高三复习随机抽样教学设计
江苏高三数学一轮复习导学案 随机抽样、用样本估计总体
随机抽样、用样本估计总体学习目标1.理解随机抽样的必要性和重要性,会用简单随机抽样方法从总体中抽取样本,了解分层抽样的方法.2.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.1.随机抽样(1)简单随机抽样:一般地,从个体数为N 的总体中逐个不放回地取出n 个个体作为样本(n <N ),如果每个个体都有相同的机会被取到,那么这样的抽样方法称为简单随机抽样.(2)分层抽样:一般地,当总体由差异明显的几个部分组成时,为了使样本更客观地反映总体情况,我们常常将总体中的个体按不同的特点分成层次比较分明的几个部分,然后按各个部分在总体中所占的比实施抽样,这种抽样方法叫分层抽样,所分成的各个部分称为“层”. 2.用样本的频率分布估计总体分布(1)在频率分布直方图中,纵轴表示频率/组距,数据落在各小组内的频率用各小长方形的面积表示.各小长方形的面积的总和等于1. (2)频率分布折线图和总体密度曲线①频率分布折线图:如果将频率分布直方图中各个相邻的矩形的上底边的中点顺次连结起来,那么就得到频率分布折线图.②总体分布的密度曲线:如果将样本容量取得足够大,分组的组距取得足够小,那么相应的频率折线图将趋于一条光滑曲线,我们称这条光滑曲线为总体分布的密度曲线. (3)茎叶图茎是指中间的一列数,叶是从茎的旁边生长出来的数. 3.用样本的数字特征估计总体的数字特征 (1)众数:一组数据中出现次数最多的数.(2)中位数:将数据从小到大排列,若有奇数个数,则最中间的数是中位数;若有偶数个数,则中间两数的平均数是中位数.(3)平均数:x =x 1+x 2+…+x n n ,反映了一组数据的平均水平.(4)把一组数据的最大值与最小值的差称为极差. (5)标准差:是样本数据到平均数的一种平均距离,s =1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2](6)方差:s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2](x n 是样本数据,n 是样本容量,x 是样本平均数). 基础达标1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)简单随机抽样中,每个个体被抽到的机会不一样,与先后有关.( ) (2)分层抽样中,每个个体被抽到的可能性与层数及分层有关.( )(3)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论.( )(4)如果一组数中每个数减去同一个非零常数,则这组数的平均数改变,方差不变.( ) 2.某公司有员工500人,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人,为了调查员工的身体健康状况,从中抽取100名员工,则应在这三个年龄段分别抽取人数为( ) A .33,34,33 B .25,56,19 C .20,40,30D .30,50,203.某射击小组有20人,教练将他们某次射击的数据绘制成如下表格,则这组数据的众数和中位数分别是( )环数 5 6 7 8 9 10 人数127631A .7,7B .8,7.5C .7,7.5D .8,6 4.如图是100位居民月均用水量的频率分布直方图,则月均用水量在[2,2.5)范围内的居民有______人.题组三 易错自纠5.已知一组数据的频率分布直方图如图,则众数是______,平均数是________.6.若数据x1,x2,x3,…,x n的平均数x=5,方差s2=2,则数据3x1+1,3x2+1,3x3+1,…,3x n+1的平均数和方差分别为________.题组训练1.用简单随机抽样的方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性与“第二次被抽到”的可能性分别是()A.110,110 B.310,15C.15,310 D.310,3102.(2020·吉安模拟)总体由编号为00,01,02,…,48,49的50个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第6行的第9列和第10列数字开始从左到右依次选取两个数字,则选出的第3个个体的编号为()附:第6行至第9行的随机数表如下:2635 7900 3370 9160 1620 3882 7757 49503211 4919 7306 4916 7677 8733 9974 67322748 6198 7164 4148 7086 2888 8519 16207477 0111 1630 2404 2979 7991 9683 5125A.33 B.16 C.38 D.203.为了调查城市PM2.5的情况,按地域把48个城市分成大型、中型、小型三组,相应的城市数分别为24,16,8.若用分层抽样的方法抽取12个城市,则应抽取的中型城市数为() A.3 B.4 C.5 D.6典型例题例1 (2018·全国Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半例2 下面两个图是2020年6月25日由国家卫健委发布的全国疫情累计趋势图,每图下面横向标注日期,纵向标注累计数量.现存确诊为存量数据,计算方法为:累计确诊数-累计死亡数-累计治愈数.则下列对新冠肺炎叙述错误的是()A.自1月20日以来一个月内,全国累计确诊病例属于快速增长时期B.自4月份以来,全国累计确诊病例增速缓慢,疫情扩散势头基本控制C.自6月16日至24日以来,全国每日现存确诊病例平缓增加D.自6月16日至24日以来,全国每日现存确诊病例逐步减少例3 如图所示的茎叶图记录了甲,乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均数也相等,则x和y的值分别为()A.3,5 B.5,5 C.3,7 D.5,7例4 (2020·天津)从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47]内的个数为()A.10 B.18 C.20 D.36跟踪训练(1)由于受疫情的影响,学校停课,同学们通过三种方式在家自主学习,现学校想了解同学们对假期学习方式的满意程度,收集如图1所示的数据;教务处通过分层抽样的方法抽取4%的同学进行满意度调查,得到的数据如图2.下列说法错误的是()A.样本容量为240B.若m=50,则本次自主学习学生的满意度不低于四成C.总体中对方式二满意的学生约为300人D.样本中对方式一满意的学生为24人(2)(2021·贵阳模拟)某网站为了了解某“跑团”每月跑步的平均里程,收集并整理了2019年1月至2019年11月期间该“跑团”每月跑步的平均里程(单位:公里)的数据,绘制了下面的折线图.根据折线图,下列结论正确的是()A.月跑步平均里程的中位数为6月份对应的里程数B.月跑步平均里程逐月增加C.月跑步平均里程高峰期大致在8,9月份D.1月至5月的月跑步平均里程相对于6月至11月波动性更小,变化比较平稳(3)(2020·成都模拟)如图是某赛季甲、乙两名篮球运动员9场比赛所得分数的茎叶图,则下列说法错误的是()A.甲所得分数的极差为22 B.乙所得分数的中位数为18C.两人所得分数的众数相等D.甲所得分数的平均数低于乙所得分数的平均数(4)如图是某班50名学生期中考试数学成绩的频率分布直方图,其中成绩分组区间为[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],则图中x的值为________.题组训练1.(2019·全国Ⅱ)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A.中位数B.平均数C.方差D.极差2.某项测试成绩满分为10分,现随机抽取30名学生参加测试,得分情况如图所示,假设得分值的中位数为m e,平均数为x,众数为m0,则()A.m e=m0=x B.m e=m0<xC.m e<m0<x D.m0<m e<x3.(2019·全国Ⅱ)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.4.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):甲108999乙1010799如果甲、乙两人中只有1人入选,则入选的最佳人选应是________.。
高中数学必修三《随机抽样》优秀教学设计
2.1.随机抽样教学目标:1、知识与技能:(1)正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;(2)掌握系统抽样的一般步骤;(3)掌握分层抽样的一般步骤;(4)区分简单随机抽样、系统抽样和分层抽样,并选择适当正确的方法进行抽样。
2、过程与方法:(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;(2)在解决统计问题的过程中,学会用随机抽样的方法从总体中抽取样本。
(3) 通过对实际问题的探究,归纳应用数学知识解决实际问题的方法,理解分类讨论的数学方法,3、情感态度与价值观:通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。
4、重点与难点:正确理解三种抽样的定义,灵活应用抽样抽取样本,并恰当的选择三种抽样方法解决现实生活中的抽样问题。
教学设想:一.知识回顾1. 对于简单随机抽样,个体被抽到的机会A.相等B.不相等C.不确定D.与抽取的次数有关2. 抽签法中确保样本代表性的关键是A.制签B.搅拌均匀C.逐一抽取D.抽取不放回3. 某校有40个班,每班50人,每班选派3人参加“学代会”,在这个问题中样本容量是A.40B.50C.120D.1504. 为了解1200名学生对学校教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k为A.40B.30C.20D.125. 某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一容量为20的样本,则抽取管理人员A.3人B.4人C.7人D.12人6. 问题:①有1000个乒乓球分别装在3个箱子内,其中红色箱子内有500个,蓝色箱子内有200个,黄色箱子内有300个,现从中抽取一个容量为100的样本;①从20名学生中选出3名参加座谈会.方法:①.简单随机抽样法①.系统抽样法①.分层抽样法.其中问题与方法能配对的是A.①①,①①B.①①,①①C.①①,①①D.①①,①①7. 一个年级有12个班,每个班的同学从1至50排学号,为了交流学习经验,要求每班学号为14的同学留下进行交流,这里运用的是A.分层抽样B.抽签抽样C.随机抽样D.系统抽样8. 调查某班学生的平均身高,从50名学生中抽取5名,抽样方法:_____________,如果男女身高有显著不同(男生30人,女生20人),抽样方法:______________.二.知识点1 简单随机抽样、系统抽样、分层抽样的比较三.例题分析例题:一单位有职工160人,其中业务人员96人,管理人员40人,后勤服务人员24人,为了了解职工的收入情况,从中抽取一个容量为20的样本,按下述方法抽取:(1) 将160人从1至160编上号,再用纸做成1~160号的签160个放入箱内拌匀,然后从中抽20个签,与签号相同的20个人被选出。
2023高中数学随机抽样教案
2023高中数学随机抽样教案一、教学目标1.了解什么是随机抽样以及其应用场景;2.掌握随机抽样的各种方法;3.熟练解决随机抽样问题;4.增强使用随机抽样的能力。
二、教学内容随机抽样是指在总体中随机地抽取样本,通过分析样本来推断总体的参数。
在统计学中,随机抽样是一个非常重要的概念,它在实际生活中的应用非常广泛。
本节课主要内容包括:1.随机抽样的定义;2.简单随机抽样的方法与步骤;3.分层随机抽样的方法与步骤;4.系统抽样的方法与步骤;5.整群抽样的方法与步骤。
三、教学步骤第一步:引入随机抽样的概念通过图表或实例,介绍随机抽样的概念及其背景,让学生初步了解随机抽样的定义和背景。
第二步:介绍简单随机抽样的方法与步骤1.通过实例,介绍简单随机抽样的方法和步骤;2.着重介绍如何使用随机数表进行简单随机抽样;3.给出练习题,让学生进行练习。
第三步:介绍分层随机抽样的方法与步骤1.通过实例,介绍分层随机抽样的方法和步骤;2.着重介绍如何根据不同层次的特征进行抽样;3.给出练习题,让学生进行练习。
第四步:介绍系统抽样的方法与步骤1.通过实例,介绍系统抽样的方法和步骤;2.着重介绍如何确定抽样间隔以及如何进行抽样;3.给出练习题,让学生进行练习。
第五步:介绍整群抽样的方法与步骤1.通过实例,介绍整群抽样的方法和步骤;2.着重介绍如何根据总体的特征进行抽样;3.给出练习题,让学生进行练习。
第六步:练习与总结1.给出一些综合性的练习题,让学生进行练习;2.总结随机抽样的各种方法以及其应用场景;3.提醒学生在今后的学习和工作中要注重使用随机抽样,以提高数据的准确性和可靠性。
四、教学效果评估教学结束后,通过课堂测验或作业,检测学生掌握的知识和技能。
同时,评估学生在实际应用中的能力和水平,指导学生在今后的学习中进一步提高。
人教版高中数学必修3-2.1《随机抽样》教学设计
第二章统计2.1 随机抽样(程光)一、教学目标1.核心素养通过本节学习,让学生初步学会数据处理能力.2.学习目标(1)能从现实生活或其他学科中提出具有一定价值的统计问题.(2)结合具体的实际问题情景,理解随机抽样的必要性和重要性.(3)在参与解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样的方法.(4)通过试验,查阅资料、设计调查问卷等方法收集数据.3.学习重点(1)能从现实生活或其他学科中提出具有一定价值的统计问题.(2)理解随机抽样的必要性与重要性.(3)学会简单随机抽样的方法、了解分层抽样与系统抽样方法.(4)对随机性样本的随机性的正确理解.4.学习难点对样本随机性的理解.二、教学设计1.预习任务任务1阅读教材P54-P59,思考:为什么我们要研究随机抽样?随机抽样在生活中具有什么实用性?你可以举些实例吗?任务2随机抽样课本中提到了几种抽样?它们的共同点和不同点分别是什么呢?任务3教材P58中如果将500名学生改为501名,如果依然用系统抽样我们怎么处理?这样处理后每个人被抽到的概率是否相等?为什么?2.预习自测1.重庆市某学校为调查高一年级的240名学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取24名同学进行调查;第二种由教务处对高三年级的学生进行编号,从001到240,抽取学号最后一位为3的同学进行调查,则这两种抽样方法依次为( )A.分层抽样,简单随机抽样B.简单随机抽样,分层抽样C.分层抽样,系统抽样D.简单随机抽样,系统抽样解:D2.某工厂生产A、B、C三种不同型号的产品,产品数量之比为3∶4∶7,现在用分层抽样的方法抽出容量为n的样本,样本中A型号产品有15件,那么样本容量n为( )A.50B.60C.70D.80解:C3.2013年重庆市渝中区为了创建国家级文明卫生城区,采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为001,002,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷B的人数为()A.20B.19C.10D.9解:C(二)课堂设计1.知识回顾(1)为一定目的而全面的调查叫普查(2)对所有对象做调查时,从中抽取一部分对象作调查分析叫做抽样(3)考察对象的全体叫总体,组成总体的每一个考察对象叫个体,总体中抽取一部分个体的集体叫样本,样本中个体的数量叫样本容量2.问题探究问题探究一、随机抽样的必要性与重要性●活动一观察与思考:你知道下面这些数据是怎么来的吗?(1)我国是世界上的第三个贫水国,人均淡水占有量排列世界第109位;(2)我国土地沙漠化问题非常严重,全国沙漠化土地总面积已超过17.4万km2,并以每年3400 km2的速度扩张.P引言部分,你认为本章要学习的主要内容是什么?●活动二阅读与思考:阅读教材54●活动三自己动手,丰衣足食(1)__________:统计中所考察对象的全体叫总体.(2)__________:总体中的每一个考察对象叫个体.(3)__________:从总体中抽取的一部分个体叫做样本.(4)__________:样本的个体的数目叫做样本容量.(5)__________:总体的个体的数目叫做总体容量.。
人教课标版高中数学必修三《随机抽样》教案-新版
第二章统计2.1 随机抽样一、教学目标1.核心素养通过本节学习,让学生初步学会数据处理能力.2.学习目标(1)能从现实生活或其他学科中提出具有一定价值的统计问题.(2)结合具体的实际问题情景,理解随机抽样的必要性和重要性.(3)在参与解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样的方法.(4)通过试验,查阅资料、设计调查问卷等方法收集数据.3.学习重点(1)能从现实生活或其他学科中提出具有一定价值的统计问题.(2)理解随机抽样的必要性与重要性.(3)学会简单随机抽样的方法、了解分层抽样与系统抽样方法.(4)对随机性样本的随机性的正确理解.4.学习难点对样本随机性的理解.二、教学设计1.预习任务任务1阅读教材P54-P59,思考:为什么我们要研究随机抽样?随机抽样在生活中具有什么实用性?你可以举些实例吗?任务2随机抽样课本中提到了几种抽样?它们的共同点和不同点分别是什么呢?任务3教材P58中如果将500名学生改为501名,如果依然用系统抽样我们怎么处理?这样处理后每个人被抽到的概率是否相等?为什么?2.预习自测1.重庆市某学校为调查高一年级的240名学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取24名同学进行调查;第二种由教务处对高三年级的学生进行编号,从001到240,抽取学号最后一位为3的同学进行调查,则这两种抽样方法依次为( )A.分层抽样,简单随机抽样B.简单随机抽样,分层抽样C.分层抽样,系统抽样D.简单随机抽样,系统抽样解:D2.某工厂生产A、B、C三种不同型号的产品,产品数量之比为3∶4∶7,现在用分层抽样的方法抽出容量为n的样本,样本中A型号产品有15件,那么样本容量n为( )A.50B.60C.70D.80解:C3.2013年重庆市渝中区为了创建国家级文明卫生城区,采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为001,002,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷B的人数为()A.20B.19C.10D.9解:C(二)课堂设计1.知识回顾(1)为一定目的而全面的调查叫普查(2)对所有对象做调查时,从中抽取一部分对象作调查分析叫做抽样(3)考察对象的全体叫总体,组成总体的每一个考察对象叫个体,总体中抽取一部分个体的集体叫样本,样本中个体的数量叫样本容量2.问题探究问题探究一、随机抽样的必要性与重要性●活动一观察与思考:你知道下面这些数据是怎么来的吗?(1)我国是世界上的第三个贫水国,人均淡水占有量排列世界第109位;(2)我国土地沙漠化问题非常严重,全国沙漠化土地总面积已超过17.4万km2,并以每年3400 km2的速度扩张.P引言部分,你认为本章要学习的主要内容是什么?●活动二阅读与思考:阅读教材54●活动三自己动手,丰衣足食(1)__________:统计中所考察对象的全体叫总体.(2)__________:总体中的每一个考察对象叫个体.(3)__________:从总体中抽取的一部分个体叫做样本.(4)__________:样本的个体的数目叫做样本容量.(5)__________:总体的个体的数目叫做总体容量.问题探究二、简单随机抽样的步骤有哪些?一般地,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(N n ),如果每次抽取时总体内的各个个体被抽到的机会相等,我们把这种抽样方法叫做_______.我们所讨论的简单随机抽样都是_______的抽样,即抽取到某个个体后,该个体不再_______总体中.常用到的简单随机抽样方法有两种:______(抓阄法)和_______.简单随机抽样具有下列特点:★①简单随机抽样要求总体中的个体数N 是有限的.②简单随机抽样抽取样本的容量n 小于或等于总体中的个体数N . ③简单随机抽样中的每个个体被抽到的可能性均为Nn . ④当总体中的个体无差异且个体数目较少时,采用简单随机抽样抽取样本. ⑤逐个抽取即每次仅抽取一个个体.⑥简单随机抽样是不放回的抽样,即抽取的个体不再放回总体. 1. 抽签法(抓阄法)一般地,抽签法就是把总体中的N 个个体____,把号码写在____上,将号签放在一个容器中,搅拌____后,每次从中抽取_______号签,连续抽取n 次,就得到一个容量为___的样本.抽签法抽取样本的步骤:★ ①将总体中的个体编号为N ~1.②将所有编号N ~1写在形状、大小相同的号签上. ③将号签放在一个不透明的容器中,搅拌均匀.④从容器中每次抽取一个号签,并记录其编号,连续抽取n 次. ⑤从总体中将与抽取到的签的编号相一致的个体取出. 操作要点是:编号、写签、搅匀、抽取样本. 2. 随机数法随机数法即利用随机数表、随机数骰子或计算机产生的随机数进行抽样.这里仅介绍随机数表法. 用随机数表法抽取样本的步骤:★ ①将总体中的个体____.②在随机数表中________数作为开始.③规定一个方向作为从选定的数读取数字的____.④开始读取数字,若不在编号中,则____,若在编号中则____,依次取下去,直到取满为止.(相同的号只计一次)⑤根据选定的号码抽取样本.操作要点是:编号、选起始数、读数、获取样本. 问题探究三、系统抽样的步骤是什么?一般地,当总体中的个体数较多时,可将总体分成均衡的几个部分,然后按预先定出的规则,从每一部分抽取一个个体,得到需要的样本,这种抽样叫做系统抽样.系统抽样的步骤:★①采用随机的方式将总体中的个体编号为简便起见,有时可直接采用个体所带有的号码,如考生的准考证号、街道上各户的门牌号,等等②为将整个的编号分段(即分成几个部分),要确定分段的间隔k .当Nn(N 为总体中的个体的个数,n 为样本容量)是整数时,n N k =;当Nn 不是整数时,通过从总体中剔除一些个体使剩下的总体中个体的个数N '能被n 整除,这时nN k '=.③在第一段用简单随机抽样确定起始的个体编号l④按照事先确定的规则抽取样本(通常是将l 加上间隔k ,得到第2个编号k l +,第3个编号k l 2+,这样继续下去,直到获取整个样本)系统抽样的特点:★①系统抽样适用于总体中的个体数较多的情况,它与简单随机抽样的联系在于:将总体均分后的每一部分进行抽样时,采用的是简单随机抽样;②与简单随机抽样一样,系统抽样是等概率抽样,它是客观的、公平的.③总体中的个体数恰好能被样本容量整除时,可用它们的比值作为系统抽样的间隔;当总体中的个体数不能被样本容量整除时,可用简单随机抽样先从总体中剔除少量个体,使剩下的个体数能被样本容量整除在进行系统抽样问题探究四、分层抽样的步骤是什么?一般地,在抽样时,将总体分成________的层,然后按照一定的____,从各层____地抽取一定数量的个体,将各层取出的个体________作为样本,这种抽样的方法是一种分层抽样.分层抽样的步骤:①分层:按________将总体分成若干部分(层); ②按______确定每层抽取个体的个数;③各层分别按____________或________的方法抽取样本; ④综合每层抽样,组成样本.分层抽样又称类型抽样,应用分层抽样应遵循以下要求:(1)分层:将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,遵循不重复、不遗漏的原则.(2)分层抽样为保证每个个体都等可能入样,需遵循在各层中进行简单随机抽样或系统抽样,每层样本数量与每层个体数量的比和样本容量与总体容量的比相等.(3)当总体由差异明显的几部分组成时,往往采用分层抽样.问题探究五、随机抽样的实际问题分析 ●活动一 初步运用,理解抽样特点1.关于简单随机抽样的特点,有以下几种说法,其中不正确的是( ) A.要求总体的个数有限 B.从总体中逐个抽取C.它是一种不放回抽样D.每个个体被抽到的机会不一样,与先后顺序有关 【知识点:简单随机抽样】详解:D 简单随机抽样要求总体中的个体数N 是有限的.每个个体被抽到的可能性均为Nn.逐个抽取即每次仅抽取一个个体. 点拨:简单随机抽样的特点例2.某中学礼堂有25排座位,每排20个座位,一次数学讲座,礼堂中坐满了学生,会后为了了解有关情况,留下座号是15的25名学生进行测试,这里运用的抽样方法为( ) A.简单随机抽样 B.抽签法 C.随机数表法 D.系统抽样法 【知识点:系统抽样方法】详解:D 系统抽样是将总体分成均衡的几个部分,然后按预先定出的规则,从每一部分抽取一个个体,得到需要的样本. 点拨:系统抽样定义例3.某政府机关有在编人员共200人,其中副处级以上干部20人,一般干部140人,工人40人,上级部门为了了解该机关对政府改革的意见,要从中抽取20人,用以下哪种抽样方法最合适( ) A.系统抽样 B.简单随机抽样 C.分层抽样 D.随机数表法 【知识点:分层抽样方法】详解:C 分层:将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,遵循不重复、不遗漏的原则. 点拨:分层抽样特点例4.简单随机抽样、系统抽样、分层抽样之间的共同点是( )A.都是从总体中逐个抽取B.将总体分成几部分,按事先规定的规则在各部分中抽取C.抽样过程中每个个体被抽到的机会机相同D.将总体分成几层,分层进行抽取 【知识点:随机抽样】详解:C 随机抽样的特点抽样过程中每个个体被抽到的机会机相同 点拨:随机抽样的特点 ●活动二 对比提升,实际操作.例5.某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施抽取.【知识点:分层抽样方法】详解:用分层抽样方法抽取.具体实施抽取如下:(1)∵20∶100=1∶5,∴105=2,705=14,205=4,∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人.(2)副处级以上干部与工人的人数较少,他们分别按1~10编号与1~20编号,然后采用抽签法分别抽取2人和4人;对一般干部70人采用00,01,02,…,69编号,然后用随机数法抽取14人. (3)将2人,4人,14人的编号汇合在一起就取得了容量为20的样本.例6.为了了解参加某种知识竞赛的1000名学生的成绩,应采用什么抽样方法恰当?简述抽样过程. 【知识点:系统抽样方法】详解:适宜选用系统抽样,抽样过程如下:(1)随机地将这1000名学生编号为1,2,3,…,1000. (2)将总体按编号顺序均分成50部分,每部分包括20个个体.(3)在第一部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码,比如是18. (4)以18为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:18,38,58,…,978,998 3.课堂总结 【知识梳理】【重难点突破】(1)简单随机抽样、系统抽样、分层抽样的比较(2)抽样方法的选择①若总体由差异明显的几个层次组成,则选用分层抽样.②若总体没有差异明显的层次,则考虑采用简单随机抽样或系统抽样.③当总体容量较小时宜采用抽签法;当总体容量较大,样本容量较小时宜采用随机数表法;当总体容量较大,样本容量也较大时宜采用系统抽样.3.随堂检测基础型自主突破1.某学校为调查高三年级的240名学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取24名同学进行调查;第二种由教务处对高三年级的学生进行编号,从001到240,抽取学号最后一位为3的同学进行调查,则这两种抽样方法依次为()A.分层抽样,简单随机抽样B.简单随机抽样,分层抽样C.分层抽样,系统抽样D.简单随机抽样,系统抽样【知识点:随机抽样】解:D第一种强调的是随机抽取故属于简单随机抽样;第二种强调抽取的是学号最后一位为3的同学,属系统抽样.故D正确.2.抽签法中确保样本代表性的关键是()A.制签B.搅拌均匀C.逐一抽取D.与抽取的次数有关【知识点:简单随机抽样】解:B因为抽签法中确保样本代表性的关键是搅拌均匀,也就保证了等概率抽样3.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k为()A.40B.30C.20D.12【知识点:系统抽样方法】解:A1200 K=304.已知某地区中小学生人数和近视情况分别如图1和如图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.200,20B.100,20C.200,10D.100,10 【知识点:分层抽样方法】解:A 由题意知,样本容量为()3500450020002%200++⨯=,其中高中生人数为20002%40⨯=, 高中生的近视人数为4050%20⨯=,故选A.5.一个总体为60的个体编号为0,1,2,…,59,现要从中抽取一个容量为10的样本,请根据编号按被6除余3的方法,取足样本,则抽取的样本的号码是_____________. 【知识点:系统抽样方法】 解析:3,9,15,21,27,33,39,45,51,576.为了了解高一学生的视力情况,特别是近视率,抽测了其中100名同学的视力情况,这个过程中,100名同学的视力情况(数据)是( )A.总体B.个体C.总体的一个样本D.样本容量 【知识点:随机抽样】 解:C7.某工厂质检人员对生产的100件产品,采用随机数表抽取10件检查,对100件产品采用下面的编号方法:①01,02,…,100;②001,002,…100;③00,01,02,…99.其中正确的序号是( ) A.①② B.①③ C.②③ D.③ 【知识点:简单随机抽样】解:C 随机号码表又称为乱数表.它是将0~9的10个自然数,按编码位数的要求(如两位一组,三位一组,五位甚至十位一组)故选C8.为了了解一次知识竞赛的1252名学生成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应剔除个体的数目为( )A.2B.3C.4D.5 【知识点:系统抽样方法】 解:A125250余数为2 9.给出两个问题:①某小区有800个家庭,其中高收入家庭200户,中等收入家庭480户低收入家庭120户.为了了解有关家庭轿车购买力的某个指标,现从中抽取一容量为100的样本;②从20名学生中选出3名参加座谈会.三种抽样方法:Ⅰ.简单随机抽样法;Ⅱ.系统抽样法;Ⅲ.分层抽样法.则抽样方法对应正确的是( )A. ①Ⅰ,②ⅡB. ①Ⅲ,②ⅠC. ①Ⅱ,②ⅢD. ①Ⅲ,②Ⅱ 【知识点:随机抽样】解:B ①中有明显的分层,②中样本总数较小 能力型 师生共研10.某校高一年级有x 名学生,高二年级有y 名学生,高三年级有z 名学生,采用分层抽样抽一个容量为45人的样本,高一年级抽取20人,高二年级抽取10人,高三年级共有学生300人,则此学校共有学生________人 【知识点:分层抽样方法】 解:90045201045=300n-- 解得n=90011.在一个个体数目为1003的总体中,要利用系统抽样抽取一个容量为50的样本,那么总体中每个个体被抽到的可能性是__________. 【知识点:系统抽样方法】 解:100350,系统抽样每个个体被抽到的概率相等12.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数法设计抽样方案? 【知识点:简单随机抽样】解:第一步:将元件的编号调整为010,011,012,...,099,100, (600)第二步:在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数9; 第三步:从数9开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263;第四步:与以上这6个号码对应的6个元件就是所要抽取的样本.13.某单位有2 000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:(1)若要抽取(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?(3)若要抽20人调查对单位运动会举办情况的了解,则应怎样抽样?【知识点:分层抽样方法、系统抽样方法】解:(1)按老年、中年、青年分层,用分层抽样法抽取:抽取比例为402 000=150,故老年人,中年人,青年人各抽取4人,12人,24人.(2)按管理、技术开发、营销、生产分层,用分层抽样法抽取:抽取比例为252 000=180,故管理,技术开发,营销,生产各抽取2人,4人,6人,13人.(3)用系统抽样:全部2 000人随机编号,号码从1~2 000,每100号分为一组,从第一组中用随机抽样抽取一个号码,然后将这个号码分别加100,200,…,1 900,共20人组成一个样本.探究型多维突破14.在120个零件中,一级品24个,二级品36个,三级品60个,从中取抽容量为20的样本,则每个个体被抽取的可能性是_________.【知识点:随机抽样】解:201= 120615.一个总体的60个个体编号为00,01,…,59.现需从中抽取一个容量为8的样本,现从随机数表中依次读收8个随机数如下:03,47,43,73,86,36,96,47,其中不符号要求的随机数是_________.【知识点:简单随机抽样】解:73,86,96 超出了随机数表范围16.已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,学校决定利用随机数表法从中抽取100人进行成绩抽样调查,先将800人按001,002,…,800进行编号.(1)如果从第8行第7列的数开始向右读,请你依次写出最先检查的3个人的编号;(下面摘取了第7行到第9行)84421753315724550688770474476721763350258392120676(第7行)63016378591695566719981050717512867358074439523879(第8行)33211234297864560782524207443815510013429966027954(第9行)(2)抽取的100人的数学与地理的水平测试成绩如下表:如:表中数学成绩为良好的共有20+18+4=42人.①若在该样本中,数学成绩优秀率是30%,求a ,b 的值;②在地理成绩及格的学生中,已知a ≥10,b ≥8,求数学成绩优秀的人数比及格的人数少的概率.【知识点:随机抽样,古典概型及其概率计算公式】解:(1)从第8行第7列的数开始向右读,依次检查的编号分别为785,916(舍),955(舍),667,199,…,故最先检查的3个人的编号为785,667,199.(2)①7+9+a100=30%,∴a =14,b =100-30-(20+18+4)-(5+6)=17.②a +b =100-(7+20+5)-(9+18+6)-4=31.∵a ≥10,b ≥8,∴a ,b 的搭配为(10,21),(11,20),(12,19),(13,18),(14,17),(15,16),(16,15),(17,14),(18,13),(19,12),(20,11),(21,10),(22,9),(23,8),共14种.记a ≥10,b ≥8,数学成绩优秀的人数比及格的人数少为事件A .则事件A 包括(10,21),(11,20),(12,19),(13,18),(14,17),(15,16),共6个基本事件.∴P (A )=614=37,∴数学成绩优秀的人数比及格的人数少的概率为37.自助餐 1.采用简单随机抽从含有6个个体的总体中抽取一个容量为3的样本,某个个体前两次未被抽到,则第三次抽到的机会是( )A.21B. 31C. 5D. 61【知识点:简单随机抽样】解:A 简单随机抽样每个个体被抽到的2.某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况, 在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )A.90B.100C.180D.300 【知识点:分层抽样方法】解:C 分析:320=1600900n180n=3.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270,使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250 ②5,9,100,107,111,121,180,195,200,265③11,38,65,92,119,146,173,200,227,254 ④30,57,84,111,138,165,192,219,246,270关于上述样本的下列结论中,正确的是()A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样【知识点:分层抽样方法,系统抽样方法】解:D 系统抽样抽取数据间隔k相等,故排除A,C在B,D中显然D正确4.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()A.08【知识点:简单随机抽样】解:C 5个数字依次为78,6,65,72,08,025.某中学有高中生3 500人,初中生1 500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100B.150C.200D.250【知识点:分层抽样方法】解:A 分析:70=350035001500n+100n=6.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,则三个营区被抽中的人数依次为()A.26,16,8B.25,17,8C.25,16,9D.24,17,9【知识点:系统抽样方法】解:B 分析:600k=1250=3+12(251)291-=则第Ⅰ营区最后一位是291,第Ⅱ营区第一位是291+12=303,303+12(17-1)=495,第Ⅱ营区最后一位是495,第Ⅲ营区第一位是495+12=507,507+12-=(81)591则人数依次为25,17,87.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( )A.p 1=p 2<p 3B.p 2=p 3<p 1C.p 1=p 3<p 2D.p 1=p 2=p 3【知识点:随机抽样】解:D 随机抽样个体被抽到的概率相等8.某校共有学生2 000名,各年级男、女学生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为________.【知识点:分层抽样方法】解:16 分析:20000.19=380⨯则二年级女生人数为380人,三年级共有2000-373-377-380-370=500人,则645002000n = n=16 9.网络上流行一种“QQ 农场游戏”,这种游戏通过软件模拟种植与收获的过程.为了了解本班学生对此游戏的态度,高三(6)班计划在全班60人中展开调查,根据调查结果,班主任计划采用系统抽样的方法抽取若干名学生进行座谈,为此先对60名学生进行编号为:01,02,03,…,60,已知抽取的学生中最小的两个编号为03,09,则抽取的学生中最大的编号为________________.【知识点:系统抽样方法】解:57,分析:由题意可知k=6,3+6*≤∈(n-1)60,n N ,故n 的最大值是10,编号是5710.某企业三个分厂生产同一种电子产品,三个分厂产量分布如图所示,现在用分层抽样方法从三个分厂生产的该产品中共抽取100件做使用寿命的测试,则第一分厂应抽取的件数为__________;由所得样品的测试结果计算出一、二、三分厂取出的产品的使用寿命平均值分别为1 020小时、980小时、1 030小时,估计这个企业所生产的该产品的平均使用寿命为________小时.【知识点:分层抽样方法,概率的意义】解:50 ,1015分析:10050%=50⨯,102050%+98020%+103030%=1015⨯⨯⨯11.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n 个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n .【知识点:分层抽样方法,系统抽样方法】解:总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n 36,抽取的工程师人数为n 36×6=n 6,技术员人数为n 36×12=n 3,技工人数为n 36×18=n 2,所以n 应是6的倍数,36的约数,即n =6,12,18.当样本容量为(n +1)时,总体容量是35人,系统抽样的间隔为35n +1,因为35n +1必须是整数,所以n 只能取6.即样本容量n =6. 12.一个城市有210家百货商店,其中大型商店有20家,中型商店有40家,小型商店有150家.为了掌握各商店的营业情况,要从中抽取一个容量为21的样本,按分层抽样方法抽取样本时,各类百货商店要分别抽取多少家?写出抽样过程.【知识点:分层抽样方法】解:∵21∶210=1∶10,∴2010=2,4010=4,15010=15,∴应从大型商店中抽取2家,从中型商店中抽取4家,从小型商店中抽取15家.抽样过程:(1)计算抽样比21210=110;(2)计算各类百货商店抽取的个数:2010=2,4010=4,15010=15;(3)用简单随机抽样方法依次从大、中、小型商店中抽取2家、4家、15家;(4)将抽取的个体合在一起,就构成所要抽取的一个样本.五.数学视野我们在一生之中,不是很喜欢询问吗:这是什么东西?对我有什么用呢?我们现在也不妨来问一问,统计是什么东西,能帮助我们什么呢?没错,大家都了解,统计可以说是数学的一支,用来研究数据现象的.这种现象当然是社会现象(包括自然现象),我们作为人居住在这世界上所碰到的问题,例如一年之间每一日的平均气温.我们在这里可能面对两个问题,第一个问题是这堆数据从哪里来的,就是说,这个现象是真的现象吗?怎样找出“数据”,第二个问题是这堆数据在说什么?它对我们的生活有什么特别意义呢?这些无疑都是统计的问题,研究数据也是为了解决这类问题,所以,我们学统计的时候,难免要同时照顾两方面的困难:一方面是本质问题,统计能告诉我们那是什么社会现象,另一方面是技巧问题,怎样才能把社会现象的本质弄清楚,整理好,使人明白呢?要解决这两个困难,建立了统计学,学习统计学的主要目标也在。
高三一轮复习 随机抽样PPT学习教案
______第_22_页_/共4_4页______.
(3)系统抽样与简单随
类别
特点
相互联系 适用范围 共同点
简单随 从总体中___逐__个___
总体中的个体
机抽样 抽取
数___较__少_____
系统 抽样
在起始部分
将总体平均分成几部 _按__事__先__确___定__的__规__则_
抽样时, 采用 简单随机抽
(1)系统抽样的概念 在抽样中, 当总体中
个体数较多时, 可将 总体分成均衡的几个 部分, 然后按照预先 制订的规则, 第21页/共44页从每一 部分抽取一个个体,
(2)系统抽样的特点
个体较多
均
①适用于
衡
____________, 但
__可_能_性_相_等_的总体;
②在整个抽样的过程 中, 每个个体被抽取 到的
高三一轮复习 随机抽样
会计学
1
统计
统计学: 研究客观事物的数量特征和数量关系
,它是关于数据的搜集、整理、归纳和分 析方法的科学。 统计的基本思想:
用样本估计总体,即当总体容量很大 或检测过程具有一定的破坏性时,不直 接去研究总体,而是通过从总体中抽取 一个样本,根据样本的情况去估计总体 的相应情况。
2. 系统抽样的步骤及规则 (1)系统抽样的步骤 假设要从容量为编N号的总体中抽取容
量为n的样本, 步骤为: ② 当N分n(段①_n 是_: 确样编_本 定_号分_容_段量:_间)是先_隔整_k数将., 时对有,编总取号时k体进=可行__的N分n_直_段_N;. 接个利个用体个体自 ③编确号身门定l(l≤初所牌k始);编带号号:的等在第号; 1段码用_,__如___简_学_单__随号__机__抽、__样_准_确定考第证一个号个体、
高中数学随机抽样教案设计
高中数学随机抽样教案设计按照随机的原则,即保证总体中每一个对象都有已知的、非零的概率被选入作为研究的对象,保证样本的代表性。
接下来是小编为大家整理的高中数学随机抽样教案设计,希望大家喜欢!高中数学随机抽样教案设计一“简单随机抽样“教学设计说明一、本课教学内容的本质、地位、作用分析(一)教材所处的地位和前后联系本节课是人教版《高中数学》第三册(选修Ⅱ)的第一章“概率与统计”中的“抽样方法”的第一课时:简单随机抽样.其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时它强化对概率性质的理解,加深了对概率公式的运用.因此它起到了承上启下的作用,在教材中占有重要地位.(二)教学重点①简单随机抽样的概念,②常用实施方法:抽签法和随机数表法(三)教学难点对简单随机抽样概念中“每次抽取时各个个体被抽到的概率相等”的理解.二、教学目标分析1、知识目标(1)理解并掌握简单随机抽样的概念、特点和步骤.(2)掌握简单随机抽样的两种方法:抽签法和随机数表法.2、能力目标(1)会用抽签法和随机数表法从总体中抽取样本,并能运用这两种方法和思想解决有关实际问题.(2)灵活运用简单随机抽样的方法解释日常生活中的常见非数学问题的现象,加强观察问题、分析问题和解决问题的能力培养.3、情感、态度目标(1)培养学生收集信息和处理信息、加工信息的实际能力,分析问题、解决问题的能力.(2)培养学生热爱生活、学会生活的意识,强化他们学生活的知识、学生存的技能,提高学生的动手能力.三、教学问题诊断本节课是学生在义教阶段学习了数据的收集、抽样、总体、个体、样本等统计概念以后,进一步学习统计知识的.这是义教阶段统计知识的发展,因此教学过程不应是一种简单的重复,也不应停留在对普查与抽样优劣的比较和方法的选择,而应该发展到对抽样进一步思考上,主要应集中的以下四个问题上:(1)为什么要进行随机抽样;(2)什么是随机抽样(数理统计上的随机抽样概念);(3)简单随机抽样应满足什么样的条件;(4)如何进行简单随机抽样.教学的重点是使学生关注数据收集的方法应该由目的与要求所决定的,任何数据的收集都有一定的目的,数据的抽取是随机的.要更加理性地看待数据收集的方法,要从随机现象本身的规律性来看待数据收集的方法.特别是要突出简单随机样本的两个特征.要改变学生仅从形式上来理解简单随机抽样的问题.在教学中学生可能会产生随机抽样中简单随机抽样、系统抽样和分层抽样的雏形,教师不必进一步明确界定概念,可待后续的学习中进一步完善.如何发现随机抽样的公平性,也就是“如何去观察,才能发现规律”。
2.1《随机抽样》教案(新人教必修3)
2.1.1简单随机抽样教学目标:1.结合实际问题情景,理解随机抽样的必要性和重要性2.学会用简单随机抽样的方法从总体中抽取样本教学重点:学会用简单随机抽样的方法从总体中抽取样本教学过程:1.总体和样本在统计学中 , 把研究对象的全体叫做总体.把每个研究对象叫做个体.把总体中个体的总数叫做总体容量.为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.2.简单随机抽样,也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
3.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。
4.抽签法:(1)给调查对象群体中的每一个对象编号;(2)准备抽签的工具,实施抽签(3)对样本中的每一个个体进行测量或调查例:请调查你所在的学校的学生做喜欢的体育活动情况。
5.随机数表法:例:利用随机数表在所在的班级中抽取10位同学参加某项活动。
课堂练习:第52页,练习A,练习B小结:本节重点介绍简单随机抽样常用的方法:⑴抽签法;⑵随机数表法;学会用简单随机抽样的方法从总体中抽取样本课后作业:第58页,习题2-1A第1、2、3题,2.1.2系统抽样教学目标:1.结合实际问题情景,理解系统抽样的必要性和重要性2.学会用系统抽样的方法从总体中抽取样本教学重点:学会用系统抽样的方法从总体中抽取样本教学过程:1.系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。
第一个样本采用简单随机抽样的办法抽取。
高三文科数学第一轮复习教案随机抽样
随机抽样〖复习目标〗①理解随机抽样的必要性和重要性。
②会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法。
〖知识梳理〗1.随机抽样:抽样时保证每一个个体都可能被抽到,每一个个体被抽到的机会是均等的,满足这样的条件的抽样是随机抽样.2.随机抽样的方法:简单随机抽样、系统抽样、分层抽样〖基础自测〗1.从2004名学生中选取50名组成参观团。
若采用下面的方法选取:先用简单随机抽样从2004人中剔除4人,剩下的2000人再按系统抽样的方法进行。
则每人入选的概率()A.不全相等B.均不相等C.都相等,且为251002D.都相等,且为1402.现在要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行抽样调查。
②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈。
3东方中学有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名。
为了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本。
较为合理的抽样方法是()A.①简单随机抽样,②系统抽样,③分层抽样B.①简单随机抽样,②分层抽样,③系统抽样C.①系统抽样,②简单随机抽样,③分层抽样D.①分层抽样,②系统抽样,③简单随机抽样3.课题组进行城市空气质量调查,按地域把24个城市分为甲乙、丙三组,对应城市数分别为4,12,8。
若用分层抽样抽取6个城市,则丙组中应抽取的城市数为4.①某小区有800个家庭,其中高收入家庭200户,中等收入家庭480户,低收入家庭120户,为了了解家用轿车购买力的某个指标,要从中抽取一个容量为100的样本;②从10名同学抽取3个参加座谈会。
I简单随机抽样方法;II系统抽样;III分层抽样。
问题和方法配对正确的是()A.①I,②II B.①III,②IC.①II,②III D.①III,②II5.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人。
高中数学随机抽样教案
高中数学随机抽样教案
教学内容:随机抽样
教学目标:
1. 了解随机抽样的概念和方法;
2. 掌握常见的随机抽样技术;
3. 能够应用随机抽样方法解决实际问题。
教学重点:
1. 随机抽样的概念;
2. 简单随机抽样;
3. 分层抽样;
4. 系统抽样;
5. 整群抽样。
教学步骤:
1. 导入:介绍随机抽样的重要性和应用背景。
2. 理论讲解:讲解随机抽样的定义、方法和常见技术。
3. 实例演练:通过具体例题演示简单随机抽样、分层抽样、系统抽样和整群抽样的操作步骤。
4. 练习:布置练习题,让学生巩固所学知识。
5. 拓展:介绍其他随机抽样方法和应用领域。
6. 总结:回顾本节课的重点内容,强化学生对随机抽样的理解。
教学资源:
1. PPT课件;
2. 教材教辅;
3. 练习题库。
教学评价:
1. 课堂表现;
2. 课后作业成绩;
3. 期中期末考试成绩。
教学延伸:
1. 可以结合实际案例进行讨论,让学生更好地理解随机抽样的应用;
2. 可以组织学生进行小组活动,让他们合作完成一些随机抽样实验。
教学反思:
1. 在教学中要注意引导学生理解随机抽样的概念,避免机械记忆方法而忽视理解;
2. 需要多种教学方法结合,提高学生的学习兴趣和参与度。
高中高三数学《抽样技术》教案、教学设计
(二)过程与方法
1.通过小组合作、讨论、实践等教学活动,培养学生主动探究、合作学习的良好习惯。
2.引导学生通过观察、分析、归纳等方法,发现抽样技术在实际生活中的应用,提高学生将理论知识与实际应用相结合的能力。
2.接下来,介绍分层抽样的方法。解释分层抽样的原理,以及如何根据总体的特点进行分层,从而提高样本的代表性。同时,通过举例说明分层抽样在实际中的应用。
3.然后,讲解系统抽样的方法。阐述系统抽样的原理,演示如何从总体中按照一定间隔抽取样本,并分析其优缺点。
4.针对以上三种抽样方法,我会通过对比分析,让学生了解各自适用的场合,以便在实际问题中灵活运用。
1.通过提问、讨论等方式,帮助学生回顾本节课所学的内容,形成知识体系。
2.引导学生总结各种抽样方法的优缺点,以及在实际问题中的应用场景。
3.强调抽样技术在现实生活中的重要性,激发学生学习数学的兴趣和热情。
4.布置课后作业,让学生巩固所学知识,并学会将其应用于实际问题。
五、作业布置
为了巩固学生对抽样技术的理解和应用,以及培养学生的独立思考和解决问题的能力,特布置以下作业:
3.培养学生严谨的科学态度,尊重客观事实,提高学生的批判性思维能力。
4.鼓励学生积极参与课堂讨论,尊重他人观点,培养团结协作、共同进步的团队精神。
二、学情分析
高中高三学生已经具备了一定的数学基础知识和逻辑思维能力,对概率统计方面的知识也有一定的了解。在此基础上,学生对抽样技术的学习有以下特点:
1.学生对抽样技术的概念和原理有一定认识,但具体操作和应用方面可能存在困难。
针对以上学情分析,教师在教学过程中应注重理论与实践相结合,关注学生的个体差异,引导他们积极参与课堂活动,培养他们运用数学知识解决实际问题的能力。同时,注重激发学生的学习兴趣,营造轻松愉快的学习氛围,使学生在愉快的氛围中掌握抽样技术。
高中数学必修3第二章第一节《随机抽样》全套教案
随机抽样
简单随机抽样
【教学目标】
1.能从现实生活中或其他学科中提出具有一定价值的统计问题。
2.理解随机抽样的的必要性和重要性。
3.学会用简单随机抽样方法能从总体中抽取样本。
【教学重点难点】
重点:能从现实生活中或其他学科中提出具有一定价值的统计问题. 难点:学会用简单随机抽样方法能从总体中抽取样本
【学前准备】:多媒体,预习例题
系统抽样
【教学目标】
(1)正确理解系统抽样的概念;
(2)掌握系统抽样的一般步骤;
(3)正确理解系统抽样与简单随机抽样的关系;
【教学重难点】
正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问题。
【学前准备】:多媒体,预习例题
分层抽样
【教学目标】
1.学生通过微课自学“分层抽样”概念;
2.掌握分层抽样的一般步骤;
3.区分简单随机抽样、系统抽样和分层抽样,并选择适当正确的方法进行抽
样。
【教学重点】
掌握分层抽样的一般步骤。
【教学难点】
区分简单随机抽样、系统抽样和分层抽样,并选择适当正确的方法进行抽样。
【学前准备】:多媒体,预习例题。
高考一轮复习 随机抽样教学设计
9.2随机抽样一、教学目标1、让学生理解随机抽样的必要性和重要性;2、会用简单随机抽样方法从总体中抽取样本;3、了解分层抽样和系统抽样方法。
二、教学重点、难点1、重点:理解随机抽样的概念和方法;2、难点:利用随机抽样的方法,解决抽取样本的相关参数问题。
三、教学方法:讲练结合四、教学过程(一)高考考情追踪高考对随机抽样的考查主要以选择题或填空题的形式出现,在解答题中通常与概率问题相结合作为某一问的形式出现,命题重点主要有两个方面:一是抽样方法的选择,二是样本容量的求解。
试题比较简单,属于中低档题目。
准确把握各种抽样方法的特征以及具体的抽样步骤是解决此类问题的关键。
(二)考点梳理1、简单随机抽样:设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都会相等。
抽签法。
随机表数法。
2、系统抽样的步骤:假设要从容量为N的总体中抽取容量为n的样本.(1)先将总体的N个个体编号;(2)确定分段间隔k,对编号进行分段,当N/n是整数时,取k=N/n,当N/n不是整数时,随机从总体中剔除余数,再去k=N/n;(3)在第1段用简单随机抽样确定第一个个体编号l(l≤k);(4)按照一定的规则抽取样本,通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本。
3、分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本。
(2)应用范围:当总体是由差异明显的几个部分组成时。
4、抽样方法的选取标准:抽样方法的选取关键在于总体的特征和样本的需求,总体的特征要关注两个方面:一是总体的构成是否具有明显的差异性。
样本的需求关键在于定位,即选取样本的目的性。
同一个总体,不同的样本需求,对应的抽样方法也可能不同;不同的总体,同样的样本需求,对应的抽样方法也可能相同。
高考理数---随机抽样教案设计
高考理数---随机抽样教案设计[最新考纲] 1.理解随机抽样的必要性和重要性.2.会用简单随机抽样方法从总体中抽取样本.3.了解分层抽样和系统抽样方法.4.会用随机抽样的基本方法解决一些简单的实际问题.1.简单随机抽样(1)定义:设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样的方法:抽签法和随机数法.2.系统抽样的步骤假设要从容量为N的总体中抽取容量为n的样本.(1)先将总体的N个个体编号.(2)确定分段间隔k,对编号进行分段,当Nn是整数时,取k=Nn,当Nn不是整数时,随机从总体中剔除余数,再取k=N′n(N′为从总体中剔除余数后的总数).(3)在第1段用简单随机抽样确定第一个个体编号l(l≤k).(4)按照一定的规则抽取样本,通常是将l加上间隔k得到第2个个体编号l +k,再加k得到第3个个体编号l+2k,依次进行下去,直到获取整个样本.3.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样.(2)分层抽样的应用范围当总体由差异明显的几个部分组成时,往往选用分层抽样.[常用结论]1.不论哪种抽样方法,总体中的每一个个体入样的概率都是相同的.2.系统抽样一般也称为等距抽样,入样个体的编号相差分段间隔k的整数倍.3.分层抽样是按比例抽样,每一层入样的个体数为该层的个体数乘抽样比.一、思考辨析(正确的打“√”,错误的打“×”)(1)简单随机抽样中每个个体被抽到的机会不一样,与先后有关.()(2)系统抽样在起始部分抽样时采用简单随机抽样.()(3)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.()(4)分层抽样中,每个个体被抽到的可能性与层数及分层有关.()[答案](1)×(2)√(3)×(4)×二、教材改编1.在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5 000名居民的阅读时间的全体是()A.总体B.个体C.样本的容量D.从总体中抽取的一个样本A[由题目条件知,5 000名居民的阅读时间的全体是总体;其中1名居民的阅读时间是个体;从5 000名居民某天的阅读时间中抽取的200名居民的阅读时间是从总体中抽取的一个样本,样本容量是200.]2.某学校为了了解高中一年级、二年级、三年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法C[总体由差异明显的几部分组成,故最合理的抽样方法是分层抽样法.故选C.]3.某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号,29号,42号学生在样本中,那么样本中还有一个学生的学号是()A.10 B.11C.12 D.16D[由题意可知,分段间隔k=524=13,∴样本中还有一个学生的学号为3+13=16,故选D.]4.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.18[∵样本容量总体个数=60200+400+300+100=350,∴应从丙种型号的产品中抽取350×300=18(件).]考点1简单随机抽样(1)简单随机抽样需满足:①被抽取样本的总体的个体数有限;②逐个抽取;③是不放回抽取;④是等可能抽取.(2)简单随机抽样常有抽签法(适用于总体中个体数较少的情况)、随机数法(适用于个体数较多的情况).1.下列抽取样本的方式属于简单随机抽样的个数为()①从无限多个个体中抽取100个个体作为样本;②盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里;③从20件玩具中一次性抽取3件进行质量检验;④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.A.0B.1C.2 D.3A[①不是简单随机抽样,因为被抽取样本的总体的个数是无限的,而不是有限的;②不是简单随机抽样,因为它是有放回抽样;③不是简单随机抽样,因为这是“一次性”抽取,而不是“逐个”抽取;④不是简单随机抽样,因为不是等可能抽样.故选A.]2.总体由编号为01,02,03,…,49,50的50个个体组成,利用随机数表(以下选取了随机数表中的第1行和第2行)选取5个个体,选取方法是从随机数表第1行的第9列和第10列数字开始由左向右读取,则选出来的第4个个体的编号为()66 67 40 67 14 64 05 71 95 86 11 05 65 09 68 76 83 20 37 9057 16 00 11 66 14 90 84 45 11 75 73 88 05 90 52 83 20 37 90A.05 B.09C.11 D.20B[从随机数表第1行的第9列和第10列数字开始由左向右读取,符合条件的编号有14,05,11,05,09,因为05出现了两次,所以选出来的第4个个体的编号为09.故选B.]3.利用简单随机抽样,从n个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为13,则在整个抽样过程中,每个个体被抽到的概率为()A.14 B.13C.514 D.1027C[根据题意得,9n-1=13,解得n=28.故每个个体被抽到的概率为1028=514.]应用简单随机抽样应注意的问题(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.(2)在使用随机数法时,如遇到三位数或四位数,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,将超过总体号码或出现重复号码的数字舍去.考点2系统抽样系统抽样的最基本特征是“等距性”,一般地,每组内所抽取的号码依据第一组抽取的号码和组距确定.每组抽取的号码依次构成一个以第一组抽取的号码m为首项、组距d为公差的等差数列{a n},第k组抽取的号码为a k=m +(k-1)d.(1)(2019·全国卷Ⅰ)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是() A.8号学生B.200号学生C.616号学生D.815号学生(2)采用系统抽样方法从1 000人中抽取50人做问卷调查,将他们随机编号1,2,…,1 000.适当分组后在第一组采用简单随机抽样的方法抽到的号码为8.若抽到的50人中,编号落入区间[1,400]的人做问卷A,编号落入区间[401,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为() A.12 B.13C.14 D.15(1)C(2)A[(1)∵从1 000名学生中抽取一个容量为100的样本,∴系统抽=10,∵46号学生被抽到,则根据系统抽样的性质可知,样的分段间隔为1 000100第一组随机抽取一个号码为6,以后每个号码都比前一个号码增加10,所有号码数是以6为首项,10为公差的等差数列,设其数列为{a n},则a n=6+10(n-1)=10n-4,当n=62时,a62=616,即在第62组抽到616.故选C.(2)根据系统抽样的特点可知,所有做问卷调查的人的编号构成首项为8,公差d=1 00050=20的等差数列{a n},∴通项公式a n=8+20(n-1)=20n-12,令751≤20n-12≤1 000,得76320≤n≤2535,又∵n∈N*,∴39≤n≤50,∴做问卷C的共有12人,故选A.](1)系统抽样适用的条件是总体容量较大,样本容量也较大. (2)使用系统抽样的方法抽取样本时,若总体容量不能被样本容量整除,则应先从总体中随机地剔除几个个体,再确定分段间隔. (3)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定.1.利用系统抽样法从编号分别为1,2,3,…,80的80件不同产品中抽取一个容量为16的样本,如果抽出的产品中有一个产品的编号为13,则抽到产品的最大编号为()A.73B.78C.77D.76B[样本的分段间隔为8016=5,所以13号在第三组,则最大的编号为13+(16-3)×5=78.]2.中央电视台为了解观众对某综艺节目的意见,准备从502名现场观众中抽取10%进行座谈,现用系统抽样的方法完成这一抽样,则在进行分组时,需剔除________个个体,抽样间隔为________.210[把502名观众平均分成50组,由于502除以50的商是10,余数是2,所以每组有10名观众,还剩2名观众,采用系统抽样的方法抽样时,应先用简单随机抽样的方法从502名观众中抽取2名观众,这2名观众不参加座谈;再将剩下的500名观众编号为1,2,3,…,500,并均匀分成50段,每段含500=5010(个)个体.所以需剔除2个个体,抽样间隔为10.]考点3分层抽样分层抽样问题类型及解题思路(1)求某层应抽个体数量:按该层所占总体的比例计算.(2)已知某层个体数量,求总体容量或反之:根据分层抽样就是按比例抽样,列比例式进行计算.(3)确定是否应用分层抽样:分层抽样适用于总体中个体差异较大的情况.(1)(2018·全国卷Ⅲ)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.(2)(2019·洛阳一模)已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()图甲图乙A.100,10 B.100,20C.200,10 D.200,20(1)分层抽样(2)D[(1)因为不同年龄段的客户对公司的服务评价有较大差异,所以需按年龄进行分层抽样,才能了解到不同年龄段的客户对公司服务的客观评价.(2)由题得样本容量为(3 500+2 000+4 500)×2%=10 000×2%=200,抽取的高中生人数为2 000×2%=40人,则近视人数为40×0.5=20人,故选D.]进行分层抽样的相关计算时,常用到的两个关系(1)抽样比=样本容量n总体的个体数N=该层抽取的个体数该层的个体数.(2)总体中某两层的个体数之比等于样本中这两层抽取的个体数之比.[教师备选例题]1.某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为()类别人数老年教师900中年教师 1 800青年教师 1 600合计 4 300A.90B.100C.180 D.300C[设该样本中的老年教师人数为x,由题意及分层抽样的特点得x 900=3201 600,故x=180.故选C.]2.甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.1 800[由题设,抽样比为804 800=160.设甲设备生产的产品总数为x件,则x60=50,所以x=3 000.故乙设备生产的产品总数为4 800-3 000=1 800.]1.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为() A.101 B.808C.1 212 D.2 012B[甲社区每个个体被抽取的概率为1296=18,样本容量为12+21+25+43=101,所以四个社区中驾驶员的总人数N=10118=808.]2.为了了解高一、高二、高三学生的身体状况,现用分层抽样的方法抽取一个容量为1 200的样本,三个年级学生人数之比依次为k∶5∶3,已知高一年级共抽取了240人,则高三年级抽取的人数为________.360[因为高一年级抽取学生的比例为2401 200=15,所以kk+5+3=15,解得k=2,故高三年级抽取的人数为1 200×32+5+3=360.]。
新人教版高中数学必修第二册《随机抽样》教案
随机抽样【教学目标】1.理解全面调查、抽样调查、总体、个体、样本、样本量、样本数据等概念2.理解简单随机抽样的概念,掌握简单随机抽样的两种方法:抽签法和随机数法3.理解分层随机抽样的概念,并会解决相关问题【教学重难点】1.抽样调查2.简单随机抽样3.分层随机抽样【教学过程】一、问题导入预习教材内容,思考以下问题:1.全面调查、抽样调查、总体、个体、样本、样本量、样本数据的概念是什么?2.什么叫简单随机抽样?3.最常用的简单随机抽样方法有哪两种?4.抽签法是如何操作的?5.随机数法是如何操作的?6.什么叫分层随机抽样?7.分层随机抽样适用于什么情况?8.分层随机抽样时,每个个体被抽到的机会是相等的吗?9.获取数据的途径有哪些?二、基础知识1.全面调查与抽样调查(1)对每一个调查对象都进行调查的方法,称为全面调查,又称普查W.(2)在一个调查中,我们把调查对象的全体称为总体,组成总体的每一个调查对象称为个体W.(3)根据一定的目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和推断的调查方法,称为抽样调查W.(4)把从总体中抽取的那部分个体称为样本W.(5)样本中包含的个体数称为样本量W.(6)调查样本获得的变量值称为样本的观测数据,简称样本数据.2.简单随机抽样(1)有放回简单随机抽样一般地,设一个总体含有N (N 为正整数)个个体,从中逐个抽取n (1≤n <N )个个体作为样本,如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做放回简单随机抽样.(2)不放回简单随机抽样如果抽取是不放回的,且每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做不放回简单随机抽样.(3)简单随机抽样放回简单随机抽样和不放回简单随机抽样统称为简单随机抽样.(4)简单随机样本通过简单随机抽样获得的样本称为简单随机样本.(5)简单随机抽样的常用方法实现简单随机抽样的方法很多,抽签法和随机数法是比较常用的两种方法.名师点拨(1)从总体中,逐个不放回地随机抽取n 个个体作为样本,一次性批量随机抽取n 个个体作为样本,两种方法是等价的.(2)简单随机抽样中各个个体被抽到的机会都相等,从而保证了抽样的公平性.3.总体平均数与样本平均数(1)总体平均数①一般地,总体中有N 个个体,它们的变量值分别为Y 1,Y 2,…,Y N ,则称Y - =Y 1+Y 2+…+Y N N =1N∑Ni =1Y i为总体均值,又称总体平均数.②如果总体的N 个变量值中,不同的值共有k (k ≤N )个,不妨记为Y 1,Y 2,…,Y k ,其中Y i 出现的频数f i (i =1,2,…,k ),则总体均值还可以写成加权平均数的形式Y - =1N ∑ki =1f i Y i W.(2)样本平均数如果从总体中抽取一个容量为n 的样本,它们的变量值分别为y 1,y 2,…,y n ,则称y - =y 1+y 2+…+y n n =1n∑ni =1y i 为样本均值,又称样本平均数.在简单随机抽样中,我们常用样本平均数y -去估计总体平均数Y -.4.分层随机抽样(1)分层随机抽样一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一个子总体,在每个子总体中独立地进行简单随机抽样,再把所有子总体中抽取的样本合在一起作为总样本,这样的抽样方法称为分层随机抽样,每一个子总体称为层W.(2)比例分配在分层随机抽样中,如果每层样本量都与层的大小成比例,那么称这种样本量的分配方式为比例分配.5.分层随机抽样中的总体平均数与样本平均数(1)在分层随机抽样中,如果层数分为2层,第1层和第2层包含的个体数分别为M 和N ,抽取的样本量分别为m 和n .我们用X 1,X 2,…,X M 表示第1层各个个体的变量值,用x 1,x 2,…,x m 表示第1层样本的各个个体的变量值;用Y 1,Y 2,…,Y N 表示第2层各个个体的变量值,用y 1,y 2,…,y n 表示第2层样本的各个个体的变量值,则:①第1层的总体平均数和样本平均数分别为X -=X 1+X 2+…+X M M =1M ∑M i =1X i ,x - =x 1+x 2+…+x m m =1m ∑mi =1x i .②第2层的总体平均数和样本平均数分别为Y - =Y 1+Y 2+…+Y N N =1N∑Ni =1Y i,y - =y 1+y 2+…+y n n =1n∑ni =1y i .③总体平均数和样本平均数分别为W - =∑Mi =1X i +∑N i =1Yi M +N ,w - =∑mi =1x i +∑ni =1y i m +nW.(2)由于用第1层的样本平均数x -可以估计第1层的总体平均数X -,用第2层的样本平均数y -可以估计第2层的总体平均数Y -.因此我们可以用M ×x - +N ×y -M +N =M M +N x - +N M +N y -估计总体平均数W - .(3)在比例分配的分层随机抽样中,m M =n N =m +nM +N ,可得M M +N x - +N M +N y -=m m +n x - +n m +n y -=w -.因此,在比例分配的分层随机抽样中,我们可以直接用样本平均数w - 估计总体平均数W -.6.获取数据的途径获取数据的基本途径有:(1)通过调查获取数据;(2)通过试验获取数据;(3)通过观察获取数据;(4)通过查询获取数据三、合作探究总体、样本等概念辨析题例1:为了调查参加运动会的1 000名运动员的平均年龄,从中抽取了100名运动员进行调查,下面说法正确的是()A .1 000名运动员是总体B .每个运动员是个体C .抽取的100名运动员是样本D .样本量是100【解析】根据调查的目的可知,总体是这1 000名运动员的年龄,个体是每个运动员的年龄,样本是抽取的100名运动员的年龄,样本量为100.故答案为D .【答案】D[规律方法]此类题目要正确理解总体与个体的概念,要弄明白概念的实质,并注意样本与样本容量的不同,其中样本量为数目,无单位.简单随机抽样的概念例2:下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样本;(2)仓库中有1万支奥运火炬,从中一次抽取100支火炬进行质量检查;(3)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴灾区开展救灾工作.【解】(1)不是简单随机抽样.因为简单随机抽样要求被抽取的样本总体的个数是有限的.(2)不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.(3)不是简单随机抽样.因为这50名官兵是从中挑选出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.[规律方法]要判断所给的抽样方法是否为简单随机抽样,关键是看它们是否符合简单随机抽样的定义,即简单随机抽样的四个特点.抽签法及随机数法的应用例3:某班有50名学生,要从中随机地抽出6人参加一项活动,请分别写出利用抽签法和随机数法抽取该样本的过程.【解】(1)利用抽签法步骤如下:第一步:将这50名学生编号,编号为01,02,03, (50)第二步:将50个号码分别写在纸条上,并揉成团,制成号签.第三步:将得到的号签放在一个不透明的容器中,搅拌均匀.第四步:从容器中逐一抽取6个号签,并记录上面的号码.对应上面6个号码的学生就是参加该项活动的学生.(2)利用随机数法步骤如下:第一步:将这50名学生编号,编号为1,2,3, (50)第二步:用随机数工具产生1~50范围内的整数随机数,把产生的随机数作为抽中的编号,使与编号对应的学生进入样本.第三步:重复第二步的过程,直到抽足样本所需人数.对应上面6个号码的学生就是参加该项活动的学生.[规律方法](1)利用抽签法抽取样本时应注意以下问题:①编号时,如果已有编号(如学号、标号等)可不必重新编号.(例如该题中50名同学,可以直接利用学号)②号签要求大小、形状完全相同.③号签要搅拌均匀.④抽取号签时要逐一、不放回抽取.(2)利用随机数法抽取样本时应注意的问题:如果生成的随机数有重复,即同一编号被多次抽到,应剔除重复的编号并重新产生随机数,直到产生的不同编号个数等于样本所需的人数.分层随机抽样中的有关计算例4:(1)某单位共有老、中、青年职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍,为了解职工身体状况,现采用分层随机抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工的人数为W.(2)某高中学校为了促进学生个体的全面发展,针对学生发展要求,开设了富有地方特色的“泥塑”与“剪纸”两个社团,已知报名参加这两个社团的学生共有800人,按照要求每人只能参加一个社团,各年级参加社团的人数情况如下表:高一年级高二年级高三年级泥塑a b c 剪纸xyz其中x ∶y ∶z =5∶3∶2,且“泥塑”社团的人数占两个社团总人数的35,为了了解学生对两个社团活动的满意程度,从中抽取一个50人的样本进行调查,则从高二年级“剪纸”社团的学生中应抽取人.【解析】(1)设该单位老年职工人数为x ,由题意得3x =430-160,解得x =90.则样本中的老年职工人数为90×32160=18.(2)法一:因为“泥塑”社团的人数占总人数的35,故“剪纸”社团的人数占总人数的25,所以“剪纸”社团的人数为800×25=320;因为“剪纸”社团中高二年级人数比例为y x +y +z =32+3+5=310,所以“剪纸”社团中高二年级人数为320×310=96.由题意知,抽样比为50800=116,所以从高二年级“剪纸”社团中抽取的人数为96×116=6.法二:因为“泥塑”社团的人数占总人数的35,故“剪纸”社团的人数占总人数的25,所以抽取的50人的样本中,“剪纸”社团中的人数为50×25=20.又“剪纸”社团中高二年级人数比例为y x +y +z =32+3+5=310,所以从高二年级“剪纸”社团中抽取的人数为20×310=6.【答案】(1)18(2)6[规律方法]分层随机抽样中有关计算的方法(1)抽样比=该层样本量n 总样本量N=该层抽取的个体数该层的个体数.(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.对于分层抽样中求某层个体数,或某层要抽取的样本个体数,都可以通过上面两个等量关系求解.样本平均数的求法例5:(1)甲在本次飞镖游戏中的成绩为8,6,7,7,8,10,9,8,7,8.求甲在本次游戏中的平均成绩.(2)在了解全校学生每年平均阅读多少本文学经典名著时,甲同学抽取了一个容量为10的样本,并算得样本的平均数为5;乙同学抽取了一个容量为8的样本,并算得样本的平均数为6.已知甲、乙两同学抽取的样本合在一起组成一个容量为18的样本,求合在一起后的样本均值.【解】(1)甲在本次游戏中的平均成绩为6+3×7+4×8+9+1010=7.8.(2)合在一起后的样本均值为10×5+8×610+8=50+4818=499.[规律方法]在分层随机抽样中,如果第一层的样本量为m ,平均值为x ;第二层的样本量为n ,平均值为y ,则样本的平均值为mx +nym +n.【课堂检测】1.在简单随机抽样中,每一个个体被抽中的可能性()A.与第几次抽样有关,第一次抽中的可能性要大些B.与第几次抽样无关,每次抽中的可能性都相等C.与第几次抽样有关,最后一次抽中的可能性要大些D.每个个体被抽中的可能性无法确定解析:选B.在简单随机抽样中,每一个个体被抽中的可能性都相等,与第几次抽样无关.2.若对某校1 200名学生的耐力做调查,抽取其中120名学生,测试他们1500米跑的成绩,得出相应的数值,在这项调查中,样本是指()A.120名学生B.1 200名学生C.120名学生的成绩D.1 200名学生的成绩解析:选C.本题抽取的是120名学生的成绩,因此每个学生的成绩是个体,这120名学生的成绩构成一个样本.3.(2019·广西钦州市期末考试)某中学共有1 000名学生,其中高一年级350人,该校为了了解本校学生视力情况,用分层随机抽样的方法从该校学生中抽出一个容量为100的样本进行调查,则应从高一年级抽取的人数为()A.20B.25C.30D.35解析:选D.高一年级抽取的人数为3501 000×100=35.故选D.4.在调查某中学的学生身高时,利用分层抽样的方法抽取男生20人,女生15人,得到了男生身高的平均值为170,女生身高的平均值为165.试估计该中学所有学生的平均身高是多少?解:20×170+15×16520+15=5 87535=16767.即该中学所有学生的平均身高为16767.第四步,把与号码相对应的人抽出,即可得到所要的样本.。
高三数学高考复习必备精品教案随机抽样
随机抽样一.【课标要求】1.能从现实生活或其他学科中提出具有一定价值的统计问题;2.结合具体的实际问题情境,理解随机抽样的必要性和重要性;3.在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法;4.能通过试验、查阅资料、设计调查问卷等方法收集数据二.【命题走向】统计是在初中数学统计初步的深化和扩展,本讲的主要内容是随机抽样的方法在总体中抽取样本。
预测2010年高考对本讲的考察是:(1)以基本题(中、低档题为主),多以选择题、填空题的形式出现,以实际问题为背景,综合考察学生学习基础的知识、应用基础知识、解决实际问题的能力;(2)热点是随机抽样方法中的分层抽样、系统抽样方法三.【要点精讲】三种常用抽样方法:1.简单随机抽样:设一个总体的个数为N。
如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。
实现简单随机抽样,常用抽签法和随机数表法(1)抽签法制签:先将总体中的所有个体编号(号码可以从1到N),并把号码写在形状、大小相同的号签上,号签可以用小球、卡片、纸条等制作,然后将这些号签放在同一个箱子里,进行均匀搅拌;抽签:抽签时,每次从中抽出1个号签,连续抽取n次;成样:对应号签就得到一个容量为n的样本。
抽签法简便易行,当总体的个体数不多时,适宜采用这种方法(2)随机数表法编号:对总体进行编号,保证位数一致;数数:当随机地选定开始读数的数后,读数的方向可以向右,也可以向左、向上、向下等等。
在读数过程中,得到一串数字号码,在去掉其中不合要求和与前面重复的号码后,其中依次出现的号码可以看成是依次从总体中抽取的各个个体的号码。
成样:对应号签就得到一个容量为n的样本结论:①用简单随机抽样,从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为N1;在整个抽样过程中各个个体被抽到的概率为N n ;② 基于此,简单随机抽样体现了抽样的客观性与公平性;③ 简单随机抽样的特点:它是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样。
高三数学一轮复习精品教案3:随机抽样教学设计
第1课时随机抽样1.理解随机抽样的必要性和重要性.2.会用简单随机抽样方法从总体中抽取样本,了解分层抽样和系统抽样方法.『梳理自测』一、简单随机抽样及系统抽样1.老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是()A.随机抽样B.分层抽样C.系统抽样D.以上都不是2.为了调查某产品的销售情况,销售部门从下属的92家销售连锁店中抽取30家了解情况.若用系统抽样法,则抽样间隔和随机剔除的个体数分别为()A.3,2 B.2,3C.2,30 D.30,23.大、中、小三个盒子中分别装有同一种产品120个、60个、20个,现在需从这三个盒子中抽取一个样本容量为25的样本,较为恰当的抽样方法为________.『答案』1.C 2.A 3.简单随机抽样◆以上题目主要考查了以下内容:(1)简单随机抽样①定义:设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.②最常用的简单随机抽样的方法:抽签法和随机数表法.(2)系统抽样的步骤假设要从容量为N的总体中抽取容量为n的样本.①编号:先将总体的N 个个体编号;②分段:确定分段间隔k ,对编号进行分段,当N n (n 是样本容量)是整数时,取k =N n; ③确定首个个体:在第1段用简单随机抽样确定第一个个体编号l(l≤k);④获取样本:按照一定的规则抽取样本,通常是将l 加上间隔k 得到第2个个体编号l +k ,再加k 得到第3个个体编号l +2k ,依次进行下去,直到获取整个样本.二、分层抽样1.(教材改编)某公司有员工500人,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人,为了调查员工的身体健康状况,从中抽取100名员工,则应在这三个年龄段分别抽取人数为( )A .33人,34人,33人B .25人,56人,19人C .20人,40人,30人D .30人,50人,20人2.一支田径运动队有男运动员56人,女运动员42人,现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有________人.『答案』1.B 2.6◆以上题目主要考查了以下内容:(1)分层抽样①定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样.②分层抽样的应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样.(2)分层抽样的步骤①分层:将总体按某种特征分成若干部分;②确定比例:计算各层的个体数与总体的个体数的比;③确定各层应抽取的样本容量;④在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.『指点迷津』1.一条原则三种抽样方法的共同点都是等概率抽样,即抽样过程中每个个体被抽到的概率相等,体现了这三种抽样方法的客观性和公平性.若样本容量为n ,总体的个体数为N ,则用这三种方法抽样时,每个个体被抽到的概率都是n N. 2.三个特点(1)简单随机抽样的特点:总体中的个体性质相似,无明显层次;总体容量较小,尤其是样本容量较小;用简单随机抽样法抽出的个体带有随机性,个体间无固定间距.(2)系统抽样的特点:适用于元素个数很多且均衡的总体;各个个体被抽到的机会均等;总体分组后,在起始部分抽样时,采用简单随机抽样.(3)分层抽样的特点:适用于总体由差异明显的几部分组成的情况;分层后,在每一层抽样时可采用简单随机抽样或系统抽样.考向一简单随机抽样第六届东亚运动会于2013年10月6日在天津举行,天津某大学为了支持东亚运动会,从报名的60名大三学生中选10人组成志愿小组,请用抽签法和随机数法设计抽样方案.『审题视点』考虑到总体中个体数较少,利用抽签法或随机数表法均可容易获取样本.须按这两种抽样方法的操作步骤进行.抽签法应“编号、制签、搅匀、抽取”;随机数表法应“编号、确定起始数、读数、取得样本”.『典例精讲』抽签法:第一步:将60名大学生编号,编号为1,2,3, (60)第二步:将60个号码分别写在60张外形完全相同的纸条上,并揉成团,制成号签;第三步:将60个号签放入一个不透明的盒子中,充分搅匀;第四步:从盒子中逐个抽取10个号签,并记录上面的编号;第五步:所得号码对应的学生,就是志愿小组的成员.随机数法:第一步:将60名学生编号,编号为01,01,03, (60)第二步:在随机数表中任选一数开始,按某一确定方向读数;第三步:凡不在01~60中的数或已读过的数,都跳过去不作记录,依次记录10个得数;第四步:找出号码与记录的数相同的学生组成志愿小组.『类题通法』(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀,一般地,当总体容量和样本容量都较小时可用抽签法.(2)随机数表中共随机出现0,1,2,…,9十个数字,也就是说,在表中的每个位置上出现各个数字的机会都是相等的.在使用随机数表时,如遇到三位数或四位数时,可从选择的随机数表中的某行某列的数字计起,每三个或每四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的数字舍去.1.利用简单随机抽样,从n 个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为13,则在整个抽样过程中,每个个体被抽到的概率为( ) A .13 B .514C .14D .1027『解析』选B .由题意知9n -1=13,∴n =28. ∴P =1028=514. 考向二 系统抽样将参加夏令营的600名学生编号为:001,002,…,600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区.三个营区被抽中的人数依次为( )A .26,16,8B .25,17,8C .25,16,9D .24,17,9『审题视点』 样本容量为50,抽样间隔为12,按系统抽样计算每组的人数.『典例精讲』 根据系统抽样,将600名学生分成50组,每组12人,因30012=25,故在第Ⅰ营区抽中25人,从301到492含有19212=16组,495为第25+16+1=42组中第三个,故第Ⅱ营区抽取17人,故三个营区抽取的人数依次为25,17,8.『答案』 B『类题通法』 (1)系统抽样的特点——机械抽样,又称等距抽样,所以依次抽取的样本对应的号码就是一个等差数列,首项就是第1组所抽取样本的号码,公差为间隔数,根据等差数列的通项公式就可以确定每一组内所要抽取的样本号码.(2)系统抽样时,如果总体中的个数不能被样本容量整除时,可以先用简单随机抽样从总体中剔除几个个体,然后再按系统抽样进行.2.(2014·中山模拟)为了检查某超市货架上的饮料是否含有塑化剂,要从编号依次为1到50的塑料瓶装饮料中抽取5瓶进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5瓶饮料的编号可能是( )A .5,10,15,20,25B .2,4,8,16,32C.1,2,3,4,5 D.7,17,27,37,47『解析』选D.抽取5瓶,应将50瓶分5组.抽样间隔505=10,故选D.考向三分层抽样(2012·高考四川卷)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为()A.101B.808C.1 212 D.2 012『审题视点』分层抽样,抽样比是一个定值.『典例精讲』1296=12+21+25+43N,∴N=808.『答案』B『类题通法』在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i∶N i=n∶N.3.(2014·江西八校模拟)某市有A、B、C三所学校,共有高三文科学生1 500人,且A、B、C三所学校的高三文科学生人数成等差数列,在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为120的样本,进行成绩分析,则应从B校学生中抽取________人.『解析』设A、B、C三所学校学生人数分别为x,y,z,由题知x,y,z成等差数列,所以x+z=2y,又x+y+z=1 500,所以y=500,用分层抽样方法抽取B校学生人数为1201 500×500=40.『答案』40随机数表的使用方法不当致误(2013·高考江西卷)总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()7816657208026314070243699728019832049234493582003623486969387481A.08B.07C.02 D.01『正解』由随机数表法的随机抽样的过程可知选出的5个个体是08,02,14,07,01,所以第5个个体的编号是01.『答案』D『易错点』①没按题目要求,直接从第1行的第一个数字开始并没考虑编号,得到78,16,65,72,08,错选为A.②直接从第1行的第一个数字开始,却考虑了编号,得到16,08,02,14,07,错选为B.③从第1行的第5列开始,但没考虑重复数字,得到08,02,14,07,02,错选为C.『警示』①为了便于使用随机数表,给总体的每个个体编号时其位数相同:如两位数编号为01,02,…三位数编号为001,002,在数表中,每两个数字(每三个数字)连在一起对应一个个体.②读数时,从表中随机选取一个数字开始,自左向右,或自右向左选取,有超过总体号码或出现重复的数字舍去,直到找到全体.1.(2013·高考湖南卷)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=() A.9 B.10C.12 D.13『解析』选D.根据分层抽样的特点,用比例法求解.依题意得360=n120+80+60,故n =13.2.(2013·高考全国新课标卷)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样『解析』选C .结合三种抽样的特点及抽样要求求解.由于三个学段学生的视力情况差别较大,故需按学段分层抽样.3.(2013·高考陕西卷)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间『481,720』的人数为( )A .11B .12C .13D .14『解析』选B .根据系统抽样的方法结合不等式求解.抽样间隔为84042=20.设在1,2,…,20中抽取号码x 0(x 0∈『1,20』),在『481,720』之间抽取的号码记为20k +x 0,则481≤20k +x 0≤720,k ∈N *.∴24120≤k +x 020≤36. ∵x 020∈⎣⎡⎦⎤120,1,∴k =24,25,26,…,35, ∴k 值共有35-24+1=12(个),即所求人数为12.4.(2012·高考江苏卷)某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.『解析』根据分层抽样的特点,可得高二年级学生人数占学生总人数有310,因此在样本中,高二年级的学生所占比例也应该为310,故应从高二年级抽取50×310=15(名)学生. 『答案』15。
最新人教版高中数学必修3第二章《随机抽样》教学设计案例
教学设计案例
2.1 随机抽样(第1课时)
1.教学任务分析
(1)由章头图和章引言,通过实例分析让学生了解学习本章的意义,引发学生
的求知欲.
(2)通过实例使学生能够从实际问题中提出统计问题.
(3)通过实例分析和阅读与思考(一个著名的案例)使学生理解随机抽样的必
要性.
(4)使学生理解样本的代表性与统计推断结论可靠性之间的关系.
2.教学重点与难点
重点:使学生初步学会从实际问题中提出统计问题,理解抽样的必要性和重要性,以及样本代表性的概率描述.
难点:对什么才是“有一定价值的统计问题”的理解,对样本代表性的概率描述的理解.
3.教学基本流程
4.教学情境设计。
高考数学一轮复习 12.1 随机抽样精品教学案(教师版)新人教版
【考纲解读】1.理解随机抽样的必要性和重要性. 2.会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.【考点预测】高考对此部分内容考查的热点与命题趋势为:1.统计与统计案例是历年来高考重点内容之一,选择题、填空题与解答题三种题型都会考查,难度一般不大,在考查统计与统计案例的同时,又考查转化与化归思想和分类讨论等数学思想,以及分析问题与解决问题的能力.2.2013年的高考将会继续保持稳定,坚持考查统计与统计案例,命题形式会更加灵活,特别要注意新课标中新增的内容.【要点梳理】1.简单随机抽样(1)定义:设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样的方法:抽签法和随机数法.2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本. (1)编号:先将总体的N 个个体编号; (2)分段:确定分段间隔k ,对编号进行分段,当N n (n 是样本容量)是整数时,取k =N n ;(3)确定首个个体:在第1段用简单随机抽样确定第一个个体编号l (l ≤k );(4)获取样本:按照一定的规则抽取样本,通常是将l 加上间隔k 得到第2个个体编号(l +k ),再加k 得到第3个个体编号(l +2k ),依次进行下去,直到获取整个样本.3.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样.(2)分层抽样的应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样.4.分层抽样的步骤(1)分层:将总体按某种特征分成若干部分;(2)确定比例:计算各层的个体数与总体的个体数的比;(3)确定各层应抽取的样本容量;(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.【例题精析】考点一 简单随机抽样与系统抽样例1.(2012年高考山东卷理科4)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C.则抽到的人中,做问卷B 的人数为( )(A )7 (B ) 9 (C ) 10 (D )15【名师点睛】本小题主要考查系统抽样,考查考生的分析问题与解决问题的能力.【变式训练】1.(山东省临沂市2012年3月高三一模文科)将参加夏令营的500名学生编号为:500,,002,001 ,采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003,这500名学生分住在三个营区,从001到200在第一营区,从201到355在第二营区,从356到500在第三营区,三个营区被抽中的人数为( )A. 15,15,20B. 14,16,20C. 16,14,12D. 14,15,21考点二 分层抽样例2.(2012年高考江苏卷2)某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 ▲ 名学生.【答案】15【解析】根据分层抽样的方法步骤,按照一定比例抽取,样本容量为50,那么根据题意得:从高三一共可以抽取人数为:1510350=⨯人. 【名师点睛】本小题主要考查抽样方法问题,分层抽样的具体实施步骤.分层抽样也叫做“按比例抽样”,也就是说,要根据每一层的个体数的多少抽取,这样才能够保证样本的科学性与普遍性,这样得到的数据才更有价值、才能够较精确地反映总体水平,本题属于容易题,也是高考热点问题,希望引起重视.【变式训练】2.(浙江省宁波市鄞州区2012年3月高考适应性考试文科3)某学校有教师150人,其中高级教师15人,中级教师45人,初级教师90人. 现按职称分层抽样选出30名教师参加教工代表大会,则选出的高、中、初级教师的人数分别为(),9,3.B1710,3.C16,9,5.D,15,5.A18,10【易错专区】问题:综合应用例. (2012年高考天津卷文科15)某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。
湖南省益阳市高三数学 随机抽样复习教案
(5)分层抽样中,每个个体被抽到的可能性与层数及分层有关.(×)
考点自测
1.某公司有员工500人,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人,为了调查员工的身体健康状况,从中抽取100名员工,则应在这三个年龄段分别抽取人数为( )
例1下列抽取样本的方式是否属于简单随机抽样?
(1)从无限多个个体中抽取100个个体作为样本.
(2)盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里.
(3)从20件玩具中一次性抽取3件进行质量检验.
(4)某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.
A.26,16,8B.25,17,8 C.25,16,9D.24,17,9
某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间的人数为( )
A.11 B.12 C.13 D.14
题型三分层抽样
例3已知某地区中小学生人数和近视情况分别如图(1)和图(2)所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )
总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )
7816657208263140702
4369
9728
0198
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三新数学第一轮复习教案—随机抽样一.课标要求:1.能从现实生活或其他学科中提出具有一定价值的统计问题;2.结合具体的实际问题情境,理解随机抽样的必要性和重要性;3.在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法;4.能通过试验、查阅资料、设计调查问卷等方法收集数据。
二.命题走向^统计是在初中数学统计初步的深化和扩展,本讲的主要内容是随机抽样的方法在总体中抽取样本。
预测2007年高考对本讲的考察是:(1)以基本题(中、低档题为主),多以选择题、填空题的形式出现,以实际问题为背景,综合考察学生学习基础的知识、应用基础知识、解决实际问题的能力;(2)热点是随机抽样方法中的分层抽样、系统抽样方法。
三.要点精讲三种常用抽样方法:1.简单随机抽样:设一个总体的个数为N。
如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。
实现简单随机抽样,常用抽签法和随机数表法。
(1)抽签法]制签:先将总体中的所有个体编号(号码可以从1到N),并把号码写在形状、大小相同的号签上,号签可以用小球、卡片、纸条等制作,然后将这些号签放在同一个箱子里,进行均匀搅拌;抽签:抽签时,每次从中抽出1个号签,连续抽取n次;成样:对应号签就得到一个容量为n的样本。
抽签法简便易行,当总体的个体数不多时,适宜采用这种方法。
(2)随机数表法编号:对总体进行编号,保证位数一致;数数:当随机地选定开始读数的数后,读数的方向可以向右,也可以向左、向上、向下等等。
在读数过程中,得到一串数字号码,在去掉其中不合要求和与前面重复的号码后,其中依次出现的号码可以看成是依次从总体中抽取的各个个体的号码。
成样:对应号签就得到一个容量为n的样本。
【结论:①用简单随机抽样,从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为N1;在整个抽样过程中各个个体被抽到的概率为Nn ; ② 基于此,简单随机抽样体现了抽样的客观性与公平性;③ 简单随机抽样的特点:它是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样。
2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样)。
系统抽样的步骤可概括为:(1)将总体中的个体编号。
采用随机的方式将总体中的个体编号;(2)将整个的编号进行分段。
为将整个的编号进行分段,要确定分段的间隔k .当n N 是整数时,n N k =;当nN 不是整数时,通过从总体中剔除一些个体使剩下的个体数N ´能被n 整除,这时n N k '=; }(3)确定起始的个体编号。
在第1段用简单随机抽样确定起始的个体边号l ;(4)抽取样本。
按照先确定的规则(常将l 加上间隔k )抽取样本:k n l k l k l l )1(,,2,,-+⋅⋅⋅++。
3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫做层。
结论:(1)分层抽样是等概率抽样,它也是公平的。
用分层抽样从个体数为N 的总体中抽取一个容量为n 的样本时,在整个抽样过程中每个个体被抽到的概率相等,都等于Nn ; (2)分层抽样是建立在简单随机抽样或系统抽样的基础上的,由于它充分利用了已知信息,因此利用它获取的样本更具有代表性,在实践的应用更为广泛。
四.典例解析题型1:统计概念及简单随机抽样}例1.为调查参加运动会的1000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是( )A .1000名运动员是总体B .每个运动员是个体C .抽取的100名运动员是样本D .样本容量是100解析:这个问题我们研究的是运动员的年龄情况,因此应选D 。
答案:D点评:该题属于易错题,一定要区分开总体与总体容量、样本与样本容量等概念。
例2.今用简单随机抽样从含有6个个体的总体中抽取一个容量为2的样本。
问:①总体中的某一个体a 在第一次抽取时被抽到的概率是多少② 个体a 不是在第1次未被抽到,而是在第2次被抽到的概率是多少③ 在整个抽样过程中,个体a 被抽到的概率是多少解析:(1)31,(2)31,(3)31。
。
点评:由问题(1)的解答,出示简单随机抽样的定义,问题( 2 )是本讲难点。
基于此,简单随机抽样体现了抽样的客观性与公平性。
题型2:系统抽样例3.为了了解参加某种知识竞赛的1003名学生的成绩,请用系统抽样抽取一个容量为50的样本。
解析:(1)随机地将这1003个个体编号为1,2,3, (1003)(2)利用简单随机抽样,先从总体中剔除3个个体(可利用随机数表),剩下的个体数1000能被样本容量50整除,然后再按系统抽样的方法进行.点评:总体中的每个个体被剔除的概率相等⎪⎭⎫ ⎝⎛10033,也就是每个个体不被剔除的概率相等⎪⎭⎫ ⎝⎛10031000.采用系统抽样时每个个体被抽取的概率都是⎪⎭⎫ ⎝⎛100050,所以在整个抽样过程中每个个体被抽取的概率仍然相等,都是10035010005010031000=⨯。
例4.(2004年福建,15)一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 小组中抽取的号码个位数字与m +k 的个位数字相同.若m =6,则在第7组中抽取的号码是___________.剖析:此问题总体中个体的个数较多,因此采用系统抽样.按题目中要求的规则抽取即可.[∵m =6,k =7,m +k =13,∴在第7小组中抽取的号码是63.答案:63点评:当总体中个体个数较多而差异又不大时可采用系统抽样。
采用系统抽样在每小组内抽取时应按规则进行。
题型3:分层抽样例5.(2006湖北文,19)某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加了其中一组。
在参加活动的职工中,青年人占%,中年人占%,老年人占10%。
登山组的职工占参加活动总人数的41,且该组中,青年人占50%,中年人占40%,老年人占10%。
为了了解各组不同的年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本。
试确定(Ⅰ)游泳组中,青年人、中年人、老年人分别所占的比例;(Ⅱ)游泳组中,青年人、中年人、老年人分别应抽取的人数。
解析:(Ⅰ)设登山组人数为x,游泳组中,青年人、中年人、老年人各占比例分别为a、b、c,则有40%310%347.5%,10%44x xb x xcx x++==,解得b=50%,c=10%.¥故a=100%-50%-10%=40%,即游泳组中,青年人、中年人、老年人各占比例分别为40%、50%、10%。
(Ⅱ)游泳组中,抽取的青年人数为320040%604⨯⨯=(人);抽取的中年人数为32004⨯⨯50%=75(人);抽取的老年人数为32004⨯⨯10%=15(人)。
点评:本小题主要考查分层抽样的概念和运算,以及运用统计知识解决实际问题的能力。
例6.(2006四川文,5)甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个样本容量为90人的样本,应在这三校分别抽取学生()A.30人,30人,30人B.30人,45人,15人\C.20人,30人,10人D.30人,50人,10人解析:B;点评:根据样本容量和总体容量确定抽样比,最终得到每层中学生人数。
题型4:综合问题例7.(1)(2004年湖南,5)某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法分析:此题为抽样方法的选取问题.当总体中个体较多时宜采用系统抽样;当总体中的个体差异较大时,宜采用分层抽样;当总体中个体较少时,宜采用随机抽样.,依据题意,第①项调查应采用分层抽样法、第②项调查应采用简单随机抽样法.故选B.答案:B(2)(2005湖北卷理第11题,文第12题)某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是()~A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样解析:D。
点评:采用什么样的抽样方法要依据研究的总体中的个体情况来定。
五.思维总结称这样的抽样为不放回抽样;如果每次抽出个体后再将它放回总体,称这样的抽样为放回抽样。
随机抽样、系统抽样、分层抽样都是不放回抽样。