最小二乘法圆拟合资料讲解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最小二乘法圆拟合
最小二乘法拟合圆公式推导及vc实现[r]
最小二乘法(least squares analysis)是一种数学优化技术,它通过最小化误差的平方和找到一组数据的最佳函数匹配。最小二乘法是用最简的方法求得一些绝对不可知的真值,而令误差平方之和为最小。最小二乘法通常用于曲线拟合 (least squares fitting) 。这里有拟合圆曲线的公式推导过程和 vc实现。
此处使用平方差与最小二乘法差的平方不一样,但是仍然具有实用估计价值,并且可以化简公式。
VC实现的代码:C++类
void CViewActionImageTool::LeastSquaresFitting() {
if (m_nNum<3)
{
return;
}
int i=0;
double X1=0;
double Y1=0;
double X2=0;
double Y2=0;
double Y3=0;
double X1Y1=0;
double X1Y2=0;
double X2Y1=0;
for (i=0;i { X1 = X1 + m_points[i].x;//使用对象数组 Y1 = Y1 + m_points[i].y; X2 = X2 + m_points[i].x*m_points[i].x; Y2 = Y2 + m_points[i].y*m_points[i].y; X3 = X3 + m_points[i].x*m_points[i].x*m_points[i].x; Y3 = Y3 + m_points[i].y*m_points[i].y*m_points[i].y; X1Y1 = X1Y1 + m_points[i].x*m_points[i].y; X1Y2 = X1Y2 + m_points[i].x*m_points[i].y*m_points[i].y; X2Y1 = X2Y1 + m_points[i].x*m_points[i].x*m_points[i].y; } double C,D,E,G,H,N; double a,b,c; N = m_nNum; C = N*X2 - X1*X1; D = N*X1Y1 - X1*Y1; E = N*X3 + N*X1Y2 - (X2+Y2)*X1; G = N*Y2 - Y1*Y1; H = N*X2Y1 + N*Y3 - (X2+Y2)*Y1; a = (H*D-E*G)/(C*G-D*D); b = (H*C-E*D)/(D*D-G*C); c = -(a*X1 + b*Y1 + X2 + Y2)/N; double A,B,R; A = a/(-2); B = b/(-2); R = sqrt(a*a+b*b-4*c)/2; m_fCenterX = A; m_fCenterY = B; return; }