八年级上册全等三角形专题练习(word版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册全等三角形专题练习(word版

一、八年级数学轴对称三角形填空题(难)

1.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P有_____个.

【答案】4

【解析】

【分析】

由A点坐标可得OA=22,∠AOP=45°,分别讨论OA为腰和底边,求出点P在x轴正半轴和负半轴时,△APO是等腰三角形的P点坐标即可.

【详解】

(1)当点P在x轴正半轴上,

①如图,以OA为腰时,

∵A的坐标是(2,2),

∴∠AOP=45°,OA=22,

当∠AOP为顶角时,OA=OP=22,

当∠OAP为顶角时,AO=AP,

∴OPA=∠AOP=45°,

∴∠OAP=90°,

∴OP=2OA=4,

∴P的坐标是(4,0)或(22,0).

②以OA为底边时,

∵点A的坐标是(2,2),

∴∠AOP=45°,

∵AP=OP,

∴∠OAP=∠AOP=45°,

∴∠OPA=90°,

∴OP=2, ∴P 点坐标为(2,0).

(2)当点P 在x 轴负半轴上,

③以OA 为腰时,

∵A 的坐标是(2,2),

∴OA =22,

∴OA =OP =22,

∴P 的坐标是(﹣22,0).

综上所述:P 的坐标是(2,0)或(4,0)或(22,0)或(﹣22,0).

故答案为:4.

【点睛】

此题主要考查等腰三角形的判定及坐标与图形性质的综合运用,注意分类讨论思想的运用是解题关键.

2.如图,在01A BA △中,20B ∠=︒,01A B A B =,在1A B 上取点C ,延长01A A 到2A ,使得121A A AC =;在2A C 上取一点D ,延长12A A 到3A ,使得232A A A D =;…,按此做法进行下去,第n 个等腰三角形的底角n A ∠的度数为__________.

【答案】11()

802n -︒⋅.

【解析】

【分析】

先根据等腰三角形的性质求出∠BA 1 A 0的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律即可得出第n 个等腰三角形的底角∠A n 的度数.

【详解】 解:∵在△A 0BA 1中,∠B=20°,A 0B=A 1B ,

∴∠BA 1 A 0= 1801802022

B ︒︒︒

-∠-= =80°, ∵A 1A 2=A 1C ,∠BA 1 A 0是△A 1A 2C 的外角,

∴∠CA 2A 1= 108022

BA A ︒

∠= =40°; 同理可得,

∠DA 3A 2=20°,∠EA 4A 3=10°,

∴第n 个等腰三角形的底角∠A n = 11()

802n -︒⋅.

【点睛】

本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律是解答此题的关键.

3.如图,△ABC 是等边三角形,高AD 、BE 相交于点H ,BC=43,在BE 上截取BG=2,以GE 为边作等边三角形GEF ,则△ABH 与△GEF 重叠(阴影)部分的面积为_____.

53 【解析】

试题分析:如图所示,由△ABC 是等边三角形,BC=433,∠ABG=∠HBD=30°,由直角三角的性质,得∠BHD=90°﹣∠HBD=60°,由对顶角相等,得∠MHE=∠BHD=60°,由BG=2,得EG=BE ﹣BG=6﹣2=4.由GE 为边作等边三角形GEF ,得FG=EG=4,∠EGF=∠GEF=60°,△MHE 是等边三角形;

S △ABC =12AC•BE=12AC×EH×3EH=13BE=13

×6=2.由三角形外角的性质,得∠BIF=∠FGE ﹣∠IBG=60°﹣30°=30°,由∠IBG=∠BIG=30°,得IG=BG=2,由线段的和差,得IF=FG ﹣IG=4﹣2=2,由对顶角相等,得∠FIN=∠BIG=30°,由∠FIN+∠F=90°,得∠FNI=90°,由锐角三角函

数,得FN=1,IN=3.S 五边形NIGHM =S △EFG ﹣S △EMH ﹣

S △FIN =223314231442

⨯-⨯-⨯⨯=53,故答案为53.

考点:1.等边三角形的判定与性质;2.三角形的重心;3.三角形中位线定理;4.综合题;5.压轴题.

4.如图,在△ABC 中,AB=AC ,D 、E 是△ABC 内的两点,AE 平分∠BAC ,

∠D=∠DBC=60°,若BD=5cm ,DE=3cm ,则BC 的长是 ______cm .

【答案】8.

【解析】

【分析】

作出辅助线后根据等边三角形的判定得出△BDM 为等边三角形,△EFD 为等边三角形,从而得出BN 的长,进而求出答案.

【详解】

解:延长DE 交BC 于M ,延长AE 交BC 于N ,作EF ∥BC 于F ,

∵AB=AC ,AE 平分∠BAC ,

∴AN ⊥BC ,BN=CN ,

∵∠DBC=∠D=60°,

∴△BDM 为等边三角形,

∴△EFD 为等边三角形,

∵BD=5,DE=3,

∴EM=2,

∵△BDM 为等边三角形,

∴∠DMB=60°,

∵AN ⊥BC ,

相关文档
最新文档