甜玉米果皮厚度QTL的定位及上位性互作

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作物学报 ACTA AGRONOMICA SINICA 2015, 41(3): 359-366

http:/// ISSN 0496-3490; CODEN TSHPA9 E-mail: xbzw@ 本研究由广东省教育部产学研结合项目(2012B091100467)和广东省自然科学基金重点项目(080021003)资助。

* 通讯作者(Corresponding author): 胡建广, E-mail: jghu2003@

Received(收稿日期): 2014-09-18; Accepted(接受日期): 2014-12-19; Published online(网络出版日期): 2015-01-12. URL: http:///kcms/detail/11.1809.S.20150112.0940.010.html DOI: 10.3724/SP.J.1006.2015.00359

甜玉米果皮厚度QTL 的定位及上位性互作

于永涛 李高科 祁喜涛 李春艳 毛笈华 胡建广*

广东省农业科学院作物研究所 / 广东省农作物遗传改良重点实验室, 广东广州510640

摘 要: 果皮厚度是影响甜玉米口感的一个重要因素。发掘果皮厚度的基因资源、了解玉米果皮厚度的遗传机制, 是

指导其育种的基础。本研究以日超-1 (薄果皮, 56.57 μm) × 1021 (厚果皮, 100.23 μm)的190个BC 1F 2家系为作图群体,

分别采用2种遗传模型检测QTL 。基于复合区间作图(CIM)共检测到3个影响果皮厚度的QTL, 位于3.01、6.01、8.05

区段, 分别解释8.6%、16.0%和7.2%的表型变异, 其中3.01和8.05处QTL 以加性效应为主; 基于混合线性CIM 模

型(MCIM)共检测到5个影响果皮厚度的QTL, 其中除8.05处QTL 为加性QTL 外, 另有2对加×加上位性互作QTL,

1对是2.01和6.05处QTL 之间的互作, 另1对则是5.06和6.01处QTL 间的互作。这2对互作QTL 分别解释了6.63%

和12.48%的表型变异率。本结果表明, 加性效应和上位性互作效应等都在果皮厚度的形成和遗传中起重要作用。能

够检测QTL 上位互作的MCIM 模型更适用于果皮厚度QTL 定位。本研究还在其中4个QTL 的区域内分别检索到胚乳

中色素合成以及细胞转变的相关候选基因, 这些基因的表达是否与果皮厚度的变异有关值得进一步研究。

关键词: 甜玉米; 果皮厚度; QTL; 上位性互作

Mapping and Epistatic Interactions of QTLs for Pericarp Thickness in Sweet Corn

YU Yong-Tao, LI Gao-Ke, QI Xi-Tao, LI Chun-Yan, MAO Ji-Hua, and HU Jian-Guang *

Crop Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Guangzhou 510640, China

Abstract: Pericarp thickness is of great importance to the sensory quality of sweet corn. Mining the gene for pericarp thickness

and understanding its genetic mechanism can provide a base for instructing breeding. Quantitative trait locus (QTL) for pericarp

thickness was detected based on two genetic models using a population comprising 190 BC 1F 2 families derived from the cross of

Richao-1 (thin pericarp, 56.57 μm) ×1021 (thick pericarp, 100.23 μm) in the present study. Three QTLs for pericarp thickness

were identified on bin 3.01, 6.01, and 8.05 using the Composite interval mapping (CIM) method, explained 8.6%, 16.0%, and

7.2% of phenotypic variation, respectively. Based on the MCIM (mixed-model based CIM) method, we identified five QTLs for

pericarp thickness, comprising one additive QTL and two pairs of epistatic QTLs. The additive QTL was located on bin 8.05. Additive × additive epistatic effects for pericarp thickness were showed between QTL in 2.01 and QTL in 6.05 with estimated 6.63%

of the phenotypic variation and between QTL in 5.06 and QTL in 6.01 with the estimated phenotypic variation of 12.48%. The results

indicated that epistasis and additive effects play an important role in the genetic basis of pericarp thickness. The MCIM model with

the ability to detect epistatic QTLs is more suitable for pericarp thickness QTL mapping. In addition, candidate genes encoding proteins that play important role for pigment biosynthesis and cell transformation in endosperm were contained in four QTL regions

of all, suggesting the likely relations between the expressions of these candidate genes and pericarp thickness variation.

Keywords: Sweet corn; Pericarp thickness; QTL mapping; Epistasis

甜玉米的籽粒柔嫩度、爽脆性、皮渣率等是其

食用品质的重要评价指标, 是影响鲜食玉米食用品

质的主要因素之一; 而果皮厚薄和结构与上述3个

品质性状密切相关。果皮薄, 则柔嫩度高, 爽脆度高, 皮渣率低, 且口感好[1-2]。降低果皮厚度也因此成为育种家提高甜玉米食用品质的重要育种目标。

相关文档
最新文档