药物在体内的分布过程

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物体内过程

药物在机体内的吸收、分布、代谢和排泄过程。在现代药理学研究中,常把吸收和分布称为处置,而将代谢和排泄称为消除。药物代谢也称药物的生物转化,而吸收、分布和排泄称为药物的转运。定量地研究药物体内过程动态规律的科学称为药物代谢动力学,简称药代动力学。药代动力学研究机体对药物的作用规律,是药理学的内容之一(药理学的另一个内容是药效学,即研究药物对机体作用规律的科学)。现代研究证明,药物疗效及毒副反应的强度和持续性与药物体内过程密切相关。因此,药代动力学研究对于推动新药的设计与开发以及提高药物治疗学水平有着极为重要的意义。

药物进入机体以后,其作用经历着增长-平衡-消除的变化过程。这种过程反映着药物的吸收、分布、代谢和排泄随时间变化的过程,即药物的时间过程,这个过程可以用血浆药物浓度-时间曲线(简称药-时曲线)加以描述。

药-时曲线以时间为横坐标,以药物的某些数量特征(如血药浓度、尿药浓度)为纵坐标所做的曲线。借助于这些曲线可以分析并阐明药物的动力学特征。目前采用较多的是血浆药物浓度-时间曲线(图1血浆药物浓度-时间曲线)。这是因为多数药物的药理效应强度和持续性与其在作用部位的药物浓变化度密切相关,而药物在血液中的浓度变化一般可成比例地反映其在作用部位的变化;收集血标本比较方便,而且先进的分析测试方法可以用极少标本测得微量药物浓度。此外,也可用尿液、唾液等其他标本进行研究。

模拟药物体内过程的数学模型为了研究药物在体内转运的量变规律,药代动力学分析采用数学模型模拟药物的体内过程,线性乳突型模型是应用较广、研究较多的模型。这种模型抽象地将机体看作一个系统,再根据药物转运的特征将系统划分为一个或几个房室,从而得到一室或多室模型。常用的有一室模型、二室模型和三室模型。

一室模型将机体视为一个均匀的系统,药物进入机体即迅速分布,瞬间达到平衡。在动力学处理中,不考虑分布问题,药物只是从体内消除。这种模型适用于在体内迅速分布的药物,其特点是简单,但对大部分药物体内过程的分析不够精确。

多室模型将机体划分为中央室和外周室(图2药代动力学房室模型示意图)。多数药物进入机体后,

需要一定时间才能在全身分布完全。由于药物在不同体液和组织器官中转运的速率不同,在动力学处理中,将血液和血流丰富、药物容易进入并迅速与血中药物达到平衡的组织器官如心、肝、脑、肾、肺等归为中央室;将血流量少、药物不易进入并较慢与血液药物达到平衡的组织器官如静止状态的肌肉、脂肪等归为外周室。药物在中央室与外周室之间按一级速率转运,处于动态平衡中。只有一个外周室的模型称二室模型;有些药物在外周室的组织器官中转运速率有较大差异,因而分为两个外周室,称为三室模型。其转运速率常数分别为K□和K□。应当指出,房室的划分不是固定的,而是取决于组织器官的血流特征、对药物的摄取能力及药物本身的性质,例如对一种脂溶性药物,脑属于中央室;而对一种极性大的药物,脑则可以属于外周室。多室模型既考虑药物的分布,又考虑其消除,比较全面。

动力学类型药物在体内的转运是一个随时间而变化的动力学过程。在研究化学反应动力学时,从反应速度与反应物的量(或浓度)之间的关系出发,将反应分为零级、一级或多级反应。在药代动力学研究中也引入了这种概念。

一级动力学即一级速率过程,又称线性动力学。其特点是药物的转运(转运到其他部位或消

除掉)速率与该部位药物的量(或浓度)的一次方成正比。例如,一级消除动力学指血中药

物的消除速率与血药浓度的一次方(即血药浓度)成正比。血药浓度高,则消除速率高,即

单位时间内消除的药量多;血药浓度降低,药物的消除速率也下降。

零级动力学即零级速率过程。其特点是药物的转运速率与该部位药量(或浓度)的零

次方成正比,即为恒定的,与所在部位的药量(或浓度)无关。零级速率过程多数情况下是

因药量过大而超过机体最大处理能力所致。

非线性动力学在治疗剂量时,大多数药物的药代动力学符合一级速率过程。但也有些

药物如乙醇和苯妥英钠等,在大剂量时其体内过程出现非线性动力学过程。因为药物在体内

的某些过程,如药物代谢或经肾小管分泌而转运的过程中,通常有酶或载体系统参与,这些

系统具有一定的容量限度。当大剂量时,消除过程出现饱和现象。低浓度时,符合线性过程。

吸收药物自给药部位进入血液循环的过程。除直接注入血管者外,一般给药方法都要

经过吸收过程。

吸收的途径皮下或肌肉注射给药通过毛细血管壁吸收,一般吸收快速而完全。口服给

药通过胃肠粘膜吸收,虽弱酸性药物可在胃中吸收,但大部分仍在肠中吸收。药物在胃肠吸

收的途径主要是经过毛细血管进入肝门静脉。某些药物在通过肠粘膜及肝脏灭活代谢后,进

入体循环的药量减少,这种作用称为首过效应。经淋巴吸收的药物较少。舌下含锭、经肛灌

肠及栓剂由于接触面小,吸收量较口服的少;但由于不经肝门静脉,药物破坏少,作用较快。

挥发性药物和气体如乙醚和亚硝酸异戊酯等,经肺泡吸收,速度快。除少数脂溶性极大的有

机溶剂、有机磷酸酯等外,皮肤对大多数药物不吸收。

影响吸收的因素影响药物吸收的因素一方面来自药物,包括药物的物理化学性质、剂

型及对组织的亲和力等;另一方面来自机体,包括胃肠蠕动情况、胃内容物、胃排空速度及

注射部位的血流情况等。

生物利用度用以描述药物吸收进入血液循环的量和速度的概念,又称全身利用度。评

定药物的生物利用度用三项药代动力学参数,即峰浓度、峰时间和药-时曲线下面积(AUC)。峰浓度指药物在血液中达到的最高浓度;峰时间指达到最高浓度的时间;AUC指药物进入血液循环后至全部原型药物排出体外过程中药-时曲线下的面积。峰浓度和峰时间衡量药物被吸收利用的速度,而AUC描述药物吸收利用的程度。图1为口服同一药物相同剂量的不同制剂得到的三条药-时曲线,三种制剂被吸收的速度明显不同,制剂□吸收太快以致峰浓度达到中毒浓度;制剂□则吸收太慢,峰浓度处于有效浓度之下;而制剂□的吸收居于前二者之间,峰浓度在有效浓度范围内。三者的吸收速度不同,但AUC相同,表明其被吸收利用的程度相同。

生物利用度对临床治疗具有重要意义。以阿司匹林为例,当治疗的目的是快速止疼时,宜选用曲线□的制剂,如水溶性阿司匹林。对于风湿性关节炎的长期用药治疗则宜选用曲线□的制剂如肠溶阿司匹林,因为该制剂虽单次给药时未达有效浓度,但多次给药后其蓄积浓度可达有效浓度且维持时间长。有时曲线□的制剂也具治疗意义,如舌下给三硝酸甘油,大量快速吸收可使心绞痛症状迅速缓解,但也会因达中毒浓度而导致副反应,如头痛。

分布药物吸收后首先进入血液循环,然后向机体有关部位转运的过程。药物在体内的分布多数是不均匀的,且处于动态平衡中,随着其吸收和消除不断变化着。药物在全身分布的规律决定着药物在靶器官(作用器官)的浓度,从而决定着其药理作用的强度及持续时间。

影响药物分布的因素大致有以下几方面:

①药物的物理化学性质。主要包括分子大小、脂溶性、解离度、酸碱性、药物与组织的亲和力及稳定性等,均影响药物的分布。

②局部组织器官血流量。药物在组织器官中分布达到平衡的速度主要取决于通过该组织器官的血流速度。通常心、肺、脑、肝、肾等血流较快,分布达到平衡较快;肌肉次之;脂肪组织很慢。根据药物在不同组织器官中分布速度的差异情况可将机体视为一室或多室模型。

③与血浆蛋白的结合。药物进入血液后,或多或少地与血浆蛋白结合。结合型药物失去活性。由于药物与血浆蛋白结合,使血中游离药物浓度下降,有利于继续吸收;结合后的药物不易穿透毛细血管壁、各种细胞膜屏障及肾小球,可限制其进一步转运,减慢消除。药物的血浆蛋白结合产物是疏松的、可逆的,与游离型(未与蛋白结合者)处于动态平衡中,因而是一种在体内的暂时储存形式。血浆蛋白与药物的结合具有一定的限度,达到饱和后继续增加剂量会导致游离药物浓度迅速升高而引起中毒。临床用药时要考虑药物血浆蛋白结合的情况。

④细胞膜屏障。它是影响药物分布的重要因素,如血脑屏障和胎盘屏障。以血脑屏障为例,许多分子较大、极性较强的药物分子不能穿过血脑屏障进入脑组织。当药物与血浆蛋白结合后分子变大也不能穿过血脑屏障。磺胺噻唑(ST)与血浆蛋白结合多,透过血脑屏障进入脑脊液少,而磺胺嘧啶(SD)与血浆蛋白结合少,进入脑脊液多,故治疗流行性脑脊髓膜炎时应选用SD。

此外,机体的病理状况及合并用药等都可影响药物的分布。

表观分布容积(Vd)反映药物在体内分布程度的药代动力学参数。Vd是体内药量与血药浓度的比值。Vd是假定药物在体内均匀分布情况(即各组织浓度与血浓度相等)下的分布容积。加“表观”二字,是因为这个容积并不等于机体中真正的容积数值。虽然有些药物的Vd值与已知的体液容积相似,但也有许多药物的Vd值大于或远大于总体液量,如心得安的Vd值大药为3L/kg体重(体液约为0.6L/kg体重)。药物的Vd值越大,表明药物在组织中分布越广泛。利用Vd值,可根据血浆浓度算出体内药量,也可以估算欲达到某个血药浓度应选用的剂量或用一定剂量后某一时间的血药浓度,从而制订合理的给药方案。

代谢药物在体内发生结构转化的过程,又称生物转化。大多数药物代谢发生在肝脏,

相关文档
最新文档