定积分存在的条件
定积分存在的充分必要条件
![定积分存在的充分必要条件](https://img.taocdn.com/s3/m/53a35c8be2bd960590c677f0.png)
作一分法,
a x0' x1'
x' p1
x'p
b
使得对应于这一分法的上和S'满足S' L,S' L , 及
2
0 S'-L
2
固定了p及 xi' 以后, 可取
Yunnan University
§2. 定积分存在的条件
min x1' x0' , x2' x1' ,
,
x'p
x
' p1
,
2 p 1 M m
其中M及m分别为f x在a,b的上、下确界.
于是,为了得到所需的结论,只要证明,对任意的分法
a x0 x1 xn1 xn b
只要 时,就成立
SL SL
即可.
Yunnan University
而S3 S3 , 所以S1 S2.
记
l supS , L inf S
则l L .
定理4 对任何有界函数f x ,必有 达布定理
lim S L, lim S l
0
0
其中规定为对任意的分法,
max i
xi
.
Yunnan University
§2. 定积分存在的条件
证明 我们就上和的情形加以证明.
§2. 定积分存在的条件
一、定积分存在的充分必要条件
设f x 在a,b有界,在a,b插入分点
a x0 x1 xn1 xn b
把a,b分成n个小区间xi1, xi i 1, 2, ,n
记
Mi sup f x x xi1, xi mi inf f x x xi1, xi
定积分存在的条件
![定积分存在的条件](https://img.taocdn.com/s3/m/bc0b375552d380eb62946dad.png)
10
循序渐进
§7.2 定积分存在的条件
Mi Mi1 x'j xi1
Mi Mi2
xi
x
' j
M
m
x
' j
xi 1
xi
x
' j
M m xi xi1 M m p 1
M
m
p
1
2
p
1
M
m
2
另一方面,由定理1有
*
'
S L S L
2
于是将上面的两个不等式相加,得
'
S
L,S '
L
,及
0 S'-L
2
2
固定了p及 xi' 以后, 可取 (分法固定)
2020年4月8日星期三
海阔凭鱼跃,天高任鸟飞
7
循序渐进
§7.2 定积分存在的条件
min x1'
x0' ,
x2'
x1' , L
,
x'p
x
' p1
,
2 p 1 M m
(分法T 对应的小区间中最小的小区间长度)
证明: 设对于a,b有两个独立的分法,
对应的达布和分别记为 s1,s1及s2,s2, 我们来证明 s1 s2. 把两种分法的分点合并在一起,也是一种分法,
对应的达布和分别记为S3 , 及S3,于是由定理1知
S1 S3, S3 S2 . 而S3 S3 , 所以S1 S2.
(证毕)
2020年4月8日星期三
海阔凭鱼跃,天高任鸟飞
5
循序渐进
§7.2 定积分存在的条件
1 定积分的概念
![1 定积分的概念](https://img.taocdn.com/s3/m/85ffd42aaf45b307e87197a6.png)
高等数学(上)
定理3 设函数 f ( x ) 在区间 [a , b] 上有界,
且只有有限个间断点,则 f ( x ) 在
区间[a , b]上可积.
定理4 设函数
则
f ( x ) 在区间 [a , b] 上有界且单调,
2
n
2
1 n 2 3 i n i 1
1 n( n 1)(2n 1) 3 n 6
1 1 1 1 2 6 n n
1 因为 max{x1 , x2 , xn } n
高等数学(上)
所以 0 n ,
故有
[a , b ]
上可积。
f ( x)
在区间
例1 设 R, 则
b
a
dx (b a ).
高等数学(上)
例2 利用定义计算定积分
0 x
1
2
dx .
解 由于 f (x) = x2 在 [ 0 , 1 ] 上连续 , 因此可积 .
所以取如下划分:
将
[0,1] 分成 n 等分,分点为
0
1
xdx
n n n (2) lim 2 2 2 2 2 n n 1 n 2 n n n 1 dx 1 1 lim 2 n 0 1 x2 n i i 1 1 n
高等数学(上)
用和式极限表示定积分: ba ba 2(b a ) n(b a ) lim ) f (a ) f (a ) f (a n n n n n
i b a lim f a (b a ) n n n i 1 b 1 n i f a (b a ) f ( x )dx n i 1 n a
定积分的计算知识点总结
![定积分的计算知识点总结](https://img.taocdn.com/s3/m/dd07164d657d27284b73f242336c1eb91a3733a0.png)
定积分的计算知识点总结一、定积分的定义。
1. 概念。
- 设函数y = f(x)在区间[a,b]上连续,用分点a=x_0将区间[a,b]等分成n个小区间,每个小区间长度为Δ x=(b - a)/(n)。
在每个小区间[x_i - 1,x_i]上取一点ξ_i(i =1,2,·s,n),作和式S_n=∑_i = 1^nf(ξ_i)Δ x。
当nto∞时,如果S_n的极限存在,则称这个极限为函数y = f(x)在区间[a,b]上的定积分,记作∫_a^bf(x)dx,即∫_a^bf(x)dx=limlimits_n→∞∑_i = 1^nf(ξ_i)Δ x。
- 这里a与b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积表达式。
2. 几何意义。
- 当f(x)≥slant0时,∫_a^bf(x)dx表示由曲线y = f(x),直线x = a,x = b以及x 轴所围成的曲边梯形的面积。
- 当f(x)≤slant0时,∫_a^bf(x)dx表示由曲线y = f(x),直线x = a,x = b以及x 轴所围成的曲边梯形面积的相反数。
- 当f(x)在[a,b]上有正有负时,∫_a^bf(x)dx表示位于x轴上方的曲边梯形面积减去位于x轴下方的曲边梯形面积。
二、定积分的基本性质。
1. 线性性质。
- ∫_a^b[k_1f(x)+k_2g(x)]dx = k_1∫_a^bf(x)dx + k_2∫_a^bg(x)dx,其中k_1,k_2为常数。
2. 区间可加性。
- ∫_a^bf(x)dx=∫_a^cf(x)dx+∫_c^bf(x)dx,其中a < c < b。
3. 比较性质。
- 如果在区间[a,b]上f(x)≥slant g(x),那么∫_a^bf(x)dx≥slant∫_a^bg(x)dx。
- 特别地,<=ft∫_a^bf(x)dxright≤slant∫_a^b<=ftf(x)rightdx。
定积分存在的条件
![定积分存在的条件](https://img.taocdn.com/s3/m/692d58d30342a8956bec0975f46527d3240ca67a.png)
定积分存在的条件
定积分存在必要条件是:
函数有界定积分存在的充分条件 1.函数有界且有有限个间断点(除无穷间断点)2.函数连续3.函数单调有界
原函数存在与定积分存在的区别:
首先从性质来看,定积分是fx的曲线下面积,也就是一个数值,而原函数是一个函数,一个函数存在与否和一个数值是否存在完全就是两码事儿,但是本质上却有一定的联系,建立在某种条件成立的前提下。
原函数存在定理:
fx在区间上连续,必有原函数;
fx在区间上存在第一类间断点,必没有原函数;
初等函数在区间上连续,故初等函数在其定义区间一定存在原函数;定积分存在定理:
fx在闭区间内连续,则定积分存在;
fx在闭区间内有界,且只有有限个间断点,则定积分存在;
fx在闭区间上单调,则定积分存在;
变限积分定理:
若函数fx在闭区间上连续,则变上限积分函数在此区间内可导,且导函数等于fx;
所以由以上我们可以得到这二者之间的联系;
fx在闭区间连续时,原函数存在,定积分存在,且变上限定积分函
数是fx的一个原函数,也就是变限积分函数求导可以得到fx;
也就是从这个结论中我们可以总结出求原函数的方法:设原函数为变;上限积分函数:
当被积函数在闭区间内有界且有有限个间断点时,则fx可积,原函数不存在,但变上限积分函数连续;
函数fx在闭区间上可积,fx不一定连续;fx在闭区间连续,一定可积。
定积分的可积条件(证明)
![定积分的可积条件(证明)](https://img.taocdn.com/s3/m/0524b938700abb68a982fbee.png)
m)
,
其中 M m 是 f 在 [a,b] 上的振幅, 从而
i M m, i 1, 2, , n.
于是 ixi ixi ixi
(b a) (M m)
2(b a)
2(M m)
.
15
定理1.3 如果函数 f (x)Ca,b, 则 f (x)a,b
证 根据在闭区间上连续函数性质,f (x) 必在
k 1
k 1
18
定理1.4 如果函数 f x 在区间a,b 上有界
并且除去有限个间断点外处处连续
则 f (x)a,b
19
lim [S s ] 0
d 0
n
n
S() s() (Mk mk )xk kxk
k 1
k 1
定理1.2 函数 f (x) 在区间 a,b 上可积的充
n
分必要条件为 d
lim
0
k
1
k
xk
0
n
d
lim
0
k
1
k
xk 0
0,
0,
d() ,
n
kxk
k 1
12
几何意义 由大和与小和的几何意义知道,定理1.2
的几何意义为: 下图中包围曲线 y f ( x)
的一系列小矩形面积之和可以达到任意小, 只要
对 [a, b] 的分割 足够地细.
y
i Δ xi
y f (x)
Oa
bx
13
n
证明可积性问题时,通常有三种方法可使 ixi .
i 1
第一种方法: 每个
i
ba
,从而
n
i Δxi
i 1
ba
数学分析9.4定积分的性质
![数学分析9.4定积分的性质](https://img.taocdn.com/s3/m/6ac22c1cd4d8d15abf234e58.png)
第九章 定积分 4 定积分的性质一、定积分的基本性质性质1:若f 在[a,b]上可积,k 为常数,则kf 在[a,b]上也可积,且⎰bakf(x )dx=k ⎰baf(x )dx.证:当k=0时结论成立. 当k ≠0时,∵f 在[a,b]上可积,记J=⎰ba f(x )dx , ∴任给ε>0,存在δ>0,当║T ║<δ时,|i n1i i x △)ξ(f ∑=-J|<|k |ε; 又|i n 1i i x △)ξ(kf ∑=-kJ|=|k|·|i n1i i x △)ξ(f ∑=-J|<|k|·|k |ε=ε,∴kf 在[a,b]上可积, 且⎰b a kf(x )dx=k ⎰ba f(x )dx.性质2:若f,g 都在[a,b]上可积,则f ±g 在[a,b]上也可积,且⎰±bag(x )][f(x )dx=⎰b af(x )dx ±⎰bag(x )dx.证:∵f,g 都在[a,b]上可积,记J 1=⎰ba f(x )dx ,J 2=⎰ba g(x )dx. ∴任给ε>0,存在δ>0,当║T ║<δ时,有|i n1i i x △)ξ(f ∑=-J 1|<2ε,|i n1i i x △)ξ(g ∑=-J 2|<2ε.又|i n1i i i x △)]ξ(g )ξ([f ∑=+-(J 1+J 2) |=|(i n1i i x △)ξ(f ∑=-J 1)+(i n1i i x △)ξ(g ∑=-J 2)|≤|i n1i i x △)ξ(f ∑=-J 1|+|i n1i i x △)ξ(g ∑=-J 2)|<2ε+2ε=ε;|i n 1i i i x △)]ξ(g )ξ([f ∑=--(J 1-J 2) |=|(i n 1i i x △)ξ(f ∑=-J 1)+( J 2-i n1i i x △)ξ(g ∑=)|≤|i n 1i i x △)ξ(f ∑=-J 1|+|i n1i i x △)ξ(g ∑=-J 2)|<2ε+2ε=ε.∴f ±g 在[a,b]上也可积,且⎰±b a g(x )][f(x )dx=⎰b a f(x )dx ±⎰ba g(x )dx.注:综合性质1与性质2得:⎰±ba βg(x )]αf(x ) [dx=α⎰b a f(x )dx ±β⎰ba g(x )dx.性质3:若f,g 都在[a,b]上可积,则f ·g 在[a,b]上也可积.证:由f,g 都在[a,b]上可积,从而都有界,设A=]b ,a [x sup ∈|f(x)|,B=]b ,a [x sup ∈|g(x)|,当AB=0时,结论成立;当A>0,B>0时,任给ε>0,则存在分割T ’,T ”, 使得∑'T i i f x △ω<B 2ε,∑''T i i g x △ω<A 2ε. 令T=T ’+T ”,则对[a,b]上T 所属的每一个△i ,有 ωi f ·g =]b ,a [x ,x sup ∈'''|f(x ’)g(x ’)-f(x ”)g(x ”)|≤]b ,a [x ,x sup ∈'''[|g(x ’)|·|f(x ’)-f(x ”)|+|f(x ”)|·|g(x ’)-g(x ”)|]≤B ωi f +A ωi g .又∑⋅Ti g f i x △ω≤B ∑Ti f i x △ω+A ∑Ti g i x △ω≤B ∑'T i f i x △ω+A ∑''T i g i x △ω<B ·B 2ε+A ·A2ε=ε. ∴f ·g 在[a,b]上可积.注:一般情形下,⎰ba f(x )g(x )dx ≠⎰b af(x )dx ·⎰bag(x )dx.性质4:f 在[a,b]上可积的充要条件是:任给c ∈(a,b),f 在[a,c]与[c,b]上都可积. 此时又有等式:⎰ba f(x )dx=⎰c a f(x )dx+⎰bc f(x )dx. 证:[充分性]∵f 在[a,c]与[c,b]上都可积.∴任给ε>0,分别存在对[a,c]与[c,b]的分割T ’,T ”,使得∑'''T i i x △ω<2ε,∑''''''T i i x △ω<2ε. 令[a,b]上的分割T=T ’+T ”,则有∑Tiix△ω=∑'''Tiix△ω+∑''''''Tiix△ω<2ε+2ε=ε,∴f在[a,b]上可积.[必要性]∵f在[a,b]上可积,∴任给ε>0,存在[a,b]上的某分割T,使∑Tiix△ω<ε. 在T上增加分点c,得分割T⁰,有∑︒︒︒Tiix△ω≤∑Tiix△ω<ε.分割T⁰在[a,c]和[c,b]上的部分,分别构成它们的分割T’和T”,则有∑'' 'Tiix△ω≤∑︒︒︒Tiix△ω<ε,∑''''''Tiix△ω≤∑︒︒︒Tiix△ω<ε,∴f在[a,c]与[c,b]上都可积.又有∑︒︒︒Tiix)△f(ξ=∑'''Tiix)△ξf(+∑''''''Tiix)△ξf(,当║T⁰║→0时,同时有║T’║→0,║T”║→0,对上式取极限,得⎰b a f(x)dx=⎰c a f(x)dx+⎰b c f(x)dx. (关于积分区间的可加性)规定1:当a=b时,⎰baf(x)dx=0;规定2:当a>b时,⎰baf(x)dx=-⎰a b f(x)dx;以上规定,使公式⎰baf(x)dx=⎰c a f(x)dx+⎰b c f(x)dx对于a,b,c的任何大小顺都能成立.性质5:设f在[a,b]上可积. 若f(x)≥0, x∈[a,b],则⎰baf(x)dx≥0. 证:∵在[a,b]上f(x)≥0,∴f的任一积分和都为非负.又f在[a,b]上可积,∴⎰ba f(x)dx=in1iiTx△)f(ξlim∑=→≥0.推论:(积分不等式性)若f,g在[a,b]上都可积,且f(x)≤g(x), x∈[a,b],则有⎰baf(x)dx≤⎰b a g(x)dx.证:记F(x)=g(x)-f(x)≥0, x ∈[a,b],∵f,g 在[a,b]上都可积,∴F 在[a,b]上也可积.∴⎰b a F(x )dx=⎰b a g(x )dx-⎰b a f(x )dx ≥0,即⎰b a f(x )dx ≤⎰ba g(x )dx.性质5:若f 在[a,b]上可积,则|f|在[a,b]上也可积,且 |⎰b a f(x )dx|≤⎰ba |f(x )|dx.证:∵f 在[a,b]上可积,∴任给ε>0,存在分割T ,使∑Ti i f x △ω<ε,由不等式||f(x 1)|-|f(x 2)||≤|f(x 1)-f(x 2)|可得i ||f ω≤i f ω, ∴∑Ti i ||f x △ω≤∑Ti i f x △ω<ε,∴|f|在[a,b]上可积.又-|f(x)|≤f(x)≤|f(x)|,∴|⎰b a f(x )dx|≤⎰ba |f(x )|dx.例1:求⎰11-f(x )dx ,其中f(x)= ⎩⎨⎧<≤<≤.1x 0 ,e ,0x 1-1-2x x-, 解:⎰11-f(x )dx=⎰01-f(x )dx+⎰10f(x )dx=(x 2-x)01-+(-e -x )10=-2-e -1+1=-e -1-1.例2:证明:若f 在[a,b]上连续,且f(x)≥0,⎰ba f(x )dx =0,则 f(x)≡0, x ∈[a,b].证:若有x 0∈[a,b], 使f(x 0)>0,则由连续函数的局部保号性, 存在的x 0某邻域U(x 0,δ)(当x 0=a 或x 0=b 时,则为右邻域或左邻域), 使f(x)≥21f(x 0)>0,从而有⎰baf(x )dx =⎰δ-x a0f(x )dx+⎰+δx δ-x 00f(x)dx+⎰+bδx 0f(x)dx ≥0+⎰+δx δ-x 0002)f(x dx+0=δf(x 0)>0, 与⎰ba f(x )dx =0矛盾,∴f(x)≡0, x ∈[a,b].二、积分中值定理定理:(积分第一中值定理)若f 在[a,b]上连续,则至少存在一点 ξ∈[a,b],使得⎰ba f(x )dx =f(ξ)(b-a).证:∵f 在[a,b]上连续,∴存在最大值M 和最小值m ,由 m ≤f(x)≤M, x ∈[a,b],得m(b-a)≤⎰ba f(x )dx ≤M(b-a),即m ≤⎰baf(x)a -b 1dx ≤M. 又由连续函数的介值性知,至少存在一点ξ∈[a,b],使得f(ξ)=⎰baf(x)a -b 1dx ,即⎰b a f(x )dx =f(ξ)(b-a).积分第一中值定理的几何意义:(如图)若f 在[a,b]上非负连续,则y=f(x)在[a,b]上的曲边梯形面积等于以f(ξ)为高,[a,b]为底的矩形面积.⎰ba f(x)a-b 1dx 可理解为f(x)在[a,b]上所有函数值的平均值.例3:试求f(x)=sinx 在[0,π]上的平均值. 解:所求平均值f(ξ)=⎰π0f(x)π1dx=π1(-cosx)π0|=π2.定理:(推广的积分第一中值定理)若f 与g 在[a,b]上连续,且g(x)在[a,b]上不变号,则至少存在一点ξ∈[a,b],使得g(x )f(x )ba⎰dx =f(ξ)⎰bag(x )dx.证:不妨设g(x)≥0, x ∈[a,b],M,m 分别为f 在[a,b]上的最大,最小值. 则有mg(x)≤f(x)g(x)≤Mg(x), x ∈[a,b],由定积分的不等式性质,有 m ⎰ba g(x )dx ≤g(x )f(x )ba ⎰dx ≤M ⎰b a g(x )dx. 若⎰ba g(x )dx=0,结论成立.若⎰bag(x )dx>0,则有m ≤dxg(x )g(x )dxf(x )b aba⎰⎰≤M.由连续函数的介值性知,至少存在一点ξ∈[a,b],使得f(ξ)=dxg(x )g(x )dxf(x )b aba⎰⎰,即g(x )f(x )b a ⎰dx =f(ξ)⎰ba g(x )dx.习题1、证明:若f 与g 在[a,b]上可积,则i n1i i i 0T x △))g(ηf(ξlim ∑=→=⎰⋅ba g f , 其中ξi , ηi 是△i 内的任意两点. T={△i }, i=1,2,…,n.证:f 与g 在[a,b]上都可积,从而都有界,且fg 在[a,b]上可积. 设|f(x)|<M, x ∈[a,b],则对[a,b]上任意分割T ,有in 1i iix △))g(ηf(ξ∑==in1i iiiix△)]g(ξ-)g(η))[g(ξf(ξ∑=+=i n1i i i x △))g(ξf(ξ∑=+i g in1i i x △ω)f(ξ∑=≤i n1i i i x △))g(ξf(ξ∑=+M i n1i g i x △ω∑=.∴|i n 1i i i x △))g(ηf(ξ∑=-i n 1i i i x △))g(ξf(ξ∑=|≤M i n1i g i x △ω∑=.∴|i n 1i i i 0T x △))g(ηf(ξlim ∑=→-i n 1i i i 0T x △))g(ξf(ξlim ∑=→|≤0T lim →M i n1i g i x △ω∑==0 ∴i n 1i i i 0T x △))g(ηf(ξlim ∑=→=i n1i i i 0T x △))g(ξf(ξlim ∑=→=⎰⋅ba g f .2、不求出定积分的值,比较下列各对定积分的大小.(1)⎰10x dx 与⎰102x dx ;(2)⎰2π0x dx 与⎰2π0sinx dx.解:(1)∵x>x 2, x ∈(0,1),∴⎰10x dx>⎰102x dx.(2)∵x>sinx, x ∈(0,2π],∴⎰2π0x dx>⎰2π0sinx dx.3、证明下列不等式:(1)2π<⎰2π02x sin 21-1dx <2π;(2)1<⎰10x 2e dx<e ;(3)1<⎰2π0x sinx dx<2π;(4)3e <⎰4e e xlnx dx<6. 证:(1)∵1<x sin 21-112<21-11=2, x ∈(0,2π);∴⎰2π0dx <⎰2π02x sin 21-1dx <⎰2π02dx ,又⎰2π0dx =2π;⎰2π02dx=2π; ∴2π<⎰2π2x sin 21-1dx<2π.(2)∵1<2x e <e, x ∈(0,1);∴1=⎰10dx <⎰10x 2e dx<⎰10edx =e.(3)∵π2<x sinx <1,x ∈(0,2π);∴1=⎰2π0dx π2<⎰10x2e dx<⎰2π0dx =2π.(4)令'⎪⎭⎫ ⎝⎛x lnx =x 2lnx -2=0,得x lnx 在[e,4e]上的驻点x=e 2,又e x x lnx ==e 1,e 4x x lnx ==e 2ln4e ,∴在[e,4e]上e 1<x lnx <22elne =e 2;∴3e =⎰4eee1dx <⎰4eexlnx dx<⎰4eee2dx =6.4、设f 在[a,b]上连续,且f(x)不恒等于0. 证明:⎰ba 2[f(x )]dx>0. 证:∵f(x)不恒等于0;∴必有x 0∈[a,b],使f(x 0)≠0. 又由f 在[a,b]上连续,必有x ∈(x 0-δ, x 0+δ),使f(x)≠0,则⎰+δx δ-x 200f >0,∴⎰ba 2[f(x )]dx=⎰δ-x a20f +⎰+δx δ-x 200f +⎰+b δx 20f =⎰+δx δ-x 200f +0>0.注:当x 0为a 或b 时,取单侧邻域.5、若f 与g 都在[a,b]上可积,证明:M(x)=b][a,x max ∈{f(x),g(x)},m(x)=b][a,x min ∈{f(x),g(x)}在[a,b]上也都可积.证:M(x)=21(f(x)+g(x)+|f(x)-g(x)|);m(x)=21(f(x)+g(x)-|f(x)-g(x)|). ∵f 与g 在[a,b]上都可积,根据可积函数的和、差仍可积,得证.6、试求心形线r=a(1+cos θ), 0≤θ≤2π上各点极径的平均值.解:所求平均值为:f(ξ)=⎰2π0a 2π1(1+cos θ)d θ=2πa(θ+sin θ)2π=a.7、设f 在[a,b]上可积,且在[a,b]上满足|f(x)|≥m>0. 证明:f1在[a,b]上也可积. 证:∵f 在[a,b]上可积,∴任给ε>0,有∑Ti i x △ω<m 2ε.任取x ’,x ”∈△i ,则)x f(1''-)x f(1'=)x )f(x f()x f(-)x f(''''''≤2i mω.设f1在△i 上的振幅为ωi -,则ωi -≤2imω. ∴∑Ti -i x △ω≤∑Ti i 2x △ωm 1<2m1·m 2ε=ε,∴f 1在[a,b]上也可积.8、证明积分第一中值定理(包括定理和中的中值点ξ∈(a,b). 证:设f 在[a,b]的最大值f(x M )=M, 最小值为f(x m )=m , (1)对定理:当m=M 时,有f(x)≡m, x ∈[a,b],则ξ∈[a,b]. 当m<M 时,若m(b-a)=⎰b a f(x )dx ,则⎰ba m]-[f(x )dx=0,即f(x)=m , 而f(x)≥m ,∴必有f(x)≡m ,矛盾. ∴⎰ba f(x )dx >m(b-a). 同理可证:⎰ba f(x )dx <M(b-a).(2)对定理:不失一般性,设g(x)≥0, x ∈[a,b]. 当m=M 或g(x)≡0, x ∈[a,b]时,则ξ∈[a,b].当m<M 且g(x)>0, x ∈[a,b]时,若M ⎰ba g dx-⎰ba fg dx=⎰ba f)g -(M dx=0, 由(M-f)g ≥0,得(M-f)g=0. 又g(x)>0,∴f(x)≡M ,矛盾. ∴⎰ba fg dx <M ⎰ba g dx. 同理可证:⎰ba fg dx>m ⎰ba g dx. ∴不论对定理还是定理,都有ξ≠x M 且ξ≠x m .由连续函数介值定理,知ξ∈(x m ,x M )⊂(a,b)或ξ∈(x M ,x m )⊂(a,b),得证.9、证明:若f 与g 都在[a,b]上可积,且g(x)在[a,b]上不变号,M,m 分别为f(x)在[a,b]上的上、下确界,则必存在某实数μ∈[m,M],使得g(x )f(x )ba⎰dx =μ⎰bag(x )dx.证:当g(x)≡0, x ∈[a,b]时,g(x )f(x )ba ⎰dx =μ⎰bag(x )dx=0.当g(x)≠0时,不妨设g(x)>0,∵m ≤f(x)≤M, x ∈[a,b], ∴m ⎰ba g(x )dx ≤g(x )f(x )ba ⎰dx ≤M ⎰bag(x )dx ,即m ≤dxg(x )g(x )dxf(x )b aba⎰⎰≤M.∴必存在μ∈[m,M],使g(x )f(x )b a ⎰dx =μ⎰ba g(x )dx.10、证明:若f 在[a,b]上连续,且⎰b a f(x )dx=⎰ba x f(x )dx=0,则在(a,b)内至少存在两点x 1,x 2,使 f(x 1)=f(x 2)=0. 又若⎰ba 2f(x )x dx=0,则f 在(a,b)内是否至少有三个零点证:由⎰ba f =0知,f 在(a,b)内存在零点,设f 在(a,b)内只有一个零点f(x 1), 则由⎰ba f =⎰1x a f +⎰b x 1f 可得:⎰1x a f =-⎰bx 1f ≠0. 又f 在[a,x 1]与[x 1,b]不变号,∴⎰ba x f =⎰1x a x f +⎰b x 1xf =ξ1⎰1x a f +ξ2⎰b x 1f =(ξ2-ξ1)⎰bx 1f ≠0, (a<ξ1<x 1<ξ2<b),矛盾.∴f 在(a,b)内至少存在两点x 1,x 2,使 f(x 1)=f(x 2)=0.记函数g=xf(x),则g 在[a,b]上连续,且⎰b a g(x )dx=⎰ba x f(x )dx=0, 又⎰ba x g(x )dx=⎰ba 2f(x )x dx=0,即有⎰b a g(x )dx=⎰ba x g(x )dx=0,∴g=xf(x)在(a,b)内至少存在两个零点,若f 在(a,b)内至少存在三个零点f(x 1)=f(x 2)=f(x 3)=0,则 g(x 1)=x 1f(x 1)=g(x 2)=x 2f(x 2)=g(x 3)=x 3f(x 3)=0,即g=xf(x)在(a,b)内至少存在三个零点g(x 1)=g(x 2)=g(x 3)=0,矛盾, ∴f 在[a,b]上连续,且⎰ba f(x )dx=⎰b a x f(x )dx=⎰ba 2f(x )x dx=0,则 f 在(a,b)内至少存在两个零点.11、设f 在[a,b]上二阶可导,且f ”(x)>0. 证明:(1)f ⎪⎭⎫⎝⎛+2b a ≤⎰-b a f(x)a b 1dx ; (2)又若f(x)≤0, x ∈[a,b],则有f(x)≥⎰-baf(x)a b 2dx, x ∈[a,b].证:(1)令x=a+λ(b-a), λ∈(0,1),则⎰-baf(x)a b 1dx=⎰+10a)]-λ(b f[a d λ, 同理,令x=b-λ(b-a),也有⎰-ba f(x)ab 1dx=⎰-10a)]-λ(b f[b d λ,则 ⎰-b a f(x)a b 1dx=⎰-++10a)]}-λ(b f[b a)]-λ(b {f[a 21d λ. 又f 在[a,b]上二阶可导,且f ”(x)>0,∴f 在[a,b]上凹,从而有21{f[a+λ(b-a)]+f[b-λ(b-a)]}≥f{21[a+λ(b-a)]+21f[b-λ(b-a)]}=f ⎪⎭⎫ ⎝⎛+2b a . ∴⎰-b a f(x)a b 1dx ≥⎰⎪⎭⎫ ⎝⎛+102b a f d λ=f ⎪⎭⎫⎝⎛+2b a . (2)令x=λb+(1-λ)a ,由f 的凹性得⎰-ba f(x)ab 1dx=⎰+10λ)a]}-f[(1b) {f(λd λ≤⎰+10λ)f(a)]-(1f(b) [λd λ =f(b)1022λ+ f(a)1022λ)-(1-=2f(b)f(a)+. 不妨设f(a)≤f(b),则f(a)≤f(x)≤0, x ∈[a,b],又f(b)≤0, ∴⎰-ba f(x)ab 2dx ≤f(a) +f(b)≤f(x).12、证明:(1)ln(1+n)<1+21+…+n1<1+lnn ;(2)lnnn 1211limn +⋯++∞→=1. 证:(1)对函数f(x)=x1在[1,n+1]上取△i =1作分割,并取△i 的左端点为ξi ,则和数∑=n1i i 1是一个上和,∴⎰+1n 1x 1dx<∑=n 1i i1,即ln(n+1)< 1+21+…+n1;同理,取△i 的右端点为ξi ,则和数∑=+1-n 1i 1i 1是一个下和,∴∑=+1-n 1i 1i 1<⎰n 1x 1dx , 即21+…+n 1<lnn ,∴1+21+…+n1<1+lnn. 得证.(2)由(1)知ln(1+n)<1+21+…+n 1<1+lnn ,∴lnn 1)ln(n +<lnnn 1211+⋯++<1+lnn 1; 又lnn 1)ln(n lim n +∞→=1n n lim n +∞→=1;∞→n lim (1+lnn 1)=1;∴lnnn 1211lim n +⋯++∞→=1.。
定积分的存在条件
![定积分的存在条件](https://img.taocdn.com/s3/m/5c62dabedc88d0d233d4b14e852458fb770b38e5.png)
定积分的存在条件积分的含义和定积分的概念都可以追溯到古希腊数学家色雷斯特斯的数学研究。
定积分是一种特殊的数学表示法,它可以表示某一函数的积分,即函数曲线下的面积,它可以用来表示椭圆、抛物线等函数的积分。
定积分的存在条件也被称为定积分定理,它可以帮助我们更好地理解和解释定积分的作用。
定积分的存在条件需要满足下列条件:一、在定积分的存在条件下,函数f(x)必须是定义在[a,b]上的连续函数,即在[a,b]上连续变化,有一定的值域范围,而且不存在任何离散和断点;二、在定积分的存在条件下,函数f(x)的导函数F(x)必须是定义在[a,b]上的有界函数,即有一定的取值范围,并且满足其导函数的极限等于函数自身。
三、当定积分的存在条件被满足时,函数f(x)在[a,b]上的积分就是F(x)在[a,b]上的积分;四、在定积分的存在条件下,在计算函数的积分时,可以使用F(x)的积分替代f(x)的积分,这样可以大大减少计算量,提高计算效率。
上述就是定积分的存在条件。
定积分的存在条件对于我们解决函数的积分有着重要的意义。
它能够有效的把函数的积分进行拆分、矫正、优化,从而使计算变得更加简洁,准确率也更高。
定积分的存在不仅可以使事情变得简单,而且有助于我们理解更复杂的数学概念,例如定积分可以帮助我们更好地理解级数的概念,从而使我们在计算更复杂的函数积分时变得更加容易。
另外,定积分还可以用来解决实际问题,例如求取某一物体在自由落体过程中位移、加速度和速度等问题。
总之,定积分在理解数学概念和解决实际问题方面都有着重要的作用。
通过以上介绍可以看出,定积分有着十分重要的存在条件,这些条件是定积分在理解数学概念和解决实际问题方面发挥作用的前提条件。
理解这些条件,可以帮助我们更快的了解定积分的概念,从而使我们在数学积分的学习和研究中取得更大的进步。
定积分存在的条件
![定积分存在的条件](https://img.taocdn.com/s3/m/f8d7248f59eef8c75ebfb342.png)
T
,
__
使 S (T ) <
b
, a2
*) 设 T 有 p 个分点,
对任意分割T,由性质的推论有
__
S (T )
p
(M m)
T
__
S (T ) ,
28.05.2020
.
20
__
S (T )
p
(M
m)
T
__
S
(T
)
<
b
a
,
2
即
__
S (T )
p (M m)
T
b
< a
,
2
亦即
__
( Mi f (i )) xi
<
.
2
因此, T 时有
|
__
S (T ) I |
| | + | | < + __
S (T )
28.05.2020
f (i ) xi
f (i )xi I
.
= .
22
24
__
此即
lim
T 0
S (T ) = I
.由达布定理
,
b
a
=
I.
I b
同理可证 a =
28.05.2020
lim
T 0
f
(xi )xi .
=
I
.
23
即对 0 , 0 , 使当 T 时有
|
f (xi )xi
I
|<
2
对i
xi
成立.
在每个 [ xi1 , xi ] 上取 i , 使
0
定积分概念、性质(1)
![定积分概念、性质(1)](https://img.taocdn.com/s3/m/35b2dec0336c1eb91b375d46.png)
◆定积分的基本性质
1
b
a
f
x
g
x
dx
b
a
f
x dx
b
a
g
xdx
可推广至有限个函数的代数和的情形。
2
b
a
k
f
x dx
k
b
a
f
x dx
3
b
a
f
x
dx
c
a
f
x dx
b
c
f
x dx
·a ·c ·b ·b ·a ·c
c
b
f
xdx
a
b
f
xdx
c
a
f
xdx
无论 a, b, c 的相对位置如何,(3)式均成立。
dx
2 0
sin
x
cos
x
dx
cos x sin x2 0 1 1 0 2 0
x 1, x 1
8 设
f
x
1 2
x2,
x
1
,求 2 f x dx 0
a
a
因 f (x) f (x) f (x)
性质6(介值定理):设f(x)在[a,b]上可取得最大值M和
最小值m, 于是, 由性质5有
b
m(b a) a f (x)dx M (b a)
几何意义也很明显
性质7 (积分中值定理):若函数f (x)在[a,b]上连续,
则至少存在一点 [a,b]使得
0
(1 3
x3 )
1 0
1 3
变:(2 x 1)dx 1
计算定积分 b f(x)dx a
a 0,b 2, f (x) x3
定积分的概念
![定积分的概念](https://img.taocdn.com/s3/m/20c7cc7efbd6195f312b3169a45177232f60e4c5.png)
把一个大曲边梯形分割成n个小曲边梯形
分割 在区间[a,b]内任意插入(n-1)个分点,称为区间[a,b]的一个分法(分割),记为T.
2.代替
(化曲为直)
在每个小区间[ xi-1, xi ] 上任取一点ξi ,于是,以 为底, 为高的小矩形面积 应为小曲边梯形面积的近似值,即
注:显然函数 f (x) 在 [a, b] 的积分和 与分法(割)T 有关,也与一组= { }(i Δi , i=1, … , n )的取法有关.
取法任意
记
如果不论对[a,b]怎样的分法(分割);
也不论在小区间 上,点 怎样的取法,
只要 时,积分和 存在确定的有限极限
根据定积分的定义,可以看出,前面所举的两个实例,都是定积分.
物体运动的路程s是速度函数v(t)在时间间隔 的定积分,即
黎曼(Georg Friedrich Bernhard Riemann,1826-1866)19世纪富有创造性的德国数学家、物理学家。对数学分析和微分几何做出了重要贡献 。
与区间及被积函数有关;B.与区间无关与被积函数有关 C.与积分变量用何字母表示有关;D.与被积函数的形式无关
a
b
x
y
o
a
b
x
y
o
用矩形面积近似取代曲边梯形面积
显然,小矩形越多,矩形总面积 越接近曲边梯形面积.
(四个小矩形)
(九个小矩形)
基本思想(以直代曲)
具体做法(如下)
(化整为零)
”
分法任意
分法T将区间[a,b]分成n个小区间,
过每个分点作x轴的垂线,这些垂线与曲线f(x)相交,相应地把大曲边梯形分为 n 个小曲边梯形,其面积分别记为ΔAi ( i=1, 2, …, n )
5.2.1 定积分的概念与可积条件
![5.2.1 定积分的概念与可积条件](https://img.taocdn.com/s3/m/eff05f65a26925c52cc5bf6d.png)
n
若极限
lim ∑ f (ξ i ) ∆ x i 存在,且极限值与分割 T 和 ξ i T →0
i =1
n
的取法无关,则称函数 f (x) 在 [a, b]上可积(或黎曼可积), 极限值 J 称为 f (x) 在 [a, b]上的定积分,记为 积分上限
∫a
积分下限
b
f ( x) d x =
被积函数 被积表达式
b
b
b
(3)一般不能用 n → ∞ 来代替 T → 0 , 因为 n → ∞ 时未必有 T → 0 , 但 T → 0 时必定同时有
n → ∞.
19
(4) 积分和的极限
与普通函数极限 (i) 积分和
n i =1 n
||T ||→ 0
lim
∑ f (ξ )∆x
i =1 i
n
i
= J
x → x0
lim h( x ) = A 的区别:
n
i
= b − a,
当 ξ i 取无理数时
i i = i 1= i 1
∑ D(ξ )∆x = ∑ 0 ⋅ ∆x =
i
0,
||T ||→ 0
lim
∑ D(ξ )∆x
i
0 =
所以该函数在区间 [a , b] 上不可积.
21
注:(5)可积性是函数的又一分析性质. 稍后(推论5.2.2) 就会知道连续函数是可积的.于是开头的两个实例都可用 定积分记号表示:
(1)分割:把 [a, b] 任意分为n个小段: [ xi −1 , xi ]( i = 1, 2, , n). (2)近似:在 [ xi −1 , xi ] 上任取一点 ξi , 物体从 xi −1 移到 xi 时 F ( x) 作的功 ∆Wi ≈ F (ξ i )( xi − = xi −1 ) F (ξ i )∆xi (3)求和:物体从 a 移到 b 时 F ( x)作的功近似为: W ≈ ∑ F (ξ i ) ∆xi
【2019年整理】《微积分》(下)复习大纲
![【2019年整理】《微积分》(下)复习大纲](https://img.taocdn.com/s3/m/8727f29e561252d381eb6ec7.png)
《微积分》(下)教案第六章定积分教学目的和要求:1、了解定积分的概念及存在定理,理解定积分的基本性质和中值定理2、掌握牛顿-莱布尼兹公式,掌握定积分的换元法和分部积分法3、理解两种广义积分的概念并掌握它们的求法4、理解定积分的应用并掌握它们的求法重点:1、牛顿-莱布尼兹公式2、定积分的换元法和分部积分法难点:1、定积分的概念2、积分上限函数的概念与应用3、定积分的换元法和分部积分法中的技巧第一节定积分的概念和性质教学目的和要求:1 、通过曲边梯形的面积以及变速直线运动的路程实例引入定积分的概念,从中领会从有限到无限、特殊到一般的数学思想,从而培养学生的数学意识和利用数学解决实际问题的能力。
2、使学生掌握定积分的概念和存在定理,并通过例题使学生学会如何处理和解决相应的数学问题。
3、理解定积分的基本性质和中值定理重点:定积分的概念教学过程:、问题的提出1、几何上,曲边梯形的面积(1) 曲边梯形的特征(2) 面积的计算方法2、物理上,变速直线运动的路程注:让学生比较两个问题的共性(1) 解决问题步骤相同(2) 所求量的结构式相同二、定积分的定义1、定义注意问题(1) 在定义中,区间的划分和点选取的任意性(2) 所划分的区间长度的最大值趋于零和所分区间无穷多之间的关系(3) 定积分的值只与被积函数和积分区间有关,与积分变量的写法无关(4) 定积分的实质是特殊和式的极限2、定积分存在的条件3、定积分的几何意义四、小结教学目的和要求:1、理解定积分的基本性质和中值定理2、使学生能用定积分的性质进行估值、比较大小重点:定积分的基本性质教学过程:一、定积分的性质1、线性性质(1)2、线性性质(2)3、区间可加性4、用定积分求矩行面积的公式5、定积分的不等式性质6、定积分的估值不等式7、定积分的中值定理bf (x)dx注意问题:(1)可以把----------- =f(&)理解为f (x)在[a,b]上的平均值b -a二、例题分析例1 :估计积分(——dx的值3 sinx注:本题考察估值不等式性质例2:估计积分£S^nx dx的值4 x注:本题在考察估值不等式性质的同时,复习了求最值的方法例3:比较jxdx和fln(1 +x)dx的值注:本题考察不等式性质三、小结第一节微积分基本定理教学目的和要求:1、掌握积分上限函数的定义及其性质2、掌握微积分基本公式(牛顿--莱布尼茨公式),会用这个公式求一些函数的定积分重点:1、积分上限函数的定义及其性质2、牛顿--莱布尼茨公式教学过程:一、问题的引入1、变速直线运动中位置函数与速度函数之间的关系二、积分上限函数的定义及其性质1、积分上限函数的定义2、积分上限函数的性质注意问题(1)积分上限函数的导数公式的几种重要变形3、原函数存在定理注意问题(1) 定理的一个意义在于肯定了连续函数的原函数是存在的 (2) 定理的另一意义在于揭示了定积分与原函数之间的关系三、牛顿--莱布尼茨公式 注意问题(1)求定积分实际上转化为求原函数的问题四、例题分析2 -例 1:求下歹0正积分 (1) 0 (2cosx+sin x-1)dx 注:本题考察牛顿--莱布尼兹公式2 dt (2) X XS 'n dt1 cos t 01 c o st 注:本题考察积分上限函数的性质例3:计算曲线y=sinx 在[0,冗]上与x 轴所围成的平■面图形的面积 注:本题考察牛顿--莱布尼兹公式的应用,并同时考察定积分的几何意义 例 4: f (x)=° - x — 1 求[f (x)dx5 1<x 苴2 七注:本题考察定积分的区间可加性1」2e dt例5:求lim^『x 50x 2注:本题考察积分上限函数的导数和洛必达法则xtf (t)dt例6:设f (x)在(-00,危)内连续,且f(x)》0,求证:函数F(x)= ---------------------------------- 在0 f(t)dt (0,E)内为单调增加函数注:本题考察商的导数,积分上限函数导数,单增函数的判定,引导学生将所学知识 有机结合 五、小结第一节定积分的换元法dx⑵L ------ ----------=x 2 2x 2x2t sin t 例2:求下列函数的导数(1)。
定积分的概念,性质与中值定理
![定积分的概念,性质与中值定理](https://img.taocdn.com/s3/m/e7dd5bfa700abb68a982fbe3.png)
(2 ) a > b, ∫ f ( x )dx = - ∫ f ( x )dx
b a a b
性质1 性质1 性质2 性质2 性质3 性质3
∫ [ f ( x ) ± g ( x )]dx = ∫ f ( x )dx ± ∫ g ( x )dx
b b b a a a
∫
b
a
cf ( x )dx =c ∫a f ( x )dx
∫ v (t )dt .
T2 T1
二.定积分的定义(和式的极限) 定积分的定义(和式的极限) 上有界, 设函数 f(x)在[a,b]上有界, 在[a,b]中任意插入若干个分点 在 上有界 中任意插入若干个分点 a = x0 < x1 < x2 < L< xi −1 < xi < Lxn = b, 把区间[ 个小区间: 把区间[a,b] 分成 n个小区间: [ x 0 , x 1 ], [ x 1 , x 2 ], L , [ x n −1 , x n ], 个小区间 各小区间的长度依次为: 各小区间的长度依次为: ∆x1 = x1 − x0 , ∆x2 = x2 − x1 ,L, ∆xn = xn − xn−1 , 任取一点 任取一点 ξ i ∈ [ x i − 1 , x i ], 作乘积 f (ξ i )∆x i ( i = 1,2,L , n), 并作出和
v(τ i )
∆t i = t i − t i −1
( i = 1,2, L , n)
T1
τi
T2
(2) 近似代替 ∆ s i ≈ v (τ i ) ∆ t i (3) 求和 (4) 取极限
t0 t1 t 2 ti −1 ti t n −1 t n
v (τ i ) ∆ t i
定积分相等,平方的积分
![定积分相等,平方的积分](https://img.taocdn.com/s3/m/2fba79a49a89680203d8ce2f0066f5335a816737.png)
定积分相等,平方的积分
摘要:
1.定积分的概念
2.定积分相等的条件
3.平方的积分
4.举例说明
正文:
1.定积分的概念
在微积分中,定积分是一种计算面积、体积等物理量的方法。
给定一个连续函数f(x),我们可以在一定的区间[a, b] 上对它进行积分,得到该函数在这个区间内的累积值。
用数学符号表示,定积分可以写成:
∫[a, b] f(x) dx
其中,∫表示积分符号,a 和b 分别是积分的下限和上限,f(x) 是待积分的函数。
2.定积分相等的条件
当两个定积分具有相同的被积函数和相同的积分区间时,它们是相等的。
用数学符号表示,如果两个定积分∫[a, b] f(x) dx 和∫[a, b] g(x) dx 具有相同的被积函数f(x) 和g(x),并且积分区间相同,那么这两个定积分是相等的,可以表示为:
∫[a, b] f(x) dx = ∫[a, b] g(x) dx
3.平方的积分
平方的积分是指对一个函数的平方进行积分。
例如,对函数f(x) 的平方进行积分,可以表示为:
∫[a, b] f^2(x) dx
这个积分可以用来求解一些物理问题,如求解物体的动能等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§7.2定积分存在的条件
一 定积分存在的充分必要条件
定义1 设函数()f x 在[],a b 有界,在[],a b 插入分点
b x x x x x a n n =<<<<<=-1210
把[],a b 分成n 个小区间[]1,i i x x -()1,2,...,i n =,记
()[]{
}()[]{}111
sup ,inf ,i i i i i i i i i M f x x x x m f x x x x x x x ---=∈=∈∆=-
作和式
1
n
i i i S M x -==∆∑
1
n i i i S m x -==∆∑ 分别成为对于这一分法的达布上和达布下和。
要判断一个函数是否可积,由定义,可直接考察积分和是否能无限接近某一常数,但由于积分和的复杂性和那个常数不可预知,因此这是极其困难的。
下面即将出的可积准则只与被积函数本身有关,而不涉及定积分的值。
定理1(定积分存在的第一充分必要条件) 函数)(x f 在],[b a 上可积的充分必要条件是00lim lim S S λλ-
→→-
=。
注:定理1也可叙述为函数)(x f 在],[b a 上可积的充分必要条件是0lim 0S S λ-→-⎛⎫-= ⎪⎝⎭。
例:证明
()1,1x f x x ⎧=⎨-⎩为有理数,,为无理数
在[]11-,不可积,但()f x 可积。
定义2 记i i i m M -=ω,称之为)(x f 在i x ∆上的幅度,则有
1n
i i i S S x ω--=-=∆∑。
注:定理1也可叙述为函数)(x f 在],[b a 上可积的充分必要条件是01lim 0n i
i i x λω→=∆=∑。
定理2 (定积分存在的第二充分必要条件) 函数)(x f 在],[b a 上可积的充分必要条件是对任意的两个正数ε及0σ>,可找到0δ>,使当任一分法满足{}max i x λδ=∆<时,对应于幅度'i ωε≥的那些区间的
长度'i x ε∆≥之和''i i x
σ∆<∑。
注:定理揭示了可积函数的本质,表明可积函数不连续的范围不能太广。
二 可积函数类
定理3 若函数)(x f 为],[b a 上的连续函数,则)(x f 在],[b a 上可积。
定理4 若)(x f 是区间],[b a 上只有有限个第一类不连续点的有界函数,则)(x f 在],[b a 上可积。
定理5 若)(x f 是区间],[b a 上的单调函数,则)(x f 在],[b a 上可积。
注意:单调函数即使有无限多个间断点,也仍然可积。
例:试用两种方法证明函数⎪⎩⎪⎨⎧=≤<+== ,2,1,11
1,10,0)(n n x n n x x f 在区间]1,0[上可积。