高考数学一轮复习第九章解析几何第一节直线与方程实用理
高三数学一轮复习 第九篇 平面解析几何 第1节 直线与方程课件 理1
(x2 x1)2 ( y2 y1)2 .
(2)点线距离 点 P0(x0,y0)到直线 l:Ax+By+C=0(A、B 不同时为 0)的距离 d= Ax0 By0 C .
A2 B2
(3)线线距离
两平行直线 Ax+By+C1=0 与 Ax+By+C2=0 间的距离 d= C1 C2 . A2 B2
知识链条完善 考点专项突破 易混易错辨析
知识链条完善 把散落的知识连起来
【教材导读】 1.任意一条直线都有倾斜角和斜率吗? 提示:每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率. 倾斜角为90°的直线斜率不存在. 2.直线的倾斜角θ 越大,斜率k就越大,这种说法正确吗?
提示:这种说法不正确.由 k=tan θ(θ≠ π )知 2
【重要结论】 1.常见的直线系方程 (1)过定点P(x0,y0)的直线系方程:A(x-x0)+B(y-y0)=0(A2+B2≠0),还可以 表示为y-y0=k(x-x0)(斜率不存在时可设为x=x0). (2)平行于直线Ax+By+C=0的直线系方程:Ax+By+λ =0(λ ≠C). (3)垂直于直线Ax+By+C=0的直线系方程:Bx-Ay+λ =0. (4)过两条已知直线A1x+B1y+C1=0,A2x+B2y+C2=0交点的直线系方程: A1x+B1y+C1+λ (A2x+B2y+C2)=0(不包括直线A2x+B2y+C2=0).
知识梳理
1.直线的倾斜角与斜率 (1)直线的倾斜角 ①定义.当直线l与x轴相交时,我们取x轴作为基准,x轴 正向 与直线l
高考数学一轮复习第九章解析几何9.1直线的方程课件理
(2)直线l过点P(1,0),且与以A(2,1),B(0, )3为端点的线段有公共点,则 直线l斜率的取值范围为 (-∞,- 3]∪[1,+∞.) 答案 解析
几何画板展示
如图, 1-0
∵kAP=2-1=1, 3-0
kBP= 0-1 =- 3, ∴k∈(-∞,- 3 ]∪[1,+∞).
(1)直线过点(-4,0),倾斜角的正弦值为 1100; 解答 由题设知,该直线的斜率存在,故可采用点斜式.
设倾斜角为 α,则 sin α= 1100(0<α<π),
从而 cos α=±31010,则 k=tan α=±13.
故所求直线方程为 y=±13(x+4). 即x+3y+4=0或x-3y+4=0.
例4 已知直线l1:ax-2y=2a-4,l2:2x+a2y=2a2+4,当0<a<2时, 直线l1,l2与两坐标轴围成一个四边形,当四边形的面积最小时,求实 数a的值. 解答
由题意知直线l1,l2恒过定点P(2,2),直线l1在y轴上的截距为2-a,直线 l2在x轴上的截距为a2+2, 所以四边形的面积 S=12×2×(2-a)+12×2×(a2+2)=a2-a+4 =a-122+145, 当 a=12时,面积最小.
跟 踪 训 练 1 (2017·南 昌 月 考 ) 已 知 过 定 点 P(2,0) 的 直 线 l 与 曲 线2-yx=2 相交于A,B两点,O为坐标原点,当△AOB的面积取到最大
值时,直线l的倾答斜案角为解析 几何画板展示 A.150° B.135° C.120° D.不存在
题型二 求直线的方程 例 2 根据所给条件求直线的方程:
1 2 3 4 5 6 7 8 9 10 11 12 13
2023年新高考数学一轮复习9-1 直线与直线方程(知识点讲解)解析版
专题9.1 直线与直线方程(知识点讲解)【知识框架】【核心素养】(1)通过考查直线的斜率与倾斜角、考查直线方程的几种形式,凸显直观想象、数学运算、逻辑推理的核心素养.(2)通过考查两直线的平行与垂直的判断、两直线的平行与垂直的条件的应用、考查与充要条件、基本不等式、导数的几何意义等相结合,以及考查直线与圆、直线与圆锥曲线的位置关系.凸显直观想象、数学运算、逻辑推理、数学应用的核心素养.【知识点展示】知识点1.直线的倾斜角与斜率1.直线的倾斜角①定义.当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴的正方向与直线l 向上的方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. ②范围:倾斜角的范围为. 2.直线的斜率①定义.一条直线的倾斜角的正切叫做这条直线的斜率,斜率常用小写字母k 表示,即,倾斜角是90°的直线没有斜率.当直线与x 轴平行或重合时, , .②过两点的直线的斜率公式.经过两点的直线的斜率公式为.3.每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率.倾斜角为90°的直线斜率不存在.4.直线的倾斜角、斜率k 之间的大小变化关系: (1)当时,越大,斜率越大;(2)当时,越大,斜率越大.知识点2.直线的方程1.直线的点斜式方程:直线经过点,且斜率为,则直线的方程为:.这个方程就叫做直线点斜式方程.特别地,直线过点,则直线的方程为:.这个方程叫做直线 的斜截式方程.2.直线的两点式方程直线过两点其中,则直线的方程为:.这个方程叫做直线的两点式方程.当时,直线与轴垂直,所以直线方程为:;当时,直线与轴垂直,直线方程为:.特别地,若直线过两点,则直线的方程为:,这个方程叫做直线的截距式方程.αα0απ≤<(90)αα≠tan k α=l 0α=tan 00k ==11122212()()()P x y P x y x x ≠,,,2121y y k x x --=α[0,)2πα∈0,k α>(,)2παπ∈0,k α<l 000(,)P x y k l )(00x x k y y -=-l ),0(b l b kx y +=l ),(),,(222211y x P x x P ),(2121y y x x ≠≠l ),(2121121121y y x x x x x x y y y y ≠≠--=--21x x =x 1x x =21y y =y 1y y=l 12(,0),(0,)(0)P a P b ab ≠l 1x ya b+=3.直线的一般式方程关于的二元一次方程(A ,B 不同时为0)叫做直线的一般式方程.由一般式方程可得,B 不为0时,斜率,截距. 知识点3.两条直线平行与垂直 1.两直线的平行关系(1) 对于两条不重合的直线,其斜率为,有. (2)对于两条直线,有.2.两条直线的垂直关系(1) 对于两条直线,其斜率为,有.(2)对于两条直线,有. 知识点4.距离问题 1.两点间的距离公式设两点,则.2.点到直线的距离公式设点,直线,则点到直线的距离.3.两平行线间的距离公式设两条平行直线,则这两条平行线之间的距离.知识点5.两条直线的交点1.两条直线相交:对于两条直线,若,则方程组有唯一解,两条直线就相交,方程组的解就是交点的坐标.2.两条直线,联立方程组,y x ,0=++C By Ax A k B =-C b B=-12,l l 12,k k 1212//l l k k ⇔=11112222:0,:0l A x B y C l A x B y C ++=++=1212211221//0,0l l A B A B AC A C ⇔-=-≠12,l l 12,k k 12121l l k k ⊥⇔=-11112222:0,:0l A x B y C l A x B y C ++=++=1211220l l A B A B ⊥⇔+=111222(,),(,)P x y P xy 12PP =000(,)P x y :0l Ax By C ++=000(,)P x y :0l Ax By C ++=d =1122:0,:0l Ax By C l Ax By C ++=++=d =11112222:0,:0l A x B y C l A x B y C ++=++=12210A B A B -≠11122200A x B y C A x B y C ++=⎧⎨++=⎩11112222:0,:0l A x B y C l A x B y C ++=++=11122200A x B y C A x B y C ++=⎧⎨++=⎩若方程组有无数组解,则重合. 知识点6.对称问题 1.中点坐标公式 2.两条直线的垂直关系(1) 对于两条直线,其斜率为,有.(2)对于两条直线,有.【常考题型剖析】题型一:直线的倾斜角与斜率例1.(2022·全国·高三专题练习)过点(1,2)(1,0)-、A B 的直线的倾斜角为( ) A .45︒ B .135︒C .1D .1-【答案】A 【解析】 【分析】利用斜率与倾斜角的关系即可求解. 【详解】过A 、B 的斜率为2011(1)k -==--,则该直线的倾斜角为45︒,故选:A .例2.(2022·全国·高三专题练习)如图,设直线1l ,2l ,3l 的斜率分别为1k ,2k ,3k ,则1k ,2k ,3k 的大小关系为( )A .123k k k <<B .132k k k <<C .213k k k << D .321k k k <<【答案】A 【解析】12,l l 12,l l 12,k k 12121l l k k ⊥⇔=-11112222:0,:0l A x B y C l A x B y C ++=++=1211220l l A B A B ⊥⇔+=【分析】直接由斜率的定义判断即可. 【详解】由斜率的定义可知,123k k k <<. 故选:A .例3.(2020·北京·高考真题)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改,设企业的污水排放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强;②在2t 时刻,甲企业的污水治理能力比乙企业强; ③在3t 时刻,甲、乙两企业的污水排放都已达标;④甲企业在[][][]112230,,,,,t t t t t 这三段时间中,在[]10,t 的污水治理能力最强. 其中所有正确结论的序号是____________________. 【答案】①②③ 【解析】【分析】根据定义逐一判断,即可得到结果 【详解】 ()()f b f a b a---表示区间端点连线斜率的负数,在[]12,t t 这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[][][]112230,,,,,t t t t t 这三段时间中,甲企业在[]12,t t 这段时间内,甲的斜率最小,其相反数最大,即在[]12,t t 的污水治理能力最强.④错误;在2t 时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在3t 时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确; 故答案为:①②③ 【规律方法】1.求直线的斜率与倾斜角.若已知两点的坐标,则直接利用斜率公式求斜率;若条件中给出一条直线,则求出直线上的两点的坐标,然后利用斜率公式求斜率.求直线的倾斜角,则先求出直线的斜率,再利用求倾斜角.2. 求直线的斜率与倾斜角的范围.若斜率k 是含参数的一个式子,则利用函数或不等式的方法求其范围;若是给出图形求斜率与倾斜角的范围,则采用数开结合的方法求其范围.3.从高考题看,对直线斜率的考查,越侧重其应用. 题型二:直线的方程例4.(2015·山东·高考真题)如下图,直线l 的方程是( )A .330x y --=B .3230x y --=C .3310x y --=D .310x y --=【答案】D 【解析】 【分析】由图得到直线的倾斜角为30,进而得到斜率,然后由直线l 与x 轴交点为()1,0求解. 【详解】由图可得直线的倾斜角为30°,tan k α=所以斜率tan 30k =︒=, 所以直线l 与x 轴的交点为()1,0,所以直线的点斜式方程可得l :)01y x -=-,即10x -=. 故选:D例5.(2022·全国·高三专题练习)过点()2,1A 且与直线:2430l x y -+=垂直的直线的方程是( ) A .20x y -= B .250x y +-= C .230x y --= D .240x y +-= 【答案】B 【解析】 【分析】利用相互垂直的直线斜率之间的关系即可求解. 【详解】由题意可知,设所求直线的方程为420x y m ++=,将点()2,1A 代入直线方程420x y m ++=中,得42210m ⨯+⨯+=,解得10m =-, 所以所求直线的方程为42100x y +-=,即250x y +-=. 故选:B. 【规律方法】求直线方程的常用方法:1.直接法:根据已知条件灵活选用直线方程的形式,写出方程.2.待定系数法:先根据已知条件设出直线方程,再根据已知条件构造关于待定系数的方程(组)求系数,最后代入求出直线方程.3.直线在x (y )轴上的截距是直线与x (y )轴交点的横(纵)坐标,所以截距是一个实数,可正、可负,也可为0,而不是距离.4.从高考命题看,侧重于直线与圆、直线与圆锥曲线位置关系的考查. 题型三:两条直线平行与垂直例6.(2023·全国·高三专题练习)“2m =”是“直线()2140x m y +++=与直线320x my --=垂直”的( ) A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【答案】B 【解析】 【分析】由直线()2140x m y +++=与直线320x my --=垂直求出m 的值,再由充分条件和必要条件的定义即可得出答案. 【详解】直线()2140x m y +++=与直线320x my --=垂直, 则()()2310m m ⨯++⨯-=,解得:2m =或3m =-,所以“2m =”是“直线()2140x m y +++=与直线320x my --=垂直”的充分不必要条件. 故选:B.例7.(2021·台州市书生中学高二期中)已知直线1l :sin 10x y α+-=,直线2l :3cos 10x y α-+=,若12l l //,则sin2α=_________若12l l ⊥,则sin2α=________ 【答案】23- 35【分析】根据直线平行和垂直得到sin ,cos αα的关系,再结合二倍角公式及弦化切得到答案. 【详解】若12l l //,则()12sin 3cos 10sin cos sin 22sin cos 33ααααααα--=⇒=-⇒==-,此时113cos α≠,则两条直线不重合,故2sin 23α=-;若12l l ⊥,则sin 3cos 0tan 3ααα-=⇒=, ∴2222sin cos 2tan 3sin 22sin cos sin cos tan 15ααααααααα====++.故答案为:23-,35.【易错提醒】当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件. 题型四:距离问题例8.(2019·江苏高考真题)在平面直角坐标系xOy 中,P 是曲线y =x +4x (x >0)上的一个动点,则点P 到直线x +y =0的距离的最小值是_____. 【答案】4. 【解析】当直线x +y =0平移到与曲线y =x +4x 相切位置时,切点Q 即为点P 到直线x +y =0的距离最小.由y ′=1−4x 2=−1,得x =√2(−√2舍),y =3√2, 即切点Q(√2,3√2),则切点Q 到直线x +y =0的距离为√2+3√2|√12+12=4,故答案为:4.例9.(2016·上海·高考真题(文))已知平行直线,则12l l 与的距离是_______________.【解析】利用两平行线间的距离公式得d ==【名师点睛】确定两平行线间距离,关键是注意应用公式的条件,即,x y 的系数必须相同,本题较为容易,主要考查考生的基本运算能力. 【规律方法】两种距离的求解思路(1)点到直线的距离的求法可直接利用点到直线的距离公式来求,但要注意此时直线方程必须为一般式. (2)两平行线间的距离的求法①利用“转化法”将两条平行线间的距离转化为一条直线上任意一点到另一条直线的距离. ②利用两平行线间的距离公式(利用公式前需把两平行线方程中x ,y 的系数化为相同的形式). 题型五:两条直线的交点例10.(2022·全国·高三专题练习)直线1:1l y mx =+,2:1l x my =-+相交于点P ,其中1m ≤. (1)求证:1l 、2l 分别过定点A 、B ,并求点A 、B 的坐标; (2)当m 为何值时,ABP △的面积S 取得最大值,并求出最大值.【答案】(1)证明见解析,()0,1A ,()10B , (2)0m =时,S 取得最大值12 【解析】 【分析】(1)在直线1l 的方程中令0x =可得出定点A 的坐标,在直线2l 的方程中令0y =可得出定点B 的坐标,由此可得出结论;(2)联立直线1l 、2l 的方程,可求得两直线的交点P 的坐标,计算出AP 和BP ,利用三角形的面积公式可计算出S 的表达式,由S 的表达式可求得S 的最大值及其对应的m 的值.(1)在直线1l 的方程中,令0x =可得1y =,则直线1l 过定点()0,1A ,在直线2l 的方程中,令0y =可得1x =,则直线2l 过定点()10B ,; (2)联立直线1l 、2l 的方程11y mx x my =+⎧⎨=-+⎩,解得221111mx m m y m -⎧=⎪⎪+⎨+⎪=⎪+⎩,即点2211,11m m P m m -+⎛⎫ ⎪++⎝⎭.AP ==BP ,11m -≤≤,所以,()()222211111212212121m m m S AP BP m m m -⋅+-⎛⎫=⋅===- ⎪+++⎝⎭;212121S m ⎛⎫=- ⎪+⎝⎭且11m -≤≤,因此,当0m =时,S 取得最大值,即max 12S =.例11.(2021·全国高三专题练习)求过直线1:5230l x y +-=和2:3580l x y --=的交点P ,且与直线470x y +-=垂直的直线l 的方程.【答案】450x y --= 【分析】解法一:先取得两直线的交点,再根据与直线470x y +-=垂直求解;解法二:根据直线l 垂直于直线470x y +-=,设直线l 的方程为40x y c -+=,再将.1l 与2l 的交点代入求解;解法三:根据直线l 过1l 与2l 的交点,设直线l 的方程为(523)(358)0x y x y λ+-+--=,再根据l 与直线470x y +-=垂直求解. 【详解】解法一:由5230,3580x y x y +-=⎧⎨--=⎩,解得(1,1). -直线470x y +-=的斜率为14-, ∴直线l 的斜率为4.因此满足条件的直线l 的方程为:14(1)y x +=-,即450x y --=. 解法二:直线l 垂直于直线470x y +-=.∴设直线l 的方程为40x y c -+=.1l 与2l 的交点为(1,1)P -,41(1)0c ∴⨯--+=,解得从而5c =-.所以直线l 的方程为450x y --=.解法三:因为直线l 过1l 与2l 的交点,∴设直线l 的方程为(523)(358)0x y x y λ+-+--=,即(53)(25)380x y λλλ++---=, l 与直线470x y +-=垂直,53425l k λλ+∴=-=-,解得1317λ=. ∴直线l 的方程为450x y --=.【规律方法】1.两直线交点的求法求两直线的交点坐标,就是解由两直线方程联立组成的方程组,得到的方程组的解,即交点的坐标.2.求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.也可借助直线系方程,利用待定系数法求出直线方程,这样能简化解题过程.3.涉及两直线的交点问题,往往需借助于图形,应用数形结合思想,探索解题思路,这也是解析几何中分析问题、解决问题的重要特征.题型六:对称问题例12.(2020·山东高考真题)直线2360x y +-=关于点()1,2-对称的直线方程是( )A .32100x y --=B .32230x y --=C .2340x y +-=D .2320x y +-=【答案】D【分析】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,2-对称的点的坐标为(2,4)x y ---,代入已知直线即可求得结果.【详解】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,2-对称的点的坐标为(2,4)x y ---,因为点(2,4)x y ---在直线2360x y +-=上,所以()()223460x y --+--=即2320x y +-=.故选:D.例13.(浙江·高考真题(理))直线210x y -+=关于直线1x =对称的直线方程是( )A .210x y +-=B .210x y +-=C .230x y +-=D .230x y +-= 【答案】D【解析】【分析】设所求直线上任一点(x ,y ),关于x=1的对称点求出,代入已知直线方程,即可得到所求直线方程.【详解】设所求直线上任一点(x y ,),则它关于1x =对称点为()2,x y -在直线210x y -+=上,∴2210x y --+=化简得230x y +-=故选答案D .故选D .例14.(2019·河北高考模拟(理))设点为直线:上的动点,点,,则的最小值为( )A .BC .D【答案】A【解析】依据题意作出图像如下: P l 40x y +-=(2,0)A -()2,0B ||||PA PB +设点关于直线的对称点为,则它们的中点坐标为:,且 由对称性可得:,解得:, 所以因为,所以当三点共线时,最大 此时最大值为故选:A【规律方法】涉及对称问题,主要有以下几种情况:1.若点关于直线对称,设对称点是,则线段的中点在直线上且直线,由此可得一方程组,解这个方程组得:的值,从而求得对称点的坐标. 2.若直线关于点对称,由于对称直线必与直线平行,故可设对称直线为.因为直线间的距离是点到直线的距离的二倍,,解这个方程可得的值(注意这里求出的有两个),再结合图形可求得对称直线的方程.3.若直线关于直线对称,则在直线上取两()2,0B l ()1,B a b 2,22a b +⎛⎫ ⎪⎝⎭1PB PB =()011224022b a a b -⎧⨯-=-⎪⎪-⎨+⎪+-=⎪⎩4a =2b =()14,2B 1||||||||PA PB PA PB +=+1,,A P B ||||PA PB +1AB ==00(,)P x y :0l Ax By C ++=00(,)Q x y ''PQ l PQ l ⊥0000000022()1x x y y A B C y y A x x B ''++⎧⨯+⨯+=⎪⎪⎨'-⎪⨯-=-'-⎪⎩00,x y '':0l Ax By C ++=00(,)P x y :0l Ax By C ++=0:0l Ax By C '++=,l l 'P :0l Ax By C ++=2=0C 0C l ':0l Ax By C ++=0000:0l A x B y C ++=:0l Ax By C ++=点,求出这两点关于直线对称的两点的坐标,再由两点式便可得直线关于直线对称的直线的方程.4.中心对称问题的两种类型及求解方法5.轴对称问题的两种类型及求解方法若两点P (x ,y )与P (x ,y )关于直线l :Ax +By +C =0对称,由方程组0l l 0l。
2021版高考数学一轮复习第9章解析几何第1节直线与直线方程课件理新人教A版
二、走进教材 2.(必修 2P89B5 改编)若过两点 A(-m,6),B(1,3m)的直线的斜率为 12,则直线的 方程为____________. 答案:12x-y-18=0 3 . ( 必 修 2P100A9 改 编 ) 过 点 P(2 , 3) 且 在 两 坐 标 轴 上 截 距 相 等 的 直 线 方 程 为 ____________________. 答案:3x-2y=0 或 x+y-5=0
三、易错自纠
4.已知直线 l:ax+y-2-a=0 在 x 轴和 y 轴上的截距相等,则 a 的值是( )
A.1
B.-1
C.-2 或-1
D.-2 或 1
解析:选 D 由题意可知 a≠0.当 x=0 时,y=a+2; 当 y=0 时,x=a+a 2.∴a+a 2=a+2,解得 a=-2 或 a=1.
第九章 解析几何
第一节 直线与直线方程
栏
课 前 ·基 础 巩 固 1
目
导
课 堂 ·考 点 突 破 2
航
3 课 时 ·跟 踪 检 测
[最新考纲]
[考情分析]
[核心素养]
1.在平面直角坐标系中,能结合具体图形,确定直 直线方程的
线位置的几何要素.
综合应用仍是
2.理解直线的倾斜角和斜率的概念,掌握过两点的 2021 年高考考查
解析:当斜率不存在时,所求直线方程为 x-5=0; 当斜率存在时,设其为 k,则所求直线方程为 y-10=k(x-5),即 kx-y+10-5k= 0. 由点到直线的距离公式,得|10k-2+51k|=5,解得 k=34. 故所求直线方程为34x-y+10=145,即 3x-4y+25=0. 综上可知,所求直线方程为 x-5=0 或 3x-4y+25=0.
高考数学大一轮复习第九章平面解析几何9.1直线的方程教案理含解析新人教A版
高考数学大一轮复习第九章平面解析几何9.1直线的方程教案理含解析新人教A版§9.1直线的方程最新考纲考情考向分析1.在平面直角坐标系中,结合具体图形,掌握确定直线位置的几何要素.2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.3.掌握确定直线的几何要素,掌握直线方程的几种形式(点斜式、斜截式、截距式、两点式及一般式),了解斜截式与一次函数的关系.以考查直线方程的求法为主,直线的斜率、倾斜角也是考查的重点.题型主要在解答题中与圆、圆锥曲线等知识交汇出现,有时也会在选择、填空题中出现.1.平面直角坐标系中的基本公式(1)两点的距离公式:已知平面直角坐标系中的两点A(x1,y1),B(x2,y2),则d(A,B)=|AB|=(x2-x1)2+(y2-y1)2.(2)中点公式:已知平面直角坐标系中的两点A(x1,y1),B(x2,y2),点M(x,y)是线段AB的中点,则x=x1+x22,y=y1+y22.2.直线的倾斜角(1)定义:x轴正向与直线向上的方向所成的角叫做这条直线的倾斜角,我们规定,与x轴平行或重合的直线的倾斜角为零度角.(2)倾斜角的范围:[0°,180°).3.直线的斜率(1)定义:通常,我们把直线y=kx+b中的系数k叫做这条直线的斜率,垂直于x轴的直线,人们常说它的斜率不存在;(2)计算公式:若由A (x 1,y 1),B (x 2,y 2)确定的直线不垂直于x 轴,则k =y 2-y 1x 2-x 1(x 1≠x 2).若直线的倾斜角为θ⎝ ⎛⎭⎪⎫θ≠π2,则k =tan θ. 4.直线方程的五种形式名称 方程适用范围 点斜式 y -y 0=k (x -x 0) 不含直线x =x 0 斜截式 y =kx +b 不含垂直于x 轴的直线两点式y -y 1y 2-y 1=x -x 1x 2-x 1不含直线x =x 1 (x 1≠x 2)和直线y =y 1 (y 1≠y 2)截距式x a +y b =1 不含垂直于坐标轴和过原点的直线一般式Ax +By +C =0(A 2+B 2≠0)平面直角坐标系内的直线都适用概念方法微思考1.直线都有倾斜角,是不是都有斜率?倾斜角越大,斜率k 就越大吗?提示 倾斜角α∈[0,π),当α=π2时,斜率k 不存在;因为k =tan α⎝ ⎛⎭⎪⎫α≠π2.当α∈⎝⎛⎭⎪⎫0,π2时,α越大,斜率k 就越大,同样α∈⎝⎛⎭⎪⎫π2,π时也是如此,但当α∈(0,π)且α≠π2时就不是了.2.“截距”与“距离”有何区别?当截距相等时应注意什么?提示 “截距”是直线与坐标轴交点的坐标值,它可正,可负,也可以是零,而“距离”是一个非负数.应注意过原点的特殊情况是否满足题意.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)根据直线的倾斜角的大小不能确定直线的位置.( √ ) (2)若直线的斜率为tan α,则其倾斜角为α.( × ) (3)斜率相等的两直线的倾斜角不一定相等.( × )(4)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( √ )题组二 教材改编2.若过点M (-2,m ),N (m ,4)的直线的斜率等于1,则m 的值为( ) A.1B.4C.1或3D.1或4 答案 A解析 由题意得m -4-2-m=1,解得m =1.3.过点P (2,3)且在两坐标轴上截距相等的直线方程为. 答案 3x -2y =0或x +y -5=0解析 当截距为0时,直线方程为3x -2y =0; 当截距不为0时,设直线方程为x a +y a=1,则2a +3a=1,解得a =5.所以直线方程为x +y -5=0.题组三 易错自纠4.直线x +(a 2+1)y +1=0的倾斜角的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,π4B.⎣⎢⎡⎭⎪⎫3π4,πC.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,π D.⎣⎢⎡⎭⎪⎫π4,π2∪⎣⎢⎡⎭⎪⎫3π4,π答案 B解析 由直线方程可得该直线的斜率为-1a 2+1, 又-1≤-1a 2+1<0,所以倾斜角的取值范围是⎣⎢⎡⎭⎪⎫3π4,π. 5.如果A ·C <0且B ·C <0,那么直线Ax +By +C =0不通过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限答案 C解析 由已知得直线Ax +By +C =0在x 轴上的截距-CA >0,在y 轴上的截距-C B>0,故直线经过第一、二、四象限,不经过第三象限.6.过直线l :y =x 上的点P (2,2)作直线m ,若直线l ,m 与x 轴围成的三角形的面积为2,则直线m 的方程为.答案 x -2y +2=0或x =2解析 ①若直线m 的斜率不存在,则直线m 的方程为x =2,直线m ,直线l 和x 轴围成的三角形的面积为2,符合题意;②若直线m 的斜率k =0,则直线m 与x 轴没有交点,不符合题意;③若直线m 的斜率k ≠0,设其方程为y -2=k (x -2),令y =0,得x =2-2k ,依题意有12×⎪⎪⎪⎪⎪⎪2-2k ×2=2,即⎪⎪⎪⎪⎪⎪1-1k =1,解得k =12,所以直线m 的方程为y -2=12(x -2),即x -2y +2=0.综上可知,直线m 的方程为x -2y +2=0或x =2.题型一 直线的倾斜角与斜率例1 (1)直线x sin α+y +2=0的倾斜角的范围是( ) A.[0,π)B.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫34π,πC.⎣⎢⎡⎦⎥⎤0,π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫π2,π 答案 B解析 设直线的倾斜角为θ,则有tan θ=-sin α, 又sin α∈[-1,1],θ∈[0,π), 所以0≤θ≤π4或3π4≤θ<π.(2)(2018·抚顺调研)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为. 答案 (-∞,-3]∪[1,+∞) 解析 如图,∵k AP =1-02-1=1,k BP =3-00-1=-3, ∴k ∈(-∞,- 3 ]∪[1,+∞). 引申探究1.若将本例(2)中P (1,0)改为P (-1,0),其他条件不变,求直线l 斜率的取值范围. 解 ∵P (-1,0),A (2,1),B (0,3),∴k AP =1-02-(-1)=13,k BP =3-00-(-1)= 3.如图可知,直线l 斜率的取值范围为⎣⎢⎡⎦⎥⎤13,3.2.若将本例(2)中的B 点坐标改为(2,-1),其他条件不变,求直线l 倾斜角的取值范围. 解 如图,直线PA 的倾斜角为45°,直线PB 的倾斜角为135°,由图象知l 的倾斜角的范围为[0°,45°]∪[135°,180°). 思维升华 (1)倾斜角α与斜率k 的关系①当α∈⎣⎢⎡⎭⎪⎫0,π2时,k ∈[0,+∞).②当α=π2时,斜率k 不存在.③当α∈⎝ ⎛⎭⎪⎫π2,π时,k ∈(-∞,0). (2)斜率的两种求法①定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据k =tan α求斜率. ②公式法:若已知直线上两点A (x 1,y 1),B (x 2,y 2),一般根据斜率公式k =y 2-y 1x 2-x 1(x 1≠x 2)求斜率.(3)倾斜角α范围与直线斜率范围互求时,要充分利用y =tan α的单调性.跟踪训练1 (1)若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a 等于( ) A.1±2或0 B.2-52或0C.2±52D.2+52或0答案 A解析 ∵平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,∴k AB =k AC , 即a 2+a 2-1=a 3+a3-1,即a (a 2-2a -1)=0,解得a =0或a =1± 2.故选A.(2)直线l 经过点A (3,1),B (2,-m 2)(m ∈R )两点,则直线l 的倾斜角α的取值范围是. 答案 ⎣⎢⎡⎭⎪⎫π4,π2解析 直线l 的斜率k =1+m 23-2=1+m 2≥1,所以k =tan α≥1.又y =tan α在⎝⎛⎭⎪⎫0,π2上是增函数,因此π4≤α<π2.题型二 求直线的方程例2 求适合下列条件的直线方程:(1)经过点P (3,2),且在两坐标轴上的截距相等; (2)过点A (-1,-3),斜率是直线y =3x 的斜率的-14;(3)过点A (1,-1)与已知直线l 1:2x +y -6=0相交于B 点且|AB |=5.解 (1)方法一 设直线l 在x ,y 轴上的截距均为a ,若a =0,即l 过点(0,0)和(3,2), ∴l 的方程为y =23x ,即2x -3y =0.若a ≠0,则设l 的方程为x a +y a=1, ∵l 过点(3,2),∴3a +2a=1,∴a =5,∴l 的方程为x +y -5=0,综上可知,直线l 的方程为2x -3y =0或x +y -5=0. 方法二 由题意,所求直线的斜率k 存在且k ≠0, 设直线方程为y -2=k (x -3), 令y =0,得x =3-2k,令x =0,得y =2-3k ,由已知3-2k=2-3k ,解得k =-1或k =23,∴直线l 的方程为y -2=-(x -3)或y -2=23(x -3),即x +y -5=0或2x -3y =0. (2)设所求直线的斜率为k ,依题意k =-14×3=-34.又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.(3)过点A (1,-1)与y 轴平行的直线为x =1.解方程组⎩⎪⎨⎪⎧x =1,2x +y -6=0,求得B 点坐标为(1,4), 此时|AB |=5,即x =1为所求.设过A (1,-1)且与y 轴不平行的直线为y +1=k (x -1),解方程组⎩⎪⎨⎪⎧2x +y -6=0,y +1=k (x -1),得两直线交点为⎩⎪⎨⎪⎧x =k +7k +2,y =4k -2k +2.(k ≠-2,否则与已知直线平行). 则B 点坐标为⎝ ⎛⎭⎪⎫k +7k +2,4k -2k +2.由已知⎝⎛⎭⎪⎫k +7k +2-12+⎝ ⎛⎭⎪⎫4k -2k +2+12=52,解得k =-34,∴y +1=-34(x -1),即3x +4y +1=0.综上可知,所求直线的方程为x =1或3x +4y +1=0.思维升华 在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.跟踪训练2 根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010; (2)经过点P (4,1),且在两坐标轴上的截距相等; (3)直线过点(5,10),到原点的距离为5.解 (1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0<α<π), 从而cos α=±31010,则k =tan α=±13.故所求直线方程为y =±13(x +4).即x +3y +4=0或x -3y +4=0. (2)设直线l 在x ,y 轴上的截距均为a . 若a =0,即l 过(0,0)及(4,1)两点, ∴l 的方程为y =14x ,即x -4y =0.若a ≠0,则设l 的方程为x a +y a=1, ∵l 过点(4,1),∴4a +1a=1,∴a =5,∴l 的方程为x +y -5=0.综上可知,直线l 的方程为x -4y =0或x +y -5=0. (3)当斜率不存在时,所求直线方程为x -5=0; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +(10-5k )=0. 由点到直线的距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上可知,所求直线方程为x -5=0或3x -4y +25=0.题型三 直线方程的综合应用命题点1 与均值不等式相结合求最值问题例3 (2018·包头模拟)已知直线l 过点M (2,1),且与x 轴、y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点,求当|MA →|·|MB →|取得最小值时直线l 的方程. 解 设A (a,0),B (0,b ),则a >0,b >0, 直线l 的方程为x a +y b=1, 所以2a +1b=1.|MA →|·|MB →|=-MA →·MB →=-(a -2,-1)·(-2,b -1) =2(a -2)+b -1=2a +b -5 =(2a +b )⎝ ⎛⎭⎪⎫2a +1b -5=2b a +2a b≥4,当且仅当a =b =3时取等号,此时直线l 的方程为x +y -3=0. 命题点2 由直线方程解决参数问题例4 已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,求实数a 的值.解 由题意知直线l 1,l 2恒过定点P (2,2),直线l 1在y 轴上的截距为2-a ,直线l 2在x 轴上的截距为a 2+2,所以四边形的面积S =12×2×(2-a )+12×2×(a 2+2)=a 2-a +4=⎝ ⎛⎭⎪⎫a -122+154,当a =12时,四边形的面积最小. 思维升华 与直线方程有关问题的常见类型及解题策略(1)求解与直线方程有关的最值问题.先设出直线方程,建立目标函数,再利用均值不等式求解最值.(2)求直线方程.弄清确定直线的两个条件,由直线方程的几种特殊形式直接写出方程. (3)求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或均值不等式求解.跟踪训练3 过点P (4,1)作直线l 分别交x 轴,y 轴正半轴于A ,B 两点,O 为坐标原点. (1)当△AOB 面积最小时,求直线l 的方程; (2)当|OA |+|OB |取最小值时,求直线l 的方程. 解 设直线l :x a +yb=1(a >0,b >0), 因为直线l 经过点P (4,1),所以4a +1b=1.(1)4a +1b=1≥24a ·1b=4ab,所以ab ≥16,当且仅当a =8,b =2时等号成立,所以当a =8,b =2时,△AOB 的面积最小,此时直线l 的方程为x 8+y2=1,即x +4y -8=0.(2)因为4a +1b=1,a >0,b >0,所以|OA |+|OB |=a +b =(a +b )·⎝ ⎛⎭⎪⎫4a +1b =5+a b +4b a≥5+2a b ·4ba =9,当且仅当a =6,b =3时等号成立,所以当|OA |+|OB |取最小值时,直线l 的方程为x 6+y3=1,即x +2y -6=0.一、选择题1.直线3x -y +a =0(a 为常数)的倾斜角为( ) A.30°B.60°C.150°D.120° 答案 B解析 设直线的倾斜角为α,斜率为k , 化直线方程为y =3x +a , ∴k =tan α= 3.∵0°≤α<180°,∴α=60°.2.(2018·大连模拟)过点(2,1)且倾斜角比直线y =-x -1的倾斜角小π4的直线方程是( )A.x =2B.y =1C.x =1D.y =2 答案 A解析 ∵直线y =-x -1的斜率为-1,则倾斜角为3π4,依题意,所求直线的倾斜角为3π4-π4=π2,∴斜率不存在,∴过点(2,1)的直线方程为x =2.3.已知过定点P (2,0)的直线l 与曲线y =2-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取到最大值时,直线l 的倾斜角为( ) A.150°B.135°C.120°D.不存在答案 A解析 由y =2-x 2,得x 2+y 2=2(y ≥0),它表示以原点O 为圆心,以2为半径的圆的一部分,其图象如图所示.显然直线l 的斜率存在,设过点P (2,0)的直线l 为y =k (x -2), 则圆心到此直线的距离d =|-2k |1+k2, 弦长|AB |=22-⎝ ⎛⎭⎪⎫|-2k |1+k 22=22-2k21+k2, 所以S △AOB =12×|-2k |1+k 2×22-2k21+k2 ≤(2k )2+2-2k22(1+k 2)=1, 当且仅当(2k )2=2-2k 2,即k 2=13时等号成立,由图可得k =-33⎝ ⎛⎭⎪⎫k =33舍去, 故直线l 的倾斜角为150°.4.在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0有可能是( )答案 B解析 当a >0,b >0时,-a <0,-b <0.选项B 符合.5.直线MN 的斜率为2,其中点N (1,-1),点M 在直线y =x +1上,则( ) A.M (5,7) B.M (4,5) C.M (2,1) D.M (2,3)答案 B解析 设M 的坐标为(a ,b ),若点M 在直线y =x +1上, 则有b =a +1.①若直线MN 的斜率为2,则有b +1a -1=2.② 联立①②可得a =4,b =5, 即M 的坐标为(4,5).故选B.6.已知两点M (2,-3),N (-3,-2),直线l 过点P (1,1)且与线段MN 相交,则直线l 的斜率k 的取值范围是( ) A.k ≥34或k ≤-4B.-4≤k ≤34C.34≤k ≤4 D.-34≤k ≤4答案 A解析 如图所示,∵k PN =1-(-2)1-(-3)=34,k PM =1-(-3)1-2=-4, ∴要使直线l 与线段MN 相交, 当l 的倾斜角小于90°时,k ≥k PN ; 当l 的倾斜角大于90°时,k ≤k PM , ∴k ≥34或k ≤-4.7.(2018·焦作期中)过点A (3,-1)且在两坐标轴上截距相等的直线有( ) A.1条B.2条C.3条D.4条 答案 B解析 ①当所求的直线与两坐标轴的截距都不为0时, 设该直线的方程为x +y =a , 把(3,-1)代入所设的方程得a =2,则所求直线的方程为x +y =2,即x +y -2=0; ②当所求的直线与两坐标轴的截距为0时, 设该直线的方程为y =kx ,把(3,-1)代入所设的方程得k =-13,则所求直线的方程为y =-13x ,即x +3y =0.综上,所求直线的方程为x +y -2=0或x +3y =0, 故选B.8.已知函数f (x )=a sin x -b cos x (a ≠0,b ≠0),若f ⎝ ⎛⎭⎪⎫π3-x =f ⎝ ⎛⎭⎪⎫π3+x ,则直线ax -by +c =0的倾斜角为( )A.π4B.π3C.2π3D.3π4 答案 C解析 由f ⎝ ⎛⎭⎪⎫π3-x =f ⎝ ⎛⎭⎪⎫π3+x 知函数f (x )的图象关于x =π3对称,所以f (0)=f ⎝ ⎛⎭⎪⎫2π3,所以a =-3b ,由直线ax -by +c =0知其斜率k =a b =-3,所以直线的倾斜角为2π3,故选C. 二、填空题9.一条直线经过点A (2,-3),并且它的倾斜角等于直线y =13x 的倾斜角的2倍,则这条直线的一般式方程是. 答案3x -y -33=0解析 因为直线y =13x 的倾斜角为π6,所以所求直线的倾斜角为π3,即斜率k =tan π3= 3.又该直线过点A (2,-3),故所求直线为y -(-3)=3(x -2), 即3x -y -33=0.10.不论实数m 为何值,直线mx -y +2m +1=0恒过定点. 答案 (-2,1)解析 直线mx -y +2m +1=0可化为m (x +2)+(-y +1)=0,∵m ∈R ,∴⎩⎪⎨⎪⎧x +2=0,-y +1=0,∴x=-2,y =1,∴直线mx -y +2m +1=0恒过定点(-2,1).11.已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为.答案 x +13y +5=0解析 BC 的中点坐标为⎝ ⎛⎭⎪⎫32,-12,∴BC 边上中线所在的直线方程为y -0-12-0=x +532+5,即x +13y+5=0.12.经过点A (4,2),且在x 轴上的截距等于在y 轴上的截距的3倍的直线l 的方程的一般式为.答案 x +3y -10=0或x -2y =0解析 当截距为0时,设直线方程为y =kx ,则4k =2, ∴k =12,∴直线方程为x -2y =0.当截距不为0时,设直线方程为x 3a +ya =1,由题意得,43a +2a =1,∴a =103.∴x +3y -10=0.综上,直线l 的一般式方程为x +3y -10=0或x -2y =0.13.设点A (-2,3),B (3,2),若直线ax +y +2=0与线段AB 没有交点,则a 的取值范围是.答案 ⎝ ⎛⎭⎪⎫-43,52 解析 直线ax +y +2=0恒过点M (0,-2),且斜率为-a ,∵k MA =3-(-2)-2-0=-52,k MB =2-(-2)3-0=43,结合题意可知-a >-52,且-a <43,∴a ∈⎝ ⎛⎭⎪⎫-43,52. 14.已知动直线l 0:ax +by +c -3=0(a >0,c >0)恒过点P (1,m ),且Q (4,0)到动直线l 0的最大距离为3,则12a +2c 的最小值为.答案 32解析 ∵动直线l 0:ax +by +c -3=0(a >0,c >0)恒过点P (1,m ), ∴a +bm +c -3=0.又Q (4,0)到动直线l 0的最大距离为3, ∴(4-1)2+m 2=3,解得m =0. ∴a +c =3.则12a +2c =13(a +c )⎝ ⎛⎭⎪⎫12a +2c =13⎝ ⎛⎭⎪⎫52+c 2a +2a c ≥13⎝ ⎛⎭⎪⎫52+2 c 2a ·2a c =32, 当且仅当c =2a =2时取等号. 三、解答题15.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.解 由题意可得k OA =tan45°=1,k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ), 所以AB 的中点C ⎝⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在直线y =12x 上,且A ,P ,B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,(m -0)·(-3n -1)=(n -0)·(m -1),解得m =3,所以A (3,3). 又P (1,0),所以k AB =k AP =33-1=3+32, 所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0. 16.已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程.(1)证明 直线l 的方程可化为y =k (x +2)+1, 故无论k 取何值,直线l 总过定点(-2,1). (2)解 直线l 的方程可化为y =kx +2k +1,则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,故k 的取值范围是k ≥0.(3)解 依题意,直线l 在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,且k >0, 所以A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ), 故S =12|OA ||OB |=12×1+2k k ×(1+2k )=12⎝⎛⎭⎪⎫4k +1k +4≥12×(4+4)=4,当且仅当4k =1k ,即k =12时取等号,故S 的最小值为4,此时直线l 的方程为x -2y +4=0.。
近年高考数学一轮复习第9章解析几何第1课时直线方程练习理(2021年整理)
2019高考数学一轮复习第9章解析几何第1课时直线方程练习理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019高考数学一轮复习第9章解析几何第1课时直线方程练习理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019高考数学一轮复习第9章解析几何第1课时直线方程练习理的全部内容。
第1课时直线方程1.直线3x+错误!y-1=0的倾斜角是()A.错误!B.错误!C.错误!D。
错误!答案C解析直线3x+错误!y-1=0的斜率k=-错误!,倾斜角为错误!。
2.直线l过点M(-2,5),且斜率为直线y=-3x+2的斜率的14,则直线l的方程为()A.3x+4y-14=0 B.3x-4y+14=0C.4x+3y-14=0 D.4x-3y+14=0答案A解析因为直线l的斜率为直线y=-3x+2的斜率的错误!,则直线l的斜率为k=-错误!,故y-5=-错误!(x+2),得3x+4y-14=0,故选A.3.直线(2m2-m+3)x+(m2+2m)y=4m+1在x轴上的截距为1,则实数m的值为( )A.2或错误!B.2或-错误!C.-2或-错误!D.-2或错误!答案A解析令y=0,则(2m2-m+3)x=4m+1,又2m2-m+3≠0,所以错误!=1,即2m2-5m+2=0,解得m=2或m=错误!.4.两直线错误!-错误!=1与错误!-错误!=1的图像可能是图中的哪一个( )答案B5.若直线l经过点A(1,2),且在x轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( )A.-1〈k<错误!B.k〉1或k〈错误!C。
错误!<k〈1 D.k〉错误!或k<-1答案D解析设直线的斜率为k,则直线方程为y-2=k(x-1),直线在x轴上的截距为1-错误!,令-3<1-错误!〈3,解不等式可得.也可以利用数形结合.6.直线ax+by+c=0同时要经过第一、第二、第四象限,则a,b,c应满足( ) A.ab〉0,bc<0 B.ab〉0,bc〉0C.ab〈0,bc〉0 D.ab<0,bc〈0答案A解析由于直线ax+by+c=0经过第一、二、四象限,∴直线存在斜率,将方程变形为y =-错误!x-错误!,易知-错误!〈0且-错误!>0,故ab>0,bc<0。
高考数学一轮复习第9章解析几何第1课时直线方程课件理
直线方程的几种形式
名称 点斜式 斜截式 两点式 条件 斜率 k 与点(x0,y0) 斜率 k 与截距 b 两点(x1,y1),(x 2, y2) 截距式 截距 a 与 b 方程 y-y0=k(x- x0) y=kx+b 适用范围 不含直线 x=x0 不含垂直于 x 轴的直线
y-y1 x-x1 不含直线 x=x1 和直线 = y2-y1 x2-x1 y=y1 x y + =1 a b Ax+By+C= 0(A +B ≠0)
第九章
解析几何
第1课时 直 线 方 程
…2018 考纲下载… 1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜 率的计算公式. 2.掌握确定直线位置的几何要素. 3.掌握直线方程的几种形式(点斜式、两点式及一般式),了 解斜截式与一次函数的关系.
请注意 直线是解析几何中最基本的内容,对直线的考查一是在选择 题、填空题中考查直线的倾斜角、斜率、直线的方程等基本知识, 二是在解答题中与圆、椭圆、双曲线、抛物线等知识进行综合考 查.
答案 D
) B.-1 D.-2 或 1
授 人 以 渔
题型一
直线的倾斜角与斜率 )
(1)直线 xsinα +y+2=0 的倾斜角的取值范围是( A.[0,π ) π C.[0, ] 4 π 3 B.[0, 4 ]∪[4π ,π ) π π D.[0, ]∪( ,π ) 4 2
【思路】 先求斜率 k,根据其表达式确定其范围,再根据 正切函数的单调性确定倾斜角范围. 【解析】 设直线的倾斜角为 θ,0≤θ<π,根据直线斜率 的计算方法,可得直线的斜率为 k=-sinα,易得-1≤k≤1.由 倾斜角与斜率的关系,易得-1≤tanθ≤1 ,故 θ 的范围是[0, π 3 ]∪[ π,π). 4 4 【答案】 B
高考数学一轮复习 第九章 解析几何9.1直线及其方程教
第九章解析几何9.1 直线及其方程考纲要求1.在平面直角坐标系中,结合具体图形,掌握确定直线位置的几何要素.2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.3.掌握直线方程的几种形式,了解斜截式与一次函数的关系.1.直线的倾斜角与斜率(1)直线的倾斜角:①定义:当直线l与x轴相交时,我们取x轴作为基准,x轴____与直线l____方向之间所成的角α叫做直线l的倾斜角.当直线l与x轴平行或重合时,规定它的倾斜角为______.②倾斜角的取值范围为________.(2)直线的斜率:①定义:一条直线的倾斜角α的______叫做这条直线的斜率,斜率常用小写字母k表示,即k=______,倾斜角是______的直线的斜率不存在.②过两点的直线的斜率公式:经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k=________.2.直线的方程(1)点斜式:已知直线过点(x0,y0),斜率为k,则直线方程为____________,它不包括__________的直线.(2)斜截式:已知直线在y轴上的截距b和斜率k,则直线方程为__________,它不包括垂直于x轴的直线.(3)两点式:已知直线经过两点P1(x1,y1),P2(x2,y2)(其中x1≠x2,y1≠y2),则直线方程为______________,它不包括垂直于坐标轴的直线.(4)截距式:已知直线在x轴和y轴上的截距分别为a,b(其中a≠0,b≠0),则直线方程为____________,它不包括垂直于坐标轴的直线和过原点的直线.(5)一般式:任何直线的方程均可写成______________的形式.1.直线x-3y+a=0(a为常数)的倾斜角α为( ).A.π6B.π3C.23π D.56π2.过点(-1,2)且倾斜角为150°的直线方程为( ).A.3x-3y+6+3=0B.3x-3y-6+3=0C.3x+3y+6+3=0D.3x+3y-6+3=03.已知A(3,1),B(-1,k),C(8,11)三点共线,则k的取值是( ).A.-6 B.-7 C.-8 D.-94.直线l:ax+y-2-a=0在x轴和y轴上的截距相等,则a的值是( ).A.1 B.-1 C.-2或-1 D.-2或15.若过点P(1-a,1+a)和Q(3,2a)的直线的倾斜角α为钝角,则实数a的取值范围是__________.一、直线的倾斜角与斜率【例1】 (1)直线x +(a 2+1)y +1=0的倾斜角的取值范围是( ). A.⎣⎢⎡⎦⎥⎤0,π4 B.⎣⎢⎡⎭⎪⎫3π4,π C.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,π D.⎣⎢⎡⎭⎪⎫π4,π2∪⎣⎢⎡⎭⎪⎫3π4,π(2)已知点A (2,-3),B (-3,-2),直线l 过点P (1,1)且与线段AB 有交点,则直线l 的斜率k 的取值范围为__________.方法提炼直线倾斜角的范围是[0,π),但这个区间不是正切函数的单调区间.因此在考虑倾斜角与斜率的关系时,要分⎣⎢⎡⎭⎪⎫0,π2与⎝ ⎛⎭⎪⎫π2,π两种情况讨论.由正切函数图象可以看出,当α∈⎣⎢⎡⎭⎪⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝ ⎛⎭⎪⎫π2,π时,斜率k ∈(-∞,0).请做演练巩固提升1 二、直线方程的求法【例2】 已知△ABC 中,A (1,-4),B (6,6),C (-2,0).求:(1)△ABC 中平行于BC 边的中位线所在直线的一般式方程和截距式方程; (2)BC 边的中线所在直线的一般式方程,并化为截距式方程. 方法提炼求直线方程的方法主要有以下两种:(1)直接法:根据已知条件,选择适当的直线方程形式,直接写出直线方程;(2)待定系数法:先设出直线方程,再根据已知条件求出待定系数,最后代入求出直线方程.请做演练巩固提升2,3 三、直线方程的应用【例3-1】 已知点A (2,5)与点B (4,-7),试在y 轴上求一点P ,使得|PA |+|PB |的值为最小.【例3-2】 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程.方法提炼在求直线方程的过程中,若有以直线为载体的面积、距离的最值等问题,一般要结合函数、不等式或利用对称来加以解决.请做演练巩固提升5易忽视过原点的直线而致误【典例】 过点M (3,-4)且在两坐标轴上的截距互为相反数的直线方程为__________.解析:(1)当过原点时,直线方程为y =-43x ,(2)当不过原点时,设直线方程为x a +y-a=1,即x -y =a .代入点(3,-4),∴a =7,即直线方程为x -y -7=0.答案:y =-43x 或x -y -7=0答题指导:解决与直线方程有关的问题时,要注意以下几点: (1)充分理解直线的倾斜角、斜率的意义; (2)掌握确定直线的两个条件;(3)注意数形结合的运用,在平时的学习和解题中,多思考一些题目的几何意义; (4)注意逆向思维、发散思维的训练.1.直线x sin α-y +1=0的倾斜角的变化范围是( ). A.⎝⎛⎭⎪⎫0,π2 B .(0,π)C.⎣⎢⎡⎦⎥⎤-π4,π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π 2.光线自点M (2,3)射到N (1,0)后被x 轴反射,则反射光线所在的直线方程为( ). A .y =3x -3 B .y =-3x +3 C .y =-3x -3 D .y =3x +3 3.已知A (-1,1),B (3,1),C (1,3),则△ABC 的BC 边上的高所在的直线方程为( ). A .x +y =0 B .x -y +2=0 C .x +y +2=0 D .x -y =04.点P 在直线x +y -4=0上,O 为坐标原点,则|OP |的最小值为__________. 5.若直线l 过点P (-2,3),与两坐标轴围成的三角形面积为4,求直线l 的方程.参考答案基础梳理自测知识梳理1.(1)①正半轴 向上 0° ②[0°,180°)(2)①正切值 tan α 90° ②y 2-y 1x 2-x 12.(1)y -y 0=k (x -x 0) 垂直于x 轴(2)y =kx +b (3)y -y 1y 2-y 1=x -x 1x 2-x 1(4)x a +yb=1 (5)Ax +By +C =0(其中A ,B 不同时为0) 基础自测1.A 解析:易知直线的斜截式方程为y =33x +33a , ∴k =33,tan α=33. ∴α=π6.2.D 解析:由直线的倾斜角α=150°,得k =tan α=-33, 由点斜式方程得y -2=-33(x +1),即3x +3y -6+3=0. 3.B 解析:∵A ,B ,C 三点共线, ∴k -1-1-3=11-18-3. ∴k =-7.4.D 解析:当直线l 过原点时, 则-2-a =0,即a =-2;当直线l 不过原点时,原方程可化为 x a +2a +ya +2=1, 由a +2a=a +2,得a =1.∴a 的值为-2或1.5.-2<a <1 解析:tan α=2a -(1+a )3-(1-a )=a -12+a.由a -12+a <0得-2<a <1. 考点探究突破【例1】 (1)B (2)k ≤-4或k ≥34解析:(1)将直线方程变形为y =-1a 2+1x -1a 2+1,∴直线的斜率k =-1a 2+1.∵a 2+1≥1,∴0<1a 2+1≤1.∴-1≤k <0,即-1≤tan α<0.∴34π≤α<π.故选B. (2)如图,由斜率公式,得k AP =1-(-3)1-2=-4, k BP =1-(-2)1-(-3)=34,∴k ≥34或k ≤-4.【例2】 解:(1)平行于BC 边的中位线就是AB ,AC 中点的连线.因为线段AB ,AC 中点坐标分别为⎝ ⎛⎭⎪⎫72,1,⎝ ⎛⎭⎪⎫-12,-2, 所以这条直线的方程为y +21+2=x +1272+12.整理,得6x -8y -13=0,化为截距式方程为x 136-y138=1.(2)因为BC 边上的中点坐标为(2,3),所以BC 边上的中线所在直线的方程为y +43+4=x -12-1,即7x -y -11=0.化为截距式方程为x 117-y11=1.【例3-1】 解:如图所示,先求出A 点关于y 轴的对称点A ′(-2,5),∴|PA |+|PB |=|PB |+|PA ′|.∴当P 为直线A ′B 与y 轴的交点时,|PA ′|+|PB |的值最小,即|PA |+|PB |的值最小.直线A ′B 的方程为y +75+7=x -4-2-4,化简为2x +y -1=0.令x =0,得y =1. 故所求P 点坐标为(0,1).【例3-2】 解:由题意设直线方程为x a +y b =1(a >0,b >0),∴3a +2b=1.由基本不等式知3a +2b ≥26ab,即ab ≥24(当且仅当3a =2b,即a =6,b =4时等号成立).又S =12a ·b ≥12×24=12,此时直线方程为x 6+y4=1,即2x +3y -12=0.∴△ABO 面积的最小值为12,此时直线方程为2x +3y -12=0. 演练巩固提升1.D 解析:直线x sin α-y +1=0的斜率是k =sin α, 又∵-1≤sin α≤1,∴-1≤k ≤1.当0≤k ≤1时,倾斜角的范围是⎣⎢⎡⎦⎥⎤0,π4;当-1≤k <0时,倾斜角的范围是⎣⎢⎡⎭⎪⎫3π4,π.2.B 解析:点M 关于x 轴的对称点M ′(2,-3),则反射光线即在直线NM ′上,由y -0-3-0=x -12-1,得y =-3x +3. 3.B 解析:∵k BC =3-11-3=2-2=-1,∴BC 边上的高所在直线过A (-1,1)且k =-1k BC=1.∴所求直线方程为y -1=x +1,即x -y +2=0.4.2 2 解析:根据题意知,|OP |的最小值为原点O 到直线x +y -4=0的距离.根据点到直线的距离公式,得42=2 2. 5.解:由题意知,直线l 的斜率存在,设为k , 则l 的方程为y -3=k (x +2). 令x =0,得y =2k +3;令y =0,得x =-3k-2,则12·|2k +3|·⎪⎪⎪⎪⎪⎪-3k -2=4, ∴(2k +3)⎝ ⎛⎭⎪⎫3k +2=±8.若(2k +3)⎝ ⎛⎭⎪⎫3k +2=8, 化简得4k 2+4k +9=0,方程无解;若(2k +3)⎝ ⎛⎭⎪⎫3k +2=-8,化简得4k 2+20k +9=0, 解得k =-92或-12.∴直线l 的方程为y -3=-92(x +2)或y -3=-12(x +2),即9x +2y +12=0或x +2y -4=0.。
高考数学一轮复习第九章平面解析几何第1节直线方程课件理
表示.(
)
(4)不经过原点的直线都可以用ax+by=1 表示.(
)
(5)经过任意两个不同的点 P1(x1,y1),P2(x2,y2)的直线都
可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示.(
)
[答案] (1)× (2)× (3)× (4)× (5)√
2.(2016·云南第一次检测)直线 x=π3的倾斜角等于(
是 90°的直线斜率不存在.
②过两点的直线的斜率公式
经过两点 P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公
式为 k=
y2-y1 x2-x1
.
2.直线方程的五种形式
名称
方程
适用范围
点斜式 y-y1=k(x-x1)
不含垂直于 x 轴的直线
斜截式 y=kx+b
不含垂直于 x 轴的直线
3),P(-1,0)的直线的斜率为 k2=
3-0 0--1= 3.由图可知,过 P 的直线
l 与线段 AB 有公共点的斜率的取值范围是
.
[答案] (1)D (2)
[拓展探究] (1)本例(1)改为:“若直线 l 的方程为 xsinα -ycosα+1=0,其中 α∈-π2,0”,则直线 l 的倾斜角为 ________.
[解析] (1)直线 xsinα-y+1=0 的斜率是 k=sinα, 又∵-1≤sinα≤1,∴-1≤k≤1. 当 0≤k≤1 时,倾斜角的范围是0,π4, 当-1≤k<0 时,倾斜角的范围是34π,π.
(2)如图,过 A(2,1),P(-1,0)的直线
1-0 1 的斜率为 k1=2--1=3,过 B(0,
1.直线的倾斜角与斜率
(1)直线的倾斜角
江苏专版高考数学一轮复习第九章解析几何第一节直线与方程教案理含解析苏教版
江苏专版高考数学一轮复习第九章解析几何第一节直线与方程教案理含解析苏教版第一节 直线与方程1.直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线,把x 轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0°.(2)范围:直线l 倾斜角的取值范围是[0,π). 2.斜率公式(1)直线l 的倾斜角为α⎝ ⎛⎭⎪⎫α≠π2,则斜率k =tan_α. (2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1. 3.直线方程的五种形式 名称 方程适用范围 点斜式 y -y 0=k (x -x 0) 不含直线x =x 0 斜截式 y =kx +b 不含垂直于x 轴的直线 两点式y -y 1y 2-y 1=x -x 1x 2-x 1不含直线x =x 1(x 1≠x 2) 和直线y =y 1(y 1≠y 2)截距式 x a +y b=1 不含垂直于坐标轴和过原点的直线一般式 Ax +By +C =0,A 2+B 2≠0平面内所有直线都适用[小题体验]1.若过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为________. 答案:12.已知a ≠0,直线ax +my -5m =0过点(-2,1),则此直线的斜率为________. 答案:23.已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为________.解析:由已知,得BC 的中点坐标为⎝ ⎛⎭⎪⎫32,-12,且直线BC 边上的中线过点A ,则BC 边上中线的斜率k =-113,故BC 边上的中线所在直线方程为y +12=-113⎝ ⎛⎭⎪⎫x -32,即x +13y +5=0.答案:x +13y +5=04.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则实数a =________. 解析:令x =0,则l 在y 轴的截距为2+a ;令y =0,得直线l 在x 轴上的截距为1+2a.依题意2+a =1+2a,解得a =1或a =-2.答案:1或-21.点斜式、斜截式方程适用于不垂直于x 轴的直线;两点式方程不能表示垂直于x ,y 轴的直线;截距式方程不能表示垂直于坐标轴和过原点的直线.2.截距不是距离,距离是非负值,而截距可正可负,可为零,在与截距有关的问题中,要注意讨论截距是否为零.3.求直线方程时,若不能断定直线是否具有斜率时,应注意分类讨论,即应对斜率是否存在加以讨论.[小题纠偏]1.若直线l 经过点A (1,2),且倾斜角是直线y =x +3的倾斜角的2倍,则直线l 的方程为____________.解析:因为直线y =x +3的倾斜角为α=45°,所以所求直线l 的倾斜角为2α=90°,所以直线l 的方程为x =1.答案:x =12.过点M (3,-4),且在两坐标轴上的截距相等的直线的方程为________. 解析:①若直线过原点,则k =-43,所以y =-43x ,即4x +3y =0. ②若直线不过原点. 设x a +y a=1,即x +y =a . 则a =3+(-4)=-1, 所以直线的方程为x +y +1=0.答案:4x +3y =0或x +y +1=0考点一 直线的倾斜角与斜率 基础送分型考点——自主练透[题组练透]1.(2019·启东中学检测)倾斜角为135°,在y 轴上的截距为-1的直线方程是________.解析:直线的斜率为k =tan 135°=-1,所以直线方程为y =-x -1,即x +y +1=0.答案:x +y +1=02.(2018·绥化一模)直线x sin α+y +2=0的倾斜角的取值范围是________. 解析:因为直线x sin α+y +2=0的斜率k =-sin α,又-1≤sin α≤1,所以-1≤k ≤1.设直线x sin α+y +2=0的倾斜角为θ,所以-1≤tan θ≤1,而θ∈[0,π),故倾斜角的取值范围是⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.答案:⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π3.若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为________.解析:因为k AC =5-36-4=1,k AB =a -35-4=a -3.由于A ,B ,C 三点共线,所以a -3=1,即a =4.答案:44.已知线段P Q 两端点的坐标分别为P (-1,1)和Q(2,2),若直线l :x +my +m =0与线段P Q 有交点,则实数m 的取值范围是________.解析:如图所示,直线l :x +my +m =0过定点A (0,-1),当m ≠0时,k Q A =32,k PA =-2,k l =-1m. 结合图象知,若直线l 与P Q 有交点, 应满足-1m ≤-2或-1m ≥32.解得0<m ≤12或-23≤m <0;当m =0时,直线l 的方程为x =0,与线段P Q 有交点.所以实数m 的取值范围为⎣⎢⎡⎦⎥⎤-23,12.答案:⎣⎢⎡⎦⎥⎤-23,121.倾斜角α与斜率k 的关系当α∈⎣⎢⎡⎭⎪⎫0,π2且由0增大到π2⎝ ⎛⎭⎪⎫α≠π2时,k 的值由0增大到+∞.当α∈⎝ ⎛⎭⎪⎫π2,π时,k 也是关于α的单调函数,当α在此区间内由π2⎝ ⎛⎭⎪⎫α≠π2增大到π(α≠π)时,k 的值由-∞趋近于0(k ≠0).2.斜率的2种求法(1)定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据k =tan α求斜率.(2)公式法:若已知直线上两点A (x 1,y 1),B (x 2,y 2),一般根据斜率公式k =y 2-y 1x 2-x 1(x 1≠x 2)求斜率.考点二 直线的方程重点保分型考点——师生共研[典例引领](1)求过点A (1,3),斜率是直线y =-4x 的斜率的13的直线方程;(2)求经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程. 解:(1)设所求直线的斜率为k ,依题意k =-4×13=-43.又直线经过点A (1,3),因此所求直线方程为y -3=-43(x -1),即4x +3y -13=0.(2)当直线不过原点时, 设所求直线方程为x 2a +ya =1,将(-5,2)代入所设方程, 解得a =-12,所以直线方程为x +2y +1=0; 当直线过原点时,设直线方程为y =kx ,则-5k =2, 解得k =-25,所以直线方程为y =-25x ,即2x +5y =0.故所求直线方程为2x +5y =0或x +2y +1=0.求直线方程的2个注意点(1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.(2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).[即时应用]1.过点P (6,-2),且在x 轴上的截距比在y 轴上的截距大1的直线方程为________________.解析:设直线方程的截距式为xa +1+y a =1,则6a +1+-2a=1,解得a =2或a =1,则直线方程为x 2+1+y 2=1或x 1+1+y1=1,即2x +3y -6=0或x +2y -2=0.答案:2x +3y -6=0或x +2y -2=02.在△ABC 中,已知A (5,-2),B (7,3),且AC 的中点M 在y 轴上,BC 的中点N 在x 轴上,则直线MN 的方程为________________.解析:设C (x 0,y 0),则M ⎝⎛⎭⎪⎫5+x 02,y 0-22,N ⎝ ⎛⎭⎪⎫7+x 02,y 0+32.因为点M 在y 轴上,所以5+x 02=0,所以x 0=-5.因为点N 在x 轴上,所以y 0+32=0,所以y 0=-3,即C (-5,-3),所以M ⎝ ⎛⎭⎪⎫0,-52,N (1,0), 所以直线MN 的方程为x1+y-52=1,即5x -2y -5=0. 答案:5x -2y -5=0 考点三 直线方程的综合应用 题点多变型考点——多角探明[锁定考向]直线方程的综合应用是常考内容之一,它常与函数、导数、不等式、圆相结合,命题多为客观题.常见的命题角度有:(1)与基本不等式相结合的最值问题; (2)与导数的几何意义相结合的问题; (3)与圆相结合求直线方程的问题.角度一:与基本不等式相结合的最值问题1.(2019·如皋检测)过点P (2,1)的直线l 与x 轴,y 轴正半轴分别交于A ,B 两点. (1)当OA ·OB 最小时,求直线l 的方程; (2)当2OA +OB 最小时,求直线l 的方程.解:设直线l 的方程为y -1=k (x -2)(k <0),则l 与x 轴,y 轴正半轴分别交于A ⎝ ⎛⎭⎪⎫2-1k ,0,B (0,1-2k )两点. (1)OA ·OB =⎝⎛⎭⎪⎫2-1k ·(1-2k )=4+(-4k )+⎝ ⎛⎭⎪⎫-1k ≥4+2-4k ·⎝ ⎛⎭⎪⎫-1k =8,当且仅当-4k =-1k ,即k =-12时取得最小值8.故当OA ·OB 最小时,所求直线l 的方程为y -1=-12(x -2),即x +2y -4=0.(2)2OA +OB =2⎝⎛⎭⎪⎫2-1k +(1-2k )=5+⎝ ⎛⎭⎪⎫-2k +(-2k )≥5+2⎝ ⎛⎭⎪⎫-2k ·-2k =9,当且仅当-2k=-2k ,即k =-1时取得最小值9.故当2OA +OB 最小时,所求直线l 的方程为y -1=-(x -2),即x +y -3=0. 角度二:与导数的几何意义相结合的问题2.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则点P 横坐标的取值范围为________.解析:由题意知y ′=2x +2,设P (x 0,y 0), 则k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,所以0≤k ≤1,即0≤2x 0+2≤1,故-1≤x 0≤-12.答案:⎣⎢⎡⎦⎥⎤-1,-12 角度三:与圆相结合求直线方程的问题3.(2018·徐州调研)已知点P 是圆O :x 2+y 2=4上的动点,点A (4,0),若直线y =kx +1上总存在点Q ,使点Q 恰是线段AP 的中点,求实数k 的取值范围.解:设P (2cos θ,2sin θ),则AP 的中点坐标为Q(cos θ+2,sin θ), 因为点Q 在直线y =kx +1上,所以sin θ=k (cos θ+2)+1,即k =sin θ-1cos θ+2,即k 表示单位圆上的点(cos θ,sin θ)与点(-2,1)连线的斜率. 设过点(-2,1)的直线方程为y -1=k (x +2),若要满足题意,则圆心到直线kx -y +2k +1=0的距离d =|2k +1|k 2+1≤1,解得k ∈⎣⎢⎡⎦⎥⎤-43,0. [通法在握]处理直线方程综合应用的思路(1)含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.(2)求解与直线方程有关的最值问题,先求出斜率或设出直线方程,建立目标函数,再利用基本不等式求解最值.[演练冲关]1.已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,实数a =________.解析:由已知画出简图,如图所示. 因为l 1:ax -2y =2a -4, 所以当x =0时,y =2-a , 即直线l 1与y 轴交于点A (0,2-a ). 因为l 2:2x +a 2y =2a 2+4, 所以当y =0时,x =a 2+2, 即直线l 2与x 轴交于点C (a 2+2,0).易知l 1与l 2均过定点(2,2),即两直线相交于点B (2,2).则四边形AOCB 的面积为S =S △AOB +S △BOC =12(2-a )×2+12(a 2+2)×2=⎝ ⎛⎭⎪⎫a -122+154≥154.所以S min =154,此时a =12.答案:122.已知点P 在直线x +3y -2=0上,点Q 在直线x +3y +6=0上,线段P Q 的中点为M (x 0,y 0),且y 0<x 0+2,求y 0x 0的取值范围.解:依题意可得|x 0+3y 0-2|10=|x 0+3y 0+6|10,化简得x 0+3y 0+2=0,又y 0<x 0+2,k OM=y 0x 0,在坐标轴上作出两直线,如图,当点M 位于线段AB (不包括端点)上时,k OM >0,当点M 位于射线BN 上除B 点外时,k OM <-13.所以y 0x 0的取值范围是⎝⎛⎭⎪⎫-∞,-13∪(0,+∞).一抓基础,多练小题做到眼疾手快1.(2019·南通模拟)将直线y =2x 绕原点逆时针旋转π4,则所得直线的斜率为________.解析:设直线y =2x 的倾斜角是α,则tan α=2,将直线y =2x 绕原点逆时针旋转π4,则倾斜角变为α+π4,∴所得直线的斜率k =tan ⎝ ⎛⎭⎪⎫α+π4=2+11-2×1=-3. 答案:-32.(2018·南通中学月考)过点P (-2,4)且斜率k =3的直线l 的方程为________. 解析:由题意得,直线l 的方程为y -4=3[x -(-2)],即3x -y +10=0. 答案:3x -y +10=03.若直线y =-2x +3k +14与直线x -4y =-3k -2的交点位于第四象限,则实数k 的取值范围是________.解析:解方程组⎩⎪⎨⎪⎧y =-2x +3k +14,x -4y =-3k -2,得⎩⎪⎨⎪⎧x =k +6,y =k +2,因为直线y =-2x +3k +14与直线x -4y =-3k -2的交点位于第四象限, 所以k +6>0且k +2<0,所以-6<k <-2. 答案:(-6,-2)4.(2018·南京名校联考)曲线y =x 3-x +5上各点处的切线的倾斜角的取值范围为________.解析:设曲线上任意一点处的切线的倾斜角为θ(θ∈[0,π)), 因为y ′=3x 2-1≥-1,所以tan θ≥-1,结合正切函数的图象可知,θ的取值范围为⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π.答案:⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π5.(2019·无锡模拟)已知直线(a -2)y =(3a -1)x -1,若这条直线不经过第二象限,则实数a 的取值范围是________.解析:若a -2=0,即a =2时,直线方程可化为x =15,此时直线不经过第二象限,满足条件;若a -2≠0,直线方程可化为y =3a -1a -2x -1a -2,此时若直线不经过第二象限,则3a -1a -2≥0,1a -2≥0,解得a >2. 综上,满足条件的实数a 的取值范围是[2,+∞). 答案:[2,+∞)6.(2018·南京调研)已知函数f (x )=a sin x -b cos x ,若f ⎝ ⎛⎭⎪⎫π4-x =f ⎝ ⎛⎭⎪⎫π4+x ,则直线ax -by +c =0的倾斜角为________.解析:由f ⎝⎛⎭⎪⎫π4-x =f ⎝ ⎛⎭⎪⎫π4+x 知函数f (x )的图象关于直线x =π4对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π2,所以-b =a ,则直线ax -by +c =0的斜率为a b =-1,故其倾斜角为3π4.答案:3π4二保高考,全练题型做到高考达标1.(2019·泰州模拟)倾斜角为120°,在x 轴上的截距为-1的直线方程是________. 解析:由于倾斜角为120°,故斜率k =- 3.又直线过点(-1,0),所以直线方程为y = -3(x +1),即3x +y +3=0.答案:3x +y +3=02.(2018·泗阳中学检测)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段P Q 的中点坐标为(1,-1),则直线l 的斜率为________.解析:设P (x,1),Q(7,y ),则x +72=1,y +12=-1,所以x =-5,y =-3,即P (-5,1),Q(7,-3),故直线l 的斜率k =-3-17+5=-13.答案:-133.(2019·苏州调研)已知θ∈R ,则直线x sin θ-3y +1=0的倾斜角的取值范围是________.解析:设直线的倾斜角为 α,则tan α=33sin θ, ∵-1≤sin θ≤1,∴-33≤tan α≤33, 又α∈[0,π),∴0≤α≤π6或5π6≤α<π. 答案:⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,π4.已知两点A (0,1),B (1,0),若直线y =k (x +1)与线段AB 总有公共点,则实数k 的取值范围是________.解析:y =k (x +1)是过定点P (-1,0)的直线,k PB =0,k PA =1-00--1=1,所以实数k 的取值范围是[0,1]. 答案:[0,1]5.已知点P (x ,y )在直线x +y -4=0上,则x 2+y 2的最小值是________.解析:因为点P (x ,y )在直线x +y -4=0上,所以y =4-x ,所以x 2+y 2=x 2+(4-x )2=2(x -2)2+8,当x =2时,x 2+y 2取得最小值8.答案:86.(2019·南京模拟)过点P (2,3)且在两坐标轴上的截距相等的直线方程为________________.解析:若直线的截距不为0,可设为x a +y a=1,把P (2,3)代入,得2a +3a=1,a =5,直线方程为x +y -5=0.若直线的截距为0,可设为y =kx ,把P (2,3)代入,得3=2k ,k =32,直线方程为3x -2y =0.综上,所求直线方程为x +y -5=0或3x -2y =0. 答案:x +y -5=0或3x -2y =07.已知直线l :y =kx +1与两点A (-1,5),B (4,-2),若直线l 与线段AB 相交,则实数k 的取值范围是______________.解析:易知直线l :y =kx +1的方程恒过点P (0,1), 如图,∵k PA =-4,k PB =-34,∴实数k 的取值范围是(-∞,-4]∪⎣⎢⎡⎭⎪⎫-34,+∞. 答案:(-∞,-4]∪⎣⎢⎡⎭⎪⎫-34,+∞8.若直线l :x a +yb=1(a >0,b >0)经过点(1,2),则直线l 在x 轴和y 轴上的截距之和的最小值是________.解析:由直线l :x a +y b=1(a >0,b >0)可知直线在x 轴上的截距为a ,在y 轴上的截距为b .求直线在x 轴和y 轴上的截距之和的最小值,即求a +b 的最小值.由直线经过点(1,2)得1a +2b=1.于是a +b =(a +b )·⎝ ⎛⎭⎪⎫1a +2b =3+b a +2a b ,因为b a +2a b≥2b a ·2ab=22⎝ ⎛⎭⎪⎫当且仅当b a =2a b 时取等号,所以a +b ≥3+22,故直线l 在x 轴和y 轴上的截距之和的最小值为3+2 2.答案:3+2 29.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4); (2)斜率为16.解:(1)设直线l 的方程为y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k-3,3k+4,由已知,得(3k +4)⎝ ⎛⎭⎪⎫4k+3=±6,解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0.(2)设直线l 在y 轴上的截距为b ,则直线l 的方程是y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,所以b =±1.所以直线l 的方程为x -6y +6=0或x -6y -6=0.10.已知直线l 的方程为(m 2-2m -3)x +(2m 2+m -1)y +6-2m =0. (1)求实数m 的取值范围;(2)若直线l 的斜率不存在,求实数m 的值; (3)若直线l 在x 轴上的截距为-3,求实数m 的值; (4)若直线l 的倾斜角是45°,求实数m 的值.解:(1)当x ,y 的系数不同时为零时,方程表示一条直线, 令m 2-2m -3=0,解得m =-1或m =3; 令2m 2+m -1=0,解得m =-1或m =12.所以实数m 的取值范围是(-∞,-1)∪(-1,+∞). (2)由(1)易知,当m =12时,方程表示的直线的斜率不存在.(3)依题意,有2m -6m 2-2m -3=-3,所以3m 2-4m -15=0,所以m =3或m =-53,由(1)知所求m =-53.(4)因为直线l 的倾斜角是45°,所以斜率为1.由-m 2-2m -32m 2+m -1=1,解得m =43或m =-1(舍去).所以直线l 的倾斜角为45°时,m =43.三上台阶,自主选做志在冲刺名校1.(2018·无锡期末)过点(2,3)的直线l 与x 轴的正半轴,y 轴的正半轴分别交于A ,B 两点,当△AOB (O 为坐标原点)面积最小时,直线l 的方程为________________.解析:设直线l 的斜率为k ,且k <0,所以直线l 的方程为y -3=k (x -2),即kx -y +3-2k =0.令x =0,得y =3-2k ,所以B (0,3-2k );令y =0,得x =2-3k,所以A ⎝⎛⎭⎪⎫2-3k,0.则△AOB 的面积为S =12(3-2k )⎝ ⎛⎭⎪⎫2-3k =12⎝ ⎛⎭⎪⎫6+6-9k -4k ≥12⎣⎢⎡⎦⎥⎤12+2-9k·-4k =12,当且仅当-9k =-4k ,即k =-32时等号成立,所以直线l 的方程为3x +2y -12=0.答案:3x +2y -12=02.已知曲线y =1e x +1,则曲线的切线中斜率最小的直线与两坐标轴所围成的三角形的面积为________.解析:y ′=-exe x+12=-1e x+1ex +2,因为e x >0,所以e x+1e x ≥2e x·1ex =2(当且仅当e x =1e x ,即x =0时取等号),所以e x+1e x +2≥4,故y ′=-1e x+1e x +2≥-14(当且仅当x =0时取等号).所以当x =0时,曲线的切线斜率取得最小值,此时切点的坐标为⎝ ⎛⎭⎪⎫0,12,切线的方程为y -12=-14(x -0),即x +4y -2=0.该切线在x 轴上的截距为2,在y 轴上的截距为12,所以该切线与两坐标轴所围成的三角形的面积S =12×2×12=12.答案:123.已知直线l :kx -y +1+2k =0(k ∈R). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程.解:(1)证明:直线l 的方程可化为y =k (x +2)+1,故无论k 取何值,直线l 总过定点(-2,1).(2)直线l 的方程为y =kx +2k +1,则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,解得k ≥0,故k 的取值范围是[)0,+∞.(3)依题意,直线l 在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,所以A ⎝⎛⎭⎪⎫-1+2k k,0,B (0,1+2k ). 又-1+2k k<0且1+2k >0,所以k >0.故S =12|OA ||OB |=12×1+2k k ×(1+2k )=12⎝⎛⎭⎪⎫4k +1k +4≥12(4+4)=4,当且仅当4k =1k ,即k =12时,取等号.故S 的最小值为4,此时直线l 的方程为x -2y +4=0.。
高考数学一轮复习 第九篇 解析几何 第1讲 直线的方程教案 理 新人教版
【2013年高考会这样考】1.考查直线的有关概念,如直线的倾斜角、斜率、截距等;考查过两点的斜率公式. 2.求不同条件下的直线方程(点斜式、两点式及一般式等). 3.直线常与圆锥曲线结合,属中高档题. 【复习指导】1.本讲是解析几何的基础,复习时要掌握直线方程的几种形式及相互转化的关系,会根据已知条件求直线方程.2.在本讲的复习中,注意熟练地画出图形,抓住图形的特征量,利用该特征量解决问题往往能达到事半功倍的效果.基础梳理1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正方向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角,当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. (2)倾斜角的取值范围:[0,π). 2.直线的斜率(1)定义:当α≠90°时,一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率通常用小写字母k 表示,即k =tan_α,倾斜角是90°的直线,其斜率不存在. (2)经过两点的直线的斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1.3.直线方程的五种形式名称 方程适用范围 点斜式 y -y 1=k (x -x 1) 不含垂直于x 轴的直线 斜截式 y =kx +b不含垂直于x 轴的直线 两点式y -y 1y 2-y 1=x -x 1x 2-x 1(x 1≠x 2,y 1≠y 2) 不含垂直于坐标轴的直线截距式x a +yb=1(ab ≠0) 不含垂直于坐标轴和过原点的直线 一般式Ax +By +C =0(A ,B 不同时为零)平面直角坐标系内的直线都适用4.过P 1(x 1,y 1),P 2(x 2,y 2)的直线方程(1)若x 1=x 2,且y 1≠y 2时,直线垂直于x 轴,方程为x =x 1. (2)若x 1≠x 2,且y 1=y 2时,直线垂直于y 轴,方程为y =y 1. (3)若x 1≠x 2,且y 1≠y 2时,方程为y -y 1y 2-y 1=x -x 1x 2-x 1. 5.线段的中点坐标公式若点P 1、P 2的坐标分别为(x 1,y 1)、(x 2,y 2),线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式.一条规律直线的倾斜角与斜率的关系:斜率k 是一个实数,当倾斜角α≠90°时,k =tan α.直线都有倾斜角,但并不是每条直线都存在斜率,倾斜角为90°的直线无斜率. 两种方法求直线方程的方法:(1)直接法:根据已知条件,选择恰当形式的直线方程,直接求出方程中系数,写出直线方程;(2)待定系数法:先根据已知条件设出直线方程.再根据已知条件构造关于待定系数的方程(组)求系数,最后代入求出直线方程. 两个注意(1)求直线方程时,若不能断定直线是否具有斜率时,应对斜率存在与不存在加以讨论.(2)在用截距式时,应先判断截距是否为0,若不确定,则需分类讨论.双基自测1.(人教A 版教材习题改编)直线经过点(0,2)和点(3,0),则它的斜率为( ). A.23 B.32 C .-23 D .-32 解析 k =0-23-0=-23.答案 C2.直线3x -y +a =0(a 为常数)的倾斜角为( ). A .30° B .60° C .150° D .120°解析 直线的斜率为:k =tan α=3,又∵α∈[0,π)∴α=60°.答案 B3.(2011·龙岩月考)已知直线l 经过点P (-2,5),且斜率为-34.则直线l 的方程为( ).A .3x +4y -14=0B .3x -4y +14=0C .4x +3y -14=0D .4x -3y +14=0解析 由y -5=-34(x +2),得3x +4y -14=0.答案 A4.(2012·烟台调研)过两点(0,3),(2,1)的直线方程为( ). A .x -y -3=0 B .x +y -3=0 C .x +y +3=0D .x -y +3=0 解析 由两点式得:y -31-3=x -02-0,即x +y -3=0.答案 B5.(2012·长春模拟)若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为________. 解析 ∵k AC =5-36-4=1,k AB =a -35-4=a -3.由于A 、B 、C 三点共线,所以a -3=1,即a =4. 答案 4考向一 直线的倾斜角与斜率【例1】►若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( ). A.⎣⎢⎡⎭⎪⎫π6,π3 B.⎝ ⎛⎭⎪⎫π6,π2 C.⎝ ⎛⎭⎪⎫π3,π2 D.⎣⎢⎡⎦⎥⎤π3,π2 [审题视点] 确定直线l 过定点(0,-3),结合图象求得.解析 由题意,可作两直线的图象,如图所示,从图中可以看出,直线l 的倾斜角的取值范围为⎝ ⎛⎭⎪⎫π6,π2. 答案 B求直线的倾斜角与斜率常运用数形结合思想.当直线的倾斜角由锐角变到直角及由直角变到钝角时,需根据正切函数y =tan α的单调性求k 的范围,数形结合是解析几何中的重要方法.【训练1】 (2012·贵阳模拟)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( ). A .-1<k <15B .k >1或k <12C .k >15或k <1D .k >12或k <-1解析 设直线的斜率为k ,则直线方程为y -2=k (x -1),直线在x 轴上的截距为1-2k,令-3<1-2k<3,解不等式可得.也可以利用数形结合.答案 D考向二 求直线的方程【例2】►求适合下列条件的直线方程:(1)经过点P (3,2),且在两坐标轴上的截距相等; (2)过点A (-1,-3),斜率是直线y =3x 的斜率的-14;(3)过点A (1,-1)与已知直线l 1:2x +y -6=0相交于B 点且|AB |=5. [审题视点] 选择适当的直线方程形式,把所需要的条件求出即可.解 (1)法一 设直线l 在x ,y 轴上的截距均为a ,若a =0,即l 过点(0,0)和(3,2), ∴l 的方程为y =23x ,即2x -3y =0.若a ≠0,则设l 的方程为x a +y a=1, ∵l 过点(3,2),∴3a +2a=1,∴a =5,∴l 的方程为x +y -5=0,综上可知,直线l 的方程为2x -3y =0或x +y -5=0. 法二 由题意,所求直线的斜率k 存在且k ≠0, 设直线方程为y -2=k (x -3),令y =0,得x =3-2k,令x =0,得y =2-3k ,由已知3-2k =2-3k ,解得k =-1或k =23,∴直线l 的方程为y -2=-(x -3)或y -2=23(x -3),即x +y -5=0或2x -3y =0. (2)设所求直线的斜率为k ,依题意44又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.(3)过点A (1,-1)与y 轴平行的直线为x =1.解方程组⎩⎪⎨⎪⎧x =1,2x +y -6=0,求得B 点坐标为(1,4),此时|AB |=5, 即x =1为所求.设过A (1,-1)且与y 轴不平行的直线为y +1=k (x -1),解方程组⎩⎪⎨⎪⎧2x +y -6=0,y +1=k x -1,得两直线交点为⎩⎪⎨⎪⎧x =k +7k +2,y =4k -2k +2.(k ≠-2,否则与已知直线平行). 则B 点坐标为⎝ ⎛⎭⎪⎫k +7k +2,4k -2k +2.由已知⎝⎛⎭⎪⎫k +7k +2-12+⎝ ⎛⎭⎪⎫4k -2k +2+12=52,解得k =-34,∴y +1=-34(x -1),即3x +4y +1=0.综上可知,所求直线的方程为x =1或3x +4y +1=0.在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件,用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线,故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.【训练2】 (1)求过点A (1,3),斜率是直线y =-4x 的斜率的13的直线方程.(2)求经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程. 解 (1)设所求直线的斜率为k ,依题意33又直线经过点A (1,3),因此所求直线方程为y -3=-43(x -1),即4x +3y -13=0.(2)当直线不过原点时,设所求直线方程为x 2a +ya =1,将(-5,2)代入所设方程,解得a =-12,此时,直线方程为x +2y +1=0. 当直线过原点时,斜率k =-25,直线方程为y =-25x ,即2x +5y =0,综上可知,所求直线方程为x +2y +1=0或2x +5y =0.考向三 直线方程的应用【例3】►已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A 、B 两点,如右图所示,求△ABO 的面积的最小值及此时直线l 的方程.[审题视点] 设直线l 的方程为截距式,利用基本不等式可求. 解 设A (a,0),B (0,b ),(a >0,b >0),则直线l 的方程为x a +y b=1, ∵l 过点P (3,2),∴3a +2b=1.∴1=3a +2b ≥26ab,即ab ≥24.∴S △ABO =12ab ≥12.当且仅当3a =2b ,即a =6,b =4.△ABO 的面积最小,最小值为12. 此时直线l 的方程为:x 6+y4=1.即2x +3y -12=0.求直线方程最常用的方法是待定系数法.若题中直线过定点,一般设直线方程的点斜式,也可以设截距式.注意在利用基本不等式求最值时,斜率k 的符号. 【训练3】 在本例条件下,求l 在两轴上的截距之和最小时直线l 的方程. 解 设l 的斜率为k (k <0),则l 的方程为y =k (x -3)+2,令x =0得B (0,2-3k ),令y =0得A ⎝⎛⎭⎪⎫3-2k,0,∴l 在两轴上的截距之和为 2-3k +3-2k=5+⎣⎢⎡⎦⎥⎤-3k +⎝⎛⎭⎪⎫-2k≥5+26,(当且仅当k =-63时,等号成立), ∴k =-63时,l 在两轴上截距之和最小, 此时l 的方程为6x +3y -36-6=0.难点突破18——直线的倾斜角和斜率的范围问题从近两年新课标高考试题可以看出高考对直线的倾斜角和斜率的考查一般不单独命题,常和导数、圆、椭圆等内容结合命题,难度中档偏上,考生往往对直线的倾斜角和斜率之间的关系弄不清而出错.【示例1】► (2010·辽宁)已知点P 在曲线y =4e x+1上,α为 曲线在点P 处的切线的倾斜角,则α的取值范围是( ).A.⎣⎢⎡⎭⎪⎫0,π4B.⎣⎢⎡⎭⎪⎫π4,π2C.⎝⎛⎦⎥⎤π2,3π4D.⎣⎢⎡⎭⎪⎫3π4,π【示例2】► (2011·济南一模)直线l 过点(-2,0),l 与圆x 2+y 2=2x 有两个交点时,则直线l 的斜率k 的取值范围是( ). A.()-22,22 B .(-2,2)C.⎝ ⎛⎭⎪⎫-24,24 D.⎝ ⎛⎭⎪⎫-18,18。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
倾斜角α 锐角 0° 钝角
90°
2.在分析直线的倾斜角和斜率的关系时,要根据正切函数k=
tan α的单调性,如图所示:
(1)当α取值在
0,π2
内,由0增大到
π 2
α≠π2
时,k由0增大并趋向于正无穷大;
(2)当α取值在π2,π内,由π2α≠π2增大到π(α≠π)时,k由负无 穷大增大并趋近于0.
解决此类问题,常采用数形结合思想.
[易错提醒]
直线倾斜角的范围是[0,π),而这个区间不是正切函 数的单调区间,因此根据斜率求倾斜角的范围时,要分 0,π2 与 π2,π 两种情况讨论.由正切函数图象可以看 出,当α∈ 0,π2 时,斜率k∈[0,+∞);当α= π2 时,斜率 不存在;当α∈π2,π时,斜率k∈(-∞,0).
两直线的位置关系
解析:设l1,l2,l3的倾斜角分别为α1,α2,α3.由题图易知 0<α3<α2<90°<α1<180°,∴tan α2>tan α3>0>tan α1, 即k2>k3>k1. 答案:k2>k3>k1
(3)已知直线l1:x=-2,l2:y=
1 2
,则直线l1与l2的位置关系
是________.
答案:垂直
(4)已知直线l1:ax+(3-a)y+1=0,l2:x-2y=0.若l1⊥l2, 则实数a的值为________. 解析:由题意,得a-a 3=-2,解得a=2. 答案:2
讲练区 研透高考· 完成情况
[全析考法]
直线的倾斜角与斜率
1.直线都有倾斜角,但不一定都有斜率,二者的关系具 体如下:
斜率k k=tan α>0 k=0 k=tan α<0 不存在
-1≤sin α≤1,所以-1≤k≤1.设直线xsin α+y+2=0的倾斜
角为θ,所以-1≤tan θ≤1,而θ∈[0,π),故倾斜角的取值范
围是0,π4∪34π,π.
(2)如图所示,直线l:x+my+m=0过定点 A(0,-1),当m≠0时,kQA=32,kPA=-2, kl=-m1 .
∴-m1 ≤-2或-m1 ≥32. 解得0<m≤12或-23≤m<0; 当m=0时,直线l的方程为x=0,与线段PQ有交点. ∴实数m的取值范围为-23,12. [答案] (1)B (2)-23,12
(2)坐标平面内的任何一条直线均有倾斜角与斜率. ( × )
(3)直线的倾斜角越大,其斜率就越大.
(× )
(4)当直线l1和l2斜率都存在时,一定有k1=k2⇒l1∥l2. ( × )
(5)如果两条直线l1与l2垂直,则它们的斜率之积一定等于-1.
(× )
2.填空题 (1)若过两点A(-m,6),B(1,3m)的直线的斜率为12,则m= ________. 答案:-2 (2)如图中直线l1,l2,l3的斜率分别为k1,k2, k3,则k1,k2,k3的大小关系为________.
当直线l1,l2不重合且斜率都不存在时,l1∥l2
如果两条直线l1,l2的斜率存在,设为k1,k2,则有 两条直 l1⊥l2⇔ k1·k2=-1 .
线垂直 当其中一条直线的斜率不存在,而另一条直线的斜
率为0时,l1⊥l2
[基本能力]
1.判断题
(1)根据直线的倾斜角的大小不能确定直线的位置. ( √ )
=0,若l1∥l2,则a的值为
()
A.-16
B.6
C.0
D.0或-16
(2)已知经过点A(-2,0)和点B(1,3a)的直线l1与经过点P(0,-1) 和点Q(a,-2a)的直线l2互相垂直,则实数a的值为________.
[解析] (1)由l1∥l2,得-3a-2a(3a-1)=0,即6a2+a=0, 所以a=0或a=-16,经检验都成立.故选D.
两直线位置关系的判断方法 (1)已知两直线的斜率存在 ①两直线平行⇔两直线的斜率相等且坐标轴上的截距 不相等; ②两直线垂直⇔两直线的斜率之积为-1. (2)已知两直线的斜率不存在 若两直线的斜率不存在,当两直线在x轴上的截距不相 等时,两直线平行;否则两直线重合.
[例2] (1)已知直线l1:3x+2ay-5=0,l2:(3a-1)x-ay-2
课时ห้องสมุดไป่ตู้标检测
01 突破点(一) 直线的倾斜角与斜率、两直线的位置关系
自学区 抓牢双基· 完成情况
1.直线的倾斜角
[基本知识]
(1)定义:当直线l与x轴相交时,取x轴作为基准,x轴正向 与直线l 向上方向 之间所成的角叫做直线l的倾斜角.当直线l 与x轴 平行或重合 时,规定它的倾斜角为0.
(2)范围:直线l倾斜角的范围是 [0,π) .
2.直线的斜率公式
(1)定义式:若直线l的倾斜角α≠π2,则斜率k= tan α .
(2)两点式:P1(x1,y1),P2(x2,y2)在直线l上,且x1≠x2,
y2-y1 则l的斜率k= x2-x1 .
3.两条直线平行与垂直的判定
两条直 线平行
对于两条不重合的直线l1,l2,若其斜率分别为k1, k2,则有l1∥l2⇔ k1=k2 .
第九章 解析几何
第一节 直线与方程
本节主要包括3个知识点: 1.直线的倾斜角与斜率、两直线的位置关系; 2.直线的方程; 3.直线的交点、距离与对称问题.
突破点(一) 直线的倾斜角与斜率、两直线的 位置关系
突破点(二) 直线的方程
012453
突破点(三) 直线的交点、距离与对称问题
全国卷5年真题集中演练——明规律
[例1] (1)直线xsin α+y+2=0的倾斜角的取值范围是( )
A.[0,π)
B.0,π4∪34π,π
C.0,π4
D.0,π4∪π2,π
(2)已知线段PQ两端点的坐标分别为P(-1,1)和Q(2,2),若直
线l:x+my+m=0与线段PQ有交点,则实数m的取值范围是
________. [解析] (1)因为直线xsin α+y+2=0的斜率k=-sin α,又
(2)l1的斜率k1=1-3a--02=a. 当a≠0时,l2的斜率k2=-2aa--0-1=1-a2a. 因为l1⊥l2, 所以k1k2=-1,即a·1-a2a=-1,解得a=1. 当a=0时,P(0,-1),Q(0,0),这时直线l2为y轴,A(-2, 0),B(1,0),直线l1为x轴,显然l1⊥l2. 综上可知,实数a的值为1或0. [答案] (1)D (2)1或0