垂径定理、圆心角、弧、弦、弦心距间的关系

合集下载

24.1.3弧、弦、圆心角的关系

24.1.3弧、弦、圆心角的关系



相等
相等
思考:如图,在等圆中,如果∠AOB=∠A′O ′ B′, 你发现的等量关系是否依然成立?为什么?
A
B
A′
B′Leabharlann ·O· O′由∠AOB=∠A′O ′ B′︵可得到:︵
AB A' B '.
AB A' B '.
小结
弧、弦与圆心角的关系定理
在同圆或等圆中,相等的圆心角所对的弧相等, 所对的弦也相等.
圆心角 相等
(1)如果AB=CD,那么_A__B___=__C__D_,_____A_O_B_____C_O_D___.
(2)如果 AB = CD ,那么___A_B_=__C_D____,__A_O_B_____C_O__D_. (3)如果∠AOB=∠COD,那么___A_B___=___C_D__,___A_B_=__C_D_.
弧 相等
弦 相等
思考
定理“在同圆或等圆中,相等的圆心角所对的 弧相等,所对的弦也相等.”中,可否把条件 “在同圆或等圆中”去掉?为什么?
温馨提示:
由弦相等推出弧相等时, 这里弧一般要求 都是优弧或劣弧
探究二 在同圆中, ︵︵ (1)、如果 AB A' B '. 那么∠AOB=∠A′OB ′, AB A' B '. 成立吗 ?
(4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE与OF相等吗?
为什么? 答 :OE﹦OF 证明:∵ OE⊥AB OF ⊥CD
A
E
B
·O
D
∵ AB﹦CD ∴ AE﹦CF
F
∵ OA﹦OC ∴ RT△AOE≌RT △COF C
∴ OE﹦OF

垂径定理、圆心角、弧、弦、弦心距间的关系 人教版

垂径定理、圆心角、弧、弦、弦心距间的关系 人教版

垂径定理、圆心角、弧、弦、弦心距间的关系一. 本周教学内容:垂径定理、圆心角、弧、弦、弦心距间的关系[学习目标]1. 理解由圆的轴对称性推出垂径定理,概括理解垂径定理及推论为“知二推三”。

(1)过圆心,(2)垂直于弦,(3)平分弦,(4)平分劣弧,(5)平分优弧。

已知其中两项,可推出其余三项。

注意:当知(1)(3)推(2)(4)(5)时,即“平分弦的直径不能推出垂直于弦,平分两弧。

”而应强调附加“平分弦(非直径)的直径,垂直于弦且平分弦所对的两弧”。

2. 深入理解垂径定理及推论,为五点共线,即圆心O,垂足M,弦中点M,劣弧中点D,优弧中点C,五点共线。

(M点是两点重合的一点,代表两层意义)COA BMD3. 应用以上定理主要是解直角三角形△AOM,在Rt△AOM中,AO为圆半径,OM为弦AB的弦心距,AM为弦AB的一半,三者把解直角形的知识,借用过来解决了圆中半径、弦、弦心距等问题。

无该Rt△AOM时,注意巧添弦心距,或半径,构建直角三角形。

4. 弓形的高:弧的中点到弦的距离,明确由定义知只要是弓形的高,就具备了前述的(4)(2)或(5)(2)可推(1)(3)(5)或(1)(3)(4),实际可用垂径定理及推论解决弓形高的有关问题。

5. 圆心角、弧、弦、弦心距四者关系定理,理解为:(1)圆心角相等,(2)所对弧相等,(3)所对弦相等,(4)所对弦的弦心距相等。

四项“知一推三”,一项相等,其余三项皆相等。

源于圆的旋转不变性。

即:圆绕其圆心旋转任意角度,所得图形与原图象完全重合。

()()()()1234⇔⇔⇔O B'M'A' BMA6. 应用关系定理及推论,证角等,线段等,弧等,等等,注意构造圆心角或弦心距作为辅助线。

7. 圆心角的度数与弧的度数等,而不是角等于弧。

二. 重点、难点:垂径定理及其推论,圆心角,弧,弦,弦心距关系定理及推论的应用。

【典型例题】例1. 已知:在⊙O 中,弦AB =12cm ,O 点到AB 的距离等于AB 的一半,求:∠AOB 的度数和圆的半径。

垂径定理与圆心角

垂径定理与圆心角

9.垂径定理与圆心角垂径定理知识点梳理【知识点一】垂径定理1.圆的轴对称:圆是轴对称图形,每一条过圆心的直线都是它的对称轴。

2.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

3.弧的中点:分一条弦成相等的两条弧的点,叫做这条弧的中点。

4.弦心距:圆心到圆的一条弦的距离叫做弦心距。

【知识点二】垂径定理的逆定理1.定理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

2.定理2:平分弧的直径垂直平分弧所对的弦。

典例分析【题型一】利用垂径定理进行计算【例1】如图,在⊙O中,AB,AC为互相垂直且相等的两条弦,OD丄AB ,0E丄AC,垂足分别为 D,E.若 AC=AB=2 cm,求⊙O的半径.【变式1】如图⊙O的直径AB =16 cm,P是0B的中点,∠APD=30°,求CD的长.【题型二】在直角坐标系中利用垂径定理求点的坐标【例1】如图,以点P为圆心的圆弧与x轴交于A,B两点,点P的坐标为(4,2) ,点A的坐标为(2,0) ,则点B的坐标为_______【变式1】如图在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A 两点,点A的坐标为(6,0),⊙P的半径为13,则点P的坐标为_________【题型三】应用垂径定理等分弧【例1】如图为一自行车内胎的一部分,如何利用所学知识将它平均分给四个小朋友做玩具?【变式1】小云出黑板报时遇到了一个难题,在版面设计过程中需要将一个半圆面三等分.如图,请帮她设计一个合理的等分方案,要求尺规作图,保留作图痕迹。

【题型四】垂径定理的实际应用【例1】某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图,污水水面宽度为60 cm,水面至管道顶部距离为10 cm,问:修理人员应准备内径多大的管道?【变式1】如图是一条水平铺设的直径为2 m的通水管道横截面,其水面宽1.6 m,则这条管道中此时最深为__________m【题型五】利用垂径定理求最值【例1】如图3-3-15 , ⊙O 的半径为5 ,弦AB 的长为8,M 是弦価上的一个动点,则线段0M 长的最小值为( ).A.2B.3C.4D.5【变式1】如图,在⊙O 中,AB 是⊙O 的直径,AB = 8 cm,AC =CD =BD ,M 是AB 上一动点,CM 十DM 的最小值为______cm【题型六】与垂径定理有关的分类讨论问题【例1】已知点 A,B,C 都在⊙O 上,且 AB=AC,圆心O 到BC 的距离为6 cm,圆的半径为l4 cm,求AB 的长.【变式1】已知⊙O 的直径CD=10 cm ,AB 是⊙O 的弦,AB= 8 cm,且AB 丄CD,垂足为点 M,则 AC 的长为( ). A.52cm B.54cm C.52cm 或54cm D.32cm 或34cm【变式2】已知,⊙O 的半径是5,AB, CD 为⊙O 的两条弦,且 AB ∥CD, AB=6, CD = 8,求 AB, CD 间的距离。

圆的垂径定理

圆的垂径定理

圆的垂径定理定理是经过受逻辑限制的证明为真的陈述。

一般来说,在数学中,只有重要或有趣的陈述才叫定理。

证明定理是数学的中心活动。

圆作为数学中常用的图像,有十八个基本定理。

圆的十八个定理1、圆心角定理:在同圆或等圆中,成正比的圆心角所对弧成正比,面元的弦成正比,面元的弦的弦心距成正比。

推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中存有一组量成正比那么它们所对应的其余各组量都成正比2、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。

推断1:同弧或等弧所对的圆周角成正比;同圆或等圆中,成正比的圆周角面元的弧也成正比推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所推断3:如果三角形一边上的中线等同于这边的一半,那么这个三角形就是直角三角形3、垂径定理:垂直弦的直径平分该弦,并且平分这条弦所对的两条弧。

推断1:①平分弦(不是直径)的直径旋转轴弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧推断2 :圆的两条平行弦所缠的弧成正比4、切线之判定定理:经过半径的外端并且垂直于该半径的直线是圆的切线。

5、切线短定理:从铅直一点引圆的两条切线,他们的切线短成正比,这一点与圆心的连线平分这两条切线的夹角。

6、公切线长定理:如果两圆有两条外公切线或两条内公切线,那么这两条外公切线长相等,两条内公切线长也相等。

如果他们相交,那么交点一定在两圆的连心线上。

7、平行弦定理:圆内两条弦平行,被交点分为的两条线段长的乘积成正比。

8、切割线定理:从圆外一点向圆引一条切线和一条割线,则切线长是这点到割线与圆的两个交点的两条线段长的比例中项。

9、割线短定理:从铅直一点向圆引两条割线,这一点至每条割线与圆的交点的两条线段长的积成正比。

10、切线的性质定理:圆的切线垂直于经过切点的半径推断1 :经过圆心且旋转轴切线的直线必经过切点推论2:经过切点且垂直于切线的直线必经过圆心11、弦切角定理:弦切角等同于它所缠的弧对的圆周角推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等12、定理:平行两圆的连心线垂直平分两圆的公共弦13、定理:把圆分成n(n≥3):⑴依次联结各分点税金的多边形就是这个圆的内arccosn边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形14、定理:任何正多边形都存有一个外接圆和一个内切圆,这两个圆就是同心圆15、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆16、定理:正n边形的半径和边心距把也已n边形分为2n个全等的直角三角形17、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

垂径定理-弦-弧-圆心角-圆周角-

垂径定理-弦-弧-圆心角-圆周角-

圆的对称性,圆周角1. 圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。

2. 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。

上述五个条件中的任何两个条件都可推出其他三个结论。

3. 定理:在同圆或等圆中,相等的圆心角所对的弧相等、所对的弦相等、所对的弦心距相等。

推论: 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.圆周角和圆心角的关系:1. 圆周角的定义:顶点在圆上,并且两边都与圆相交的角,叫做圆周角.2. 圆周角定理; 一条弧所对的圆周角等于它所对的圆心角的一半.推论1: 同弧或等弧所对的圆周角相等;反之,在同圆或等圆中,相等圆周角所对的弧也相等; 推论2: 半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径;1、如图,如果AB 为⊙O 的直径,弦CD ⊥AB ,垂足为E ,那么下列结论中,•错误的是(A 、CE=DEB 、 BCBD = C 、∠BAC=∠BAD D 、AC >AD2、如图,⊙O 的直径为10,圆心O 到弦AB 的距离OM的长为3,则弦AB 的长是(A 、4 B 、6 C 、7 D 、83、某居民小区一处圆形下水管道破裂,维修人员准备更换一段新管道,如图所示,污水水面宽度为60cm ,水面到管道顶部距离为10cm,则修理人员应准备_________cm 内径的管道(内径指内部直径). 4、如图,一条公路的转弯处是一段圆弦(即图中 CD,点O 是 CD 的圆心,•其中CD=600m ,E 为 CD 上一点,且OE ⊥CD ,垂足为F ,EF=90m ,求这段弯路的半径.5、如图,⊙O 直径AB 和弦CD 相交于点E ,AE=2,EB=6,∠DEB=30°,求弦CD 长.6、如图,已知AB 是⊙O 的直径,AC 为弦,D 是AC 的中点,6BC cm =,求OD 的长.7. 已知:AB 交圆O 于C 、D ,且AC =BD.你认为OA =OB 吗?为什么?第4题CE OA DB 8. 等腰三角形ABC 中,B 、C 为定点,且AC=AB ,D 为BC 中点,以BC 为直径作圆D 。

垂径定理和圆周角圆心角

垂径定理和圆周角圆心角

一、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

推论2:圆的两条平行弦所夹的弧相等。

即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD 二、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。

此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论, 即:①AOB DOE ∠=∠;②AB DE =;③OC OF =;④ 弧BA =弧BD 三、圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。

即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角 ∴2AOB ACB ∠=∠2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧; 即:在⊙O 中,∵C ∠、D ∠都是所对的圆周角 ∴C D ∠=∠推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。

即:在⊙O 中,∵AB 是直径 或∵90C ∠=︒ ∴90C ∠=︒ ∴AB 是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

即:在△ABC 中,∵OC OA OB ==DBABA∴△ABC 是直角三角形或90C ∠=︒注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等. 四、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。

24.1.2-3圆的垂直定理及弦、弧、圆心角

24.1.2-3圆的垂直定理及弦、弧、圆心角

B
(4)
(5)
填空:
1、如图:已知AB是⊙O的直径,弦CD与AB相交于点E,若 AB⊥CD(或AC=AD,或BC=BD) _____________________________________________________ , 则CE=DE(只需填写一个你认为适当的条件) 2、如图:已知AB是⊙O的弦,OB=4cm,∠ABO=300,则O 到AB的距离是___________cm ,AB=_________cm. 2 4 A C E 。 O B 第1题图 D 。 O H
⌒ ⌒ = AOB COD . (1)如果AB=CD,那么___________ AB CD ,_________________ AOB COD AB=CD (2)如果 ⌒ = ⌒ ,那么____________ , ______________ . AB CD ⌒ =⌒ AB=CD
又因为OE
所以
、OF是AB与CD对应边上的高,
O
·
F
D
OE = OF.
C
⌒ = ⌒ , ∠COD=35°, = 2.如图,AB是⊙O的直径, ⌒ BC CD DE
求∠AOE的度数.
解: E D C A

⌒ =⌒ = BC CD DE
BOC=COD=DOE=35
O
·
AOE 180 3 35
A O· B 如图中所示, ∠AOB就是一个圆心角。
三、探究
如图,将圆心角∠AOB绕圆心O旋转到∠A’OB’的位置,你能 发现哪些等量关系?为什么? A′ A′ B B B′ B′
O
·
A
O
·
A
根据旋转的性质,将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置时,显然 ∠AOB=∠A′OB′,射线OA与OA′重合,OB与OB′重合.而同圆的半径相等, OA=OA′,OB=OB′,从而点A与A′重合,B与B′重合.

【说课稿】 圆心角、弧、弦、弦心距间的关系(3)

【说课稿】 圆心角、弧、弦、弦心距间的关系(3)

圆心角、弧、弦、弦心距间的关系教材分析:本课是沪科版九年级下册第24章第二节圆的有关性质,它是在学习了垂径定理后进而要学习的圆的又一个重要性质。

主要研究弧,弦,圆心角的关系。

教材中充分利用圆的对称性,通过观察,实验探究出性质,再进行证明,体现图形的认识,图形的变换,图形的证明的有机结合。

在证明圆的许多重要性质时都运用了圆的旋转不变性。

同时弧,弦,圆心角的关系定理在后继证明线段相等,角相等,弧相等提供了又一种方法。

重点:圆心角、弧、弦之间的相等关系难点:从圆的旋转不变性出发,得到圆心角,弦,弧之间的相等关系。

目的分析:知识与技能目标:(1)让学生在实际操作中发现并理解圆的旋转不变性。

(2)结合图形让学生理解圆心角的概念,学会辨别圆心角。

(3)引导学生发现圆心角、弧、弦之间相等关系,并初步学会运用这些关系解决有关问题。

过程与方法目标:培养学生观察,分析,归纳的能力,渗透旋转变化的思想及有特殊到一般的变化规律。

情感与态度目标:进一步培养学生的合情推理能力,发展学生的逻辑思维能力和推理论证的表达能力,同时对学生渗透事物之间是可相互转化的辨证唯物主义教育。

教法分析:1.学情:由于圆的知识是轴对称及旋转知识的后续学习,学生又有一定圆的相关概念,计算的知识储备,因此学习本节难度不是太大。

由于学生对圆的旋转不变性不甚了解,所以在探讨圆心角、弧、弦之间的相等关系时可能感到困难,另外对等弧等的理解可能不透彻,我会做直观的示范;初始阶段在证明角相等,线段相等等有关问题时受思维定势的影响,学生往往会走利用“三角形全等”的老路,这时我会有意识引导,针对性训练构建学生头脑中新的知识网络。

2.教学活动是教与学双边互动过程,必须充分发挥学生的主体和教师的主导作用,因此教学目标的达成,需优选教学法,根据学生的学情,本节课在探究圆心角,弦,弧之间的相等关系我采用发现模式,基本程序是:观察实践——概括归纳——重点研讨——推理反思。

这种教学模式注重知识的形成过程,有利于体现学生的主体地位和分析问题的方法,例题教学时采用讲授模式,一方面通过新知识的讲解练习,及时反馈,查缺补漏,使学生树立信心,培养学习能力,另一方面对大面积提高教学质量也是有意的。

垂径定理

垂径定理

垂径定理1.弦心距:(1)圆心到弦的距离叫做弦心距。

(2)圆心角、弧、弦、弦心距之间的相等关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的圆心角也相等,所对弦的弦心距也相等。

四者有一个相等,则其他三个都相等。

圆心到弦的垂线段的长度称为这条弦的弦心距。

2.垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

(2)平分弦(此弦不能是直径)的直径垂直于弦,并且平分弦所对的两条弧。

(3)弦的垂直平分线过圆心,且平分弦对的两条弧。

(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦(5)平行弦夹的弧相等。

1.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,求球的半径。

2.如图,AB是半圆的直径,O是圆心,C是半圆上一点,D是弧AC中点,OD交弦AC于E,连接BE,若AC=8,DE=2,求(1)求半圆的半径长;(2)BE的长度。

3.如图,小明将一块三角板放在⊙O上,三角板的一直角边经过圆心O,测得AC=5cm,AB=3cm,求⊙O的半径1、(2011年北京四中中考模拟18)已知:如图1,AB是⊙O的弦,半径OC图1⊥AB 于点D ,且AB=8m ,OC=5m ,则DC 的长为( )A 3cmB 2.5cmC 2cmD 1cm2、(2011年北京四中中考模拟20)如图,C 是以AB 为直径的⊙O 上一点,已知AB=5,BC=3,则圆心O 到弦BC 的距离是( )A 、1.5B 、2C 、2.5D 、33、(2011年浙江杭州五模)如图,圆O 过点B、C,圆心O在等腰直角ABC∆的内部,090,1,6BAC OA BC ∠===,则圆O 的半径为( ) A、13 B、13 C、6 D、213AOB C第3题图 4、(2011年浙江杭州六模)如图,把⊙O 1向右平移8个单位长度得⊙O 2,两圆相交于A.B ,且O 1A ⊥O 2A ,则图中阴影部分的面积是( )A.4π-8 B . 8π-16 C.16π-16 D. 16π-325.(2011年重庆江津区七校联考)如图,一条公路的转弯处是一段圆弧(图中的AB 弧),点O 是这段弧的圆心,AB =120m ,C 是AB 弧上一点,OC ⊥AB 于D ,CD =20m ,则该弯路的半径为________米6. (2011浙江慈吉 模拟)如图,△ABC 内接于⊙O , ∠B=42°, 则∠OCA=__________.7.(2011年杭州市西湖区)工程上常用钢珠来测量零件上小孔的宽口,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图所示,则这个小孔的宽口AB 是 mm .8.(2011年北京中考)一个圆形花圃的面积为300лm 2,你估计它的半径为 (误差小于0.1m )9.(2011年北京四中中考模拟19)在平面直角坐标系中,圆心O 的坐标为(-3,4),以半径r 在坐标平面内作圆,(1)当r 时,圆O 与坐标轴有1个交点;C A B OC A BO 第4题O C B A 第6题图 B A 8mm 第7题D C B A O 第5题图(2)当r 时,圆O与坐标轴有2个交点;(3)当r 时,圆O与坐标轴有3个交点;(4)当r 时,圆O与坐标轴有4个交点;10.(2011年黄冈市浠水县中考调研试题)在半径为5的⊙O中,有两平行弦AB.CD,且AB=6,CD=8,则弦AC的长为__________.AB与CD间距离为。

垂径定理

垂径定理

(1) 垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.(2) 垂径定理的推论:平分弦(不是直径)的直径垂直弦,并且平分弦所对的两条弧. (3) 圆中最长弦和最短弦问题(4)弧、弦、弦心距、圆心角关系定理:在等圆或同圆中,相等圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.(5) 弧、弦、弦心角、圆心角关系定理推论: 在等圆或同圆中 ,如果两个圆心角,两条弧,两条弦或两条弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.(6) 圆周角定理: 在等圆或同圆中 ,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半.(7) 切线的判定定理:经过半径的外端点且垂直于这条半径的直线是圆的切线. (8) 切线的性质定理:圆的切线垂直于过切点的半径. (9) 在等圆或同圆中 ,同弦所对的圆周角相等或者互补.(10) 切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.∙习题练习∙1. 过o 内一点M 的最长的弦为10cm,最短的弦长为8cm,求OM 的长?2. 若两圆的半径分别为3cm 和 4 cm ,则这两个圆相切时圆心距为3. 如图,已知A 、B 、C 是⊙O 上的三点,若∠ACB=44°,则∠AOB 的度数为4.如图,一宽为2cm 的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm ),则该圆的半径为 cm 。

5. 如图,矩形ABCD 中,BC= 2 , DC = 4.以AB 为直径的半圆O 与DC 相切于点E ,则阴影部分的面积为 (结果保留л)6. 林业工人为调查树木的生长情况,常用一种角卡为工具,可以很快测出大树的直径,其工作原理如图所示.现已知∠BAC =60°,AB=0.5米,则这棵大树的直径为 _________米.7.在o 中,90的圆心角所对的弧长是2πcm,则o 的半径是________cm.确定圆的条件不共线的三点确定一个圆三角形的外接圆 圆与圆有关的位置关系圆的定义,弧、弦等概念点和圆的位置关系点在圆上d r ⇔=点在圆外d r ⇔>点在圆内d r ⇔<判定性质 切线长定理三角形的内切圆相交d r ⇔<相切d r ⇔= 相离d r ⇔>直线与圆的位置关系基本性质垂径定理及其推论圆的对称性弧、弦、弦心距、圆心角关系定理及其推论 圆周角定理及其推论相交R r d R r ⇔-<<+ 相切的两圆的连心线过切点 相交的两圆的连心线垂直平分相交弦外离d R r ⇔>+ 内含d R r ⇔<+ 外切d R r ⇔=+ 内切d R r ⇔=-相交 相切相离圆与圆的位置关系圆内接正多边形正多边形与圆正多边形的有关计算圆内接正多边形作法----等份圆扇形的弧长、面积正多边形的半径、边心距、正多边形的内角、中心角、外角、正多边形的正三、六、十二边形 正四、八边形180n Rl π=213602n R S lR π==扇形 正多边形和圆。

垂径定理、圆心角、弧、弦、弦心距间的关系

垂径定理、圆心角、弧、弦、弦心距间的关系

垂径定理、圆心角、弧、弦、弦心距间的关系[学习目标]1. 理解由圆的轴对称性推出垂径定理,概括理解垂径定理及推论为“知二推三”。

(1)过圆心,(2)垂直于弦,(3)平分弦,(4)平分劣弧,(5)平分优弧。

已知其中两项,可推出其余三项。

注意:当知(1)(3)推(2)(4)(5)时,即“平分弦的直径不能推出垂直于弦,平分两弧。

”而应强调附加“平分弦(非直径)的直径,垂直于弦且平分弦所对的两弧”。

2. 深入理解垂径定理及推论,为五点共线,即圆心O,垂足M,弦中点M,劣弧中点D,优弧中点C,五点共线。

(M点是两点重合的一点,代表两层意义)3. 应用以上定理主要是解直角三角形△AOM,在Rt△AOM中,AO为圆半径,OM为弦AB的弦心距,AM为弦AB的一半,三者把解直角形的知识,借用过来解决了圆中半径、弦、弦心距等问题。

无该Rt△AOM时,注意巧添弦心距,或半径,构建直角三角形。

4. 弓形的高:弧的中点到弦的距离,明确由定义知只要是弓形的高,就具备了前述的(4)(2)或(5)(2)可推(1)(3)(5)或(1)(3)(4),实际可用垂径定理及推论解决弓形高的有关问题。

5. 圆心角、弧、弦、弦心距四者关系定理,理解为:(1)圆心角相等,(2)所对弧相等,(3)所对弦相等,(4)所对弦的弦心距相等。

四项“知一推三”,一项相等,其余三项皆相等。

源于圆的旋转不变性。

即:圆绕其圆心旋转任意角度,所得图形与原图象完全重合。

6. 应用关系定理及推论,证角等,线段等,弧等,等等,注意构造圆心角或弦心距作为辅助线。

7. 圆心角的度数与弧的度数等,而不是角等于弧。

二. 重点、难点:垂径定理及其推论,圆心角,弧,弦,弦心距关系定理及推论的应用。

【典型例题】例1. 已知:在⊙O中,弦AB=12cm,O点到AB的距离等于AB的一半,求:∠AOB的度数和圆的半径。

点悟:本例的关键在于正确理解什么是O点到AB的距离。

解:作OE⊥AB,垂足为E,则OE的长为O点到AB的距离,如图所示:由垂径定理知:∴△AOE、△BOE为等腰直角三角形∴∠AOB=90°由△AOE是等腰直角三角形即⊙O的半径为点拨:作出弦(AB)的弦心距(OE),构成垂径定理的基本图形是解决本题的关键。

第3课时 圆心角、弧、弦、弦心距间关系

第3课时 圆心角、弧、弦、弦心距间关系

教学设计活动四:课堂总结反思【知识网络】提纲挈领,重点突出.【教学反思】①[授课流程反思]在探究新知的过程中,让学生通过观察、猜想、证明、归纳的学习过程,轻松直观地学习新的知识,在应用提高的过程中,让数学充满趣味,提高课堂效率.②[讲授效果反思]教师引导学生注意:(1)应用定理的前提条件是“在同圆或等圆中”;(2)证明弦相等,可以考虑证明弦所对的圆心角或弧相等的思维方法.③[师生互动反思]从课堂学生发言和表现来看,课堂设计合理,问题有层次性,学生经过思考后能够独立解答相应的问题,形象化的演示给学生带来很大帮助.④[习题反思]好题题号__________________________________________错题题号__________________________________________反思教学过程和教师表现,进一步提升操作流程和自身素质.第3课时圆心角、弧、弦、弦心距间关系(一)学习目标:1.知道圆的旋转不变性;2.熟记圆心角、弧、弦、弦心距关系定理及其推论,并能应用它们解决一些问题.学习重点:圆心角、弧、弦、弦心距关系定理.预设难点:对圆心角、弧、弦、弦心距之间的关系定理中的“在同圆或等圆”的前提条件的理解.☆预习导航☆一、链接1.弧、弦、等弧的定义.2.一个圆沿着它的圆心旋转任意一个角度,都能够与原来的图形互相重合,因此我们说圆是____________,同时圆还具有一条特殊性质——旋转不变性.二、导读阅读教材内容,回答问题.1.什么叫圆心角、弦心距?2.圆心角、弧、弦、弦心距之间关系(1)指出图24-2-94中圆心角∠AOB 所对的弧是________,所对的弦是________,所对弦的弦心距是________.图24-2-943.⎭⎪⎬⎪⎫在同圆或等圆中得到①两个圆心角相等⇨⎩⎪⎨⎪⎧②两条 相等③两条 相等④两条弦的 相等由前面定理的推理过程不难发现,若将上面的①与②、③、④中的任意一个调换位置,得到的新的命题都是真命题.因此有该定理的推论:______________________________________________________. ☆ 合作探究 ☆1.如图24-2-95,点O 是∠EPF 的平分线上的一点,以O 为圆心的圆和角的两边分别交于点A ,B 和C ,D.求证:AB =CD.图24-2-952.如果将1题中的∠EPF 的顶点P 看成是沿着PO 这条直线运动,(1)当顶点P 在⊙O 上时;(2)当顶点P 在⊙O 内部时,是否还能得到AB =CD?图24-2-96☆ 归纳反思 ☆1.这节课主要学习了两部分内容:一是证明了圆是________图形,得到圆的特性——圆的旋转不变性;二是学习了在同圆或等圆中,________、________、________、________之间的关系定理及推论.这些内容是我们今后证明弧相等、弦相等、角相等的重要依据.2.在运用定理及推论解题时,必须注意要有“在同圆或________中”这一前提条件. ☆ 达标检测 ☆1.如图24-2-97,AB ,CD 是⊙O 的两条弦,OE ,OF 分别为AB ,CD 的弦心距.根据本节定理填空:(1)若AB =CD ,则________,________,________; (2)若OE =OF ,则________,________,________;(3)若AB ︵=CD ︵,则________,________,________;(4)若∠AOB =∠COD ,则________,________,________.图24-2-97 图24-2-982. 判断题:下列说明正确吗?为什么?(1)如图24-2-98,因为∠AOB =∠A′OB′,所以AB ︵=A ′B ′︵. (2)在⊙O 和⊙O′中,如果弦AB =A′B′.那么AB ︵=A ′B ′︵.第3课时 圆心角、弦、弧、弦心距间关系(二)学习目标:1.进一步运用垂径定理及其推论,圆心角、弧、弦、弦心距关系定理进行有关的计算和证明.2.了解1°的弧的概念并能进行有关圆心角和弧的度数的计算. 学习重点:垂径定理和圆心角、弧、弦、弦心距关系定理的应用.预设难点:垂径定理和圆心角、弧、弦、弦心距关系定理的应用. ☆ 预习导航 ☆ 一、链接1.垂直于弦的直径________,并且平分弦所对的________. 2.平分弦(________)的直径________,并且平分________.3.在同圆等圆中,相等的圆心角所对的__________,所对的__________,所对弦的________也相等.4.在________中,圆心角相等⇔弧相等⇔弦相等⇔弦心距相等. 二、导读阅读教材内容,回答问题.1.把顶点在圆心的周角等分成360份,每一份的圆心角是1°的角,根据定理整个圆周也被等分成360份,每一份这样的弧叫做________.2.一般的,n °的圆心角对着________,____________________. 也就是说,__________________________. ☆ 合作探究 ☆ 1.在半径为1的⊙O 中,弦AB ,AC 的长分别是3和2,求∠BAC 的度数.2.如图24-2-99,AB ,AC ,BC 都是⊙O 的弦,∠AOC =∠BOC.∠ABC 与∠BAC 相等吗?为什么?图24-2-99☆ 归纳反思 ☆1.在同圆或等圆中,相等的圆心角所对的________、________、________.2.在运用定理及推论解题时,必须注意要有“在同圆或________中”这一前提条件. 3.圆心角的度数和它所对的________的度数相等. ☆ 达标检测 ☆ 1.判断正误:(1)等弧的度数相等.( )(2)相等的圆心角所对的弧相等.( )(3)两条弧的长度相等,则这两条弧所对应的圆心角相等.( )2.同圆中,若AB ︵=2CD ︵,则AB 与2CD 的大小关系是( ) A .AB>2CD B .AB<2CD C .AB =2CD D .不能确定3.(1)度数是5°的圆心角所对的弧的度数是多少?为什么? (2)5°的圆心角对着多少度的弧?5°的弧对着多少度的圆心角? (3)n °的圆心角对着多少度的弧?n °的弧对着多少度的圆心角?。

24.1.2-3圆的垂直定理及弦、弧、圆心角

24.1.2-3圆的垂直定理及弦、弧、圆心角
C
A
M└

B O

你可以写出相应的命题吗? 相信自己是最棒的!
D
C
垂径定理及推论
条件 ①② ①③ 结论 命题
A
M└

B
O
③④⑤ 垂直于弦的直径平分弦,并且平分弦所的两条弧. D ②④⑤ 平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两条弧 .
①④
①⑤ ②③ ②④ ②⑤
②③⑤ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的 ②③④ 另一条弧.
A C O D A C O B (2) D A C


O B
(1) B
(3) D
(4)弦的垂直平分线一定是圆的直径。

(5)平分弧的直线,平分这条弧所对的 弦。 (6)弦垂直于直径,这条直径就被弦平分。
(7)平分弦的直径垂直于弦
C B O A C B C O A D A O E D (6)
AB CD ,____________. (3)如果∠AOB=∠COD,那么_____________ 相 等
A E B
(4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE与OF相等吗?为什么? 因为AB=CD ,所以∠AOB=∠COD. 又因为AO=CO,BO=DO, 所以△AOB ≌ △COD.
练习
D
在下列图形中,你能否利用垂径定理 找到相等的线段或相等的圆弧
A
B E A
O
O
C C
B
C
B
D
O E C B
O
D
A
E D
B
A
E C
B
一、判断是非: (1)平分弦的直径,平分这条弦所对的弧。

垂径定理与弧、弦关系

垂径定理与弧、弦关系

垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧(4)圆的两条平行弦所夹的弧相等弧、弦、弦心距之间的关系:圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距相等。

推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。

考点分析:在上述两个定理中,都有四组量,两个圆心角,两条弧、两条弦或两条弦的弦心距,只要其中的任一组量相等,那么其余三组量也分别相等,简记为“知一推三”。

基础练习1.⊙O的直径AB垂直于弦CD,AB、C D相交于,∠COD=100°,则∠COE、∠DOE的度数分别为:。

2.AB是⊙O的直径,弦C D⊥AB,BC=1cm,AD=4cm,3.则BD=cm,AC=cm,⊙O的周长为cm4.下列说法中正确的有:()个(1)垂直平分弦的直线经过圆心;(2)平分弦的直径一定垂直与弦;(3)垂直于弦的直径平分弦所对的两条弧;(4)垂直于弦的直径必平分弦;(5)弦垂直于直径,这条直径就被弦平分。

(6)A、1 B、2 C、3 D、45.下列命题中,正确的命题是()6.A、平分一条弧的直径,垂直平分这条弧所对的弦B、平分弦的直径垂直于弦,并平分弦所对的弧7.C、在⊙O中,AB、CD是弦,若,则AB∥CD8.D、圆是轴对称图形,对称轴是圆的每一条直径9.⊙O的直径AB垂直于弦CD,垂足为E,若∠COD=120°,(1)O E=3cm,则OD=cm10.在半径为12 cm的圆中,垂直平分半径的弦的长为()cm(1)A、33B、27 C、123D、6311.已知AB是⊙O的弦,O C⊥A B,C为垂足,若OA=2,O C=1(1)则AB的长为()(2)A、5B、25C、3、2312.在⊙O中,AB、A C是互相垂直的两条弦,O D⊥A B于D,O E⊥AC于E,且AB=8 cm,A C=6 cm,求⊙O的半径OA长已知:AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP:PB=1:5,则⊙O的半径为_______。

-圆心角定理

-圆心角定理

3.已知AB是⊙O的直径,M、N是AO、BO的中 点。CM⊥AB,DN⊥AB,分别与圆交于C、D点。 求证:⌒ ⌒ D AC=BD
A M o

N C

例1 如图在⊙O中,AB=AC ,∠ACB=60°,
⌒ ⌒
求证:∠AOB=∠BOC=∠AOC.
证明:∵AB=AC
⌒ ⌒
AB=AC, △ABC 等腰三角形.
B
M O A
图1
一般的,n。的圆心角对着n。的弧,n。的弧对 着n。的圆心角,即圆心角的度数和它所对的 弧的度数相等。
1、判别下列各图中的角是不是圆心角, 并说明理由。




2、下列图中弦心距做对了的是(







探究
如图, 若∠AOB=∠A′OB′将圆心角∠AOB绕圆心O旋转到 ∠A’OB’的位置,你能发现哪些等量关系?为什么? A′ A′ D′ B B D′ B′ B′ D D O
⌒ ⌒ ∠AOB=∠COD OE=OF AB=CD _____________,________,____________。
⌒ ⌒ ∠AOB=∠COD AB=CD AB=CD _____________,________,____________。 ⌒ ⌒ (3)如果AB=CD 那么
∠ AOB=∠COD AB=CD OE=OF ______________,__________,____________ 。


┏ A′ D′ B′
③AB=A′B′ ④ OD=O′D′
弧所对的圆心角相等 在同圆或等圆中 如果弧相等 那么 弧所对的弦相等 弧所对的弦的弦心距相等

垂径定理及其推论

垂径定理及其推论

圆部分知识点总结垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧;推论1:1平分弦不是直径的直径垂直于弦,并且平分弦所对的两条弧; 2弦的垂直平分线经过圆心,并且平分弦所对的两条弧;3平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧; 推论2:圆的两条平行弦所夹的弧相等;垂径定理及其推论可概括为: 过圆心 垂直于弦直径 平分弦 知二推三 平分弦所对的优弧 平分弦所对的劣弧弧、弦、弦心距、圆心角之间的关系定理1:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等;2:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等;圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半;推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等; 推论2:半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径;推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形; 点和圆的位置关系设⊙O 的半径是r,点P 到圆心O 的距离为d,则有: d<r ⇔点P 在⊙O 内;d=r ⇔点P 在⊙O 上; d>r ⇔点P 在⊙O 外;过三点的圆1、不在同一直线上的三个点确定一个圆;2、经过三角形的三个顶点的圆叫做三角形的外接圆;3、三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心; 直线与圆的位置关系直线和圆有三种位置关系,具体如下:1相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点; 2相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线, 3相离:直线和圆没有公共点时,叫做直线和圆相离;如果⊙O 的半径为r,圆心O 到直线L 的距离为d,那么:直线L 与⊙O 相交⇔d<r ;直线L 与⊙O 相切⇔d=r ; 直线L 与⊙O 相离⇔d>r ;圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角; 切线的性质与判定定理1、切线的判定定理:过半径外端且垂直于半径的直线是切线;两个条件:过半径外端且垂直半径,二者缺一不可2、性质定理:切线垂直于过切点的半径 推论1:过圆心垂直于切线的直线必过切点;推论2:过切点垂直于切线的直线必过圆心; 以上三个定理及推论也称二推一定理:即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个; 切线长定理切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角; 即:∵PA 、PB 是两条切线∴PA PB =;PO 平分BPA ∠ 圆幂定理1、相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等;即:在⊙O 中,∵弦AB 、CD 相交于点P ,A∴PA PB PC PD ⋅=⋅推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项; 即:在⊙O 中,∵直径AB CD ⊥, ∴2CE AE BE =⋅切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项;即:在⊙O 中,∵PA 是切线,PB 是割线 ∴ 2PA PC PB =⋅割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等如右图;即:在⊙O 中,∵PB 、PE 是割线∴PC PB PD PE ⋅=⋅两圆公共弦定理 圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦; 如图:12O O 垂直平分AB ;即:∵⊙1O 、⊙2O 相交于A 、B 两点∴12O O 垂直平分AB 圆的公切线1公切线的长:12Rt O O C ∆中,221AB CO == 2外公切线的长:2CO 是半径之差;2CO 是半径之和三角形的内切圆和外接圆1、三角形的内切圆 与三角形的各边都相切的圆叫做三角形的内切圆;2、三角形的内心 三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心; 圆和圆的位置关系 1、圆和圆的位置关系如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种;如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种; 如果两个圆有两个公共点,那么就说这两个圆相交; 2、圆心距两圆圆心的距离叫做两圆的圆心距; 3、圆和圆位置关系的性质与判定设两圆的半径分别为R 和r,圆心距为d,那么两圆外离⇔d>R+r 两圆外切⇔d=R+r 两圆相交⇔R-r<d<R+rR ≥r 两圆内切⇔d=R-rR>r 两圆内含⇔d<R-rR>r 4、两圆相切、相交的重要性质如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦; 圆内正多边形的计算1.正三角形 在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行:::2OD BD OB =;2.正四边形同理,四边形的有关计算在Rt OAE ∆中进行,::1:1:2OE AE OA =: 3.正六边形同理,六边形的有关计算在Rt OAB ∆中进行,::1:3:2AB OB OA =. 弧长和扇形面积1、弧长公式 n °的圆心角所对的弧长l 的计算公式为180rn l π= 2、扇形面积公式 lR R n S 213602==π扇 其中n 是扇形的圆心角度数,R 是扇形的半径,L 是扇形的弧长; 3、圆锥的侧面积 rl r l S ππ=•=221其中L 是圆锥的母线长,r 是圆锥的底面半径; 内切圆及有关计算;1三角形内切圆的圆心是三个内角平分线的交点,它到三边的距离相等; 2△ABC 中,∠C=90°,AC=b,BC=a,AB=c,则内切圆的半径r=2cb a -+ ; 3S △ABC =)(21c b a r ++,其中a,b,c 是边长,r 是内切圆的半径; 拱高问题1.如图,圆弧形桥拱的跨度AB =12米,拱高CD =4米,则拱桥的半径为A .6.5米B .9米C .13米D .15米2.如图,用 表示主桥拱,设 所在圆的圆心为O,半径为R .经过圆心O 作弦AB 的垂线OC,D 为垂足,OC 与AB相交于点D,根据前面的结论,D 是AB 的中点,C 是 的中点,CD 就是拱高.A B SlBAOA B A B。

圆心角,弦,弧的关系

圆心角,弦,弧的关系

③AB=A′B′
• 在同圆或等圆中,如果轮换下面三组条件: • ①两个圆心角,②两条弧,③两条弦,你能得出
什么结论?与同伴交流你的想法和理由.
A
A
B
●O
B
●O
●O′
A′
B′
⌒⌒
如由条件: ②AB=A′B′
可推出
A′
B′
①∠AOB=∠A′O′B′
③AB=A′B′
推论
• 在同圆或等圆中,如果①两个圆心角,② 两条弧,③两条弦中,有一组量相等,那么 它们所对应的其余各组量都分别相等.
7个金蛋你可以任选一个,如果出现“恭喜你”的字样, 你将直接过关;否则将有考验你的数学问题,当然你可以 自己作答,也可以求助你周围的老师或同学.
3
5
7
1
2
4
6
判断:
1、等弦所对的弧相等。 (× )
2、等弧所对的弦相等。 (√ )
3、圆心角相等,所对的弦相等。( )
× 4、弦相等,所对的圆心角相等。( )
合,B与∴A⌒BB′重与合A⌒.'B' 重合,AB与A′B′重合.
AB A'B', ABA'B'.
三、定理
弧、弦与圆心角的关系定理
在同圆或等圆中,相等的圆心角所对的弧相等, 所对的弦也相等.
在同圆或等圆中,相等的弧所对的圆心角 _相__等__, 所对的弦___相_等____;
在同圆或等圆中,相等的弦所对的圆心角 __相__等__,所对的弧___相__等____.
A
A
B
●O
B
●O
●O′
A′
B′
如由条件: ③AB=A′B′

垂径定理、圆周角

垂径定理、圆周角

教学目的掌握垂径定理、圆周角和圆心角的关系教学重点垂径定理、圆周角教学内容(一)垂径定理1、圆是轴对称图形,任何一条直径所在直线都是它的对称轴.圆有无数条对称轴。

圆是以圆心为对称中心的中心对称图形;圆具有旋转不变性。

2、垂径定理:垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

3、推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

圆的两条平行弦所夹的弧相等。

①平分弧的直径必平分弧所对的弦。

( )②平分弦的直线必垂直弦。

( )③垂直于弦的直径平分这条弦。

( )④平分弦的直径垂直于这条弦。

( )⑤弦的垂直平分线是圆的直径。

( )⑥平分弦所对的一条弧的直径必垂直这条弦。

( )⑦在圆中,如果一条直线经过圆心且平分弦,必平分此弦所对的弧。

( )例题赏析如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.小试牛刀1、如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证四边形ADOE是正方形.2、我市某居民区一处圆形地下水管道破裂,修理工人准备更换一段新管道,经测量得到如图所示的数据,修理工人应准备内径多大的管道?若此题只知下面弓形的高和AB的长,你仍然会做吗?60cm10cmA BO3、如图,直径是50cm圆柱形油槽装入油后,油深CD为15cm,求油面宽度ABD OBCA(二)弧、弦、圆心角1、圆心角的概念:顶点在圆心的角ABCDO2、弧、弦与圆心角的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。

在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆心角或两条弧所对的弦相等;④两条弦的弦心距相等。

1、相等的圆心角所对的弧相等。

( )2、相等的弧所对的弦相等。

( )3、相等的弦所对的弧相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

垂径定理、圆心角、弧、弦、弦心距间的关系[学习目标]1. 理解由圆的轴对称性推出垂径定理,概括理解垂径定理及推论为“知二推三”。

(1)过圆心,(2)垂直于弦,(3)平分弦,(4)平分劣弧,(5)平分优弧。

已知其中两项,可推出其余三项。

注意:当知(1)(3)推(2)(4)(5)时,即“平分弦的直径不能推出垂直于弦,平分两弧。

”而应强调附加“平分弦(非直径)的直径,垂直于弦且平分弦所对的两弧”。

2. 深入理解垂径定理及推论,为五点共线,即圆心O,垂足M,弦中点M,劣弧中点D,优弧中点C,五点共线。

(M点是两点重合的一点,代表两层意义)3. 应用以上定理主要是解直角三角形△AOM,在Rt△AOM中,AO为圆半径,OM为弦AB的弦心距,AM为弦AB的一半,三者把解直角形的知识,借用过来解决了圆中半径、弦、弦心距等问题。

无该Rt△AOM时,注意巧添弦心距,或半径,构建直角三角形。

4. 弓形的高:弧的中点到弦的距离,明确由定义知只要是弓形的高,就具备了前述的(4)(2)或(5)(2)可推(1)(3)(5)或(1)(3)(4),实际可用垂径定理及推论解决弓形高的有关问题。

5. 圆心角、弧、弦、弦心距四者关系定理,理解为:(1)圆心角相等,(2)所对弧相等,(3)所对弦相等,(4)所对弦的弦心距相等。

四项“知一推三”,一项相等,其余三项皆相等。

源于圆的旋转不变性。

即:圆绕其圆心旋转任意角度,所得图形与原图象完全重合。

6. 应用关系定理及推论,证角等,线段等,弧等,等等,注意构造圆心角或弦心距作为辅助线。

7. 圆心角的度数与弧的度数等,而不是角等于弧。

二. 重点、难点:垂径定理及其推论,圆心角,弧,弦,弦心距关系定理及推论的应用。

【典型例题】例1. 已知:在⊙O中,弦AB=12cm,O点到AB的距离等于AB的一半,求:∠AOB的度数和圆的半径。

点悟:本例的关键在于正确理解什么是O点到AB的距离。

解:作OE⊥AB,垂足为E,则OE的长为O点到AB的距离,如图所示:由垂径定理知:∴△AOE、△BOE为等腰直角三角形∴∠AOB=90°由△AOE是等腰直角三角形即⊙O的半径为点拨:作出弦(AB)的弦心距(OE),构成垂径定理的基本图形是解决本题的关键。

例2. 如图所示,在两个同心圆中,大圆的弦AB,交小圆于C、D两点,设大圆和小圆的半径分别为a,b。

求证:证明:作OE⊥AB,垂足为E,连OA、OC则在中,在中,即即点拨:本题应用垂径定理,构造直角三角形,再由勾股定理解题,很巧妙。

例3. ⊙O的直径为12cm,弦AB垂直平分半径OC,那么弦AB的长为()A. B. 6cm C. D.(2001年辽宁)解:圆的半径为6cm,半径OC的一半为3cm,故弦的长度为故选C。

例4. 如图所示,以O为圆心,∠AOB=120°,弓形高ND=4cm,矩形EFGH的两顶点E、F在弦AB上,H、G在上,且EF=4HE,求HE的长。

解:连结AD、OGOA=OD∴△AOD为等边三角形∵OD⊥AN∴NO=ND=4cm∵OD=OG=8cm设,则在中,由得:解得:(舍去)∴HE的长为cm点拨:借助几何图形的性质,找出等量关系,列出方程求解,这是解决几何计算题的常用方法。

例5. 已知,AB是⊙O的弦,半径OC⊥AB于点D,且,则DC的长为()A. 3cm B. 2.5cm C. 2cm D. 1cm(2001年北京东城区)解:故选C。

常见错误:将DC错算为OD,即算出OD就不再计算DC了,从而错选A。

这种错误十分常见,一定要注意慎重的计算完全。

例6. 在⊙O中,,那么()A. B.C. D.解:如图所示,连结BC。

在△ABC中,AB<AC+BC∴AB<2AC故选D。

点拨:本题考察弦、弧、圆心角之间的关系,要正确理解三者之间的关系定理。

例7. 已知⊙O的半径是10cm,是120°,那么弦AB的弦心距是()A. 5cmB.C.D.解:如图所示,,∠AOB=120°在Rt△ACO中,故选A。

点拨:本题考察弧、弦、弦心距、圆心角之间的关系,要正确构造三角形,灵活运用。

例8. 等腰△ABC的顶角A=120°,腰AB=AC=10,△ABC的外接圆半径等于()A. 20 B. 15 C. 10 D. 5解:如图所示,连结OA、OB∵AB=AC=10由垂径定理的推论,得OA垂直平分BC,垂足为D又∵∠BAC=120°∴∠ABC=∠ACB=30°∴∠BAO=60°又∵OA=OB∴△AOB是等边三角形∴半径OA=OB=AB=10故选C。

点拨:垂径定理及其推论是很重要的性质,主要解题思路是构造特殊的三角形,然后应用定理解题。

例9. 点P为半径是5的⊙O内一点,且OP=3,在过点P的所有弦中,长度为整数的弦一共有()A. 2条 B. 3条C. 4条D. 5条(2002年山东)解:选C。

点拨:圆是中心对称图形,故与P点对称的点,关于中点对称有一个,关于轴对称有2个。

因此,长度为整数弦一共有4条。

例10. 如图所示,M、N分别是⊙O的弦AB、CD的中点,AB=CD。

求证:∠AMN=∠CNM点悟:由弦AB=CD,想到利用弧,圆心角、弦、弦心距之间的关系定理,又M、N分别为AB、CD的中点,如连结OM、ON,则有OM=ON,OM⊥AB,ON⊥CD,故易得结论。

证明:连结OM、ON∵O为圆心,M、N分别为弦AB、CD的中点∴OM⊥AB,ON⊥CD∵AB=CD∴OM=ON∴∠OMN=∠ONM∵∠AMN=90°-∠OMN∠CNM=90°-∠ONM∴∠AMN=∠CNM点拨:有弦中点,常用弦心距利用垂径定理及圆心角、弧、弦、弦心距之间关系定理来证题。

例11. 在⊙与⊙中,分别有40°的和,那么:(1)与相等吗?(2)∠与∠相等吗?错解:(1)因为与都是40°的弧所以=(2)与相等,所以常见错误:(1)误以为弧的度数相等弧亦相等,两弧相等必须是在同圆或等圆的前提下,看它们是否“重合”;(2)应该知道圆心角是角,它的大小是可以用度数来衡量的,度数相同的角就相等。

可见它不受所对的弧相等与否来制约。

正解:(1)不一定相等。

(2)相等。

【模拟试题】(答题时间:30分钟)一. 选择题。

1. 下列命题中,正确的命题是()A. 平分一条弦的直径,垂直平分这条弧所对的弦B. 平分弦的直径垂直于弦,并平分弦所对的弧C. 在⊙O中,AB、CD是弦,若,则AB∥CDD. 圆是轴对称图形,对称轴是圆的每一条直径2. 已知P为⊙O内一点,且OP=3cm,如果⊙O的半径是4cm,那么过P点的最短弦等于()A. 2cmB. 3cmC. cmD. cm3. 弓形弦长24,弓形高为8,则弓形所在圆的直径是()A. 10B. 26C. 13D. 54. 在直径是10cm的⊙O中,为60°,则弦AB的弦心距是()A. B. C. D.5. AB、CD分别为大小不同圆的弦,共AB=CD,那么的关系是()A. B.C. D. 不确定二. 填空题。

6. 已知AB为⊙O直径,AC为弦,OD∥BC交AC于D,AC=6cm,则DC=____________。

7. 直角三角形外接圆的圆心在___________,它的半径为___________一半。

8. 若一个圆经梯形ABCD四个顶点,则这个梯形是___________梯形。

9. 弦AB把⊙O分3:7,则∠AOB=___________。

10. 若⊙O半径是4,P在⊙O内,PO=2,则过P点的最短的弦所对劣弧是___________度。

11. ⊙O中,弦AB垂直直径CD于点P,半径OA=4cm,OP=2cm,则∠AOB=__________,∠ADC=__________,度数为__________,△ADC周长为__________ cm。

三. 解答题。

12. 如图,⊙O的两弦AB,CD互相垂直于H,AH=4,BH=6,CH=3,DH=8,求⊙O半径。

13. 已知:如图,C为⊙O直径AB上一点,过C点作弦DE,使CD=CO,若度数为50°,求的度数。

【试题答案】一. 选择题。

1. A2. D3. B4. D5. D二. 填空题。

6. 3cm7. 斜边中点,斜边长8. 等腰9. 108°10. 120°11. 120°,30°或60°,60°或120°,三. 解答题。

12. 过O分别作OM⊥AB于M,ON⊥CD于N,则得到矩形MHNO又∴Rt△BOM中,13. 连结OD、AE则∠DOA=50°,∠DEA=25°由OC=CD,有∠D=∠DOA=50°∴∠BCE=∠D+∠DOA=100°∴∠A=∠BCE-∠AED=100°-25°=75°则度数为75°。

相关文档
最新文档