高考数学常见题型汇总-新课标

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、函数

1、求定义域(使函数有意义) 分母 ≠0

偶次根号≥0

对数log a x x>0,a>0且a ≠1

三角形中 060,最小角<60 2、求值域

导数法 特殊函数法 1

y x x =+

换元法 题型: 题型一:

1y x x =+

法一:

111

(,222同号)或y x x x x x x

y y =+

=+≥∴≥≤-

法二:图像法(对(0)

b

y ax ab x =+>有效

()1

(1,9)

y x x x =-∈

()/

2(1)(9)1

10

1

80,,0,9导数法:函数单调递增

即y x y x x

y f f y =+>∴=-⎛⎫

∴∈∈ ⎪

⎝⎭ 题型三:

2sin 1

1sin 1sin ,1,2112化简变形又sin 解不等式,求出,就是要求的答案y y

y

y

y y θθθθ-=

++=≤-+∴

≤-

题型五 反函数

1、反函数的定义域是原函数的值域

2、反函数的值域是原函数的定义域

3、原函数的图像与原函数关于直线y=x 对称

周期性

()()()(2)()()(2)0

0(2,函数 -)式相减)

是一个周期是2t 的周期函数

x x t x t x t x x x t f f f f f f f +++++=+==

对称

()()()(2)()()()),(2,), 函数关于直线x=a 对称

对称的判断方法:写出2个对应点的坐标A(x,求出其中点的坐标C(a,)。因a 是常数,故整个函数关于直线对称

x a a x x a x x x x f f f f f B a x f f x a +--=⇔=-=

不等式 题型一

:

2

(0)

11332

2

x =x (应用公式a+b+c 者的乘积变成常数)x x

x x +>++≥=≥

题型二:

3

3

(

)13

()32x (3-2x)(0

x x+3-2x =x x (3-2x) (应用公式abc 时,应注意使3者之和变成常数)

a b c +⋅⋅≤=++≤

数列:(熟记等差数列,等比数列的基本公式,掌握其通项公式和求和公式的推导过程) 等差数列:

1125697

12

()

2...5...(),,...n 2n 2n n 3n 2n 当是奇数时,应写成n S (不能写上试卷) S S S S S 是等差数列,公差是n d n

n m m n m n

a a n a n a a a a a a a n m a ++++=⋅⋅+++=+++=---

等比数列:

112

1

()(),,...1)

lim (1n n 2n n 3n 2n n (当

是奇数时,应写成S 是等比数列,公比是S S S S S 无穷递缩等比数列( s=也说是等比数列中所有项的和)

S n

n n n n n a n a a q q a q +→∞=--<=-

通项公式的求法 1、

n a = 11 n=1时

n>1时n n S S S -- 2、

1()11122111(1)12234...1234...1234 (2)

叠加(可参考等差数列通项公式的求法) 例:

+) (叠加) n n n n n n n n n a a f a a a n a a n a a n

a a n

n n n

a a -----==-=-=--=-=+++++=+++++=+++++=⋅L L 3、

1()11112

1

1

(1)

1

2234... 叠乘(可参考等比数列通项公式的求法) 例: =n =

=

) (叠乘)

n n n n

n n n n

n n

a a f a a a a n a a n a a a a n a ----=⨯=⨯=-⨯⨯⨯⨯⨯=L L 1234...1234... =! n a a n n n ⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯==

4、

{}1111111

1()32

3(),32,111(1)323n n n n n n n n n n n n n n a k a b a x k a x a a a x a x a a x x a a a (待定系数法) 令 例: 令展开得即 是等比数列,-------=⋅++=+=⋅++=+=+=∴++=+⋅=⋅

5、

{}11111111111

1()323(),33,222230.512

22212(2)322n n n n n n n n

n n n n n n n n n n n n n n n n n a k a b a xb k a xb a a a x a x a a x x x x x x a a a (待定系数法2) 令 例: 令展开得即 是等比数列,----------=⋅++=+=⋅++=+=+--=⇒=⇒=∴++⨯=+⨯⋅ 6、

1

11

11111

11

31

31113111

1

(倒数法)

例: 取倒数:

= 是等差数列, (n-1)3=1(n-1)3=3n-2

3n-2n n n n n n n n n n n n n a a k a b

a a a a a a a a a a a a -------=

⋅+==

⋅+⋅+=+

⎧⎫∴=+⋅+⋅⎨⎬⎩⎭

∴=

相关文档
最新文档