,若AB=3AE=12,求BF的长.5.如图,A(-5,0),B(-3,0),点C在y轴的正半轴上,⊙CBO=45°,CD⊙AB.⊙CDA=90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时时间t秒.(1)求点C 的坐标;(2)当⊙BCP=15°时,求t 的值;(3)以点P 为圆心,PC 为半径的⊙P 随点P 的运动而变化,当⊙P 与四边形ABCD 的边(或边所在的直线)相切时,求t 的值.6.如图,A 为⊙O 外一点,AO⊙BC ,直径BC =12,AO =10,BD 的长为π,点P 是BC 上一动点,⊙DPM =90°,点M 在⊙O 上,且⊙DPM 在DP 的下方.(1)当sinA =35时,求证:AM 是⊙O 的切线; (2)求AM 的最大长度.7.如图,在平面直角坐标系中,点A 、C 的坐标分别为(0,8)、(6,0),以AC 为直径作⊙O ,交坐标轴于点B ,点D 是⊙O 上一点,且 BD =AD ,过点D 作DE⊙BC ,垂足为E.(1)求证:CD 平分⊙ACE ;(2)判断直线ED 与⊙O 的位置关系,并说明理由;(3)求线段CE 的长.8.如图,已知AB 是⊙O 的直径,AC 是弦(不是直径),OD ⊙AC 垂足为G 交⊙O 于D ,E 为⊙O 上一点(异于A 、B ),连接ED 交AC 于点F ,过点E 的直线交BA 、CA 的延长线分别于点P 、M ,且ME =MF .(1)求证:PE是⊙O的切线.(2)若DF=2,EF=8,求AD的长.(3)若PE=6 √2,sin⊙P=13,求AE的长.9.如图,已知等边⊙ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D 作DF⊙AC,垂足为F,过点F作FG⊙AB,垂足为G,连结GD.(1)求证:DF是⊙O的切线;(2)求FG的长;(3)求tan⊙FGD的值.10.如图,⊙O是⊙ABC的外接圆,圆心O在AB上,且⊙B=2⊙A,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,EF=FC.(1)求证:CF是⊙O的切线(2)设⊙O的半径为2,且AC=CE,求AM的长11.如图,⊙ O是⊙ ABC的外接圆,AC为直径,弦BD=BA,BE⊥DC交DC的延长线于点E,求证:(1)∠ECB=∠BAD;(2)BE是⊙ O的切线.12.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,连接AD,过点D作DM⊥AC,垂足为M,AB、MD的延长线交于点N.(1)求证:MN是⊙O的切线;(2)若BC=6,cosC=35,求DN的长.13.已知,如图,AB是⊙O的直径,点C为⊙O上一点,BD⊙OF于点F,交⊙O于点D,AC与BD交于点G,点E为OC的延长线上一点,且⊙OEB=⊙ACD.(1)求证:BE是⊙O的切线;(2)若⊙O的半径为52,BG的长为154,求tan⊙CAB.14.如图,⊙ABC内接于⊙O,AB是⊙O的直径,⊙O的切线PC交BA的延长线于点P,OF⊙BC交AC于点E,交PC于点F,连接AF.(1)判断直线AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为6,AF=2√3,求AC的长;(3)在(2)的条件下,求阴影部分的面积.15.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,连结OA、OB、OC,延长BO与AC交于点D,与⊙O交于点F,延长BA到点G,使得∠BGF=∠GBC,连接FG.备用图(1)求证:FG是⊙O的切线;(2)若⊙O的半径为4.①当OD=3,求AD的长度;②当△OCD是直角三角形时,求△ABC的面积.16.如图1,在矩形ABCD中,AB=9,BC=12,点P是线段AD上的一个动点,以点P为圆心,PD为半径作⊙P,连接CP.(1)当⊙P经过PC的中点时,PC的长为;(2)当CP平分∠ACD时,判断AC与⊙P的位置关系.说明理由,并求出PD的长;(3)如图2,当⊙P与AC交于E,F两点,且EF=9.6时,求点P到AC 的距离.答案解析部分1.【答案】(1)解:如图,连接OA,OD,OE,∵AB是⊙O的切线,点D为切点,∴⊙ADO=90°,∵AD=AE,OD=0E,AO=AO,∴⊙AOD⊙⊙AOE,∴⊙ADO=⊙AEO=90°,∴AC是⊙O的切线,点E为切点;(2)解:根据题意,四边形BCHG的周长为BC+CH+BG+HG,∵∠A=90°,AB=AC=4,∴⊙B=⊙C=45°,BC=4 √2,∵⊙ADO=⊙AEO=90°,OD=0E,∴⊙DOB=⊙EOC=45°,⊙BOD⊙⊙COE,∴OB=OC,BD=CE,∴⊙EOD=90°,⊙AOB=90°,⊙BAO=45°,∴BD=OD=DA=CE= 12AB=2,∵AB,AC,GH都是⊙O的切线,∴HF=HE,GD=GF,∴四边形BCHG的周长为BC+CE+EH+GH+BD+GD=BC+CE+BD+GH+HF+FG= BC+CE+BD+2GH=4+4 √2+2GH,∵GH是变量,∴四边形BCHG的周长不是定值,这个结论不符合题意;∵AB,AC,GH都是⊙O的切线,根据切线长定理,得GO平分⊙DOF,HO平分⊙EOF,∴⊙GOH=⊙GOF+⊙HOF= 12⊙DOF+12⊙EOF=12(⊙DOF+⊙EO)= 12⊙EOD,∵⊙EOD=90°,∴⊙GOH=45°,是个定值,故该结论符合题意(3)解:根据题意,GD=GF=x-2,HE=HF=y-2,∴GH=x+y-4,AG=4-x,AH=4-y,在直角三角形AGH中,AG2+AH2=GH2,∴(x−2)2+(y−2)2=(x+y−4)2,整理,得y= 8x,且2<x<4,当x=y时,∴AG=AH,∴AG:AB=AH:AC,∴GH⊙BC,∴OF⊙GH,∵BG=CH,⊙B=⊙C,BO=CO,∴⊙BOG⊙⊙COH,∴GO=HO,∴GF=FH,∴A,F,O三点一线,∴⊙DOF=⊙EOF,∴弧DF=弧EF,故点F是弧DE的中点.2.【答案】(1)解:连接OD,∵AB是⊙O的直径,∴⊙ACB=90°,∵CD平分⊙ACB,∴⊙ACD=45°,∴⊙AOD=2⊙ACD=90°,∵AB∥DE,∴⊙ODE=⊙AOD=90°,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:过点B作BG⊙DE于点G,∴⊙BGD=⊙BGE=90°,∵⊙AOD=90°,∴⊙DOB=90°,∵⊙ODE=90°,∴四边形ODGB是矩形,∵OD=OB,∴四边形ODGB是正方形,∴OB=OD=DG=BG,∵AC=4,∴tan∠BAC=1 2,∴BC=2,∴AB=√AC2+BC2=2√5,∴BG=DG=OB=√5,∵AB∥DE,∴⊙ABC=⊙E,∴⊙EBG=⊙BAC,∴tan∠EBG=tan∠BAC=1 2,∴EG=12BG=√5 2,∴DE=DG+EG=3√52.3.【答案】(1)证明:∵BC为⊙O的直径∴⊙BAC=90°∴⊙BAF=⊙BAC=90°又∵AB2=AF·AC∴ABAC=AF AB∴⊙ABF⊙⊙ACB(2)证明:∵⊙ABF⊙⊙ACB∴⊙ABF=⊙C又∵⊙ABC+⊙C=90°∴⊙FBC=⊙ABC+⊙ABF=90°∴BF是⊙O的切线(3)证明:∵ME⊙BC,MA⊙AB,BM平分⊙ABC ∴MA=ME∴⊙AMN=90°-⊙ABM=90°-⊙EBM=⊙EMN∴AB=BE∵NM=NM∴⊙AMN⊙⊙EMN∴AN=NE又∵AD⊙BC,ME⊙BC,∴ME⊙AD,∴⊙ANM=⊙EMN,∴⊙ANM=⊙AMN∴AN=AM∴AN=NE=EM=MA,∴四边形AMEN是菱形.∵cos⊙ABD= 35,⊙ADB=90°∴BDAB=3 5设BD=3x,则AB=5x,AD= √(5x)2−(3x)2=4x 又∵AD=12,∴x=3,∴BD=9,AB=15,∴BE=BA=15∴DE=BE-BD=6∵ND⊙ME,∴⊙BND⊙⊙BME∴NDME=BD BE设ME=y,则ND=12-y,12−y y=9 15,解得y= 15 2∴S= ME⋅DE=152×6=454.【答案】(1)证明:连接OD∵CB与⊙O相切于点B,∴OB⊥BC∵AD//OC,∴∠A=∠COB,∠ADO=∠DOC∵OA=OD,∴∠A=∠ADO=∠COB=∠DOC,∴△DOC≌△BOC(SAS),∴∠ODC=∠OBC=90°,∴OD⊥DC又OD为⊙O半径,∴CD为⊙O的切线(2)解:设CB=x∵AE⊥EB,∴AE为⊙O的切线,∴CD、CB为⊙O的切线,∴ED=AE= 4,CD=CB=x,∠DOC=∠BCO,∴BD⊥OC过点E作EM⊥BC于M,则EM=12,CM=x−4,∴(4+x)2=122+(x−4)2解得x=9,∴CB=9,∴OC=√62+92=3√13,∵AB是直径,且AD⊙OC∴⊙OFB=⊙ADB=⊙OBC=90°又∵⊙COB=⊙BOF∴OB BF =OC BC∴BF =OB⋅BC OC =6×93√13=1813√13 5.【答案】(1)解:∵⊙BCO=⊙CBO=45°,∴OC=OB=3,又∵点C 在y 轴的正半轴上,∴点C 的坐标为(0,3)(2)解:分两种情况考虑:①当点P 在点B 右侧时,如图2,若⊙BCP=15°,得⊙PCO=30°,故PO=CO•tan30°= √3 ,此时t=4+ √3 ;②当点P 在点B 左侧时,如图3,由⊙BCP=15°,得⊙PCO=60°,故OP=COtan60°=3 √3 ,此时,t=4+3 √3 ,∴t 的值为4+ √3 或4+3 √3(3)解:由题意知,若⊙P 与四边形ABCD 的边相切时,有以下三种情况: ①当⊙P 与BC 相切于点C 时,有⊙BCP=90°,从而⊙OCP=45°,得到OP=3,此时t=1;②当⊙P与CD相切于点C时,有PC⊙CD,即点P与点O重合,此时t=4;③当⊙P与AD相切时,由题意,得⊙DAO=90°,∴点A为切点,如图4,PC2=PA2=(9-t)2,PO2=(t-4)2,于是(9-t)2=(t-4)2+32,即81-18t+t2=t2-8t+16+9,解得:t=5.6,∴t的值为1或4或5.6.6.【答案】(1)证明:如图①,过点O作OE⊙AM于点E,∵在Rt⊙AOE 中,当sinA =35,OA =10, ∴OE =6∵直径BC =12,∴OM =6=OE ,∴点E 与点M 重合,OM⊙AM ,∴AM 是⊙O 的切线.(2)解:如图②,当点P 与点B 重合时,AM 取得最大值.AM 的最大长度可以通过勾股定理求得.延长AO 交⊙O 于点F ,作MG⊙AF 于点G ,连接OD 、OM ,DM ,∵BD 的长为π,∴π=∠BOD⋅π⋅6180, ∴⊙BOD =30°,∵⊙DBM =90°,∴DM 是⊙O 的直径,即DM 过点O ,∴⊙COM =30°,∵AO⊙BC ,∴⊙MOG =60°,在Rt⊙GOM 中,⊙MOG =60°,OM =6,∴OG=3,GM=3√3,在Rt⊙GAM中,AM=√AG2+GM2=14,∴AM的最大长度:14.7.【答案】(1)证明:∵四边形ABCD是⊙O内接四边形,∴⊙BAD+⊙BCD=180°,又∵⊙BCD+⊙DCE=180°,∴⊙DCE=⊙BAD,∵=,∴⊙BAD=⊙ACD,∴⊙DCE=⊙ACD,∴CD平分⊙ACE.(2)解:直线ED与⊙O相切.连接OD.∵OC=OD,∴⊙ODC=⊙OCD,又∵⊙DCE=⊙ACD,∴⊙DCE=⊙ODC,∴OD⊙BE,∴⊙ODE=⊙DEC,又∵DE⊙BC,∴⊙DEC=90°,∴⊙ODE=90°∴OD⊙DE,∴ED与⊙O相切(3)解:延长DO交AB于点H.∵OD⊙BE,O是AC的中点,∴H是AB的中点,∴HO是⊙ABC的中位线,∴HO= 12BC=3,又∵AC为直径,∴⊙ADC=90°,又∵O是AC的中点∴OD= 12AC=12× √62+82=5,∴HD=3+5=8,∵⊙ABC=⊙DEC=⊙ODE=90°,∴四边形BEDH是矩形,∴BE=HD=8,∴CE=8﹣6=28.【答案】(1)证明:连接OE,∵OD⊙AC,∴⊙DGF=90°,∴⊙D+⊙DFG=⊙D+⊙AFE=90°,∴⊙DFG=⊙AFE,∵ME=MF,∴⊙MEF=⊙MFE,∵OE=OD,∴⊙D=⊙OED,∴⊙OED+⊙MEF=90°,∴OE⊙PE,∴PE是⊙O的切线(2)解:∵OD⊙AC,∴CD=AD,∴⊙FAD=⊙AED,∵⊙ADF=⊙EDA,∴⊙DFA ~⊙DAE , ∴AD DE =DF AD, ∴AD 2=DF•DE =2×10=20, ∴AD =2 √5(3)解:设OE =x , ∵sin⊙P = OE OP =13, ∴OP =3x ,∴x 2+(6 √2 )2=(3x )2,解得:x =3,过E 作EH 垂直AB 于H ,sin⊙P = EH PE =6√2=13 , ∴EH =2 √2 ,∵OH 2+EH 2=OE 2,∴OH =1,∴AH =2,∵AE 2=HE 2+AH 2,∴AE =2 √3 .9.【答案】(1)解:连结OD ,如图,∵⊙ABC 为等边三角形,∴⊙C =⊙A =⊙B =60°,而OD =OB ,∴⊙ODB 是等边三角形,⊙ODB =60°,∴⊙ODB =⊙C ,∴OD⊙AC ,∵DF⊙AC ,∴OD⊙DF ,∴DF 是⊙O 的切线;(2)解:∵OD⊙AC ,点O 为AB 的中点,∴OD 为⊙ABC 的中位线,∴BD =CD =6.在Rt⊙CDF中,⊙C=60°,∴⊙CDF=30°,∴CF=12CD=3,∴AF=AC﹣CF=12﹣3=9,在Rt⊙AFG中,∵⊙A=60°,∴FG=AF×sinA=9× √32=9√32(3)解:过D作DH⊙AB于H.∵FG⊙AB,DH⊙AB,∴FG⊙DH,∴⊙FGD=⊙GDH.在Rt⊙BDH中,⊙B=60°,∴⊙BDH=30°,∴BH=12BD=3,DH=√3BH=3√3,在Rt⊙AFG中,∵⊙AFG=30°,∴AG=12AF=92,∵GH=AB﹣AG﹣BH=12﹣92﹣3=92,∴tan⊙GDH=GHDH=923√3=√32,∴tan⊙FGD=tan⊙GDH=√32.10.【答案】(1)证明:连接OC,如图,∵⊙O是⊙ABC的外接圆,圆心O在AB上,∴AB是⊙O的直径,∴⊙ACB=90°,又∵⊙B=2⊙A,∴⊙B=60°,⊙A=30°,∵EM⊙AB ,∴⊙EMB=90°,在Rt⊙EMB 中,⊙B=60°,∴⊙E=30°,又∵EF=FC ,∴⊙ECF=⊙E=30°,又∵⊙ECA=90°,∴⊙FCA=60°,∵OA=OC ,∴⊙OCA=⊙A=30°,∴⊙FCO=⊙FCA+⊙ACO=90°,∴OC⊙CF ,∴FC 是⊙O 的切线(2)解:在Rt⊙ABC 中,∵⊙ACB=90°,⊙A=30°,AB=4, ∴BC=12AB=2,AC=√3BC=2√3, ∵AC=CE ,∴CE=2√3,∴BE=BC+CE=2+2√3,在Rt⊙BEM 中,⊙BME=90°,⊙E=30°∴BM=12BE=1+√3, ∴AM=AB ﹣BM=4﹣1﹣√3=3﹣√311.【答案】(1)证明:∵四边形ABCD 是圆内接四边形, ∴⊙ECB=⊙BAD .(2)证明:连结OB,OD,在⊙ABO和⊙DBO中,{AB=BD BO=BOOA=OD,∴⊙ABO⊙⊙DBO (SSS),∴⊙DBO=⊙ABO,∵⊙ABO=⊙OAB=⊙BDC,∴⊙DBO=⊙BDC,∴OB⊙ED,∵BE⊙ED,∴EB⊙BO,∴BE是⊙O的切线12.【答案】(1)证明:连接OD,∵AB是⊙O的直径,∴∠ADB=90°;又∵AB=AC,∴BD=CD,∠BAD=∠CAD,∵AO=DO,∴∠OAD=∠ODA,∴∠CAD=∠ODA,∴OD//AC;∵DM⊥AC,∴∠AMD=90°,∴∠ODN=∠AMD=90°,∴OD⊥MN;又∵OD是⊙O半径,∴MN是⊙O的切线;(2)∵BC=6,BD=CD,∴BD=CD=3;在Rt△ADC中,cosC=CD AC,∵cosC=35,∴AC=5;又∵AB=AC,∴AB=5;在Rt△ADB中,根据勾股定理AD=√AB2−BD2=4,∵∠ODN=90°,∴∠NDB+∠BDO=90°;又∵∠ADB=90°,∴∠BDO+∠ODA=90°,∠OAD=∠ODA,∴∠NDB=∠OAD;又∵∠N=∠N,∴△BDN∽△DAN,∴BNDN=DNAN=BDDA=34,∴BN=34DN,DN=34AN,∴BN=34(34AN)=916AN,∵BN+AB=AN,∴916AN+5=AN,∴AN=80 7,∴DN=34AN=607.13.【答案】(1)证明:∵∠OEB=∠ACD,∠ACD=∠ABD,∴∠OEB=∠ABD,∵OF⊥BD,∴∠BFE=90°,∴∠OEB+∠EBF=90°,∴∠ABD+∠EBF=90°,即∠OBE=90°,∴BE⊥OB,∴BE是⊙O的切线;(2)解:∵OA=OB,∴∠CAO=∠ACO,∵∠CDB =∠CAO ,∴∠ACO =∠CDB ,∵∠CFD =∠GFC ,∴△CDF ∼△GCF ,∴GF CF =CG CD, ∵∠CDB =∠CAB , ∠DCA =∠DBA , ∴△DCG ∼△ABG ,∴CG CD =BG AB, ∴GF CF =BG AB, ∵r =52 , BG =154, ∴AB =2r =5 ,∴tan∠CAB =tan∠ACO =GF CF =BG AB =34. 14.【答案】(1)解:直线AF 与⊙O 相切. 理由如下:连接OC ,∵PC 为圆O 切线,∴CP⊙OC ,∴⊙OCP =90°,∵OF⊙BC ,∴⊙AOF =⊙B ,⊙COF =⊙OCB ,∵OC =OB ,∴⊙OCB =⊙B ,∴⊙AOF =⊙COF ,∵在⊙AOF 和⊙COF 中,{OA =OC ∠AOF =∠COF OF =OF,∴⊙AOF⊙⊙COF(SAS),∴⊙OAF=⊙OCF=90°,∴AF⊙OA,又∵OA为圆O的半径,∴AF为圆O的切线;(2)解:∵⊙AOF⊙⊙COF,∴⊙AOF=⊙COF,∵OA=OC,∴E为AC中点,即AE=CE=12AC,OE⊥AC,∵⊙OAF=90°,OA=6,AF=2√3,∴tan∠AOF=AFOA=2√36=√33,∴⊙AOF=30°,∴AE=12OA=3,∴AC=2AE=6;(3)解:∵AC=OA=6,OC=OA,∴⊙AOC是等边三角形,∴⊙AOC=60°,OC=6,∵⊙OCP=90°,∴CP=√3OC=6√3,∴S⊙OCP=12OC⋅CP=12×6×6√3=18√3,S扇形AOC=60⋅π×62360=6π,∴阴影部分的面积=S⊙OCP﹣S扇形AOC=18√3−6π. 15.【答案】(1)证明:连接AF,∵BF为⊙O的直径,∴∠BAF =90° , ∠FAG =90° , ∴∠BGF +∠AFG =90° ,∵AB =AC ,∴∠ABC =∠ACB , ∵∠ACB =∠AFB , ∠BGF =∠ABC , ∴∠BGF =∠AFB ,∴∠AFB +∠AFG =90° ,即 ∠OFG =90° . 又∵OF 为半径,∴FG 是 ⊙O 的切线.(2)解:①连接CF ,则 ∠ACF =∠ABF ,∵AB=AC ,OB=OC ,OA=OA ,∴△ABO ≅△ACO ,∴∠ABO =∠BAO =∠CAO =∠ACO , ∴∠CAO =∠ACF ,∴AO ∥CF ,∴AD CD =OD DF. ∵半径是4, OD =3 ,∴DF =1 , BD =7 , ∴AD CD =3 ,即 CD =13AD , 又由相交弦定理可得: AD ⋅CD =BD ⋅DF , ∴AD ⋅CD =7 ,即 13AD 2=7 , ∴AD =√21 (舍负);②∵△ODC 为直角三角形, ∠ODC =90° 不可能等于 90° . ∴(i )当 ∠ODC =90° 时,则 AD =CD , 由于 ∠ACO =∠ACF ,∴OD =DF =2 , BD =6 , ∴AD ⋅CD =AD 2=6×2=12 ,∴AD=2√3,AC=4√3,∴S△ABC=12×4√3×6=12√3;(ii)当∠COD=90°时,∵OB=OC=4,∴△OBC是等腰直角三角形,∴BC=4√2,延长AO交BC于点M,∵AB=AC,∴弧AB=弧AC,∴AM⊥BC,∴MO=sin45∘⋅BO=2√2,∴AM=4+2√2,∴S△ABC=12×4√2×(4+2√2)=8√2+8.16.【答案】(1)6√3(2)⊙P与AC相切,理由如下:如图1,过点P作PH⊥AC于点H.∵CP平分∠ACD,∴PH=PD,∴⊙P与AC相切于点H.∵四边形ABCD是矩形,∴∠ADC=90∘在Rt△ADC中,CD=9,AD=12,∴AC=15,∴sin∠DAC=3 5设⊙P半径为x,则PH=PD=x,AP=12−x.在 Rt △AHP 中, sin∠PAH =PH AP =x 12−x∴x 12−x =35 ∴x =4.5 ,即 PD 的长为 4.5 . (3)如图2,过点 P 作 PH ⊥AC 于 H ,连接 PF .由(2)可知:在 Rt △AHP 中, sin∠PAH =PH AP =35设 ⊙P 半径为 x ,则 PF =PD =x,AP =12−x .∴PH =35(12−x). 在 ⊙P 中, PH ⊥AC,EF =9.6∴HF =245在 Rt △PHF 中, [35(12−x)]2+(245)2=x 2 ∴x 1=6,x 2=−392 (舍).∴PD =6 ,∴PH =35(12−x)=185 ,即点 P 到 AC 的距离为 185 .。
圆的切线专题证明题

1、.已知:如图,CB是⊙O的直径,BP是和⊙O相切于点B的切线,⊙O的弦AC平行于OP.(1)求证:AP是⊙O的切线.(2)若∠P=60°,PB=2cm,求AC.2、⊿ABC中,AB=AC,以AB为直径作⊙O交BC于D,D E⊥AC于E。
求证:DE为⊙O的切线3、、如图,AB=BC,以AB为直径的⊙O交AC于D,作D E⊥BC于E.(1)求证:DE为⊙O的切线(2)作DG⊥AB交⊙O于G,垂足为F,∠A=30°。
AB=8,求DG的长4、如图,AB为⊙O的直径,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上. 求证:PE是⊙O的切线.APOB5、如图,D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO.求证:BD是⊙O的切线;6.如图,在中,,以为直径的分别交、于点、,点在的延长线上,且求证:直线是⊙0的切线;7、如图9,直线n切⊙O于A,点P为直线n上的一点,直线PO交⊙O于C、B,D在线段AP上,连接DB,且AD=DB.(1)判断DB与⊙O的位置关系,并说明理由。
(2)若AD=1,PB=BO,求弦AC的长8、如图10,⊙O直径AB=4,P在AB的延长线上,过P作⊙O切线,切点为C,连接AC。
(1)若∠CPA=30°,求PC的长(2)若P在AB的延长线上运动,∠CPA的平分线交AC于点M,你认为∠CMP 的大小是否发生变化?若变化,请说明理由;若不变化,求出∠CMP的值。
9.如图,MN为⊙O的切线,A为切点,过点A作AP⊥MN,交⊙O的弦BC于点P。
若PA=2cm,PB=5cm,PC=3cm,求⊙O的直径.10.已知:如图,同心圆O,大圆的弦AB=CD,且AB是小圆的切线,切点为E.求证:CD是小圆的切线.11、如图,AB为⊙O的直径,AD平分∠BAC交⊙O于点D,DE⊥AC交AC的延长线于点E,FB是⊙O的切线交AD的延长线于点F. (1)求证:DE是⊙O的切线;(2)若DE=3,⊙O的半径为5,求BF的长。
切线的判定与性质专题练习题含答案

人教版九年级数学上册第二十四章圆24. 2点和圆、直线和圆的位置关系切线的判定与性质专题练习题1.下列说法中,正确的是()A.与圆有公共点的直线是圆的切线B.经过半径外端的直线是圆的切线C.经过切点的直线是圆的切线D.圆心到直线的距离等于半径的直线是圆的切线2.如图,在。
O中,弦AB = OA, P是半径OB的延长线上一点,且PB = OB,则PA 与。
O的位置关系是.3.如图,4ABC的一边AB是。
O的直径,请你添加一个条件,使BC是。
O的切线,你所添加的条件为.4.如图,在Rt AABC中,NC = 90°, BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.求证:AC是。
O的切线.5.如图,AB是。
O的直径,AC切。
O于A, BC交。
O于点D,若NC = 70°,则NAOD的度数为()6.如图,线段AB是。
O的直径,点C, D为。
O上的点,过点C作。
O的切线交 AB的延长线于点E,若NE=50°,则NCDB等于()7.如图,等腰直角三角形ABC中,AB=AC = 8, O为BC的中点,以O为圆心作半圆,使它与AB, AC都相切,切点分别为D, E,则。
O的半径为()A. 8B. 6C. 5D. 48.如图,AB是。
O的直径,O是圆心,BC与。
O切于点B, CO交。
O于点D,且 BC = 8, CD=4,那么。
O的半径是.9.如图,AB是。
O的直径,点C在AB的延长线上,CD与。
O相切于点D, CE± AD,交AD的延长线于点E.求证:NBDC=NA.10.如图,CD是。
O的直径,弦ABXCD于点G,直线EF与。
O相切于点D,则下列结论中不一定正确的是()A. AG=BGB. AB〃EFC. AD〃BCD.NABC=NADC11.如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则NC = 度.12.如图,AB为。
苏教版九年级数学上册第二章 2.9 圆中有关切线的计算与证明(含答案)

2.9圆中有关切线的计算与证明一.解答题(共20小题)1.(2019秋•金坛区期中)已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=40°,BT 交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.(1)如图1,求∠T和∠CDB的度数;(2)如图2,当BE=BC时,求∠CDO的度数.2.(2019秋•睢宁县期中)如图,在⊙O中,P A是直径,PC是弦,PH平分∠APB且与⊙O 交于点H,过H作HB⊥PC交PC的延长线于点B.(1)求证:HB是⊙O的切线;(2)若HB=4,BC=2,求⊙O的直径.3.(2019秋•泗阳县期中)如图,CD是⊙O的切线,切点为E,AC、BD分别与⊙O相切于点A、B.如果CD=6,AC=4,求DB的长.4.(2019秋•扬州期中)如图,点D为⊙O上一点,点C在直径AB的延长线上,且∠CDB =∠CAD,过点A作⊙O的切线,交CD的延长线于点E.判定直线CD与⊙O的位置关系,并说明你的理由;5.(2019秋•兴化市期中)如图,AB是⊙O的直径,F是⊙O上一点,连接FO、FB.C为中点,过点C作CD⊥AB,垂足为D,CD交FB于点E,CG∥FB,交AB的延长线于点G.(1)求证:CG是⊙O的切线;(2)若∠BOF=120°,且CE=4,求⊙O的半径.6.(2019秋•镇江期中)在矩形ABCD中,AB=5cm,BC=10cm,点P从点A出发,沿AB 边向点B以每秒1cm的速度移动,同时点Q从点B出发沿BC边向点C以每秒2cm的速度移动,P、Q两点在分别到达B、C两点时就停止移动,设两点移动的时间为秒,解答下列问题:(1)如图1,当t为几秒时,△PBQ的面积等于4cm2?(2)如图2,以Q为圆心,PQ为半径作⊙Q.在运动过程中,是否存在这样的t值,使⊙Q正好与四边形DPQC的一边(或边所在的直线)相切?若存在,求出t值;若不存在,请说明理由.7.(2019秋•玄武区期中)如图,在▱ABCD中,AD是⊙O的弦,BC是⊙O的切线,切点为B.(1)求证:;(2)若AB=5,AD=8,求⊙O的半径.8.(2019秋•建邺区期中)如图,四边形ABCD内接于⊙O,∠DAB=90°,点E在BC的延长线上,且∠CED=∠CAB.(1)求证:DE是⊙O的切线.(2)若AC∥DE,当AB=8,DC=4时,求BD的长.9.(2019秋•玄武区期中)如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD 为直径作⊙O,与AC、BC分别交于点M、N,与AB的另一个交点为E.过点N作NF ⊥AB,垂足为F.(1)求证:NF是⊙O的切线;(2)若NF=2,DF=1,求弦ED的长.10.(2019秋•江阴市期中)如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E,BC=3,CD(1)求证:直线CE是⊙O的切线;11.(2019春•建湖县期中)如图,点D为⊙O上一点,点C在直径AB的延长线上,且∠COD=2∠BDC,过点A作⊙O的切线,交CD的延长线于点E.(1)判定直线CD与⊙O的位置关系,并说明你的理由;12.(2019春•宿豫区期中)已知,⊙O是△ABC的外接圆,∠CAD=∠ABC.(1)如图1,试判断直线AD与⊙O的位置关系,并说明理由;(2)如图2,将直线AD沿直线AC翻折后交⊙O于点E,连接OA、OE、CE,若∠ABC =30°,求证:四边形ACEO是菱形.13.(2019秋•锡山区期中)如图,已知直角△ABC,∠C=90°,BC=3,AC=4.⊙C的半径长为1,已知点P是△ABC边上一动点(可以与顶点重合).(1)若点P到⊙C的切线长为,则AP的长度为;(2)若点P到⊙C的切线长为m,求点P的位置有几个?(直接写出结果)14.(2019秋•灌云县期中)如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥AC,交AC的延长线于点E.(1)求证:直线DE是⊙O的切线;(2)若AE=8,⊙O的半径为5,求DE的长.15.(2019秋•建邺区期末)如图,在△ABC中,∠ABC=60°,⊙O是△ABC的外接圆,P 为CO的延长线上一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)若PB为⊙O的切线,求证:△ABC是等边三角形.16.(2019秋•大名县期中)已知,△ABC中,∠ACB=90°,AC=BC=8,点A在半径为5的⊙O上,点O在直线l上.(1)如图①,若⊙O经过点C,交BC于点D,求CD的长.(2)在(1)的条件下,若BC边交l于点E,OE=2,求BE的长.(3)如图②,若直线l还经过点C,BC是⊙O的切线,F为切点,则CF的长为.17.(2019秋•东台市期中)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足D,AD交⊙O于点E.(1)求证:AC平分∠DAB.(2)连接CE,若CE=6,AC=8,求出⊙O的直径的长.18.(2019秋•锡山区期中)如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)试说明DF是⊙O的切线;(2)若AC=3AE,求的值.19.(2019秋•江阴市期中)如图,Rt△APE,∠AEP=90°,以AB为直径的⊙O交PE于C,且AC平分∠EAP.连接BC,PB:PC=1:2.(1)求证:PE是⊙O的切线;(2)已知⊙O的半径为,求AP的长.20.(2018秋•邳州市期中)如图,△OAC中,以O为圆心,OA为半径作⊙O,作OB⊥OC 交⊙O于点B,垂足为O,连接AB交OC于点D,∠CAD=∠CDA.(1)AC与⊙O有怎样的位置关系?为什么?(2)若OB=3,BD,求线段AC的长.答案解析一.解答题(共20小题)1.(2019秋•金坛区期中)已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=40°,BT 交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.(1)如图1,求∠T和∠CDB的度数;(2)如图2,当BE=BC时,求∠CDO的度数.【分析】(1)根据切线的性质:圆的切线垂直于经过切点的半径,得∠TAB=90°,根据三角形内角和得∠T的度数,由直径所对的圆周角是直角和同弧所对的圆周角相等得∠CDB的度数;(2)如图②,连接AD,根据等边对等角得:∠BCE=∠BEC=70°,利用同圆的半径相等知:OA=OD,同理∠ODA=∠OAD=70°,由此可得结论.【解析】(1)如图①,连接AC,∵AT是⊙O切线,AB是⊙O的直径,∴AT⊥AB,即∠TAB=90°,∵∠ABT=40°,∴∠T=90°﹣∠ABT=50°,由AB是⊙O的直径,得∠ACB=90°,∴∠CAB=90°﹣∠ABC=50°,∴∠CDB=∠CAB=50°;(2)如图②,连接AD,在△BCE中,BE=BC,∠EBC=40°,∴∠BCE=∠BEC=70°,∴∠BAD=∠BCD=70°,∵OA=OD,∴∠ODA=∠OAD=70°,∵∠ADC=∠ABC=40°,∴∠CDO=∠ODA﹣∠ADC=70°﹣40°=30°.2.(2019秋•睢宁县期中)如图,在⊙O中,P A是直径,PC是弦,PH平分∠APB且与⊙O 交于点H,过H作HB⊥PC交PC的延长线于点B.(1)求证:HB是⊙O的切线;(2)若HB=4,BC=2,求⊙O的直径.【分析】(1)连接OH,由题意可得∠OHP=∠HP A=∠HPB,可证OH∥BP,则可得OH⊥BH,根据切线的判定可证HB是⊙O的切线;(2)过点O作OE⊥PC,垂足为E,可证四边形EOHB是矩形,可得OE=BH=4,OH =BE,再根据勾股定理可求OP的长,即可求⊙O的直径.【解答】证明:(1)如图,连接OH,∵PH平分∠APB,∴∠HP A=∠HPB,∵OP=OH,∴∠OHP=∠HP A,∴∠HPB=∠OHP,∴OH∥BP,∵BP⊥BH,∴OH⊥BH,∴HB是⊙O的切线;(2)如图,过点O作OE⊥PC,垂足为E,∵OE⊥PC,OH⊥BH,BP⊥BH,∴四边形EOHB是矩形,∴OE=BH=4,OH=BE,∴CE=OH﹣2,∵OE⊥PC∴PE=EC=OH﹣2=OP﹣2,在Rt△POE中,OP2=PE2+OE2,∴OP2=(OP﹣2)2+16∴OP=5,∴AP=2OP=10,∴⊙O的直径是10.3.(2019秋•泗阳县期中)如图,CD是⊙O的切线,切点为E,AC、BD分别与⊙O相切于点A、B.如果CD=6,AC=4,求DB的长.【分析】由于CD、AC、BD是⊙O的切线,则可得AC=CE,ED=DB,由已知数据易求DE的长,进而可求出DB的长.【解析】∵CD切⊙O点E,AC切切⊙O点A.∴CE=AC=4,∴ED=CD﹣CE=2,∵CD切⊙O点E,BD切⊙O点B.∴BD=ED=2.4.(2019秋•扬州期中)如图,点D为⊙O上一点,点C在直径AB的延长线上,且∠CDB =∠CAD,过点A作⊙O的切线,交CD的延长线于点E.判定直线CD与⊙O的位置关系,并说明你的理由;【分析】连接OD,根据圆周角定理求出∠DAB+∠DBA=90°,求出∠CDB+∠BDO=90°,根据切线的判定推出即可;【解答】(1)证明:连接OD,∵OD=OB,∴∠DBA=∠BDO,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDB=∠CAD,∴∠CDB+∠BDO=90°,即OD⊥CE,∵D为⊙O的一点,∴直线CD是⊙O的切线;5.(2019秋•兴化市期中)如图,AB是⊙O的直径,F是⊙O上一点,连接FO、FB.C为中点,过点C作CD⊥AB,垂足为D,CD交FB于点E,CG∥FB,交AB的延长线于点G.(1)求证:CG是⊙O的切线;(2)若∠BOF=120°,且CE=4,求⊙O的半径.【分析】(1)连接OC.由点C为的中点,得到,求得∠COB=∠COF,根据平行线的性质得到∠OCG=∠OMB=90°,于是得到CG是⊙O的切线;(2)连接BC.由(1)知,∠COB=∠COF∠BOF=60°,推出△OBC为等边三角形.得到∠OCD=30°,则EM CE=2,根据勾股定理得到CM,求得OM=CM,于是得到结论.【解答】(1)证明:连接OC.∵点C为的中点,∴,∴∠COB=∠COF,∵OB=OF,∴OC⊥BF,设垂足为M,则∠OMB=90°,∵CG∥FB,∴∠OCG=∠OMB=90°,∴CG是⊙O的切线;(2)解:连接BC.由(1)知,∠COB=∠COF∠BOF=60°,∵OB=OC,∴△OBC为等边三角形.∵∠OCD=30°,则EM CE=2,∴CM,∴OM=CM,∴OC=4,即⊙O的半径为4.6.(2019秋•镇江期中)在矩形ABCD中,AB=5cm,BC=10cm,点P从点A出发,沿AB 边向点B以每秒1cm的速度移动,同时点Q从点B出发沿BC边向点C以每秒2cm的速度移动,P、Q两点在分别到达B、C两点时就停止移动,设两点移动的时间为秒,解答下列问题:(1)如图1,当t为几秒时,△PBQ的面积等于4cm2?(2)如图2,以Q为圆心,PQ为半径作⊙Q.在运动过程中,是否存在这样的t值,使⊙Q正好与四边形DPQC的一边(或边所在的直线)相切?若存在,求出t值;若不存在,请说明理由.【分析】(1)由题意可知P A=t,BQ=2t,从而得到PB=6﹣t,BQ=2t,然后根据△PQB的面积=4cm2列方程求解即可;(2)当t=0时,点P与点A重合时,点B与点Q重合,此时圆Q与PD相切;当⊙Q 正好与四边形DPQC的DC边相切时,由圆的性质可知QC=QP,然后依据勾股定理列方程求解即可;【解析】(1)∵当运动时间为t秒时,P A=t,BQ=2t,∴PB=5﹣t,BQ=2t.∵△PBQ的面积等于4cm2,∴PB•BQ(5﹣t)•2t.∴(5﹣t)•2t=4.解得:t1=1,t2=4.答:当t为1秒或4秒时,△PBQ的面积等于4cm2;(2)(Ⅰ)由题意可知圆Q与AB、BC不相切.(Ⅱ)如图1所示:当t=0时,点P与点A重合时,点B与点Q重合.∵∠DAB=90°,∴∠DPQ=90°.∴DP⊥PQ.∴DP为圆Q的切线.(Ⅲ)当⊙Q正好与四边形DPQC的DC边相切时,如图2所示.由题意可知:PB=5﹣t,BQ=2t,PQ=CQ=10﹣2t.在Rt△PQB中,由勾股定理可知:PQ2=PB2+QB2,即(5﹣t)2+(2t)2=(10﹣2t)2.解得:t1=﹣15+10,t2=﹣15﹣10(舍去).综上所述可知当t=0或t=﹣15+10时,⊙Q与四边形DPQC的一边相切.7.(2019秋•玄武区期中)如图,在▱ABCD中,AD是⊙O的弦,BC是⊙O的切线,切点为B.(1)求证:;(2)若AB=5,AD=8,求⊙O的半径.【分析】(1)连接OB,交AD于点E,由已知条件易证OE⊥AD,由垂径定理进而可证明;(2)设⊙O的半径为r,则OE=r﹣3,在Rt△ABE中,∠OEA=90°,由勾股定理可得:OE2+AE2=OA2即(r﹣3)2+42=r2,解方程即可求出圆的半径r.【解析】(1)证明:连接OB,交AD于点E.∵BC是⊙O的切线,切点为B,∴OB⊥BC,∴∠OBC=90°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠OED=∠OBC=90°,∴OE⊥AD,∴;(2)∵OE⊥BC,OE过圆心O∴AE AD=4,在Rt△ABE中,∠AEB=90°,∴BE═3,设⊙O的半径为r,则OE=r﹣3在Rt△ABE中,∠OEA=90°,OE2+AE2=OA2即(r﹣3)2+42=r2,∴r,∴⊙O的半径为.8.(2019秋•建邺区期中)如图,四边形ABCD内接于⊙O,∠DAB=90°,点E在BC的延长线上,且∠CED=∠CAB.(1)求证:DE是⊙O的切线.(2)若AC∥DE,当AB=8,DC=4时,求BD的长.【分析】(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)先判断出AC⊥BD,进而求出BC=AB=8,再用勾股定理求出BD,最后判断出△CFD∽△BCD,即可得出结论.【解析】(1)如图,连接BD,∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°,∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°,∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE,∵点D在⊙O上,∴DE是⊙O的切线;(2)∵DE∥AC,∵∠BDE=90°,∴∠BFC=90°,∴CB=AB=8,AF=CF AC,在Rt△BCD中,BD49.(2019秋•玄武区期中)如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD 为直径作⊙O,与AC、BC分别交于点M、N,与AB的另一个交点为E.过点N作NF ⊥AB,垂足为F.(1)求证:NF是⊙O的切线;(2)若NF=2,DF=1,求弦ED的长.【分析】(1)欲证明NF为⊙O的切线,只要证明ON⊥NF.(2)证明四边形ONFH是矩形,由勾股定理即可解决问题.【解答】(1)证明:连接ON.如图所示:∵在Rt△ACB中,CD是边AB的中线,∴CD=BD,∴∠DCB=∠B,∵OC=ON,∴∠ONC=∠DCB,∴∠ONC=∠B,∴ON∥AB∵NF⊥AB∴∠NFB=90°∴∠ONF=∠NFB=90°,∴ON⊥NF又∵NF过半径ON的外端∴NF是⊙O的切线;(2)解:过点O作OH⊥ED,垂足为H,如图2所示:设⊙O的半径为r∵OH⊥ED,NF⊥AB,ON⊥NF,∴∠OHD=∠NFH=∠ONF=90°.∴四边形ONFH为矩形.∴HF=ON=r,OH=NF=2,∴HD=HF﹣DF=r﹣1,在Rt△OHD中,∠OHD=90°∴OH2+HD2=OD2,即22+(r﹣1)2=r2,∴r.∴HD,∵OH⊥ED,且OH过圆心O,∴HE=HD,∴ED=2HD=3.10.(2019秋•江阴市期中)如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E,BC=3,CD(1)求证:直线CE是⊙O的切线;【分析】(1)连结OD,如图,由AD平分∠EAC得到∠1=∠3,加上∠1=∠2,则∠3=∠2,于是可判断OD∥AE,根据平行线的性质得OD⊥CE,然后根据切线的判定定理得到结论;【解答】(1)证明:连接OD,如图,∵AD平分∠EAC,∴∠1=∠3,∵OA=OD,∴∠1=∠2,∴∠3=∠2,∴OD∥AE,∵AE⊥DC,∴OD⊥CE,∴CE是⊙O的切线;11.(2019春•建湖县期中)如图,点D为⊙O上一点,点C在直径AB的延长线上,且∠COD=2∠BDC,过点A作⊙O的切线,交CD的延长线于点E.(1)判定直线CD与⊙O的位置关系,并说明你的理由;【分析】(1)连接OD,根据圆周角定理求出∠DAB+∠DBA=90°,求出∠CDB+∠BDO =90°,根据切线的判定推出即可;【解答】(1)证明:连接OD,∵OD=OB,∴∠DBA=∠BDO,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDB=∠CAD,∴∠CDB+∠BDO=90°,即OD⊥CE,∵D为⊙O的一点,∴直线CD是⊙O的切线;12.(2019春•宿豫区期中)已知,⊙O是△ABC的外接圆,∠CAD=∠ABC.(1)如图1,试判断直线AD与⊙O的位置关系,并说明理由;(2)如图2,将直线AD沿直线AC翻折后交⊙O于点E,连接OA、OE、CE,若∠ABC =30°,求证:四边形ACEO是菱形.【分析】(1)作直径AP,连接CP,根据圆周角定理得到∠CAD=∠APC,∠ACP=90°,求得∠DAP=90°,AD⊥AP,根据切线的判定定理即可得到结论;(2)连接OC,根据圆周角定理得到∠CAE=∠CAD=∠ABC=30°,得到∠AOC=2∠ABC=60°,∠COE=2∠CAE=60°,推出△AOC、△COE都是等边三角形,得到OA =AC=CE=EO,于是得到结论.【解析】(1)直线AD与⊙O相切,理由:作直径AP,连接CP,∵∠APC=∠ABC,∠CAD=∠ABC,∴∠CAD=∠APC,∵AP是⊙O的直径,∴∠ACP=90°,∴∠CAP+∠APC=90°,∴∠CAP+∠CAD=90°,即∠DAP=90°,∴AD⊥AP,∴直线AD与⊙O相切;(2)证明:连接OC,∵∠ABC=30°,∴∠CAE=∠CAD=∠ABC=30°,∴∠AOC=2∠ABC=60°,∠COE=2∠CAE=60°,∵OA=OC,OC=OE,∴△AOC、△COE都是等边三角形,∴OA=AC=CO,OC=CE=EO,∴OA=AC=CE=EO,∴四边形ACEO是菱形.13.(2019秋•锡山区期中)如图,已知直角△ABC,∠C=90°,BC=3,AC=4.⊙C的半径长为1,已知点P是△ABC边上一动点(可以与顶点重合).(1)若点P到⊙C的切线长为,则AP的长度为2或2;(2)若点P到⊙C的切线长为m,求点P的位置有几个?(直接写出结果)【分析】(1)由题意切线长为,半径为1,可得PC=2,所以点P只能在边BC或边AC上.分两种情形分别求解即可;(2)首先求出三个特殊位置时切线的长,结合图形即可判断;【解析】(1)由题意切线长为,半径为1,可得PC=2,所以点P只能在边BC或边AC上.如图1中,连接P A.在Rt△P AC中,P A2.如图2中,P A=AC=PC=4﹣2=2,综上所述,满足条件的P A的长为2或2.故答案为2或2.(2)如图3中,当CP⊥AB时.易知CP,此时切线长PE,如图4中,当点P与点B重合时,切线长PE2,如图5中,当点P与点A重合时,切线长PE,观察图形可知:当0<m时,点P的位置有2个位置;当m时,点P的位置有3个位置;当m<2时,点P的位置有4个位置;当m=2时,点P的位置有3个位置;当2m时,点P的位置有2个位置;当m时,点P的位置有1个位置.14.(2019秋•灌云县期中)如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥AC,交AC的延长线于点E.(1)求证:直线DE是⊙O的切线;(2)若AE=8,⊙O的半径为5,求DE的长.【分析】(1)连接OD,由角平分线和等腰三角形的性质得出∠ODA=EAD,证出EA∥OD,再由已知条件得出DE⊥OD,即可得出结论.(2)作DF⊥AB,垂足为F,由AAS证明△EAD≌△F AD,得出AF=AE=8,DF=DE,求出OF=3,由勾股定理得出DF,即可得出结果.【解答】(1)证明:连接OD,如图1所示:∵AD平分∠BAC,∴∠EAD=∠OAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=EAD,∴EA∥OD,∵DE⊥EA,∴DE⊥OD,∵点D在⊙O上,∴直线DE与⊙O相切.(2)作DF⊥AB,垂足为F,如图2所示:∴∠DF A=∠DEA=90°,在△EAD和△F AD中,,∴△EAD≌△F AD(AAS),∴AF=AE=8,DF=DE,∵OA=OD=5,∴OF=3,在Rt△DOF中,DF4,∴DE=DF=4.15.(2019秋•建邺区期末)如图,在△ABC中,∠ABC=60°,⊙O是△ABC的外接圆,P 为CO的延长线上一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)若PB为⊙O的切线,求证:△ABC是等边三角形.【分析】(1)连接OA,由圆心角等于2倍的圆周角得出∠AOC=120°,由OA=OC,得出∠OAC=∠OCA(180°﹣∠AOC)=30°,由AP=AC,推出∠APC=∠ACP =30°,由三角形内角和定理得出∠P AC=120°,则∠P AO=∠P AC﹣∠OAC=90°,即可得出结论;(2)连接OB,由切线的性质得出P A=PB,由OA=OB,得出PO是AB的垂直平分线,则CB=CA,由又∠ABC=60°,即可得出结论.【解答】证明:(1)连接OA,如图1所示:∵∠ABC=60°,∴∠AOC=120°,∵OA=OC,∴∠OAC=∠OCA(180°﹣∠AOC)(180°﹣120°)=30°,∵AP=AC,∴∠APC=∠ACP=30°,∴∠P AC=180°﹣30°﹣30°=120°,∴∠P AO=∠P AC﹣∠OAC=120°﹣30°=90°,∴AP⊥OA,又∵OA是⊙O的半径,∴AP是⊙O的切线;(2)连接OB,如图2所示:∵AP、PB为⊙O的切线,∴P A=PB,∵OA=OB,∴PO是AB的垂直平分线,∴CB=CA,∵∠ABC=60°,∴△ABC是等边三角形.16.(2019秋•大名县期中)已知,△ABC中,∠ACB=90°,AC=BC=8,点A在半径为5的⊙O上,点O在直线l上.(1)如图①,若⊙O经过点C,交BC于点D,求CD的长.(2)在(1)的条件下,若BC边交l于点E,OE=2,求BE的长.(3)如图②,若直线l还经过点C,BC是⊙O的切线,F为切点,则CF的长为4.【分析】(1)由圆周角定理可得AD是直径,根据勾股定理可求CD的长;(2)过点O作OF⊥CD,垂足为F,根据垂径定理可得CF=DF=3,根据中位线定理可得OF=4,根据勾股定理可求EF的长,即可求BE的长;(3)连接OF,OA,过点O作OE⊥AC于点E,可证四边形OECF是矩形,可得CF=OE,FO=CE=5,由勾股定理可求AE的长,即可求CF的长.【解析】(1)如图:连接AD∵∠ACB=90°,∴AD是直径∴AD=10在Rt△ACD中,CD 6(2)如图:过点O作OF⊥CD,垂足为F∵OF⊥CD∴CF=DF=3,且AO=DO∴OF AC=4在Rt△OFE中,EF2∵BE=BC﹣CF﹣EF∴BE=8﹣3﹣25﹣2(3)如图:连接OF,OA,过点O作OE⊥AC于点E,∵BC是⊙O的切线∴OF⊥BC,∴∠BFO=∠ACB=90°,OE⊥CE,∴四边形OECF是矩形∴CF=OE,FO=CE=5,∴AE=AC﹣CE=3在Rt△AEO中,OE4,∴CF=4故答案为:417.(2019秋•东台市期中)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足D,AD交⊙O于点E.(1)求证:AC平分∠DAB.(2)连接CE,若CE=6,AC=8,求出⊙O的直径的长.【分析】(1)连接OC,根据切线的性质和已知求出OC∥AD,求出∠OCA=∠CAO=∠DAC,即可得出答案;(2)根据圆周角定理和圆心角、弧、弦之间的关系求出CE=BC=6,根据勾股定理求出AB即可.【解答】(1)证明:连接OC,∵CD是⊙O的切线,∴CD⊥OC,又∵CD⊥AD,∴AD∥OC,∴∠CAD=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠CAD=∠CAO,即AC平分∠DAB;(2)解:∵∠CAD=∠CAO,∴,∴CE=BC=6,∵AB为直径,∴∠ACB=90°,由勾股定理得:AB10,即⊙O直径的长是10.18.(2019秋•锡山区期中)如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)试说明DF是⊙O的切线;(2)若AC=3AE,求的值.【分析】(1)连接OD,根据等边对等角性质和平行线的判定和性质证得OD⊥DF,从而证得DF是⊙O的切线;(2)根据圆周角定理、勾股定理得出BE=2AE,CE=4AE,然后在RT△BEC中可求的值.【解答】(1)证明:连接OD,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线;(2)解:连接BE,∵AB是直径,∴∠AEB=90°,∵AB=AC,AC=3AE,∴AB=3AE,CE=4AE,∴BE2AE,在RT△BEC中,.19.(2019秋•江阴市期中)如图,Rt△APE,∠AEP=90°,以AB为直径的⊙O交PE于C,且AC平分∠EAP.连接BC,PB:PC=1:2.(1)求证:PE是⊙O的切线;(2)已知⊙O的半径为,求AP的长.【分析】(1)连接OC,由AC平分∠EAP,得到∠DAC=∠OAC,由等腰三角形的性质得到∠CAO=∠ACO,等量代换得到∠DAC=∠ACO,根据平行线的性质得到∠E=∠OCP=90°,于是得到结论;(2)设PB=x,PC=2x,根据勾股定理得到PC,PB,求得AP【解析】(1)连接OC,∵AC平分∠EAP,∴∠DAC=∠OAC,∵OA=OC,∴∠CAO=∠ACO,∴∠DAC=∠ACO,∴AE∥OC,∴∠E=∠OCP=90°,∴PE是⊙O的切线;(2)∵PB:PC=1:2,∴设PB=x,PC=2x,∵OC2+PC2=OP2,即()2+(2x)2=(x)2,∴x,∴PC,PB,∴AP,20.(2018秋•邳州市期中)如图,△OAC中,以O为圆心,OA为半径作⊙O,作OB⊥OC 交⊙O于点B,垂足为O,连接AB交OC于点D,∠CAD=∠CDA.(1)AC与⊙O有怎样的位置关系?为什么?(2)若OB=3,BD,求线段AC的长.【分析】(1)根据等腰三角形的性质得到∠OAD=∠B,得到∠ODB=∠CAD,根据余角的性质得到∠OAC=90°,于是得到结论;(2)根据勾股定理得到,根据等腰三角形的性质得到CA=CD=x,根据勾股定理即可得到结论.【解析】(1)∵OA=OB,∴∠OAD=∠B,∵∠ODB=∠ADC,∠CAD=∠ADC,∴∠ODB=∠CAD,∵OB⊥OC,∴∠BOC=90°,∠ODB+∠B=90°,∴∠CAD+∠OAD=90°,∴∠OAC=90°,∴AC与⊙O相切于点A;(2)OA=OB=3,BD,在Rt△ODB中,∴,∵∠CAD=∠CDA,∴CA=CD=x,在Rt△OAC中,∴AC2+OA2=OC2,x2+32=(x+1)2,解得:x=4,∴AC=4.。
中考数学总复习《圆的切线证明》专题训练(附带答案)

中考数学总复习《圆的切线证明》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________⊥于点D,E是AC上一点,以BE为直径的O交1.如图,在ABC中,AB=AC,AD BC∠=︒.BC于点F,连接DE,DO,且90DOB(1)求证:AC是O的切线;(2)若1DF=,DC=3,求BE的长.、2.如图,在O中,BC为非直径弦,点D是BC的中点,CD是ABC的角平分线.∠=∠;(1)求证:ACD ABC(2)求证:AC是O的切线;(3)若1BD=,3BC=时,求弦BD与BD围城的弓形面积.是O的切线;=,且AC BD已知等腰ABC,AB=AC为直径作O交BC于点延长线于点F.是O的切线;CD=2,求O的半径.与O相离,,交O于点A是O上一点,连于点C,且PB(1)求证:PB是O的切线;(2)若25AC=,OP=5,求O的半径.6.如图,点O是ABC的边AC上一点,以点O为圆心,OA为半径作O,与BC相切于点E,连接OB,OE,O交OB于点D,连接AD并延长交CB的延长线于点F,且AOD EOD.∠=∠(1)求证:AB是O的切线;BC=,AC=8,求O的半径.(2)若107.如图,AB 是O 的直径,AC 是O 的弦.(1)尺规作图:过点C 作O 的切线,交AB 的延长线于点D (保留作图痕迹,不写作法);(2)若2BD OB ==,求AC 的长.8.如图,ABCD 的顶点,,A B C 在O 上,AC 为对角线,DC 的延长线交O 于点E ,连接,,OC OE AE .(1)求证:AE BC =;(2)若AD 是O 的切线6,40OC D =∠=︒,求CE 的长.9.如图,Rt ABC △中90C ∠=︒,点E 为AB 上一点,以AE 为直径的O 上一点D 在BC 上,且AD 平分BAC ∠.(1)证明:BC 是O 的切线;(2)若42BD BE ==,,求AB 的长.10.如图,已知O 的弦AB 等于半径,连接OA 、OB ,并延长OB 到点C ,使得BC OB =,连接AC ,过点A 作AE OB ⊥于点E ,延长AE 交O 于点D .(1)求证:AC 是O 的切线;(2)若6BC =,求AD 的长.11.如图,线段AB 经过O 的圆心.O 交O 于A ,C 两点,AD 为O 的弦,连接BD ,30A ABD ∠=∠=︒连接DO 并延长交O 于点E ,连接BE 交O 于点F .(1)求证:BD 是O 的切线;(2)若1BC =,求BF 的长.12.如图,AB 为O 的直径,C 为O 上一点,CD BD ABC CBD ⊥∠=∠.(1)求证:CD 为O 的切线.(2)当1,4BD AB ==时,求CD 的长.13.如图 已知AB 是O 的直径 BC AB ⊥于B E 是OA 上的一点ED BC ∥交O 于D OC AD ∥ 连接AC 交ED 于F .(1)求证:CD 是O 的切线;(2)若8AB = 1AE = 求ED EF 的长.14.如图 AB 是O 的直径 AC BC ,是弦 点D 在AB 的延长线上 且DCB DAC ∠=∠ O 的切线AE 与DC 的延长线交于点E .(1)求证:CD 是O 的切线;(2)若O 的半径为2 30D ∠=︒ 求AE 的长.15.如图 已知AB 是O 的直径 点P 在BA 的延长线上 弦BC 平分PBD ∠且BD PD ⊥于点D .(1)求证:PD 是O 的切线.(2)若8cm 6cm AB BD , 求弧AC 的长.为O的直径在O上连接的延长线交于E.是O的切线;∠tan BDF为O的直径的平分线交O于点E BC的延长线于点(1)求证:DE 为O 切线;(2)若10AB = 6BC = 求DE 的长.18.如图 O 是ABC 的外接圆 点D 在BC 延长线上 且满足CAD B ∠=∠.(1)求证:AD 是O 的切线;(2)若AC 是BAD ∠的平分线 3sin 5B =4BC = 求O 的半径.参考答案:1.【分析】此题重点考查圆周角定理 切线的判定定理 勾股定理 三角形的中位线定理 等腰三角形的“三线合一” 线段的垂直平分线的性质等知识 正确地作出辅助线是解题的关键.是O的切线;+=314是O的直径90︒则22BE=+4(22)⊥AD BC是O的半径是O的切线.)连接EFDC=DF33+=+BD DF∠OE DOBDE=.3是O的直径90︒.中EF=中BE=(3)23312π- 【分析】此题考查了解直角三角形 切线的判定以及扇形的面积.注意掌握辅助线的作法 .(1)点D 是BC 的中点 可以得到BD CD = 即可得到DBC DCB ∠∠= 再根据角平分线的定义得到ACD BCD ∠∠= 进而得到结论;(2)连接OC OD OB 则可得到OD BC ⊥ 然后根据等边对等角可以得到90OCD ACD ∠∠+=︒ 即可得到结论(3)先求出60ODB ∠=︒ 继而利用OBD OBD S S S=-阴影部分扇形求得答案.【详解】(1)解:如图 ∵点D 是BC 的中点∵BD CD =∵DBC DCB ∠∠=又∵CD 是ABC 的角平分线∵ACD BCD ∠∠=∵ACD ABC ∠∠=;(2)证明:如图 连接OC OD OB∵点D 是BC 的中点∵OD BC ⊥∵90ODC BCD ∠∠+=︒∵OD OC =∵ODC OCD ∠∠=又∵ACD BCD ∠∠=∵90OCD ACD ∠∠+=︒即OC AC ⊥∵OC 是O 的半径∵AC 是O 的切线;Rt BDE 中 ODB ∠=60ODB =︒OB OD =∵OBD 是等边三角形BOD ∠=OBD S S==阴影部分.(1)见解析(2)23进而得出BFG 是等边三角形 是O 的切线;)解:如图所示∵OD AC ⊥∵AD CD =∵BD AC =∵BD AC =∵AD BC =∵AD CD BC ==;∵AB 为半圆O 的直径∵90CAB CBA ∠+∠=︒∵30DAC CAB ABD ∠=∠=∠=︒∵60GBF G ∠=∠=︒ 12GB AG =∵BFG 是等边三角形 223AB AG BG BG =-=∵3233BF BG AB ===. 【点睛】本题考查了切线的判定 弧与弦的关系 直径所对的圆周角是直角 勾股定理 等边三角形的性质与判定 垂径定理 熟练掌握以上知识是解题的关键.4.(1)证明(2)233【分析】本题主要考查切线的性质和判定及特殊角的三角函数的应用 掌握切线问题中的辅助线的作法是解题的关键.(1)连接OD 证明ODB C ∠=∠ 推出AC OD ∥ 即可证明结论成立;(2)连接AD 在Rt CED 中 求得利用三角形函数的定义求得30C ∠=︒ 60AOD ∠=︒ 在Rt ADB 中 利用勾股定理列式计算求得圆的半径即可.【详解】(1)证明:连接OD又OB OD=B ODB∴∠=∠ODB∴∠=∠AC OD∥DF AC⊥OD DF∴⊥DF∴是O的切线;(2)连接AD设O半径为Rt CED中3,CE CD=22ED CD∴=-又cosCE CCD ∠=30C∴∠=︒30B∴∠=︒60AOD=∠AB是O的直径.90ADB∴∠=︒12AD AB r ∴== ∵AB AC =∵2CD BD ==又222AD BD AB +=2222(2)r r ∴+=233r ∴=(负值已舍). 5.(1)证明见解析(2)3【分析】本题考查的是勾股定理的应用 等腰三角形的性质 切线的判定 熟练的证明圆的切线是解本题的关键;(1)连接OB 证明PCB PBC ∠=∠ OAB OBA ∠=∠ 再证明90PBC OBA ∠+∠=︒即可;(2)设O 的半径为r 表示()()22222255PC AC AP r =-=-- 222225PB OP OB r =-=- 再利用PB PC =建立方程求解即可.【详解】(1)解:连接OB∵PB PC = OA OB =∵PCB PBC ∠=∠ OAB OBA ∠=∠∵OP l ⊥ OAB PAC ∠=∠∵90BCP CAP BCP OAB ∠+∠=︒=∠+∠∵90PBC OBA ∠+∠=︒∵90OBP ∠=︒∵OB PB ⊥是O 的切线;)设O 的半径为l 2AC =2AC AP =-PB BP 2OP OB =-∵O 的半径为【点睛】.(1)见解析(2)3【分析】本题主要考查切线的判定和性质证AOB EOB ≌ 得出的半径为r 则OE OA =根据AOB EOB ≌得求得4CE = 在Rt OCE 中运用勾股定理列式求出r 的值即可. )证明:在AOB 和EOB 中∵()SAS AOB EOB ≌OAF OEF ∠=∠BC 与O 相切OE BC ⊥90OAB OEB ∠=∠=︒AF是O 的半径是O 的切线;(2)解:在Rt CAB △中 90108CAB BC AC ∠=︒==,,∵22221086AB BC AC =-=-=设圆O 的半径为r 则,OE OA r ==∵8OC r =-∵,AOB EOB ≌∵6BE AB ==∵10,BC =∵1064,CE BC BE =-=-=在Rt OCE 中 222OE CE OC +=∵()22248r r +=-解得3r =.∵O 的半径为3.7.(1)作图见解析(2)4π3【分析】本题考查了作图 复杂作图 切线的性质 等边三角形的判定与性质 弧长的计算 熟练掌握切线的性质 弧长公式是解答本题的关键.(1)根据题意 连接OC 作OC CD ⊥ 交AB 的延长线于点D 由此得到答案. (2)根据题意 得到OBC △是等边三角形 求出120AOC ∠=︒ 再利用弧长公式 得到答案.【详解】(1)解:如图所示 CD 即为所求.(2)如图所示 连接BCBD)证明:在ABCD中AE AD ∴=∵AE BC =.(2)解:连接OA 过点O 作OF CE ⊥于点F 如图所示:AD 是O 的切线OA AD ∴⊥OA BC ∴⊥AB AC ∴=40AEC B D ︒∠=∠=∠=40ACB B ∴∠=∠=︒在ABCD 中 AD BC ∥40DAC ACB ∴∠=∠=︒又180100DAE D AEC ∠=︒-∠-∠=︒60CAE DAE CAD ∴∠=∠-∠=︒2120COE CAE ∴∠=∠=︒OC OE =30OCE ∴∠=︒OF CE ⊥22cos3063CE CF OC ∴==⋅︒=.【点睛】本题主要考查了切线的性质 解直角三角形 圆周角定理 平行四边形的性质垂径定理 等腰三角形的判定 解题的关键是作出辅助线 熟练掌握相关的判定和性质.9.(1)证明详见解析;(2)8.【分析】本题考查了切线的判定 勾股定理等知识 熟练掌握切线的判定定理 勾股定理是解题的关键.(1)连接OD 根据平行线判定推出OD AC ∥ 推出OD BC ⊥ 根据切线的判定推出即可;(2)根据勾股定理求出3OD OA OE === 再根据线段的和差求解即可.【详解】(1)证明:连接OD∵OA OD =∵OAD ODA ∠=∠∵AD 平分BAC ∠∵BAD CAD ∠=∠∵ODA CAD ∠=∠∵OD AC ∥∵180C ODC ∠+∠=︒∵90C ∠=︒∵90ODC ∠=︒∵OD BC ⊥∵OD 为半径∵BC 是O 的切线;(2)解:设OD OE r ==在Rt ODB △中 42BD BE ==,∵2OB r =+由勾股定理 得:()22242r r +=+ 解得:3r =∵3OD OA OE ===∵628AB =+=.10.(1)证明见解析;(2)63.【分析】(1)先证明OAB 是等边三角形 再由性质得出60AOB OAB OBA ∠=∠=∠=︒ 再由BC AB =和角度和差即可求解;(2)先根据等边三角形性质求出132OE OA == 再根据勾股定理求得33AE = 最后由垂径定理即可求解;此题考查了等边三角形的判定与性质 勾股定理和垂径定理 解题的关键是熟练掌握以上知识点的应用.【详解】(1)证明:∵AB OA OB ==∵OAB 是等边三角形∵60AOB OAB OBA ∠=∠=∠=︒∵BC OB =∵BC AB =∵1302BAC BCA OBA ∠=∠=∠=︒ ∵90OAC OAB BAC ∠=∠+∠=︒又∵OA 为O 的半径∵AC 是O 的切线;(2)解:∵6BC =∵6AB OA OB ===∵AD OB ⊥于点E∵30OAE ∠=︒∵132OE OA == ∵2233AE OA OE =-=∵AE OB ⊥∵263AD AE ==.11.(1)见解析∠=)证明:BAD60︒6090︒-︒=OD是O的半径∴直线BD是O的切线;==(2)解:设OD OC△中sin30在Rt BDO解得:1r==+OB OCDE是O的直径∴∠=︒DFE90∠=∠即DFB BDE∠=∠DBF DBE∴△∵BDEBFD△BF BD∴=BD BE337BF ∴= 解得:377BF =. 【点睛】本题考查了切线的判定和性质 相似三角形的性质和判定 圆周角定理 勾股定理等知识点 作出辅助线构造出相似三角形是解题关键.12.(1)见详解(2)3【分析】(1)连接OC 由∠=∠OCB ABC ABC CBD ∠=∠ 得OCB CBD ∠=∠ 则OC BD ∥ 所以18090OCD D ∠=︒-∠=︒ 即可证明CD 为O 的切线;(2)由AB 为的直径 得90ACB ∠=︒ 则ACB D ∠=∠ 而ABC CBD ∠=∠ 所以C ABC BD ∽△△ 则AB CB CB BD = 可求得CB BD AB =⋅ 由勾股定理得22CD CB BD =-.【详解】(1)证明:连接OC 则OC OB =OCB ABC ∴∠=∠ABC CBD ∠=∠OCB CBD ∴∠=∠OC BD ∴∥CD BD ⊥90D ∴∠=︒18090OCD D ∴∠=︒-∠=︒OC 是O 的半径 且CD OC ⊥CD ∴为O 的切线.(2)解:AB 为的直径ABC∠=ABC CBD ∴∽∴AB CBCB BD=1,4BD AB==1 CB BD AB∴=⋅=22CD CB BD∴=-=CD∴的长是【点睛】此题重点考查等腰三角形的性质AD OC∥ADO∴∠OA OD=ADO DAO ∴∠=∠DOC BOC ∴∠=∠OD OB OC OC ==,ODC OBC ∴≌△△∴OBC ODC ∠=∠BC AB ⊥∴90OBC ODC ∠=∠=︒OD 为经过圆心的半径∴CD 是O 的切线;(2)如图所示:作DM BC ⊥交BC 于点M8AB = 1AE =1432OA OB OD AB OE OA AE ∴=====-=, 227DE BM OD OE ==-=令=7CM x CB CD x ==+, 7BE DM ==∴在222Rt DMC CM DM CD +=△,222(7)7x x ∴+=+解得:37x =47BC ∴=DE BC ∥ADE ABC ∴△△∽是O的切线.2)在Rt△是O的切线得出Rt EAD中【详解】(1)证明:连接.是O的直径+∠OCA OCBDCB OCB+∠OCD=︒.90是半径经过O的半径外端∵CD 是O 的切线.(2)解:在Rt OCD △中∵90OCD ∠=︒ 30D ∠=︒ 2OC =∵4OD =.∵6AD AO OD =+=.∵AE 是O 的切线 切点为A∵OA AE ⊥.在Rt EAD 中∵90EAD ∠=︒ 30D ∠=︒ 6AD =∵3tan 306233AE AD =⋅︒=⨯=. 15.(1)见解析(2)4π3【分析】本题考查圆与三角形的综合问题 掌握与圆有关的性质 正确作出辅助线是关键.(1)连接OC 根据条件证明OC BD ∥ 即可证明;(2)根据PCO PDB ∽可得PA 利用余弦值可求出COP ∠ 通过弧长公式求解即可.【详解】(1)证明:连接OC 如图∵OC OB =∵OCB OBC ∠=∠∵弦BC 平分PBD ∠∵DBC OBC ∠=∠∵OCB DBC ∠=∠.∵OC BD ∥∵BD PD ⊥∵OC PD ⊥.为O 的半径是O 的切线;)解:连接OC∵PCO PDB ∽OC PO BD PB= 8cm AB = BD =14cm 2OC AB ==4468PA PA +=+ Rt OCP 中cos COP ∠=60COP =︒AC 的长=(1)证明见解析; 是O 的切线;证明FBD FDA ∽ 得到1tan tan 4BD A BDF AD ∠=∠== 进而得到164DF = 即可求解; 本题考查了切线的判定 相似三角形的判定与性质 等腰三角形的性质 余角性质 根据题意 正确作出辅助线是解题的关键.【详解】(1)证明:连结OD∵CO AB ⊥∵90E C ∠+∠=︒∵FE FD = OD OC =∵E FDE ∠=∠ ∠=∠C ODC∵90FDE ODC ∠+∠=︒∵90ODF ∠=︒∵OD DF ⊥∵FD 是O 的切线;(2)解:连结AD ,OD BD 如图∵AB 为O 的直径∵90ADB ∠=︒∵90∠+∠=︒A ABD∵OB OD =∵OBD ODB ∠=∠∵90A ODB ∠+∠=︒∵FBD FDA ∽DF BD AF AD= 在Rt △ABD 中 tan ∠164DF = 3DF =的平分线交O 于点E∵ED OE ⊥∵DE 为O 切线.(2)过点O 作OM BC ⊥于点M 10AB = 6BC =则132MC MB BC ===,152OB OE AB === 四边形OEDM 时矩形∵DE OM =根据勾股定理 得224DE OM OB BM ==-=.18.(1)见解析(2)103【分析】(1)连接OA OC 与AB 相交于点E 如图 由OA OC = 可得OAC OCA ∠=∠ 根据圆周角定理可得12B AOC ∠=∠ 由已知CAD B ∠=∠ 可得2AOC CAD ∠=∠ 根据三角形内角和定理可得180OCA CAO AOC ∠+∠+∠=︒ 等量代换可得90CAO CAD ∠+∠=︒ 即可得出答案;(2)根据角平分线的定义可得BAC DAC ∠=∠ 由已知可得BAC B =∠∠ 根据垂径定理可得 OC AB ⊥ BE AE = 在Rt BEC △中 根据正弦定理可得3sin 45CE CE B BC === 即可算出CE 的长度 根据勾股定理可算出22BE BC CE =-的长度 设O 的半径为r 则125OE OC CE r =-=- 在Rt AOE △中 222OA OE AE =+ 代入计算即可得出答案. 【详解】(1)证明:连接OA OC 与AB 相交于点E 如图OA OC =OAC ∴∠AC AC =∴12B ∠=CAD ∠=AOC ∴∠=OCA ∠+2CAO ∴∠+CAO ∴∠+OAD ∴∠OA 是O 的半径AD ∴是O 的切线;(2)解:AC 是∠BAC DAC ∴∠=∠CAD B ∠=∠BAC B ∴∠=∠OC AB ∴⊥ BE =在Rt BEC △中4BC =sin CE B BC ∴=125CE ∴=BE BC ∴=设O 的半径为r ,则125OE OC CE r =-=-在Rt AOE △中222OA OE AE =+ 222121655r r ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭ 解得:103r =. 【点睛】本题主要考查了切线的性质与判定,垂径定理,勾股定理及解直角三角形, 熟练掌握切线的性质与判定,垂径定理及解直角三角形的方法进行求解是解决本题的关键.。
人教版九年级上册数学圆的切线相关证明题练习

人教版九年级上册数学圆的切线相关证明题练习1.如图,以△ABC 的边BC 为直径作△O ,点A 在△O 上,点D 在线段BC 的延长线上,AD =AB ,△D =30°.(1)求证:直线AD 是△O 的切线;(2)若直径BC =4,求图中阴影部分的面积.2.如图,O 是ABC 的外接圆,其切线AE 与直径BD 的延长线相交于点E ,且60ACB ∠=︒.(1)求证:AE AB =;(2)若2DE =,求O 的半径.3.图,AB 为△O 的直径,C 为△O 上一点,CD 垂直AB,垂足为D ,在AC 延长线上取点E,使,CBE=,BAC,4.如图,BE为△O的直径,点A和点D是△O上的两点,连接AE,AD,DE,过点A作射线交BE的延长线于点C,使△EAC=△ED A.(1)求证:AC是△O的切线;(2)若AD△BC于点F,DE=4,OF=2,求图中阴影部分的面积.5.如图,AB为△O的切线,B为切点,过点B作BC△OA,垂足为点E,交△O于点C,延长CO与AB的延长线交于点D.(1)求证:AC为△O的切线;(2)若OC=2,OD=5,求线段AD和AC的长.6.如图,在Rt△ABC中,△ABC=90°,△BAC的平分线交BC于点O,D为AB上的一点,OD=OC,以O为圆心,OB的长为半径作△O.7.如图,四边形ABCD 中,AB =AD =1,BC =CD ,以点A 为圆心,AB 为半径的△O 交AC 于点E ,12CBE CAB ∠=∠.(1)求证:BC 是△A 的切线;(2)△当CE =______时,四边形ABCD 是正方形;△当CE =______时,以点A ,B ,E ,D 为顶点的四边形是菱形.8.如图,AB 、CD 为O 的直径,AB CD ⊥,点E 为BC 上一点,点F 为EC 延长线上一点,FAC AEF ∠=∠.连接ED ,交AB 于点G .(1)证明:AF 为O 的切线;(2)证明:AF AG =;(3)若O 的半径为2,G 为OB 的中点,AE 的长.9.如图,在△ABC 中,AB =AC ,AD 平分BC ,BE 平分△ABC 交AD 于点E .点O 在AB 边上,以点O 为圆心的△O 经过B 、E 两点,交AB 于点F .(1)求证:AE 是△O 的切线;(2)若△BAC =60°,AC =12,求阴影部分的面积.10.如图,AB 是O 的直径,点C 是O 上一点(与点A ,B 不重合),过点C 作直线MN ,使得∠=∠ACN ABC .(1)求证:直线MN 是O 的切线.(2)点D 为直线MN 上一点,连接AD ,交O 于点E ,若AC 平分BAD ∠,3,2==DE AC CD ,求图中阴影部分(弓形)的面积.11.如图,ABC 为O 的内接三角形,AB 为O 的直径,点D 为O 上一点,且12ABD BAC ∠=∠,过点D 作DE BC ∥交CA 的延长线于点E .(1)求证:DE 为O 的切线;(2)若8,12AE DE ==,求O 的半径.(1)求证:DE 是O 的切线;(2)求BD 的长.13.如图,AB 是O 的直径,点C 是圆上一点,连接AC ,BC ,CBD BAC =∠∠.且CD BD ⊥.(1)求证:CD 是O 的切线;(2)若2BC =,BD π).14.如图1,AB 是△O 的直径,C ,D 是△O 上的点,连接CB ,CD ,延长CA ,BD 交于点E ,△BDC =2△ABE .(1)求证:AE =AB ;(2)如图2,过点D 作△O 的切线交AE 于点F ,若DF =52,CD =132,求EF 长.15.如图1,四边形ABCD 内接于△O ,AD 为直径,过点C 作CE △AB 于点E ,连接AC .(1)求证:△CAD =△ECB ;(2)若CE 是△O 的切线,△CAD =30°,连接OC .如图2,当AB =2时,求AD 、AC 与弧CD 围成阴影部分的面积.16.已知AB 是圆O 的直径,点C 是圆O 上一点,点P 为圆O 外一点,且OP BC ∥,P BAC ∠=∠.(1)求证:P A 为圆O 的切线;(2)如果2OP AB ==,求AC 的长.17.如图,已知AB 是O 的直径,CD 是O 的弦,连接AD ,BD .(1)如图1,连接OC .若58ADC ∠=︒,求CDB ∠及COB ∠的大小;(2)如图2,过点C 作O 的切线,交DB 的延长线于点E ,连接OD .若2ABD CDB ∠=∠,求CED ∠的大18.如图,已知点D在△O的直径AB延长线上,CD为△O的切线,过D作ED AD⊥,与AC的延长线相交于E.(1)求证:CD=DE;(2)若BD=1,DE△ADE的面积;(3)在(2)的条件下,作ACB∠的平分线CF与△O交于点F,P为△ABC的内心,求PF的长.19.如图,AB为△O的直径,CD是△O的弦,点E在AB的延长线上,连接OC、AD,CD△AB。
2023年九年级中考数学高频考点突破-圆的切线的证明【含答案】

2023年九年级中考数学高频考点突破-圆的切线的证明1.如图,直线AD 经过⊙O 上的点A ,△ABC 为⊙O 的内接三角形,并且∠CAD =∠B.(1)判断直线AD 与⊙O 的位置关系,并说明理由;(2)若∠CAD =30°,⊙O 的半径为1,求图中阴影部分的面积.(结果保留π)2.已知:如图, 是 上一点,半径 的延长线与过点 的直线交于 点,A ⊙O OC AB OC =BC ,. AC =12OB(1)求证: 是 的切线;AB ⊙O (2)若 , ,求弦 的长.∠ACD =45°OC =2CD 3.如图,内接于圆O ,AB 为直径,与点D ,E 为圆外一点,,与BC 交于△ABC CD ⊥AB EO ⊥AB 点G ,与圆O 交于点F ,连接EC ,且.EG =EC(1)求证:EC 是圆O 的切线;(2)当时,连接CF ,∠ABC =22.5°①求证:;AC =CF ②若,求线段FG 的长.AD =14.如图,点A是⊙O直径BD延长线上的一点,C在⊙O上,AC=BC,AD=CD(1)求证:AC是⊙O的切线;(2)若⊙O的半径为4,求△ABC的面积.5.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE(1)求证:直线DE是⊙O的切线103(2)若BE=,AC=6,OA=2,求图中阴影部分的面积6.如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB,垂足为H,求证:CD=HF;10(3)若CD=1,EF= ,求AF长.7.如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且3ME=1,AM=2,AE=.(1)求证:BC 是⊙O 的切线;(2)求⊙O 的半径.8.如图,AB 是⊙O 的直径,点P 在⊙O 上,且PA =PB ,点M 是⊙O 外一点,MB 与⊙O 相切于点B ,连接OM ,过点A 作交⊙O 于点C ,连接BC 交OM 于点D .AC ∥OM(1)求证:MC 是⊙O (2)若,,连接PC ,求PC 的长.OB =152BC =129.如图,四边形ABCD 是平行四边形,以AB 为直径的圆O 经过点D ,E 是⊙O 上一点,且∠AED=45°.(1)判断CD 与⊙O 的位置关系,并说明理由;(2)若⊙O 半径为6cm ,AE=10cm ,求∠ADE 的正弦值.10.如图,以Rt △ABC 的直角边AB 为直径的半圆O ,与斜边AC 交于D ,E 是BC 边上的中点,连结DE .(1)DE 与半圆O 相切吗?若相切,请给出证明;若不相切,请说明理由;(2)若AD 、AB 的长是方程x 2﹣10x+24=0的两个根,求直角边BC 的长.11.如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠ABC 的平分线交⊙O 于点D ,DE ⊥BC 于点E .(1)试判断DE 与⊙O 的位置关系,并说明理由;(2)过点D 作DF ⊥AB 于点F ,若BE=3 ,DF=3,求图中阴影部分的面积.312.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,O 为AB 上一点,经过点A ,D 的⊙O 分别交AB ,AC 于点E ,F ,连接DF .(1)求证:BC 是⊙O 的切线;(2)连接DE ,求证:△BDE △BAD∼(3)若BE =,sinB =,求AD 的长.523513.如图,已知 内接干 , 是 的直径, 的平分线交 于点 ,ΔABC ⊙O AB ⊙O ∠CAB BC D 交 于点 ,连接 ,作 ,交 的延长线于点 .⊙O E EB ∠BEF =∠CAE AB F(1)求证: 是 的切线;EF ⊙O (2)若 , ,求 的半径和 的长.BF =10EF =20⊙O AD 14.如图,在中,,以AC 为直径的分别交AB 、BC 于点M 、N ,点P 在AB 的△ABC AC =AB ⊙O 延长线上,.2∠BCP =∠BAC(1)求证:CP 是的切线;⊙O (2)若, ,求点B 到线段AC 的距离.BC =6tan∠BCP =1215.如图,AB 是⊙O 的直径,AC 是弦,P 为AB 延长线上一点,∠BCP =∠BAC ,∠ACB 的平分线交⊙O 于点D ,交AB 于点E ,(1)求证:PC 是⊙O 的切线;(2)求证:△PEC 是等腰三角形;(3)若AC +BC =2时,求CD 的长.16.如图,BD 为⊙O 的直径,AB=AC ,AD 交BC 于点E ,AE=1,ED=2.(1)求证:∠ABC=∠D;(2)求AB的长;(3)延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.答案解析部分1.【答案】(1)解:直线AD与⊙O的位置关系是相切,理由是:作直径AE,连接CE,∵AE为直径,∴∠ACE=90°,∴∠E+∠EAC=90°,∵∠B=∠DAC,∠B=∠E,∴∠E=∠DAC,∴∠EAC+∠DAC=90°,即OA⊥AD,∵OA过O,∴直线AD与⊙O(2)解:连接OC,过O作OF⊥AC于F,则∠OFA=90,∵∠CAD=30°,∠DAO=90°,∴∠OAC=60°,∵OC=OA=1,∴△OAC是等边三角形,∴AC=OA=1,∠AOC=60°,∵OA =OC ,OF ⊥AC ,∴AF =FC = ,12由勾股定理得:OF =,12−(12)2=3∴阴影部分的面积为: 60π×12360−12×1×32=π6−34【知识点】等边三角形的判定与性质;圆周角定理;切线的判定;扇形面积的计算【解析】【分析】(1)作直径AE ,连接CE ,求出∠OAD =90°,根据切线的判定得出即可;(2)求出△OAC 是等边三角形,再分别求出△OAC 和扇形OCA 的面积,即可得出答案.2.【答案】(1)证明:如图,连接OA ;∴OC=BC=AC=OA. ∴△ACO 是等边三角形.∵OC =BC,AC =12OB,∵AC=BC , ∴∠CAB=∠B , 又∠OCA 为△ACB 的外角,∴∠O =∠OCA =60∘,∴∠OCA=∠CAB+∠B=2∠B , ∴ 又 ∴AB 是∠B =30∘,∠OAC =60∘,∴∠OAB =90∘, 的切线⊙O (2)解:作AE ⊥CD 于点E , ∴∵∴在Rt △∠O =60∘,∠D =30∘.∠ACD =45∘,AC =OC =2,ACE 中, ∵∴∴∴CE =AE =2;∠D =30∘,AD =22,DE =3AE =6,CD =DE +CE =6+ 2.【知识点】圆周角定理;切线的判定【解析】【分析】(1) 如图,连接OA ,根据题意得出OC =BC =AC =OA . 根据三边相等的三角形是等边三角形得出 △ACO 是等边三角形 ,根据等边三角形的性质得出∠O=∠OCA=60°,根据等边对等角得出 ∠CAB =∠B , 根据三角形外角的定理得出 ∠OCA =∠CAB +∠B =2∠B ,故∠B=30°,根据角的和差得出∠OAB=90°,故 AB 是 的切线 ;⊙O (2) 作AE ⊥CD 于点E ,根据同弧所对的圆周角等于圆心角的一半得出∠D=30°,然后根据等腰直角三角形的性质及含30°直角三角形的边之间的关系得出CE,DE 的长,进而根据线段的和差即可算出答案。
中考数学考点《圆的切线的证明》专项练习题-附答案

中考数学考点《圆的切线的证明》专项练习题-附答案学校:班级:姓名:考号:1.如图,在Rt△ABC中,∠ABC=90°,∠BAC的平分线交BC于D,以D为圆心,DB长为半径作⊙D.求证:AC与⊙D相切.2.已知AB是⊙O的直径,CD是⊙O的弦,AB与CD交于E,CE=DE,过B作BF∥CD,交AC的延长线于点F,求证:BF是⊙O的切线.3.如图,点C在以AB为直径的⊙O上,弧AC=1弧BC,经过点C与⊙O相切的直线CE交BA的延长线2于点D,连接BC,过点D作DF∥BC.求证:DF是⊙O的切线.4.如图,Rt△ABC中∠C=90°,点O是AB边上一点,以OA为半径作⊙O,与边AC交于点D,连接BD,若∠DBC=∠A,求证:BD是⊙O的切线.5.如图,在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,DE⊥BC,垂足为E.(1)求证:DE是⊙O的切线;(2)若DG⊥AB,垂足为点F,交⊙O于点G,∠A=35°,⊙O半径为5,求劣弧DG的长.(结果保留π)6.如图,AB是⊙O的直径,弦CD⊥AB于点H,点G在弧BD上,连接AG,交CD于点K,过点G的直线交CD延长线于点E,交AB延长线于点F,且EG=EK.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为13,CH=12,AC∥EF,求OH和FG的长.7.如图,已知△ABC内接于⊙O,点D在OC的延长线上,∠B=∠CAD=30°.(1)AD是⊙O的切线吗?为什么?(2)若OD⊥AB,BC=5,求⊙O的半径.8.如图在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A、D作⊙O,使圆心O 在AB上,⊙O与AB交于点E.(1)求证:直线BD与⊙O相切;(2)若AD:AE=4:5,BC=6,求⊙O的直径.9.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE=1cm,求BD的长.10.如图,AB为⊙O的直径,AD平分∠BAC交⊙O于点D,DE⊥AC交AC的延长线于点E,FB是⊙O的切线交AD的延长线于点F.(1)求证:DE是⊙O的切线(2)若DE=3,⊙O的半径为5,求BF的长11.如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)12.如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为√5,OP=1,求BC的长.13.如图,点B、C、D都在半径为4的⊙O上,过点C作AC∥BD交OB的延长线于点A,连接CD,已知∠CDB=∠OBD=30°.(1)求证:AC是⊙O的切线;(2)求弦BD的长.14.如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.(1)若BC=3,AB=5,求AC的值;(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.15.如图,△ABC的边AB为⊙O的直径,BC与⊙O交于点D,D为BC的中点,过点D作DE⊥AC于E.(1)求证:DE是⊙O的切线;(2)若AB=13,BC=10,求CE的长.16.如图,AB是⊙O的直径,点C,D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F.(1)求证:EF与⊙O相切;(2)若AB=6,AD=4 √2,求EF的长.17.如图,AB是⊙O直径,D为⊙O上一点,AT平分∠BAD交⊙O于点T,过T作AD的垂线交AD的延长线于点C.(1)求证:CT为⊙O的切线;(2)连接BT,若⊙O半径为1,AT= √3,求BT的长.18.如图,点A是⊙O直径BD延长线上的一点,C在⊙O上,AC=BC,AD=CD(1)求证:AC是⊙O的切线;(2)若⊙O的半径为2,求△ABC的面积.19.如图,已知⊙O是以AB为直径的△ABC的外接圆,OD∥BC,交⊙O于点D,交AC于点E,连接BD,BD 交AC于点F,延长AC到点P,连接PB.(1)若PF=PB,求证:PB是⊙O的切线;(2)如果AB=10,BC=6,求CE的长度.答案解析1.证明:过点D作DF⊥AC于F,如图所示:∵AB为⊙D的切线∴∠B=90°∴AB⊥BC∵AD平分∠BAC,DF⊥AC∴BD=DF∴AC与⊙D相切.2.【解答】证明:∵AB是⊙O的直径,CD是⊙O的弦,AB与CD交于E,CE=DE ∴AB⊥CD∵BF∥CD∴BF⊥AB∴BF是⊙O的切线.3.解:连接OC,过点O作OG⊥DF,垂足为G弧BC∵弧AC =12∴∠AOC=13∠AOB=60°∴∠ABC=12∠AOC=30°∵CE切⊙O于点C∴OC⊥CE,即∠DCO=90°∴在ΔDOC中∵DF//CB∴∠ABC=∠GDO=30°∴∠CDO=∠GDO,即DO平分∠CDG∵OC⊥CE,OG⊥DF ∴OC=OG(角平分线性质)∴OG是⊙O的半径∴DF是⊙O的切线(垂径定理).4.证明:如图,连接OD.∵OA=OD∴∠A=∠ADO.∵∠C=90°∴∠CBD+∠CDB=90°又∵∠CBD=∠A∴∠ADO+∠CDB=90°∴∠ODB=180°﹣(∠ADO+∠CDB)=90°.∴直线BD与⊙O相切.5.(1)证明:如图1,连接BD、OD∵AB是⊙O直径∴BD ⊥AC∵AB=BC∴AD=DC∵AO=OB∴OD 是△ABC 的中位线∴DO ∥BC∵DE ⊥BC∴DE ⊥OD∵OD 为半径∴DE 是⊙O 切线;(2)解:如图2所示,连接OG ,OD∵DG ⊥AB ,OB 过圆心O∴弧BG=弧BD∵∠A=35°∴∠BOD=2∠A=70°∴∠BOG=∠BOD=70°∴∠GOD=140°∴劣弧DG 的长是140π×5180=359π.6.解:(1)证明:连接OG∵弦CD ⊥AB 于点H∴∠HKA+∠KAH=90°∵EG=EK∴∠EGK=∠EKG∵∠HKA=∠GKE∴∠HAK+∠KGE=90°∵AO=GO∴∠OAG=∠OGA∴∠OGA+∠KGE=90°∴GO⊥EF∴EF是⊙O的切线;(2)解:连接CO,在Rt△OHC中∵CO=13,CH=12∴HO=5∴AH=8∵AC∥EF∴∠CAH=∠F∴tan∠CAH=tan∠F=128=32在Rt△OGF中,∵GO=13∴FG=13tan∠E =263.7.解:(1)AD是⊙O的切线,理由如下:连接OA∵∠B=30°∴∠O=60°∵OA=OC∴∠OAC=60°∵∠CAD=30°∴∠OAD=90°又∴点A在⊙O 上∴AD是⊙O的切线;(2)∵∠OAC=∠O=60°∴∠OCA=60°∴△AOC是等边三角形∵OD⊥AB∴OD垂直平分AB∴AC=BC=5∴OA=5即⊙O的半径为5.8.(1)证明:连接OD,在△AOD中,OA=OD∴∠A=∠ODA又∵∠A+∠CDB=90°∴∠ODA+∠CDB=90°∴∠BDO=180°-90°=90°,即OD⊥BD ∴BD与⊙O相切.(2)解:连接DE,∵AE是⊙O的直径∴∠ADE=90°∴DE∥BC.又∵D是AC的中点,∴AE=BE.∴△AED∽△ABC.∴AC∶AB=AD∶AE.∵AC∶AB=4∶5令AC=4x,AB=5x,则BC=3x.∵BC=6,∴AB=10∴AE=5,∴⊙O的直径为5.9.(1)连接OA∵DA平分∠BDE∴∠BDA=∠EDA.∵OA=OD∴∠ODA=∠OAD∴∠OAD=∠EDA∴OA∥CE.∵AE⊥DE∴∠AED=90°.∴∠OAE=∠DEA=90°.∴AE⊥OA.∴AE是⊙O的切线;(2)∵BD是直径∴∠BCD=∠BAD=90°.∵∠DBC=30°,∠BDC=60°∴∠BDE=120°.∵DA平分∠BDE∴∠BDA=∠EDA=60°.∴∠ABD=∠EAD=30°.∵在Rt△AED中,∠AED=90°,∠EAD=30°∴AD=2DE.∵在Rt△ABD中,∠BAD=90°,∠ABD=30°∴BD=2AD=4DE.∵DE的长是1cm∴BD的长是4cm.10.(1)证明:如图(1)连接OD.∵AD平分∠BAC,∴∠1=∠2.又∵OA="OD" ,∴∠1=∠3.∴∠2="∠3."∴OD∥AE.∵DE⊥AE∴DE⊥OD.而D在⊙O上∴DE是⊙O的切线.(2)过D作DG⊥AB 于G.∵DE⊥AE ,∠1=∠2.∴DG="DE=3" ,半径OD=5.在Rt△ODG中,根据勾股定理: OG===4 ∴AG=AO+OG=5+4=9.∵FB是⊙O的切线, AB是直径∴FB⊥AB.而DG⊥AB∴DG∥FB. △ADG∽△AFB∴∴.∴BF=.11.(1)解:直线CD与⊙O相切∵在⊙O中,∠COB=2∠CAB=2×30°=60°又∵OB=OC∴△OBC是正三角形∴∠OCB=60°又∵∠BCD=30°∴∠OCD=60°+30°=90°∴OC ⊥CD又∵OC 是半径∴直线CD 与⊙O 相切.(2)解:由(1)得△OCD 是Rt △,∠COB=60° ∵OC=1∴CD= √3∴S △COD = 12 OC •CD= √32又∵S 扇形OCB = π6∴S 阴影=S △COD ﹣S 扇形OCB = √32−π6=3√3−π6 .12.(1)证明:连接OB ,如图∵OP ⊥OA∴∠AOP=90°∴∠A+∠APO=90°∵CP=CB∴∠CBP=∠CPB而∠CPB=∠APO∴∠APO=∠CBP∵OA=OB∴∠A=∠OBA∴∠OBC=∠CBP+∠OBA=∠APO+∠A=90° ∴OB ⊥BC∴BC 是⊙O 的切线;(2)解:设BC=x ,则PC=x在Rt △OBC 中,OB= √5 ,OC=CP+OP=x+1 ∵OB 2+BC 2=OC 2∴( √5 )2+x 2=(x+1)2解得x=2即BC 的长为2.13.(1)证明:连接OC,OC交BD于E∵∠CDB=30°∴∠COB=2∠CDB=60°∵∠CDB=∠OBD∴CD∥AB又∵AC∥BD∴四边形ABDC为平行四边形∴∠A=∠D=30°∴∠OCA=180°﹣∠A﹣∠COB=90°,即OC⊥AC 又∵OC是⊙O的半径∴AC是⊙O的切线(2)解:由(1)知,OC⊥AC.∵AC∥BD∴OC⊥BD∴BE=DE∵在直角△BEO中,∠OBD=30°,OB=4∴BE=OBcos30°=2 √3∴BD=2BE=4 √314.(1)解:∵AB是⊙O直径,C在⊙O上∴∠ACB=90°又∵BC=3,AB=5∴由勾股定理得AC=4(2)解:证明:连接OC∵AC是∠DAB的角平分线∴∠DAC=∠BAC又∵AD⊥DC∴∠ADC=∠ACB=90°∴△ADC∽△ACB∴∠DCA=∠CBA又∵OA=OC∴∠OAC=∠OCA∵∠OAC+∠OBC=90°∴∠OCA+∠ACD=∠OCD=90°∴DC是⊙O的切线.15.(1)证明:连接OD∵D为BC的中点,O为AB的中点∴OD∥AC;∵DE⊥AC∴DE⊥OD∴DE是圆O的切线(2)解:连接 AD∵AB是直径∴AD⊥BC;∵D为BC的中点∴AD 是BC 的垂直平分线∴AC=AB=13;∵∠C=∠C ,∠DEC=∠ADC=90°∴△CDE ∽△CAD∴EC CD = DC AD ,而AC=AB=13,CD= 12 BC=5 ∴CE= 2513 .16.(1)证明:连接OD∵AD 平分∠CAB∴∠OAD=∠EAD .∵OD=OA∴∠ODA=∠OAD .∴∠ODA=∠EAD .∴OD ∥AE .∵∠ODF=∠AEF=90°且D 在⊙O 上 ∴EF 与⊙O 相切.(2)证明:连接BD ,作DG ⊥AB 于G∵AB 是⊙O 的直径∴∠ADB=90°∵AB=6,AD=4 √2∴BD= √AB 2−AD 2 =2∵OD=OB=3设OG=x ,则BG=3﹣x∵OD 2﹣OG 2=BD 2﹣BG 2,即32﹣x 2=22﹣(3﹣x )2 解得x= 73∴OG= 73∴DG= √OD2−OG2 = 43√2∵AD平分∠CAB,AE⊥DE,DG⊥AB∴DE=DG= 43√2∴AE= √AD2−DE2 = 163∵OD∥AE∴△ODF∽△AEF∴DFEF =ODAE,即EF−EDEF=ODAE∴EF−43√2EF=3163∴EF= 6421√2.17.(1)证明:连接OT,如图1所示:∵OA=OT∴∠OAT=∠OTA又∵AT平分∠BAD∴∠DAT=∠OAT∴∠DAT=∠OTA∴OT∥AC又∵CT⊥AC∴CT⊥OT∴CT为⊙O的切线(2)解:连接BT,如图2所示:∵AB是⊙O直径∴AB=2,∠ATB=90°∴BT= √AB2−AT2 = √22+(√3)2 =1.18.(1)解:连接OC .∵AC=BC ,AD=CD ,OB=OC∴∠A=∠B=∠1=∠2.∵∠ACO=∠DCO+∠2∴∠ACO=∠DCO+∠1=∠BCD又∵BD 是直径∴∠BCD=90°∴∠ACO=90°又C 在⊙O 上∴AC 是⊙O 的切线(2)解:由题意可得△DCO 是等腰三角形 ∵∠CDO=∠A+∠2,∠DOC=∠B+∠1∴∠CDO=∠DOC ,即△DCO 是等边三角形. ∴∠A=∠B=∠1=∠2=30°,CD=AD=2 在直角△BCD 中BC= √BD 2−CD 2 = √42−22 =2 √3 . 又AC=BC∴AC=2 √3 .作CE ⊥AB 于点E .在直角△BEC 中,∠B=30°∴CE= 12 BC= √3∴S △ABC = 12 AB •CE= 12 ×6× √3 =3 √3 .19.(1)证明:∵PF=PB∴∠PFB=∠PBF又∵∠DFE=∠PFB∴∠DFE=∠PBF∵AB 是圆的直径∴∠ACB=90°,即AC ⊥BC . 又∵OD ∥BC∴OD ⊥AC .∴在直角△DEF 中,∠D+∠DFE=90° 又∵OD=OB∴∠D=∠DBO∴∠DBO+∠PBE=90°,即PB ⊥AB ∴PB 是⊙O 的切线;(2)解:∵OD ∥BC ,OA=OB ∴OE= 12 BC= 12 ×6=3.∵OD ⊥AB∴EC=AE .∵在直角△OAE 中,OA= 12 AB= 12 ×10=5∴AE= √OA 2−OE 2 = √52−32 =4. ∴EC=4。
2023年九年级中考数学 二轮复习拔高训练--圆的切线的证明

2023年中考数学二轮复习拔高训练--圆的切线的证明一、综合题1.如图,已知⊙O的直径AB=12cm,AC是⊙O的弦,过点C作⊙O的切线交BA的延长线于点P,连接BC.(1)求证:∠PCA=∠B(2)已知∠P=40°,点Q在优弧ABC上,从点A开始逆时针运动到点C停止(点Q与点C不重合),当△ABQ与△ABC的面积相等时,求动点Q所经过的弧长。
2.已知二次函数图象的顶点在原点O,对称轴为y轴.一次函数y=kx+1的图象与二次函数的图象交于A,B两点(A在B的左侧),且A点坐标为(−4,4).平行于x轴的直线l过(0,−1)点.(1)求一次函数与二次函数的解析式;(2)判断以线段AB为直径的圆与直线l的位置关系,并给出证明;(3)把二次函数的图象向右平移2 个单位,再向下平移t 个单位(t>0),二次函数的图象与x 轴交于M,N 两点,一次函数图象交y 轴于 F 点.当t 为何值时,过F,M,N 三点的圆的面积最小?最小面积是多少?3.如图,在四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E。
(1)证明:AE=CE;(2)若AC=2BC,证明:DA是⊙O的切线;(3)在(2)条件下,连接BD交⊙O于点F,连接EF,若⊙O的直径为√5,求EF的长。
4.如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)试说明DF是⊙O的切线;(2)若AC=3AE,求BECE的值.5.如图,AB为半圆O的直径,点C为半圆上不与A,B重合的一动点,AC⌢=CD⌢,连接AC,CD,AD,BC,延长BC交AD于F,交半圆O的切线AE于E.(1)求证:△AEF是等腰三角形;(2)填空:①若AE=√5,BE=5,则BF的长为;②当∠E的度数为时,四边形OACD为菱形.6.如图AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O 于点D,直线EC交AB的延长线于点P,连接AC,BC,PC=2PB.(1)探究线段PB,AB之间的数量关系,并说明理由;(2)若AD=3,求AB长.7.定义:圆心在三角形的一边上,与另一边相切,且经过三角形一个顶点(非切点)的圆,称为这个三角形圆心所在边上的“伴随圆”.(1)如图1,△ABC中,∠C=90°,AB=5,BC=3,则AC边上的伴随圆的半径为.(2)如图2,已知等腰△ABC,AB=AC=5,BC=6,画草图并直接写出它的所有伴随圆的半径.(3)如图3,△ABC中,∠ACB=90°,点P在边AB上,AP=2BP,D为AC中点,且∠CPD=90°.①求证:△CPD的外接圆是△ABC某一条边上的伴随圆;②求cos∠PDC的值.8.已知在平面直角坐标系xOy中,直线l1分别交x轴和y轴于点A(-3,0),B(0,3).(1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;(2)如图2,已知直线l2: y=3x-3分别交x轴和y轴于点C和点D,点Q是直线l2上的一个动点,以Q为圆心,2√2为半径画圆.①当点Q与点C重合时,求证: 直线l1与⊙Q相切;②设⊙Q与直线l1相交于M,N两点, 连结QM,QN. 问:是否存在这样的点Q,使得△QMN是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.9.如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若点C是弧AB的中点,已知AB=4,求CE·CP的值.10.在平面直角坐标系中,抛物线y=x2+(k−1)x−k与直线y=kx+1交于A,B两点,点A 在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k−1)x−k(k>0)与x 轴交于C,D两点(点C在点D的左侧).当以OC为直径的⊙E与直线AB相切于点Q时,请求出此时k的值.11.如图,第一象限内半径为2的⊙C与y轴相切于点A,作直径AD,过点D作⊙C的切线l交x轴于点B,P为直线l上一动点,已知直线PA的解析式为:y=kx+3.(1)设点P的纵坐标为p,写出p随k变化的函数关系式.(2)设⊙C与PA交于点M,与AB交于点N,则不论动点P处于直线l上(除点B以外)的什么位置时,都有△AMN∽△ABP.请你对于点P处于图中位置时的两三角形相似给予证明;(3)是否存在使△AMN的面积等于3225的k值?若存在,请求出符合的k值;若不存在,请说明理由.12.我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系。
初中数学专题练习:圆的切线证明(解析版)

专题07圆的切线证明1.如图,等边△ABC内接于⊙O,P是上任意一点(不与点A、B重合),连AP、BP,过点C作CM∥BP 交PA的延长线于点M.(1)求∠APC和∠BPC的度数试;(2)探究PA、PB、PM之间的关系;(3)若PA=1,PB=2,求四边形PBCM的面积.解:(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=∠ACB=60°,∵,,∴∠APC=∠ABC=60°,∠BPC=∠BAC=60°;(2)∵CM∥BP,∴∠BPM+∠M=180°,∠PCM=∠BPC=60°,∴∠M=180°﹣∠BPM=180°﹣(∠APC+∠BPC)=180°﹣120°=60°,∴∠M=∠BPC=60°,∴∠PCM﹣∠PCA=∠ACB﹣∠PCA,即∠ACM=∠BCP,又∵BC=AC,∴△ACM≌△BCP(AAS),∴AM=BP,∵PM=PA+AM,∴PM=PA+PB;(3)∵△ACM≌△BCP,∴CM=CP,又∵∠M=60°,∴△PCM为等边三角形,∴CM=CP=PM=1+2=3,如图,过点P作PH⊥CM于H,在Rt△PMH中,∠MPH=30°,∴PH=,=(PB+CM)×PH=(2+3)×=.∴S梯形PBCM2.如图所示,线段AC是⊙O的直径,过A点作直线BF交⊙O于A、B两点,过A点作∠FAC的角平分线交⊙O于D,过D作AF的垂线交AF于E.(1)证明DE是⊙O的切线;(2)证明AD2=2AE•OA;(3)若⊙O的直径为10,DE+AE=4,求AB.(1)证明:连接OD,∴DE为⊙O切线;(2)证明:连接CD.∵AC为⊙O的直径,DE⊥AF∴∠ADC=90°,∠DEA=90°,∴∠ADC=∠AED,∴在△ACD和△ADE中,∠DAC=∠EAD,∠ADC=∠AED,∴△ACD∽△ADE,∴.∴AD2=AE•AC.∵AC=2OA,∴AD2=2AE•OA;(3)解:过点O作OM⊥AB于点M,则四边形ODEM为矩形,设DE=OM=x,则AE=4﹣x,∴AM=5﹣(4﹣x)=1+x,在Rt△AMO中,OA2=AM2+OM2,即:(1+x)2+x2=52解得:x1=3,x2=﹣4(舍去).∴AM=4.∵OM⊥AB,由垂径定理得:AB=2AM=8.3.如图1,△ABC内接于⊙O,过C作射线CP与BA的延长线交于点P,∠B=∠ACP.(1)求证:CP是⊙O的切线;(2)若PC=4,PA=2,求AB的长;(3)如图2,D是BC的中点,PD与AC交于点E,求证:.(1)证明:如图1,连结OA、OC,则OA=OC.∴∠OAC=∠OCA.∴∠AOC+2∠OCA=180°.由圆周角定理,得∠AOC=2∠B.∴2∠B+2∠OCA=180°.∴∠B+∠OCA=90°.∵∠B=∠ACP.∴∠ACP+∠OCA=90°,即∠OCP=90°.∴CP是⊙O的切线;(2)∵∠B=∠ACP,∠ACP=∠CPB,∴△APC∽△CPB.∴=,∴PB===8.∴AB=PB﹣PA=8﹣2=6;(3)如图2,延长ED至F,使DF=ED,连结BF,易得△BDF≌△CDE,∴BF=CE,∠CED=∠F.∴BF∥EC,∴==.由(2)得,PB=,∴=,∴.4.定义:如果一个点能与另外两个点构成直角三角形,则称这个点为另外两个点的勾股点.如矩形OBCD 中,点C为O,B两点的勾股点,已知OD=4,在DC上取点E,DE=8.(1)如果点E是O,B两点的勾股点(点E不在点C),试求OB的长;(2)如果OB=12,分别以OB,OD为坐标轴建立如图2的直角坐标系,在x轴上取点F(5,0).在线段DC上取点P,过点P的直线l∥y轴,交x轴于点Q.设DP=t.①当点P在DE之间,以EF为直径的圆与直线l相切,试求t的值;②当直线l上恰好有2点是E,F两点的勾股点时,试求相应t的取值范围.解:(1)如图1,连接OE,BE,若点E是O,B两点的勾股点,则∠OEB=90°,∴∠OED+∠CEB=90°,∵∠OED+∠DOE=90°,∴∠DOE=∠CEB,又∵∠C=∠ODE,∴△BCE∽△EDO,∴=,即=,∴CE=2,∴OB=DE=8+2=10;(2)①如图2﹣1,设以EF为直径的圆的圆心为Q,与直线l的切点为M,直线l与OB的交点为H,连接QM,则∠FME=90°,QM⊥PH,∴∠HMF+∠PME=90°,∵∠PME+∠PEM=90°,∴∠HMF=∠PEM,又∵∠MHF=∠EPM=90°,∴△MHF∽△EPM,∴=,∵QM⊥PH,l∥y轴,∴HF∥MQ∥PE,∴=,∵FQ=QE,∴HM=MP=2,又∵DP=OH=t,DE=8,OF=5,∴HF=5﹣t,PE=8﹣t,∴=,解得,t1=4,t2=9(点P在DE之间,舍去),∴t=4;②如图2﹣2,当直线l在⊙Q的右侧与⊙Q相切时,由①知△MHF∽△EPM,∴=,此时,HM=MP=2,HF=t﹣5,PE=t﹣8,∴=,解得,t1=4,t2=9,∴当t=4或9时直线l与⊙Q相切,∵点E,F以及直线l上的点均可为直角三角形的直角顶点,∴当直线l上恰好有2点是E,F两点的勾股点时,相应t的取值范围为0≤t<4或t=5或t=8或9<t≤12.5.如图,AB是⊙O的直径,点P是圆上不与点A,B重合的动点,连接AP并延长到点D,使AP=DP,点C是BD的中点,连接OP,OC,PC(1)求证:∠A=∠D;(2)填空:①若AB=10cm,当AP=cm时,四边形AOCP是菱形;②当四边形OBCP是正方形时,∠DPC=°.(1)证明:如图,连接PB,∵AB是⊙O的直径,∴BP⊥AD,∵AP=PD,∴BP是线段AD的垂直平分线,∴BA=BD,∴∠A=∠D;(2)解:①∵AP=PD,BC=DC,∴,∵AB是⊙O的直径,∴,∴OA=PC,∴四边形AOCP是平行四边形,∴当时,平行四边形AOCP是菱形,故答案为:5;②当四边形OBCP是正方形时,∠POB=90°,∵OA=OP,∴∠OPA=∠A=45°=POB,∴PC∥AO,∴∠DPC=∠A=45°,故答案为:45.6.如图①,在矩形ABCD中,BC=60cm.动点P以6cm/s的速度在矩形ABCD的边上沿A→D的方向匀速运动,动点Q在矩形ABCD的边上沿A→B→C的方向匀速运动.P、Q两点同时出发,当点P到达终点D时,点Q立即停止运动.设运动的时间为t(s),△PDQ的面积为S(cm2),S与t的函数图象如图②所示.(1)AB=cm,点Q的运动速度为cm/s;(2)在点P、Q出发的同时,点O也从CD的中点出发,以4cm/s的速度沿CD的垂直平分线向左匀速运动,以点O为圆心的⊙O始终与边AD、BC相切,当点P到达终点D时,运动同时停止.①当点O在QD上时,求t的值;②当PQ与⊙O有公共点时,求t的取值范围.解:(1)设点Q的运动速度为acm/s,则由图②可看出,当运动时间为5s时,△PDQ有最大面积450,即此时点Q到达点B处,∵AP=6t,=(60﹣6×5)×5a=450,∴S△PDQ∴a=6,∴AB=5a=30,故答案为:30,6;(2)①如图1,设AB,CD的中点分别为E,F,当点O在QD上时,QC=AB+BC﹣6t=90﹣6t,OF=4t,∵OF∥QC且点F是DC的中点,∴OF=QC,即4t=(90﹣6t),解得,t=;②设AB,CD的中点分别为E,F,⊙O与AD,BC的切点分别为N,G,过点Q作QH⊥AD于H,如图2﹣1,当⊙O第一次与PQ相切于点M时,∵AP=6t,AB+BQ=6t,且BQ=AH,∴HP=QH=AB=30,∴△QHP是等腰直角三角形,∵CG=DN=OF=4t,∴QM=QG=90﹣4t﹣6t=90﹣10t,PM=PN=60﹣4t﹣6t=60﹣10t,∴QP=QM+MP=150﹣20t,∵QP=QH,∴150﹣20t=30,∴t=;如图2﹣2,当⊙O第二次与PQ相切于点M时,∵AP=6t,AB+BQ=6t,且BQ=AH,∴HP=QH=AB=30,∴△QHP是等腰直角三角形,∵CG=DN=OF=4t,∴QM=QG=4t﹣(90﹣6t)=10t﹣90,PM=PN=4t﹣(60﹣6t)=10t﹣60,∴QP=QM+MP=20t﹣150,∵QP=QH,∴20t﹣150=30,∴t=,综上所述,当PQ与⊙O有公共点时,t的取值范围为:≤t≤.7.如图,矩形ABCD中,AB=2BC,以AB为直径作⊙O.(1)证明:CD是⊙O的切线;(2)若BC=3,连接BD,求阴影部分的面积.(结果保留π)解:(1)过点O作OE⊥CD于E,∵四边形ABCD是矩形,∴∠A=∠ADC=∠OED=90°,∴四边形ADEO是矩形,∴AD=OE,∵AB=2BC,∴AB=2AD=2OE,∴AO=OE,∴CD是⊙O的切线;(2)∵四边形ADEO是矩形,∴∠AOE=∠BOE=90°,==.∴阴影部分的面积=S扇形BOE8.定义:已知点O是三角形的边上的一点(顶点除外),若它到三角形一条边的距离等于它到三角形的一个顶点的距离,则我们把点O叫做该三角形的等距点.(1)如图1,△ABC中,∠ACB=90°,AC=3,BC=4,O在斜边AB上,且点O是△ABC的等距点,试求BO的长.(2)如图2,△ABC中,∠ACB=90°,点P在边AB上,AP=2BP,D为AC中点,且∠CPD=90°.①求证:△CPD的外接圆圆心是△ABC的等距点;②求tan∠PDC的值.解:(1)CB=4,AC=3,则AB=5,①当OH⊥BC时,只有OH=OA一种情况,设OB=x,则OH=OA=5﹣x,则sin B===,解得:x=;②当OH′⊥AC时,同理可得:OH′=OB,解得:x=,综上,OB=或;(2)①设△CPD的外接圆圆心为点O,连接OP、OB,则OD=OP=OC,设圆的半径为R,AP=2BP=2a,则AD=2R,OD=R,则,故PD∥OB,故∠BOP=∠DPO,∠COB=∠ODP,而∠ODP=∠OPD,∴∠POB=∠COB,而BO=BO,OP=OC,∴△BCO≌△BPO(SAS),∴∠BPO=90°,即OP⊥AB,且OP=OC,故:△CPD的外接圆圆心是△ABC的等距点;②∵△BCO≌△BPO(SAS),∴BC=BP=a,而AB=3a,AC=4R,故(3a)2=(4R)2+a2,解得:a=,tan∠PDC=tan∠COB====.9.如图,AB是⊙O的直径,弦CD⊥AB于点E,G是上一动点,AG,DC的延长线交于点F,连接AC,AD,GC,GD.(1)求证:∠FGC=∠AGD;(2)若AD=6.①当AC⊥DG,CG=2时,求sin∠ADG;②当四边形ADCG面积最大时,求CF的长.证明:(1)∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE,CD⊥AB,∴AC=AD,∴∠ADC=∠ACD,∵四边形ADCG是圆内接四边形,∴∠ADC=∠FGC,∵∠AGD=∠ACD,∴∠FGC=∠ADC=∠ACD=∠AGD,∴∠FGC=∠AGD;(2)如图,设AC与GD交于点M,∵,∴∠GCM=∠ADM,又∵∠GMC=∠AMD,∴△GMC∽△AMD,∴===,设CM=x,则DM=3x,由(1)知,AC=AD,∴AC=6,AM=6﹣x,在Rt△AMD中,AM2+DM2=AD2,∴(6﹣x)2+(3x)2=62,解得,x1=0(舍去),x2=,∴AM=6﹣=,∴sin∠ADG===;=S△ADC+S△ACG,(3)S四边形ADCG∵点G是上一动点,∴当点G在的中点时,△ACG的的底边AC上的高最大,此时△ACG的面积最大,四边形ADCG的面积也最大,∴GA=GC,∴∠GAC=∠GCA,∵∠GCD=∠F+∠FGC,由(1)知,∠FGC=∠ACD,且∠GCD=∠ACD+∠GCA,∴∠F=∠GCA,∴∠F=∠GAC,∴FC=AC=6.10.如图,CD是⊙O的直径,弦AB⊥CD,垂足为H,FG是⊙O的切线,FG∥BD,DF与AB交于点E.(1)求证:BE=BD;(2)若AB=8,DH=3,求EH的长.解:(1)如图,连接OF,∵FG是⊙O的切线,∴∠GFD+∠OFD=90°,∵AB⊥CD,∴∠DEH+∠ODE=90°,∵OF=OD,∴∠OFD=∠ODF.∴∠DEH=∠GFD,∵FG∥BD,∴∠GFD=∠BDF,∴∠DEH=∠BDF,∴BE=BD;(2)∵CD是⊙O的直径,弦AB⊥CD,垂足为H,∴,∵DH=3,∴BD=5,∵BE=BD,∴BE=5,∴EH=BE﹣BH=1,答:EH的长为1.11.如图,直线MN交⊙O于A,B两点,AC是⊙O直径,∠CAM的平分线交⊙O于点D,过点D作DE⊥MN 于点E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.(1)证明:连接OD,如图所示:∵OA=OD,∴∠3=∠2,∵AD平分∠CAM,∴∠2=∠1,∴∠1=∠3,∴MN∥OD,∵DE⊥MN,∴DE⊥OD,∴DE是⊙O的切线;(2)解:连接CD,如图所示:∵AC是⊙O的直径,∴∠ADC=90°,∴AD===3(cm),∵DE⊥MN,∴∠AED=90°,∴∠ADC=∠AED,又∵∠2=∠1,∴△ADC∽△AED,∴=,即=,∴AC=15(cm),∴OA=AC=cm,即⊙O的半径为cm.12.如图,O为∠MBN角平分线上一点,⊙O与BN相切于点C,连结CO并延长交BM于点A,过点A作AD⊥BO于点D.(1)求证:AB为⊙O的切线;(2)若BC=6,tan∠ABC=,求AD的长.解:(1)过点O作OE⊥AB于点E,∵O为∠MBN角平分线上一点,∴∠ABD=∠CBD,又∵BC为⊙O的切线,∴AC⊥BC,∵AD⊥BO于点D,∴∠D=90°,∴∠BCO=∠D=90°,在△BOC和△BOE中,∵,∴△BOC≌△BOE(AAS),∴OE=OC,∵OE⊥AB,∴AB是⊙O的切线;(2)∵∠ABC+∠BAC=90°,∠EOA+∠BAC=90°,∴∠EOA=∠ABC,∵tan∠ABC=、BC=6,∴AC=BC•tan∠ABC=8,则AB=10,由(1)知BE=BC=6,∴AE=4,∵tan∠EOA=tan∠ABC=,∴,∴OE=3,OB==3,∵∠ABD=∠OBC,∠D=∠ACB=90°,∴△ABD∽△OBC,∴,即=,∴AD=2.13.如图1是一块内置量角器的等腰直角三角板,它是一个轴对称图形.已知量角器所在的半圆O的直径DE与AB之间的距离为1,DE=4,AB=8,点N为半圆O上的一个动点,连结AN交半圆或直径DE 于点M.(1)当AN经过圆心O时,求AN的长;(2)如图2,若N为量角器上表示刻度为90°的点,求△MON的周长;(3)当时,求△MON的面积.解:(1)如图1中,连接FO延长FO交AB于H.则FH⊥AB,FH⊥DE.∵FA=FB,FH⊥AB,∴AH=HB=4,在Rt△AOH中,∵OH=1,AH=4,∴OA===,∴AN=OA+ON=+2.(2)如图2中,连接OM,作OJ⊥MN.在Rt△AHN中,∵AH=4,NH=ON+OH=2+1=3,∴AN===5,由△△OJN∽△AHN,可得=,∴=,∴JN=,∵OJ⊥MN,∴JM=JN,∴MN=2JN=,∴△MON的周长=2+2+=.(3)如图3﹣1中,连接AO,延长AO交⊙O于K,作OJ⊥MN于J,连接OM,ON.设AM=MN=x,OJ=y,则有,解得,∴MN=,OJ=,=•MN•OJ=××=.∴S△MON如图3﹣2中,连接ON,作NJ⊥AB于J交DE于K.∵AM=MN,MK∥AJ,∴NK=JK=OH=1,∵NJ⊥AB,DE∥AB,∴NK⊥OE,∴sin∠NOK==,∴OK=NK=,∵四边形OKJH是矩形,∴HJ=OK=,∴AJ=4+,∴MK=AJ=2+,∴OM=MK﹣OK=2﹣,=•OM•NK=•(2﹣)×1=1﹣,∴S△MON综上所述,满足条件的△MON的面积为或1﹣.14.MN是⊙O上的一条不经过圆心的弦,MN=4,在劣弧MN和优弧MN上分别有点A,B(不与M,N 重合),且,连接AM,BM.(1)如图1,AB是直径,AB交MN于点C,∠ABM=30°,求∠CMO的度数;(2)如图2,连接OM,AB,过点O作OD∥AB交MN于点D,求证:∠MOD+2∠DMO=90°;(3)如图3,连接AN,BN,试猜想AM•MB+AN•NB的值是否为定值,若是,请求出这个值;若不是,请说明理由.解:(1)如图1,∵AB是⊙O的直径,∴∠AMB=90°.∵,∴∠AMN=∠BMN=45°.∵OM=OB,∴∠OMB=∠OBM=30°,∴∠CMO=45°﹣30°=15°;(2)如图2,连接OA,OB,ON.∵,∴∠AON=∠BON.又∵OA=OB,∴ON⊥AB.∵OD∥AB,∴∠DON=90°.∵OM=ON,∴∠OMN=∠ONM.∵∠OMN+∠ONM+∠MOD+∠DON=180°,∴∠MOD+2∠DMO=90°;(3)如图3,延长MB至点M′,使BM′=AM,连接NM′,作NE⊥MM′于点E.设AM=a,BM=b.∵四边形AMBN是圆内接四边形,∴∠A+∠MBN=180°.∵∠NBM′+∠MBN=180°,∴∠A=∠NBM′.∵,∴AN=BN,∴△AMN≌△BM′N(SAS),∴MN=NM′,BM′=AM=a.∵NE⊥MM′于点E.∴.∵ME2+(BN2﹣BE2)=MN2,∴.化简得ab+NB2=16,∴AM•MB+AN•NB=16.15.如图,⊙O是△ABC的外接圆,AB为⊙O的直径,在△ABC外侧作∠CAD=∠CAB,过点C作CD⊥AD 于点D,交AB延长线于点P.(1)求证:PC是⊙O的切线;(2)若tan∠BCP=,AD•BC=4m2(m>0),求⊙O的半径;(用含m的代数式表示)(3)如图2,在(2)的条件下,作弦CF平分∠ACB,交AB于点E,连接BF,且BF=5,求线段PE的长.解:(1)如图1,连接OC,则OA=OC,则∠OAC=∠OCA=α,而∠CAD=∠CAB=α,故∠DAC=∠OCA=α,∴AD∥CO,而CD⊥AD,∴CO⊥PD,故PC是⊙O的切线;(2)PC是⊙O的切线,则∠BCP=∠CAB=α,即tan,则sin,cos,∵∠DAC=∠CAB=α,∴△ADC∽△ABC,设圆的半径为R,则AC=AB cosα=2R×=,CD=AC sinα=,故AD•BC=AC•CD==4m2,故R=m;(3)连接OF、OC,CF平分∠ACB,则FO⊥AB,∵∠ECP=90°﹣∠OCE,∠CEP=90°﹣∠OFC,而∠OCE=∠OFC,∴∠ECP=∠CEP,∴PC=PE,BF=5=R,则R=5,AD=AC cosα=×=8,同理CD=4,∵CO∥AD,∴,即,解得:PC==PE.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上册圆的切线证明题练习题
1、(2013济宁)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为()
21、(2013甘肃兰州10分、27)已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM 交⊙O于D,过D作DE⊥MN于E.
(1)求证:DE是⊙O的切线;
24、(2013?湖州)如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦AB⊥OC,劣弧AB 的度数为120°,连接PB.
(1)求BC的长;
(2)求证:PB是⊙O的切线.
28、(2013?玉林)如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,若AC=FC.
(1)求证:AC是⊙O的切线:
(2)若BF=8,DF=,求⊙O的半径r.
29、(2013安顺)如图,AB是⊙O直径,D为⊙O上一点,AT平分∠BAD交⊙O于点T,过T作AD 的垂线交AD的延长线于点C.
(1)求证:CT为⊙O的切线;
(2)若⊙O半径为2,CT=,求AD的长.
33、(2013?牡丹江)如图,点C是⊙O的直径AB延长线上的一点,且有BO=BD=BC.
(1)求证:CD是⊙O的切线;
(2)若半径OB=2,求AD的长.
35、(2013?恩施州)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.
(1)求证:CG是⊙O的切线.
(2)求证:AF=CF.
36、(2013?黄冈)如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB.
(1)求证:DC为⊙O的切线;
39、(2013?铁岭)如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC 交AC于AC点E,交PC于点F,连接AF.
(1)判断AF与⊙O的位置关系并说明理由;
(2)若⊙O的半径为4,AF=3,求AC的长.。