(完整word版)必修五 简单线性规划典型例题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. “平面区域”型考题 1.不等式组⎪⎩
⎪
⎨⎧-≥≤+<31y y x x
y ,表示的区域为D ,点P 1(0,-2),P 2(0,0),则
( )
A .D P D P ∉∉21且
B .D P D P ∈∉21且
C .
D P D P ∉∈21且D .D P D P ∈∈21且 2.已知点P (x 0,y 0)和点A (1,2)在直线0823:=-+y x l 的异侧,则
( )
A .02300>+y x
B .<+0023y x 0
C .82300<+y x
D .82300>+y x
3.已知点P (1,-2)及其关于原点的对称点均在不等式012>+-by x 表示的平面区域内,则b 的取值范围是 . 2. “平面区域的面积”型考题
1.设平面点集{}
221(,)()()0,(,)(1)(1)1A x y y x y B x y x y x
⎧⎫=--≥=-+-≤⎨⎬⎩
⎭
,则A
B 所表示的平
面图形的面积为 A 34π B 35π C 47π D 2
π
2.在平面直角坐标系xOy ,已知平面区域{(,)|1,A x y x y =+≤且0,0}x y ≥≥,则平面区域
{(,)|(,)}B x y x y x y A =+-∈的面积为 ( )A .2 B .1 C .12 D .1
4
3、若A 为不等式组0
02x y y x ≤⎧⎪
≥⎨⎪-≤⎩
表示的平面区域,则当a 从-2连续变化到1时,动直线x y a +=扫
过A 中的那部分区域的面积为 .
4、 若不等式组0
3434
x x y x y ≥⎧⎪
+≥⎨⎪+≤⎩
所表示的平面区域被直线43y kx =+分为面积相等的两部分,则k
的值是 (A )
73 (B ) 37 (C )43 (D ) 34
高 5、若0,0≥≥b a ,且当⎪⎩
⎪
⎨⎧≤+≥≥1,0,
0y x y x 时,恒有1≤+by ax ,则以a ,b 为坐标点(,)P a b 所形成的平面
区域的面积等于__________.
3. “求约束条件中的参数”型考题
1.在平面直角坐标系中,若不等式组10
1010x y x ax y +-≥⎧⎪
-≤⎨⎪-+≥⎩
(α为常数)所表示的平面区域内的面积等于2,
则a 的值为 A. -5 B. 1 C. 2 D. 3
2、若直线x
y 2=上存在点),(y x 满足约束条件⎪⎩
⎪⎨⎧≥≤--≤-+m x y x y x 03203,则实数m 的最大值为( )
A .
21 B .1 C .2
3
D .2 3、设二元一次不等式组2190802140x y x y x y ⎧+-⎪-+⎨⎪+-⎩
,,≥≥≤所表示的平面区域为M ,使函数(01)x
y a a a =>≠,的图
象过区域M 的a 的取值范围是( )A .[1,3] B .[2,10] C .[2,9] D .[10,9]
4.设m 为实数,若{250(,)300x y x y x mx y -+≥⎧⎪-≥⎨⎪+≥⎩
}22
{(,)|25}x y x y ⊆+≤,则m 的取值范围是___________.
4. “截距”型考题
1. ,x y 满足约束条件241y x y x y ≤⎧⎪
+≥⎨⎪-≤⎩
,则3z x y =+的最大值为( )
()A 12()B 11 ()C 3()D -1
2.设变量,x y 满足-100+20015x y x y y ≤⎧⎪
≤≤⎨⎪≤≤⎩
,则2+3x y 的最大值为A .20 B .35 C .45 D .55
3.若,x y 满足约束条件1030330
x y x y x y -+≥⎧⎪⎪
+-≤⎨⎪+-≥⎪⎩,则3z x y =-的最小值为 。
4.设函数ln ,0
()21,0
x x f x x x >⎧=⎨--≤⎩,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成
的封闭区域,则2z x y =-在D 上的最大值为 . 5 . “距离”型考题
1. 设不等式组x 1
x-2y+30y x ≥⎧⎪
≥⎨⎪≥⎩
所表示的平面区域是1Ω,平面区域是2Ω与1Ω关于直线3490x y --=对
称,对于1Ω中的任意一点A 与2Ω中的任意一点B, ||AB 的最小值等于()A.285 B.4 C. 125
D.2 2.设不等式组⎩⎨
⎧≤≤≤≤2
0,
20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离
大于2的概率是A 4π B 22π- C 6
π D 44π-
3、如果点P 在平面区域⎪⎩
⎪⎨⎧≥-≤-+≥+-01202022y y x y x 上,点O 在曲线的那么上||,1)2(2
2PQ y x =++最小值为
(A)
23
(B)
15
4- (C)122- (D)12- 6. “斜率”型考题 1.足10,0
x y x -+≤⎧⎨
>⎩则y
x 的取值范围是( )A.(0,1) B.(]0,1 C.(1,+∞) D.[)1,+∞
2.已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,
,则b a
的取值范围是 . 7. “求目标函数中的参数”型考题
1.若x ,y 满足约束条件1122x y x y x y +≥⎧⎪
-≥-⎨⎪-≤⎩
,目标函数2z ax y =+仅在点(1,0)处取得最小值,则a 的取
值范围是 ( )A .(1-,2) B .(4-,2) C .(4,0]- D . (2,4)-
2.设m >1,在约束条件下,⎪⎩
⎪
⎨⎧≤+≤≥1y x mx y x
y 目标函数z=x+my 的最大值小于2,则m 的取值范围为
A .)21,1(+
B .),21(+∞+
C .(1,3)
D .),3(+∞
6、已知x 、y 满足以下约束条件5
503x y x y x +≥⎧⎪-+≤⎨⎪≤⎩
,使z=x+ay(a>0)取得最小值的最优
解有无数个,则a 的值为 ( ) A 、-3 B 、3 C 、-1 D 、1 8. “平面区域内的整点”型问题
1、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个
2、某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件⎪⎩⎪⎨⎧≤≥+-≥-.112,
932,
22115x y x y x 则1010z x y =+的最大值是(A)80 (B) 85 (C) 90 (D)95 9、线性规划的综合题
1、设实数x ,y 满足3≤xy 2
≤8,4≤
≤9,则的最大值是 _________ .
2、设x ,y 满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,0020
63y x y x y x ,若目标函数(0,0)z ax by a b =+>> 的值是最大值为12,
则
23a b +的最小值为( ) A. 625 B. 38 C. 3
11
D. 4 3.设,x y 满足约束条件2208400 , 0
x y x y x y -+≥⎧⎪--≤⎨
⎪≥≥⎩
,若目标函数()0,0z abx y a b =+>> 的最大值为8,则a b
+的最小值为________.
4、已知O 为直角坐标系原点,P ,Q 的坐标均满足不等式组43250
22010x y x y x +-≤⎧⎪-+≤⎨⎪-≥⎩
,则cos POQ ∠的最
小值为A .
1
2
B
.2 C
.2 D .1
5、定义在R 上的函数()f x 是减函数,且对任意的a R ∈,都有()()0f a f a -+=。若,x y 满足不等式2
2
(2)(2)0f x x f y y -+-≤,则当14x ≤≤时,2x y -的最大值为是 _________ .