有理数提高题有答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数基础训练题

一、填空:

1、在数轴上表示-2的点到原点的距离等于( )。

2、若∣a ∣=-a,则a ( )0.

3、任何有理数的绝对值都是( )。

4、如果a+b=0,那么a 、b 一定是( )。

5、将毫米的厚度的纸对折20次,列式表示厚度是( )。

6、已知||3,||2,||a b a b a b ==-=-,则a b +=( )

7、|2||3|x x -++的最小值是( )。

8、在数轴上,点A 、B 分别表示2

141,-,则线段AB 的中点所表示的数是( )。

9、若,a b 互为相反数,,m n 互为倒数,P 的绝对值为3,则

()2010

2a b mn p p

++-=

( )。

10、若abc ≠0,则||||||

a b c a b c

++

的值是( ) . 11、下列有规律排列的一列数:1、43、32、85、5

3

、…,其中从左到右第100

个数是( )。 二、解答问题:

1、已知x+3=0,|y+5|+4的值是4,z 对应的点到-2对应的点的距离是7,求x 、y 、 z 这三个数两两之积的和。

3、若2|45||13|4x x x +-+-+的值恒为常数,求x 满足的条件及此时常数的值。

4、若,,a b c 为整数,且20102010||||1a b c a -+-=,试求||||||c a a b b c -+-+-的值。

5、计算:-

21 +65-127+209-3011+4213-5615+72

17

能力培训题

知识点一:数轴

例1:已知有理数a 在数轴上原点的右方,有理数b 在原点的左方,那么( ) A .b ab < B .b ab > C .0>+b a D .0>-b a 拓广训练:

1、如图b a ,为数轴上的两点表示的有理数,在a b b a a b b a ---+,,2,中,负数的个数有( )

A .1

B .2

C .3

D .4

3、把满足52≤

2、利用数轴能直观地解释相反数;

例2:如果数轴上点A 到原点的距离为3,点B 到原点的距离为5,那么A 、B 两点的距离为 。 拓广训练:

1、在数轴上表示数a 的点到原点的距离为3,则._________3=-a

2、已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3,那么所有满足条件的点B 与原点O 的距离之和等于 。

3、利用数轴比较有理数的大小;

例3:已知0,0<>b a 且0<+b a ,那么有理数b a b a ,,,-的大小关系是 。(用“<”号连接) 拓广训练:

1、 若0,0>,比较m n n m n m n m --+--,,,,的大小,并用“>”号连

接。

例4:已知5

拓广训练: O a b

1、已知3->a ,试讨论a 与3的大小

2、已知两数b a ,,如果a 比b 大,试判断a 与b 的大小

4、利用数轴解决与绝对值相关的问题。

例5: 有理数c b a ,,在数轴上的位置如图所示,式子c b b a b a -++++化简结果为( )

A .c b a -+32

B .c b -3

C .c b +

D .b c -

拓广训练:

1、有理数c b a ,,在数轴上的位置如图所示,则化简c c a b b a ------+11的结果为 。

2、已知b b a b a 2=-++,在数轴上给出关于b a ,的四种情况如图所示,则成立的是 。 ① ② ③ ④

3、已知有理数c b a ,,在数轴上的对应的位置如下图:则b a c a c -+-+-1化简后的结果是( )

A .1-b

B .12--b a

C .c b a 221--+

D .b c +-21 三、培优训练

1、已知是有理数,且()

()01212

2

=++-y x ,那以y x +的值是( )

A .

21 B .23 C .21或23- D .1-或2

3 2、如图,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达

a b a b a

b O a O -1c

点C .若点C 表示的数为1,则点A 表示的数为( ) A.7

B.3

C.3-

D.2-

3、如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数d c b a ,,,且102=-a d ,那么数轴的原点应是( ) A .A 点 B .B 点 C .C 点 D .D 点

4、数d c b a ,,,所对应的点A ,B ,C ,D 在数轴上的位置如图所示,那么c a +与d b +的大小关系是( )

A .d b c a +<+

B .d b c a +=+

C .d b c a +>+

D .不确定的

5、不相等的有理数c b a ,,在数轴上对应点分别为A ,B ,C ,若c a c b b a -=-+-,那么点B ( )

A .在A 、C 点右边

B .在A 、

C 点左边 C .在A 、C 点之间

D .以上均有可能 6、设11++-=x x y ,则下面四个结论中正确的是( )

A .y 没有最小值

B .只一个x 使y 取最小值

C .有限个x (不止一个)使y 取最小值

D .有无穷多个x 使y 取最小值 7、在数轴上,点A ,B 分别表示31-

和5

1

,则线段AB 的中点所表示的数是 。 8、若0,0<>b a ,则使b a b x a x -=-+-成立的x 的取值范围是 。

9、x 是有理数,则221

95

221100++-

x x 的最小值是 。 10、已知d c b a ,,,为有理数,在数轴上的位置如图所示:

且,64366====d c b a 求c b a b d a -+---22323的值。 O b d D

C B A B

C 0D A

相关文档
最新文档