必修三课件:系统抽样

合集下载

人教版必修三2.1.2系统抽样 课件(共33张PPT)

人教版必修三2.1.2系统抽样 课件(共33张PPT)

思考7:一般地,用系统抽样从含有N个个体的总 体中抽取一个容量为n的样本,其操作步骤如何?
1)采用随机方式将总体中N个个体编号1,2,3……编;号
2)确定分段间隔k,对编号进行分段,将整个的编号按一定
的间隔(设为K)分段,当 (N为总体中的个体数, 分段
n为样本容量)是整数时,可以取
抽取起始个体号
2.1.2-2.1.3 系统抽样与分层抽样
问题提出
1.简单随机抽样有哪两种常用方法? 其操作步骤分别如何? 抽签法:
第一步,将总体中的所有个体编号,并 把号码写在形状、大小相同的号签上. 第二步,将号签放在一个容器中,并搅 拌均匀. 第三步,每次从中抽取一个号签,连续 抽取n次,就得到一个容量为n的样本.
知识探究(一):系统抽样的基本思想
思考1:学校要了解高二学生对学校的意见, 需要选取10个学生代表,怎样从众多学生中选 出代表才能较好地反映出学生对学校的意见?
(假设10班×50人=500人) 广播:“请高二各班15号同学到报告厅……”
1.先编号(学号等)
2.将500人分成10个班级
3.在一班(就50人了)1~50号中采用简单随机抽样
例2一个总体中有100个个体,随机编 号为0,1,2,…,99,依编号顺序平均 分成10组,组号依次为1,2,3,…,10, 现用系统抽样抽取一个容量为10的样本, 并规定:如果在第一组随机抽取的号码 为m,那么在第k(k=2,3,…,10)组 中抽取的号码的个位数字与m+k的个位数 字相同.若m=6,求该样本的全部号码.
(3)每一层抽取的数=
该层个体数 总体个体数
×
样本 容量
(4)如果各层应抽取的个体数不都是整数,则 应该调整样本容量,剔除个体

系统抽样》课件

系统抽样》课件
减小抽样误差的方法
采用更科学的抽样方法、增加样本量、提高样本代表性等。
非抽样误差
非抽样误差的定义
01
由于非随机因素引起的误差,如调查员的主观偏见、调查方法
的缺陷等。
非抽样误差的来源
02
调查员的主观偏见、调查方法的缺陷、数据处理的错误等。
减小非抽样误差的方法
03
加强调查员的培训和监督、采用更科学的调查方法、加强数据
的质量控制等。
05
CHAPTER
系统抽样的应用案例
某品牌的市场调研系统抽样应用
总结词:高效准确
详细描述:某品牌在进行市场调研时,采用系统抽样方法,按照一定的间隔从总 体中抽取样本,大大提高了调研效率和准确性,为品牌的市场策略制定提供了有 力支持。
某大学的学生满意度调查系统抽样应用
总结词:覆盖全面
详细描述
起始样本的选择可以采用随机方式或指定方式。随机方式可以借助随机数生成器 等工具进行,而指定方式则需要根据研究目的和实际情况进行合理设定。
进行样本抽取
总结词
在确定总体、样本、抽样间隔和起始样本后,即可按照系统 抽样的规则进行样本抽取。
详细描述
按照设定的抽样间隔和起始样本,依次进行样本抽取,直至 达到所需的样本量。在抽取过程中,应保持随机性和代表性 原则,确保样本的有效性。
详细描述:某大学采用系统抽样方法进行学生满意度调查,确保了样本的代表性和广泛性,调查结果能够全面反映学生的需 求和意见,为学校改进教学质量和管理提供了重要依据。
某城市的居民消费水平调查系统抽样应用
总结词:科学合理
详细描述:某城市进行居民消费水平调查时,采用系统抽样方法,按照居民分布和人口比例进行抽样 ,确保了样本的科学性和合理性,为城市经济发展规划和政策制定提供了有力支持。

《系统抽样》课件3(18张PPT)(人教B版必修3)

《系统抽样》课件3(18张PPT)(人教B版必修3)

从个体数为N的总体中抽取一个容量为n的
样本时,每个个体被抽到的概率都等于
n N
!
关于“随机抽样”
定义 设···.如果···,且···,就称···.

特征 有限性、逐个性、不回性、等率性、公平性

随机抽样时,“每次抽取一个个体
抽 样
注意
时,任一个体被抽取的概率相等” 和“在整个抽样过程中个体被抽取
的概率相等”不是一回事.
定义 当···,为了···,常···,然后···,叫做···.
分 层
特征 有限性、分层性、随机性、等率性
抽 样
步骤 三步—分层,层抽样,合并层样本
1.分层抽样法适用于总体中个体差异
明显的抽样;2.分层是按总体中个体
注意 的明显差异进行分类;3.层抽样是按
各层中含个体在总体中所占的比例,
确定层抽样的个体个数进行随机抽样
说明:
(1)系统抽样与简单随机抽样一样,每个个体被抽到的 机会都相等;从而说明系统抽样是公平的.
(2)系统抽样是建立在简单随机抽样的基础之上的,当 将总体均分后对每一部分进行抽样时,采用的是简单随机抽 样.
EX:下列抽样中不是系统抽样的是( )
• A.从标有1~15号的15个球中,任选3个作为样 本,按从小号到大号排序,随机选起点i0+5, i0+10(超过15则从1再数起)号作样本
②随机数表法
先将总体中的所有个体(共有N个)编 号,然后在随机数表内任选一个数作为开 始,再从选定的起始数,沿任意方向取数 (不在号码范围内的数、重复出现的数必须 去掉),最后根据所得号码抽取总体中相应 的个体,得到总体的一个样本.
步 骤:
编号、选数、取号、抽取.

人教版高中数学 A版 必修三 第二章 《2.1.2系统抽样》教学课件

人教版高中数学 A版 必修三 第二章 《2.1.2系统抽样》教学课件

A.容量较小
B.容量较大
C.个体数较多但不均衡
D.任何总体
12345
答案
12345
2.某商场想通过检查发票及销售记录的2%来快速估计每月的销售金额,
采用如下方法:从某本发票的存根中随机抽一张如15号,然后按顺序往
后将65号,115号,165号,……发票上的销售金额组成一个调查样本.
这种抽取样本的方法是C( )
剔除几个个体,再
重新编号,然后分段;
(3)在第1段用简单随机抽样 确定第一个个体编号l(l≤k);
(4)按照一定的规则抽取样本.通常是将l加上间隔k 得到第2个个体编号 (l+k),
再加 k 得到第3个个体编号 l+2k ,依次进行下去,直到获取重点难点 个个击破
类型一 系统抽样的概念 例1 下列抽样中不是系统抽样的是( )
解析答案
12345
5.从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进
行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选
取5枚导弹的编号可能是B( )
A.5,10,15,20,25
B.3,13,23,33,43
C.1,2,3,4,5
D.2,4,6,16,32
解析 用系统抽样的方法抽取到的导弹编号应该为k,k+d,k+2d,k+
解析答案
类型二 系统抽样的实施 例2 某校高中三年级的295名学生已经编号为1,2,…,295,为了了解 学生的学习情况,要按1∶5的比例抽取一个样本,用系统抽样的方法进 行抽取,并写出过程. 解 按照1∶5的比例,应该抽取的样本容量为295÷5=59,我们把295 名同学分成59组,每组5人,第一组是编号为1~5的5名学生,第2组是 编号为6~10的5名学生,依次下去,第59组是编号为291~295的5名 学生.采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不

高中数学必修三——系统抽样ppt课件

高中数学必修三——系统抽样ppt课件

随机数表),剩下的个体是2 000能被样本容量50整除,然后再
重新编号为1,2,3,…,2 000.
17
(3)确定分段间隔.2 50000=40,则将这 2 000 名学生分成 50 组,每组 40 人,第 1 组是 1,2,3,…,40;第 2 组是 41,42,43,…, 80;依次下去,第 50 组是 1 961,1 962,…,2 000.
检验 • C.从实数中逐个抽取10个做奇偶性分析 • D.某运动员从8个跑道中随机选取一个跑
道 D
10
• 1.下列问题中,最适合用系统抽样抽取样本的是 ()
• A.从10名学生中,随机抽2名学生参加义务劳动 • B.从全校3 000名学生中,随机抽100名学生参加
义务劳动 • C.从某市30 000名学生中,其中小学生有14 000
(4)在第 1 组用简单随机抽样确定第一个个体编号 i(i≤40). (5)按照一定的规则抽取样本.抽取的学生编号为 i+40k(k =0,1,2,…,39),得到 50 个个体作为样本,如当 i=2 时的样 本编号为 2,42,82,…,1962.
18
1.为了了解参加一次知识竞赛的1 252名学生的成绩决定采
• A.10
B.100
• C.1 000
D.10 000
• [答案] C
• [解析] 依题意,要抽十名幸运观众,所以要 分成十个组,每个组容量为10 000÷10=1 000,即分段间隔.
12
• 3.有20位同学,编号从1至20,现在从中抽 取4人做问卷调查,用系统抽样方法确定所抽 的编号可能为( )
15
系统抽样方案的设计 【例 1】 某校高二年级有 260 名学生,学校打算从中抽取 20 名进行心理测验.试采用系统抽样方法抽取所需的样本.

高中数学必修三课件:系统抽样

高中数学必修三课件:系统抽样

2、下列抽样试验中,最适宜系统抽样的是(B )
A、从某厂生产的2000个电子元件中随机抽取5个入样 B、从某厂生产的2000个电子元件中随机抽取200个 入样 C、从某厂生产的20个电子元件中随机抽取5个入样
3、为了了解一次知识竞赛的1252名学生的成绩, 决定采用系统抽样的方法抽取一个容量为50的样本, 那么总体中应随机剔除的个体数目是( ) A
c

6、从2004名学生中选取50名组成参观团, 若采用下面的方法选取:先用简单随机抽 样从2004人中剔除4人,剩下的2000个再按 系统抽样的方法进行,则每人入选的机会 ( C )
A.不全相等 C.都相等 B.均不相等 D.无法确定
7、下列抽样问题中最适合用系统抽样法抽 样的是( C ) A.从全班48名学生中随机抽取8人参加 一项活动 B.一个城市有210家百货商店,其中大 型商店20家,中型商店40家,小型商店 150家.为了掌握各商店的营业情况,要从 中抽取一个容量为21的样本 C.从参加模拟考试的1 200名高中生中 随机抽取100人分析试题作答情况 D.从参加模拟考试的1 200名高中生中 随机抽取10人了解某些情况
上述解答对吗?
[错因] 在第二步剔除4名同学后没有对剩余进行从
0 000,0 001,„,1 999重新编号.
[正解] (1)采用随机的方式给这2 004名同学编号为
0 001,0 002,„,2 004. (2)利用简单随机抽样剔除4个个体,并对剩余的2 000个个体重新编号为0 001,0 002,„,2 000. (3)分段.由于20∶2 000=1∶100,故将总体分为 20个部分,其中每一部分100个个体.
.
(5)从该号码起,每隔100个号码取一个号码,就得到一个 容量为130的样本.(如k,100+k,200+k,„,12900+k)

人教A版高中数学必修三课件系统抽样

人教A版高中数学必修三课件系统抽样
高中数学课件
灿若寒星整理制作
系统抽样
简单随机抽样的特点:
1、要求被抽取的样本的总体的个体个数有限,这样便 于对其中各个个体被抽取的概率进行分析.
2、是从总体中逐个地进行抽取,这样便于在实践中进 行操作.
3、是一种不放回抽样.
4、是一种等可能抽样.
不仅每次从总体中抽取一个个体时,各个个体被抽取的
可能性相等,而且在整个抽样过程中,各个个体被抽取的
系统抽样的特点:
1、适用于总体容量较大的情况
2、剔除多于个体及第一段抽样都用简单随机 抽样,因而与简单随机抽样有密切联系
3、是等可能抽样,每个个体被抽到的可能性
都是n/N。
P (任一个个体 )

n N

样本容量 总体容量
系统抽样的步骤:
(1) 先将总体的N个个体编号,按照随机抽样的方法编 号,有时也可直接利用个体自身所带的号码,如学号、准 考证号、门牌号等
我们按照这样的方法来抽样:首先将这1000名学生从1开 始进行编号,然后按号码顺序以一定的间隔进行抽取.由于
1000 20, 这个间隔可以定为20,即从号码为1~20的第一个
50
间隔中随机地抽取一个号码,假如抽到的是6号,然后从第 6号开始,每隔20个号码抽取一个,得到
6,26,46,,986.
④按所得的号码抽取样本.
3、什么样的总体适宜用简单随机抽样? 由于简单随机抽样适用于个体不太多的总体, 那么当总体个数较多时,适宜采用什么抽取方法? 新的抽样方法——系统抽样
学校为了了解高二年级学生对教师教学的意见,打 算从高二年级1000名学生中抽取50名学生进行调查. 除了用简单随机抽样获取样本外,你能否设计其他抽样 样本的方法?

高中数学必修三教材2.1.2《系统抽样》教学ppt

高中数学必修三教材2.1.2《系统抽样》教学ppt
26
7.累计和等距抽样
如果抽样单元的大小不同,且单元的大小又与 调查变量相关时,用上述方法就不大合适了,此时, 应采用不等概率抽样。
其基本思路是:在总体各单元按某一标志排序 后,累计各单元的大小Mi(当各抽样单元的大小用 所含下一阶单元的数目表示时,也可直接累计其下 一阶单元数)并进行编码,以总的累计数除以n作为 抽样间隔,用K表示,然后在最初的1到K个数中随 机确定一个数j(1≤j≤K),j所对应的单元即为第 一个被抽中单元,以后每间隔K抽取一个随机数, 并按同样的方法确定出对应的单元作为样本单元, 组成等距样本。
用 ysy 表示,则
1n
ysy yi n j1 yij
是总体均值的无偏估计。
若N≠nK,则上述估计量是有偏的,但当n充 分大时,其偏倚可以充分小。
30
估计量的方差 如前所述,如果总体单元是按无关标志排列 的,则其方差可按简单随机抽样去做。若总体单 元是按有关标志排列的,则此时的等距抽样可以 看作是整群抽样或分层抽样的特例,因此,等距 抽样估计量的方差可以比照整群抽样或分层抽样 的方法构造,有几种表示方法:
若将上表中的行看成为层,则每个系统样本 都包含每层中的一个单元,因此系统抽样也是一 种分层抽样,不过由于样本单元在层中的位置都 是一样的,因此它不是分层随机抽样。
15
第二节 等距抽样的实施方法
1. 随机起点等距抽样 2. 循环等距抽样 3. 中点等距抽样 4. 对称等距抽样法 5. 两端修正法 6. 总体有周期性变化时的等距抽样 7. 累计和等距抽样
11
3.等距抽样的特点 (1)将总体各单元按一定的顺序排列后再抽样, 使得样本单元的分布更加均匀,因而样本也就更 具代表性,比简单随机抽样更精确,在某些场合 下甚至可以不用抽样框。 (2)等距抽样简单明了,快速经济,操作灵活 方便,使用面广,是单阶段抽样中变化最多的一 种抽样技术。

人教版高中数学必修三系统抽样课件PPT

人教版高中数学必修三系统抽样课件PPT
段是编号为 1~10 的 10 人,第 2 段是编号为 11~20 的 10 人,依次下去,
第 62 段是编号为 611~620 的 10 人.
(3)采用简单随机抽样的方法,从第 1 段 10 人中抽出一人,不妨设
编号为 l(1≤l≤10).
(4)那么抽取的职工编号为 l+10k(k=0,1,2,…,61),得到 62 个个体
段间隔
分段(组);
个个体按平均每 5 个为 1 段(组)进行


(3)当 不是整数时,应先从总体中随机剔除一些个体,使剩余个
'
体数 N'能被 n 整除,这时分段间隔 k= ,如 N=101,n=20,则应先用简
单随机抽样从总体中剔除 1 个个体,使剩余的总体容量(即 100)能被
100
20 整除,从而得出分段间隔 k= 20 =5,也就是说,只需将 100 个个体平

个个体;(2)采用系统抽样的方法,每个个体被抽取的可能性均为(n
为样本容量,N 为总体容量),相等.
110
正解:(1)分段间隔 k= 10 =11.
10
(2)相等,均为111.
1 为了了解参加一次知识竞赛的 1252 名学生的成绩,决定采用系
统抽样的方法抽取一个容量为 50 的样本.那么总体中应随机剔除的
解析:A 项中总体中个体间有差异,不适用系统抽样;C 项和 D 项中总
体中个体无差异,但个体数目不多,不适用系统抽样;B 项中总体中个
体间无差异,且个体数目较多,适宜用系统抽样.
答案:B
4 将参加数学竞赛的 1000 名学生编号如下 000,001,002,…,999,
打算从中抽取一个容量为 50 的样本,按系统抽样方法分成 50 个部分,

系统抽样课件1(苏教版必修3)

系统抽样课件1(苏教版必修3)

01
由于是按照固定的间隔进行抽样,因此容易受到周期性因素的
影响,导致样本偏差。
对总体分布要求较高
02
系统抽样要求总体分布比较均匀,如果总体分布不均匀,则会
影响样本的代表性。
对抽样间隔要求较高
03
系统抽样的抽样间隔直接影响样本的代表性和偏差,因此需要
谨慎选择合适的抽样间隔。
系统抽样与其他抽样方法的比较
确定总体容量和抽样间隔
确定总体容量
首先需要确定总体的容量,即需 要从总体中抽取多少个样本。
确定抽样间隔
根据总体容量和样本容量,计算 出抽样的间隔,即每隔多少个样 本抽取一个样本。
确定起始样本
选择起始样本
根据抽样间隔,选择第一个被抽取的 样本作为起始样本。
确定后续样本
根据起始样本和抽样间隔,确定后续 被抽取的样本。
04
系统抽样的应用实例
人口普查中的系统抽样
定义:人口普查中的系统抽样是指按照某种规 则,从全体人口中抽取一部分作为样本进行调
查的方法。
规则制定:通常根据人口分布情况,按照地域 或年龄等标准进行划分,确保样本的代表性和
均衡性。
实施步骤
1. 确定总体规模和样本规模。 2. 按照规则将总体分成若干个部分。
05
2. 按照规则将目标市场分成若干个部分。
06
3. 根据起始点,按照固定的间隔抽取样本。
科学实验中的系统抽样
定义:科学实验中的系统抽样是指按照某种规则,从实 验对象中抽取一部分作为样本进行实验观察的方法。 实施步骤
2. 按照规则将实验对象分成若干个部分。
规则制定:通常根据实验目的、实验对象的特点等因素 ,制定相应的抽样规则,确保样本的可靠性和准确性。 1. 确定实验对象和样本规模。

课件_人教版数学必修三《系统抽样》同步实用PPT课件_优秀版

课件_人教版数学必修三《系统抽样》同步实用PPT课件_优秀版
的抽样为简单随机抽样。
1 000 50 50 一般地,设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样 仍相等,都是 × = .所以系统抽样是公平的、均 的抽样为简单随机抽样。 1 003 1 000 1 003 一般地,设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样
中抽取一个容量为 21 的样本 一般地,设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样
的抽样为简单随机抽样。
一般地,设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样
C.从参加模拟考试的 1 200 名高中生中随机抽取 100 人分析试 的抽样为简单随机抽样。
D.从参加模拟考试的 1 200 名高中生中随机抽取 10 人了解某 的抽样为简单随机抽样。
一般地,设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样 的抽样为简单随机抽样。
一般地,设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样
一般地,设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样 的抽样为简单随机抽样。
题作答情况 一般地,设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样
的抽样为简单随机抽样。
一般地,设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样

人教B版必修3 2.1.2 系统抽样 课件(29张)

人教B版必修3 2.1.2 系统抽样 课件(29张)

多少时不需要剔除个体( )
A.3
B.4
C.5
D.6
解析:选 B ∵524=4×131,∴抽样间隔为 4 时,不需要
剔除个体.
4.某中学采用系统抽样方法,从该校高一年级全体 800 名
学生中抽取 50 名学生做牙齿健康检查.现将 800 名学生从 1 到
800 进行编号.已知 33~48 这 16 个数中抽到的数是 39,则在第
6.将参加夏令营的 600 名学生编号:001,002,…,600,采
用系统抽样的方法抽取一个容量为 50 的样本,且随机抽得的号
码为 003,这 600 名学生分住在三个营区,从 001 到 300 住第一
营区,从 301 到 495 住第二营区,从 496 到 600 住第三营区,这
三个营区被抽中的人数依次为( )
的数目为(720-480)÷20=12.
课后拔高提能练
一、选择题
1.从学号为 0~50 的高一某班 50 选中的 5 名学生的
学号可能是( )
A.1,2,3,4,5
B.2,4,6,8,10
C.3,13,23,33,43 解析:选 C
D.都相等,且为410
解析:选 C 因为在系统抽样中,若所给的总体个数不能被
样本容量整除,则应先剔除几个个体,本题先剔除 16 人,然后
再分组,在剔除过程中,每个个体被剔除的机会相等,所以,每
个个体被抽到的机会都相等,均为2
50016=1
25 008.
3.总体容量为 524,若采用系统抽样法抽样,当抽样间隔为
1 小组 1~16 中随机抽到的数是( )
A.5
B.7
C.11
D.13
解析:选 B 间隔数 k=85000=16,即每 16 人抽取一个人.由

人教版高中数学必修三第二章第1节2.1.2 系统抽样 课件共24张PP

人教版高中数学必修三第二章第1节2.1.2 系统抽样 课件共24张PP

(二)合作探究
探究2:总结系统抽样与简单的随机抽样的联系 与区别?
方法 类别
简单随 机抽样
系统 抽样
共同 特点
抽样过 程中每 个个体 被抽取 的概率 相等
抽样特征 相互联系
从总体中 逐个不放 回抽取
将总体分 成均衡几 部分,按 事先确定 的规则在 各部分抽 取
用简单随 机抽样抽 取起始号 码
适应范围
防错练习
(2)为了调查某路口一个月的交通流量情 况,王二采用系统抽样的方法,样本距 离为7,从每周中随机抽取一天,他抽取 的正好是星期一,这样他每个星期一对 这个路口的交通流量进行了统计,最后 做出调查报告,你认为王二这样的抽样 方法有什么问题?
防错练习
【解析】(2)由于星期一是周末休假 后第一天上班,交通情况与一周内 其他几天有明显的差异,因而王二 所统计的数据以及由此所推断出来 的结论,只能代表星期一的交通流 量,这一天的交通流量较大,不能 代表其他几天.
防错练习
【解析】(1)假设这个班的学生是这样编号的(这个 编号也代表他们的身高):
第一组:a1<a2<a3<a4<n5<n6<a7<a8; . 第二组:bl <b2 <b3 <b4 <b5 <b6 <b7 <b8; … 第三组:cl<c2 <c3 <c4 <c5<c6<c7<c8; 第四组:dl <d2 <d3 <d4 <d5 <d5 <d7 <d8; 第五组:e1 <e2 <e3<e4 <e5 <e6 <e7 <e8. 如果按照张三的抽样方法,比如在第一组抽取了8 号,也就是a8,那么所抽取的样本分别为a8,b8; ,c8,d8,e8,显然,这样的样本不具有代表性, 他们代表的身高偏高.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档