机械振动与机械波知识点梳理.ppt

合集下载

大学物理机械振动和机械波ppt课件

大学物理机械振动和机械波ppt课件

2024/1/26
12
03
驻波形成条件及其性质分析
Chapter
2024/1/26
13
驻波产生条件及特点描述
产生条件
两列沿相反方向传播、振幅相同、频 率相同的波叠加。
特点描述
波形不传播,能量在波节和波腹之间 来回传递,形成稳定的振动形态。
2024/1/26
14
驻波能量分布规律探讨
能量分布
驻波的能量主要集中在波腹处,波节处能量为零。
2024/1/26
16
04
多普勒效应原理及应用举例
Chapter
2024/1/26
17
多普勒效应定义及公式推导
2024/1/26
定义
当波源与观察者之间存在相对运动时,观察者接收到的波的频率会发生变化,这种现象 称为多普勒效应。
公式推导
设波源发射频率为f0,波速为v,观察者与波源相对运动速度为vr,则观察者接收到的 频率为f=(v±vr)/v×f0,其中“+”号表示观察者向波源靠近,“-”号表示观察者远离
Chapter
2024/1/26
25
非线性振动概念引入和分类
非线性振动定义
描述系统振动特性不满足叠加原理的振动现象。
分类
根据振动性质可分为自治、非自治、周期激励和 随机激励等类型。
与线性振动的区别
线性振动满足叠加原理,而非线性振动则不满足 。
2024/1/26
26Biblioteka 混沌理论基本概念阐述混沌定义
确定性系统中出现的内在随 机性现象。
受迫振动
物体在周期性外力作用下所发生的振动。
共振现象
当外力的频率与物体的固有频率相等时,物体的振幅达到最大的现象。

第十三章 机械振动与机械波1 第1讲 机械振动-2024-2025学年高考物理一轮复习课件

第十三章 机械振动与机械波1 第1讲 机械振动-2024-2025学年高考物理一轮复习课件

对点练1.(多选)如图甲所示,悬挂在 竖直方向上的弹簧振子,在C、D两点 之间做简谐运动,O点为平衡位置。振 子到达D点时开始计时,以竖直向上为 正方向,一个周期内的振动图像如图乙所示,下列说法正确的是
√A.振子在O点受到的弹簧弹力等于小球的重力
B.振子在C点和D点的回复力相同
√C.t=0.3 s时,振子的速度方向为竖直向上
√√BC..小弹球簧的振质子量的为频率F1为-2gF432t0
D.若弹簧振子的振幅为A,则从计时开始到13t0时,小球的路程为36A
由题图乙可知,t=0时刻小球所受弹力最 大,方向竖直向上,所以小球处于最低点, 故A错误;根据对称性,小球在最高点和 最低点的加速度大小相等、方向相反,根 据 F解1-得牛mf顿=g第=43t二m0 ,a定;故律解C,得正小m确球=;在F由1最-2于g高F132点,t0=,故9有BT正F+2确+34;Tm,由g=所题m以图a小;乙球小可的球知路在34T程最=为低t0s,点=T,9=·4有A1f , +3A=39A,故D错误。故选BC。
位移大小相等
对称性 (2)物体由P到O所用的时间等于由O到P′所用的时间,即tPO=tOP′
(3)物体往复过程中通过同一段路程(如OP段)所用的时间相等,即tOP
=tPO
(4)相隔
T 2

(2n+1)T 2
(n为正整数)的两个时刻,物体位置关于平
衡位置对称,位移、速度、加速度大小相等、方向相反
考向1 简谐运动的基本物理量 例1 如图所示,在光滑水平面上有一质量为m的小物块与左端固定的轻 质弹簧相连,构成一个水平弹簧振子,弹簧处于原长时小物块位于O点。 现使小物块在M、N两点间沿光滑水平面做简谐运动,在此过程中 A.小物块运动到M点时回复力与位移方向相同

机械振动和机械波复习课件ppt

机械振动和机械波复习课件ppt
波的叠加:几列波相遇时,每列波都能够保持各自的状态继续传播而不互相干扰,只是在重叠的区域里,介质的质点同时参与这几列波引起的振动,质点的位移等于这几列波单独传播时引起的位移的矢量和
1
2
四、波的衍射和干涉
干涉:频率相同的两列波叠加,某些区域的振动加强, 某些区域的振动减弱,并且振动加强和振动减弱的区域相互间隔的现象.产生稳定的干涉现象的必要条件:两列波的频率相同.
物理选修3-4 机械振动与机械波 复习课件
此处添加副标题内容
简谐运动
01
定义:如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图象是一条正弦曲线,这样的振动叫简谐运动.
02
F回=-kx
03
简谐运动的描述
描述简谐运动的物理量 位移x:由平衡位置指向质点所在位置的有向线段,是矢量。
注:位移的参考点是平衡位置 振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.
B
波刚传播到哪个位置,则该位置质点的起振方向与振源的起振方向相同.
例4(8分)如图1-17所示,实线是某时刻的波形图象,虚线是0.2 s后的波形图.
若波向左传播,求它传播的可能距离;
若波向右传播,求它的最大周期;
若波速是35 m/s,求波的传播方向.
总结:
波速计算方法 v=λ/T=λf v=s/t
5.横波的图象
如图1-5所示为一横波的图象.纵坐标表示某一时刻各个质点偏离平衡位置的位移,横坐标表示在波的传播方向上各个质点的平衡位置.它反映了在波传播的过程中,某一时刻介质中各质点的位移在空间的分布.简谐波的图象为 正弦 曲线.
思考:振动图像与波动图像的区别?
物理意义不同:振动图象表示同一质点在不同时刻的位移(类比录像);波的图象表示介质中的各个质点在同一时刻的位移(类比照片)。

高中物理机械振动机械波知识点总结课件新人教版选修

高中物理机械振动机械波知识点总结课件新人教版选修

物理实验中的机械振动与波
实验中的振动与波
在物理实验中,我们可以设计和进行各种与机械振动和波相关的实验,如单摆实 验、共振实验、干涉和衍射实验等。这些实验可以帮助我们深入理解机械振动和 波的原理。
实验中的注意事项
在进行与机械振动和波相关的实验时,需要注意安全问题,如避免共振引起的破 坏力、防止声波对耳膜的损伤等。
科技应用中的机械振动与波
科技应用中的振动与波
在科技领域,机械振动和波的应用非 常广泛,如地震勘测、无损检测、医 疗成像等。这些应用都基于对机械振 动和波的深入理解和掌握。
科技应用的发展前景
随着科技的不断发展,机械振动和波 的应用前景将更加广阔。例如,利用 振动和波进行物质分拣、环境监测等 领域的研究正在不断深入。
学习方法与技巧
强化基础知识的学习
注重实验与观察
机械振动与机械波的知识点比较抽象,需 要强化基础知识的学习,如振动与波的基 本概念、周期公式等。
实验是学习物理的重要手段,通过实验观 察机械振动与机械波的现象,有助于加深 对知识点的理解。
多做练习题
形成知识网络
练习是巩固知识的重要途径,通过多做练 习题可以加深对知识点的理解和掌握。
波动方程的建立
波动方程的推导
通过建立微分方程,描述波动过 程中各点的振动状态,从而得出
波动方程。
波动方程的形式
常见的波动方程形式有简谐振动方 程和一维波动方程等。
波动方程的求解
通过求解波动方程,可以得到波的 传播速度、波长等物理量。
振动方程的理解与应用
振动方程的意义
振动方程描述了单个质点在平衡位置附近的振动规律。
高中物理机械振动机械波知 识点总结课件新人教版选修
目录

机械振动机械波复习PPT教学课件

机械振动机械波复习PPT教学课件
(2)共振曲线
(3)共振的利用和防止:利用共振的有:共 振筛、转速计、微波炉、打夯机、跳板跳水、 打秋千……;防止共振的有:机床底座、航 海、军队过桥、高层建筑、火车车厢……
[例题] 如图,四个摆的摆长分别为 l1=2m,l2= 1.5m, l3=1m, l4=0.5m,它们悬挂于同一根水 平横线上。今用周期为2s的驱动力以垂直于摆 线方向水平作用在横线上,使它们作受迫振动, 那么它们的振动稳定时
(x、y)表示x处质点某时刻的 偏离平衡位置的位移为y
描述的是某一时刻各个质点偏 离平衡位置的位移
为瞬时图象,时刻选择不同, 图象会变化,但变化中有规律
五.波的图像的应用
(1)波的传播方向和介质中质点的振动方向的关系.
y
CB x
A
a.由v判断质点的振动方向 b.由质点的振动方向判断v的方向(例4)
A、四个摆的周期相同;B、四个摆的周期不同;
C、摆3振幅最大;
答案:C
D、摆1振幅最大.
[例题] 把一个筛子用四根弹簧支起来,筛子上装一个电
动偏心轮,它每转一周,给筛子一个驱动力,这就做成
了一个共振筛。不开电动机让这个筛子自由振动时,完
成20次全振动用15s;在某电压下,电动偏心轮的转速
是88r/min。已知增大电动偏心轮的电压可以使其转速
(3)两个重要物理量
①振幅A是描述振动强弱的物理量。(注意振幅跟位移的区别, 在简谐运动的振动过程中,振幅是不变的而位移是时刻在改变 的) ②周期T是描述振动快慢的物理量。周期由振动系统本身的因 素决定,叫固有周期。T=1/f
(4)简谐运动的过程特点:
1、变化特点:抓住两条线
第一:从中间到两端:
波的图象
研究对象 研究内容

高中物理-机械振动和机械波ppt课件

高中物理-机械振动和机械波ppt课件

间,这个时间就是单摆的振动周期,即 T=Nt (N 为全振动的次数).
.
34
(5)根据单摆振动周期公式 T=2π gl计算当地重力加速度 g=4Tπ22l. (6)改变摆长,重做几次实验,计算出每次实验的重力加速度值,求出它们的平均值, 该平均值即为当地的重力加速度值. (7)将测得的重力加速度值与当地重力加速度值相比较,分析产生误差的可能原因.
10
5
0
1 2 3 4 5 6 t/s
-5
-10
(1)振幅A=10cm,周期T=4s,频率f=0.25Hz;
(2)任一时刻 x、F回、a 、 v的大小和方向;
(3)任意时间内振动物体的路程;
(4)任意两点间运动所用的时间。
.
14
练习: x/cm
3
O 6
12
t/s
-3
1.质点离开平衡位置的最大位移? 2.1s末、4s末、7s末、9s末质点位置在哪里? 3.1s末、6s末质点朝哪个方向运动?
t 1 t 2 1 2
同相:频率相同、初相相同(即相差为0) 的两个振子振动步调完全相同。
反相:频率相同、相差为π的两个振子 振动步调完全相反。
.
17
练习1:
下图是甲乙两弹簧振子的 x – t 图象,两
振动振幅之比为_2__∶___1,频率之比为_1_∶___1 ,
甲和乙的相差为___ __ 。 2
.
38
解析 作一条过原点的与 AB 线平行的直线,所作的直线就是准确测
量摆长时所对应的图线.过横轴上某一点作一条平行纵轴的直线,则 和两条图线的交点不同,与准确测量摆长时的图线的交点对应的摆长
是准确的,与 AB 线的交点对应的摆长要小些,同样的周期,摆长应 一样,但 AB 线所对应的却小些,其原因是在测量摆长时少测了,所

高中物理机械振动机械波知识点总结课件新人教版选修3-4

高中物理机械振动机械波知识点总结课件新人教版选修3-4

实验器材选择和搭建过程指导
实验器材:振动源(如音叉、振动片 等)、示波器、传感器、支架、弹簧
等。
搭建过程指导
1. 将振动源固定在支架上,并调整其 振动频率和幅度;
2. 将传感器与示波器连接,并将传感 器放置在振动源附近,以测量其振动 信号;
3. 调整示波器的参数,使其能够清晰 地显示振动信号;
4. 根据实验需求,可选择不同的传感 器和测量方式,如加速度传感器、位 移传感器等。
VS
能量转换
在某些情况下,波动的能量会发生转换。 例如,在机械振动中,振动的能量可以转 换为热能或电能等其他形式的能量。这种 能量转换遵循能量守恒定律。
04
典型案例分析:弹簧振子和单摆 模型
弹簧振子模型建立及运动规律探究
01
02
03
弹簧振子模型
由一根不计质量的弹簧连 接一个有质量的小球构成 ,忽略摩擦力和空气阻力 ,是一个理想化模型。
03
波动特性及其描述方法
周期性、重复性特点分析
周期性
机械振动和机械波都是周期性的运动 形式,即它们的状态会随着时间的推 移而重复出现。这种周期性使得波动 现象具有可预测性和规律性。
重复性
波动在传播过程中,其形状和特性会 在空间上重复出现。这种重复性使得 波动现象能够被有效地描述和分析。
振幅、相位等参数意义解读
非线性振动定义
指振动系统恢复力与位移之间不满足线性关系的 振动现象。
非线性振动特点
振幅依赖性、频率变化、波形畸变、跳跃现象等 。
与线性振动的区别
线性振动遵循叠加原理,而非线性振动则不满足 叠加原理,表现出更为复杂的动力学行为。
孤立波产生条件和传播特性概述
孤立波定义

机械振动和机械波精品PPT课件

机械振动和机械波精品PPT课件
(3)如果波向右传播,波速是多ห้องสมุดไป่ตู้?波的周期是
多大?T 0.8 s;v 0.34n 1m/s (n 0,1,2,3,)
4n y/1cm
10
0 12 -10
24 36
48
x/cm
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
△x=v·△t
二、振动图象和波动图像的区别:
振动图象
波动图像
研究对象 一个质点
传播方向上所有质点
物理意义
一个质点不同时刻 的位移
横 坐 标 不同时间
图线变化
随时间延续,前面 的不变
同一时刻不同质点 的位移
不同质点的平衡位 置
随时间变化
三、常见问题 (一)关于振动方向和波的传播方向
1、如右图所示,为一列简谐横波某一
P
时刻的图象,若已知P点的振动方向向上,
则这列波正在向 传右播。
2.如图为一简谐横波的波形图,已知B质点先于A质
点0.08s到达波峰,由此可知波的传播方向是-x方向 ,
y/cm
波的传播速度为25m/s 。 10
0
4
8
A
12 x/m
-10
B
3、如图,沿波的传播方向上有间隔均为1m的六个 质点a、b、c、d、e、f均静止在各自的平衡位置,一 列简谐横波以2m/s的速度水平向左传播,t=0时到达质 点a,质点a开始由平衡位置向上运动。t=1s时,质点a 第一次到达最高点。则在4s<t<5s这段时间内[C ]
B、在0.1s时的速度最大 C、在0.1s时的速度向下
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 两相干波在相遇处激发的两个振动的相位差
12
(t
1
2
r1
)
(t
2
2
r2
)
(1
2
)
2
波程差: r2 r1
Part Ⅱ
机械振动与机械波
一 简谐运动的描述和特征
1 物体受线性回复力作用 F kx 平衡位置 x 0
2 简谐运动的动力学描述
d2x dt 2
2
x
0
3 简谐运动的运动学描述 x Acos(t )
v A sin(t )
4 加速度与位移成正比而方向相反 a 2 x
5 三个特征量:振幅 A 决定于振动的能量;
2 1
拍频(振幅变化的频率)
3 相互垂直的两个频率简谐运动,合运动轨迹一般为 椭圆,其具体形状等决定于两分振动的相差和振幅.
六 机械波的基本概念
1 机械波产生条件:1)波源;2)弹性介质.
机械振动在弹性介质中的传播形成波,波是运动 状态的传播,介质的质点并不随波传播.
2 描述波的几个物理量
波长 :一个完整波形的长度.
2 驻波
驻波方程 y 2 Acos2π x cos2πt
x
k
2
(k
k 1)
22
0,1, Amax
k 0,1,
2A
Amax
0
相邻波腹(节)间距 2
相邻波腹和波节间距 4
波腹 波节
确定波节位置的方法:
1)由驻波方程确定;
2)由干涉相位差极小条件来确定; 3)由固定端是波节点,两相邻波节之间为半个波长 的条件来确定。
角频率 决定于振动系统的性质; 初相 决定于起始时刻的选择.
实例 : 弹簧振子 k m 单摆 g l
弹簧串联或并联后劲度系数的变化情况:
二 相位 t
1 t ( x, v) 存在一一对应的关系;
2 相位在 0 ~ 2π 内变化,质点无相同的运动状态; 相差 2nπ (n为整数 )质点运动状态全同.(周期性)
x x1 x2 Acos(t )
A A12 A22 2A1A2 cos(2 1)
A A12 A22 2A1A2 cos
2k π
A A1 A2 加强
(2k 1) π A A1 A2 减弱
(k 0,1, 2,)
2 两个同方向不同频率简谐运动合成
频率较大而频率之差很小的两个同方向简谐运动的 合成,其合振动的振幅时而加强时而减弱的现象叫拍.
5) 写出振动表达式.
另外一个方法: 能量法
A
以 o为
t t 时
o
t
x Acos(t )
原点的 旋转
矢量A在 x
x 轴上的投影 点的运动为
简谐运动.
四 简谐运动能量图
能量
o T T 3T T
42 4
E
Ek
Ep
1 2
k A2
Ep
1 2
k A2
cos2 t
t
Ek
Байду номын сангаас1 2
m 2 A2
sin2 t
五 两个同方向同频率简谐运动的合成 1 两个同方向同频率简谐运动合成后仍为简谐运动
y(x,t) Acos[(t x ) ]
u
1 y(x,t) Acos[2 π( t x ) ]

y(x,t) Acos(t kx) 角波数 k 2 π
2 波函数的物理意义
➢ 若波沿X轴负向传播, 则波函数为:
y Acos[(t x) ] u 沿x 轴负向
△u
➢ 一般地, 波沿X轴正向传播, 距原点O为X0 的点Q的振动规律为:
3 初相位 (t 0) 描述质点初始时刻的运动状态.
( 取 [ π π] 或 [0 2π] )
4 对于两个同频率简谐运动相位差 2 1
三 简谐运动旋转矢量表示法 方法简单、直观, 用于判断简谐运动的初相及相位,
分析振动的合成问题.
解决简谐运动方程问题的一般步骤: 1) 找到振动平衡位置,此时合力为零,选平衡位 置为原点,建立坐标系 2) 设振子离开原点x处,分析受力情况. 3) 应用牛顿定律. 4) 根据初始条件确定A和.
3 相位跃变(半波损失)
当波从波疏介质( u 小)垂直入射到波密介质,
被反射到波疏介质时在反射点形成波节. 入射波与反 射波在此处的相位时时相反, 即反射波在分界处产生
π 的相位跃变,相当于出现了半个波长的波程差,称半
波损失.
在固定端,反射波有半波损失,为波节位置。
在自由端,反射波没有半波损失,为波腹位置。
. 周期 T :波前进一个波长的距离所需要的时间.
频率 :单位时间内波动所传播的完整波的数目. u 波速 :某一相位在单位时间内所传播的距离.
1 T u T u Tu
周期或频率只决定于波源的振动;波速只决定于 媒质的性质.
波的图示法: 波线 波面 波前. 3 横波、纵波
七 平面简谐波的波函数
vo 观察者向波源运动 + ,远离 .
vs 波源向观察者运动 ,远离 + .
十二 关于相位差
1 同一振动在不同时刻的相位差
12 (t1 ) (t2 )
t 2 t T
2 波动在同一波线上的不同两点在同一时刻
的振动相位差
12
(t
2
x1
)
(t
2
x2
)
2 x1 x2 2
波程差: x2 x1
2 平均能量密度:
dVA2 2
w 1 2
sin 2
A2
(t
x) u
3
2
平均能流密度(波强度):I
wu
1
A2 2u
2
4 声强级:
I0 1012 W m2
LI
lg
I I0
贝尔(B)
LI
10 lg
I I0
分贝( dB )
九 惠更斯原理(作图法)
介质中波阵面上的各点都可以看作是发射子波的 波源,而在其后的任意时刻,这些子波的包络就是新 的波前.
十 波的叠加原理
1 波的干涉 A A12 A22 2 A1 A2 cos 2 1 2 π (r2 r1)
若 1 2 则 2 π 波程差 r2 r1
k k 0,1,2, A A1 A2 (k 1 2) k 0,1,2, A A1 A2
其他 A1 A2 A A1 A2
十一 多普勒效应
1) 波源不动,观察者相对介质以速度 vo 运动
' u vo
u
(+)观察者向波源运动 (-)观察者远离波源
2)观察'者不u动u,v波s 源相对((介-+)质)波以波源速源向度远观离v察观s 运者察动运者动
波源与观察者同时相对介质运动 (vs , vo )
'
u u
vo vs
yQ Acos(t )
则波函数为:
y Acos[(t x x0 ) ]
u
八 波动的能量
1 在波动传播的媒质中,任一体积元的动能、 势能、
总机械能均随时间作同步地周期性变化,机械能不守恒 .
波动是能量传递的一种方式 .
dWk
dWp
1 2
dVA2 2
sin 2 (t
x) u
dW dWk dWp
相关文档
最新文档