第04课 因式分解
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(C) ( x- y )3–(y- x) = (x – y) (x – y + 1) ( x –y – 1)
(D) x2–y2– x + y = ( x + y) (x – y – 1)
2.若x2+mx+25是一个完全平方式,则m的值是( )
(A)20 (B) 10 (C)±20 (D)±10
3.若x2+mx+n能分解成( x+2 ) (x – 5),则m=,n=;
(11).2x2-4x+1(12).4y2+4y-5(13)3x2-7x+2
【解题指导】:
1.不论a为何值,代数式-a2+4a-5值( )
(A)大于或等于0(B)0(C)大于0(D)小于0
2.若x2+2(m-3)x+16是一个完全平方式,则m的值是( )
(A)-5(B)7(C)-1(D)7或-1
3.(x2+y2)(x2-1+y2)-12=0,则x2+y2的值是;
4.分解下百度文库因式:
(1).8xy(x-y)-2(y-x)3*(2).x6-y6
(3).x3+2xy-x-xy2*(4).(x+y)(x+y-1)-12
(5).4ab-(1-a2)(1-b2)(6).-3m2-2m+4
*5.已知a+b=1,求a3+3ab+b3的值
6.a、b、c为⊿ABC三边,利用因式分解说明b2-a2+2ac-c2的符号
考查因式分解能力,在中考试题中,因式分解出现的频率很高。重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。习题类型以填空题为多,也有选择题和解答题。
因式分解知识点:多项式的因式分解,就是把一个多项式化为几个整式的积.分解因式要进行到每一个因式都不能再分解为止.分解因式的常用方法有:
(1)提公因式法
考点训练:
1.分解下列因式:
(1).10a(x-y)2-5b(y-x)(2).an+1-4an+4an-1(3).x3(2x-y)-2x+y
(4).x(6x-1)-1(5).2ax-10ay-5by+bx(6).1-a2-ab-b2
*(7).a4+4(8).(x2+x)(x2+x-3)+2(9).x5y-9xy5(10).4a-a5
*(3).ab(c2+d2)+cd(a2+b2) (4).a4-3a2-4
*(5).x4+4y4*(6).a2+2ab+b2-2a-2b+1
10.实数范围内因式分解
(1)x2-2x-4(2)4x2+8x-1(3)2x2+4xy+y2
7.0<a≤5,a为整数,若2x2+3x+a能用十字相乘法分解因式,求符合条件的a
【独立训练】:
1.多项式x2-y2, x2-2xy+y2, x3-y3的公因式是。
2.矩形的面积为6x2+13x+5 (x>0),其中一边长为2x+1,则另一边为。
3.把a2-a-6分解因式,正确的是( )
(A)a(a-1)-6 (B)(a-2)(a+3) (C)(a+2)(a-3) (D)(a-1)(a+6)
(A) m=-1, n=-12 (B)m=-1,n=12 (C) m=1,n=-12 (D) m=1,n=12.
7.代数式y2+my+是一个完全平方式,则m的值是。
8.已知2x2-3xy+y2=0(x,y均不为零),则+的值为。
9.分解因式:
(1).x2(y-z)+81(z-y) (2).9m2-6m+2n-n2
4.若二次三项式2x2+x+5m在实数范围内能因式分解,则m=;
6.若x2+kx-6有一个因式是(x-2),则k的值是;
7.把下列多项式因式分解:
(1)a3-a2-2a (2)4m2-9n2-4m+1
(3)3a2+bc-3ac-ab (4)9-x2+2xy-y2
8.在实数范围内因式分解:
(1)2x2-3x-1 (2)-2x2+5xy+2y2
(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行.
分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号.
(5)求根公式法:如果 有两个根X1,X2,那么
考查题型:
1.下列因式分解中,正确的是( )
(A) 1-x2=(x + 2) (x- 2) (B)4x –2 x2– 2 = - 2(x- 1)2
第4课 因式分解
【知识点】
因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。
【大纲要求】
理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。
【考查重点与常见题型】
4.多项式a2+4ab+2b2,a2-4ab+16b2,a2+a+,9a2-12ab+4b2中,能用完全平方公式分解因式的有( )
(A) 1个(B) 2个(C) 3个(D) 4个
5.设(x+y)(x+2+y)-15=0,则x+y的值是( )
(A)-5或3 (B) -3或5 (C)3 (D)5
6.若x2-mx+n=(x-4)(x+3)则m,n的值为( )
如多项式
其中m叫做这个多项式各项的公因式,m既可以是一个单项式,也可以是一个多项式.
(2)运用公式法,即用
写出结果.
(3)十字相乘法
对于二次项系数为l的二次三项式 寻找满足ab=q,a+b=p的a,b,如有,则 对于一般的二次三项式 寻找满足
a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则
(D) x2–y2– x + y = ( x + y) (x – y – 1)
2.若x2+mx+25是一个完全平方式,则m的值是( )
(A)20 (B) 10 (C)±20 (D)±10
3.若x2+mx+n能分解成( x+2 ) (x – 5),则m=,n=;
(11).2x2-4x+1(12).4y2+4y-5(13)3x2-7x+2
【解题指导】:
1.不论a为何值,代数式-a2+4a-5值( )
(A)大于或等于0(B)0(C)大于0(D)小于0
2.若x2+2(m-3)x+16是一个完全平方式,则m的值是( )
(A)-5(B)7(C)-1(D)7或-1
3.(x2+y2)(x2-1+y2)-12=0,则x2+y2的值是;
4.分解下百度文库因式:
(1).8xy(x-y)-2(y-x)3*(2).x6-y6
(3).x3+2xy-x-xy2*(4).(x+y)(x+y-1)-12
(5).4ab-(1-a2)(1-b2)(6).-3m2-2m+4
*5.已知a+b=1,求a3+3ab+b3的值
6.a、b、c为⊿ABC三边,利用因式分解说明b2-a2+2ac-c2的符号
考查因式分解能力,在中考试题中,因式分解出现的频率很高。重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。习题类型以填空题为多,也有选择题和解答题。
因式分解知识点:多项式的因式分解,就是把一个多项式化为几个整式的积.分解因式要进行到每一个因式都不能再分解为止.分解因式的常用方法有:
(1)提公因式法
考点训练:
1.分解下列因式:
(1).10a(x-y)2-5b(y-x)(2).an+1-4an+4an-1(3).x3(2x-y)-2x+y
(4).x(6x-1)-1(5).2ax-10ay-5by+bx(6).1-a2-ab-b2
*(7).a4+4(8).(x2+x)(x2+x-3)+2(9).x5y-9xy5(10).4a-a5
*(3).ab(c2+d2)+cd(a2+b2) (4).a4-3a2-4
*(5).x4+4y4*(6).a2+2ab+b2-2a-2b+1
10.实数范围内因式分解
(1)x2-2x-4(2)4x2+8x-1(3)2x2+4xy+y2
7.0<a≤5,a为整数,若2x2+3x+a能用十字相乘法分解因式,求符合条件的a
【独立训练】:
1.多项式x2-y2, x2-2xy+y2, x3-y3的公因式是。
2.矩形的面积为6x2+13x+5 (x>0),其中一边长为2x+1,则另一边为。
3.把a2-a-6分解因式,正确的是( )
(A)a(a-1)-6 (B)(a-2)(a+3) (C)(a+2)(a-3) (D)(a-1)(a+6)
(A) m=-1, n=-12 (B)m=-1,n=12 (C) m=1,n=-12 (D) m=1,n=12.
7.代数式y2+my+是一个完全平方式,则m的值是。
8.已知2x2-3xy+y2=0(x,y均不为零),则+的值为。
9.分解因式:
(1).x2(y-z)+81(z-y) (2).9m2-6m+2n-n2
4.若二次三项式2x2+x+5m在实数范围内能因式分解,则m=;
6.若x2+kx-6有一个因式是(x-2),则k的值是;
7.把下列多项式因式分解:
(1)a3-a2-2a (2)4m2-9n2-4m+1
(3)3a2+bc-3ac-ab (4)9-x2+2xy-y2
8.在实数范围内因式分解:
(1)2x2-3x-1 (2)-2x2+5xy+2y2
(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行.
分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号.
(5)求根公式法:如果 有两个根X1,X2,那么
考查题型:
1.下列因式分解中,正确的是( )
(A) 1-x2=(x + 2) (x- 2) (B)4x –2 x2– 2 = - 2(x- 1)2
第4课 因式分解
【知识点】
因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。
【大纲要求】
理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。
【考查重点与常见题型】
4.多项式a2+4ab+2b2,a2-4ab+16b2,a2+a+,9a2-12ab+4b2中,能用完全平方公式分解因式的有( )
(A) 1个(B) 2个(C) 3个(D) 4个
5.设(x+y)(x+2+y)-15=0,则x+y的值是( )
(A)-5或3 (B) -3或5 (C)3 (D)5
6.若x2-mx+n=(x-4)(x+3)则m,n的值为( )
如多项式
其中m叫做这个多项式各项的公因式,m既可以是一个单项式,也可以是一个多项式.
(2)运用公式法,即用
写出结果.
(3)十字相乘法
对于二次项系数为l的二次三项式 寻找满足ab=q,a+b=p的a,b,如有,则 对于一般的二次三项式 寻找满足
a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则