七年级数学勾股数(PPT)2-1

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在∆ABC中, a,b,c为三边长,其中 c为最大边, 若a2 +b2=c2, 则∆ABC为直角三角形; 若a2 +b2>c2, 则∆ABC为锐角三角形; 若a2 +b2<c2, 则∆ABC为钝角三角形.

;相亲 www.xianmaoapp.com 相亲
捕蝇草(Catchfly)属于维管植物的一种,是很受欢迎的食虫植物, 拥有完整的根、茎、叶、花朵和种子。它的叶片是最主要并且明显的部位,拥有捕食昆虫的功能,外观明显的刺毛和红色的无柄腺部位,样貌好似张牙利爪的血盆大口。盆栽可适用于向阳窗 台和阳台观赏,也可专做栽植槽培养;是原产于北美洲的一种多年生草本植物。 据说因为叶片边缘会有规则状的刺毛,那种感觉就像维纳斯的睫毛一般,所以英文名称为Venus Flytrap,在茅膏菜科捕蝇草属中仅此一种,捕蝇草被誉为自然界的肉食植物。 捕蝇草仅存于于美国的南卡罗莱纳州东南方的海岸平原及北卡罗莱纳州的东北角。然而,在原产地的捕蝇草在生存上却受到人类活动的威胁。人口快速增加因而剥夺捕蝇草的生存空间,而且因为人为干预自然野火的发生,使得这些地区开始长出一些小型灌木 ,因而遮蔽捕蝇草的阳光。因此,捕蝇草被试着引入其他地区进行复育,像是新泽西州和加州。在佛罗里达州已顺利归化,而成为很大的族群。 中心部位生长出来,属于轮生的叶子,显连坐状以丛生的形态生长。中央长出来扁平或者细线状好似翅膀形状的是属于叶柄的部分,原生种的叶柄是扁平如叶片一般,因为反而像是叶子,所以也称做假叶。 叶柄的末端带有一个捕虫夹,这才是会捕捉昆虫的叶子的部分,正面分布有许多的无柄腺,一般是红色或者橙色,越接近叶绿的地方的无柄腺就越少,这部分是分泌消化液来分解昆虫或者吸收昆虫的养分的部位。叶绿长有齿状的刺毛,刺毛的基部有分泌腺, 会分泌出粘液,作用是防止昆虫挣脱和叶瓣粘合。这种的叶子拥有捕捉昆虫的特殊功能,和特殊的模样,属于变态叶中的“捕虫叶”。 因为新叶都是从中心产生,故越外层的叶子就越老。在最外层的叶柄基部有时还会产生新的侧芽。捕蝇草的叶柄有两种型态发生,有的捕蝇草叶柄细长,达7~16公分长,而且朝向空中伸展;有的捕蝇草则长出短胖
2 同学们你们知道古埃及人用什么方法得Baidu Nhomakorabea直角?
古埃及人曾用下面的方法得到直角: 用13个等距的结,把一根绳子分成等长的12段,一个工匠同时握住 绳子的第1个结和第13个结,两个助手分别握住第4个结和第8个结, 拉紧绳子就得到一个直角三角形, 其直角在第4个结处.
做一做: 下面的三组数分别是一个三角形的三边长a,
b,c: 5,12,13; 6, 8, 10; 8,15,17.
(1)这三组数都满足a2 +b2=c2吗?
(2)分别以每组数为三边长作出三角形, 用量角器量一量,它们都是直角三角形吗?
勾股定理的逆定理
如果三角形的三边长a,b,c满足a2 +b2=c2 , 那么这个三角形是直角三角形
满足a2 +b2=c2的三个正整数,称为勾股数
相关文档
最新文档