中职对口升学资料-2020年高考数学模拟试卷-5份
2020年职业教育对口数学模拟试题(带答案)
机密★启用前山东省高等职业教育对口招生数学模拟试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间90分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第Ⅰ卷(选择题,共60分)一、选择题(本大题共30小题,每小题2分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出)1.已知集合A={ x 1≤x≤4},B={ x x- a>0}, 若A ⊆ B,则实数a的取值范围为()(A) (1,+∞) (B) (-∞,1)(C) [1,+∞) (D) (-∞,1]2.已知方程x2 +a x+ (a+3)=0有实根,则a的取值范围()(A) {a|a>6或a<- 2} (B) {a| -2≤a ≤6}(C) {a|a≥6或a≤- 2} (D) {a| -2< a < 6}3. 已知圆的方程为22-+-=,则点(1,2)(3)(5)16x y-().(A)在圆内(B)在圆上(C)在圆外(D)与圆心重合4.函数y=f (x) 的图象与直线x=k (k 是常数)的交点的个数()(A) 有且只有一个(B) 至少有一个(C) 至多有一个(D) 有一个或两个5.若x > y > 0, 0 < a < 1, 则下列各式成立的是()(A) a x≤a y(B) log a x < log a y(C) a x ≥a y(D) log a x > log a y6. 设a , b是实数,则a2+b2 ≠ 0的充要条件是()(A) a ≠ 0 (B) b ≠ 0 (C) a ≠ 0且b ≠ 0 (D) a ≠ 0或b ≠ 0 7.二次函数 y =x 2+px +q 的顶点在第二象限, 则p 和q 的符号是( )(A) p > 0, q >0 (B) p > 0, q < 0 (C) p < 0, q < (D) p < 0, q > 0 8.在数列3,4,7,12,x ,28, … 中,x 的值是( ).(A ) 18 (B ) 19 (C ) 20 (D ) 21 9. 过点()1,0且平行于y 轴的直线方程是( ).(A )1y = (B ) 1y =- (C )1x = (D ) 1x =-10.在四边形ABCD 中,若→A B = 2→a ,→C D = - 3 →a , ∣→A D ∣=∣→B C ∣ , 则 四边形ABCD 是( ) (A) 平行四边形 (B)菱形 (C) 等腰梯形 (D) 矩形 11.函数y =3 sin (ω x + π3 )(ω > 0)的最小正周期为π3, 则ω等于( )(A) 3 (B) 6 (C) 52(D) 912. 若平面α∥平面β,P 是平面α、β外一点,过P 的两条直线AB 、CD 交平面α于A 、C ,交平面β于B 、D ,且P A =6,AB =2,BD =12,则AC 的长是( ). (A ) 10 (B ) 9 (C ) 8 (D ) 713. 若双曲线的焦点在x 轴上,并且6a =、2b =,则双曲线的标准方程为( ). (A) 221364x y -= (B ) 221436x y -= (C ) 22162x y -= (D ) 22126x y -=14. 某数学兴趣小组成员的数学中考成绩如下:116 99 108 93 100 111 98 95 106 113 若102分以上(包括102)为优秀, 则优秀率为( ).(A ) 0.30 (B ) 0.40 (C ) 0.50 (D ) 0.60 15.0.3()log (2)f x x =,若()0f a =,则实数a 的值是( ).(A )16 (B ) 1 (C ) 0 (D ) 1216. 抛甲、乙两粒骰子,甲骰子点数不小于乙骰子点数的概率是( ). (A )512 (B ) 12 (C ) 712 (D ) 2317. 若椭圆的方程为224312x y +=,则它的焦点坐标为( ). (A ) ()()1,01,0-、 (B ) ()()0,10,1-、(C ) ((0,、 (D ))()、18.有四条线段,长度分别是2cm ,3cm ,4cm ,5cm ,从中任取两条, 长度之和不小于8cm 的概率是( ).(A) 14(B) 12(C) 13(D) 119.不等式 | 3- 2x | ≥ 5 的解集是( )(A) [-1, 4 ] (B) (- ∞, - 1]∪[ 4,+∞) (C) (- ∞, - 4)∪[ 1,+∞) (D) [- 4, 1]20.已知f (x )是奇函数,且x ≥ 0时,f (x )= 2x -x 2,则当x < 0时,f (x ) 的解析式为( )(A) f (x ) = x 2+2x (B) f (x ) = - x 2- 2x (C) f (x ) = x 2- 2x (D) f (x ) = - x 2+2x 21.设函数log ()4a x f x =,且1(16)2f =,则a 的值为( ). (A ) 4 (B ) 8 (C )18(D ) 1422.已知∣→a ∣= 4,→b 在 →a 方向上的射影的数量为- 3,则 →a ·→b =( ) (A) - 12 (B) - 7 (C) - 34 (D) 3423. 若抛物线的焦点在x 轴正半轴上,焦点到准线的距离是12,则它的 标准方程是( ).(A ) 2y x =- (B ) 2y x = (C ) 2x y =- (D ) 2x y = 24.5人参加4项比赛,每人限报一项,报名方法有( )(A) 45 (B) 54 (C) 20 (D) 25 25.函数y = 2sin 2x +4sin x +2 的最大值和最小值分别为( )(A) 6, 0 (B) 6, - 1 (C) 8, 0 (D) 8, - 1 26.等差数列前10项和1060S =,则110a a +等于( ).(A )10 (B ) 11 (C ) 12 (D ) 13 27. 函数()f x 在()5,5-上是增函数,下列选项错误的是( ).(A ) (2)(0)f f ->(B ) (1)(1)f f -< (C ) (2)(3)f f < (D ) (0)(4)f f < 28.△ABC 中:AB =10,S △= 160, 则边AC 的最小值为( )(A) 32 (B) 16 (C) 8 (D) 16 3 29.函数22y x x =+与22y x x =-的图像( ).(A ) 关于x 轴对称 (B ) 关于y 轴对称(C ) 关于原点对称 (D ) 关于x 轴和y 轴都不对称 30.在等比数列{a n }中,a 1+ a 2=30,a 3+ a 4=120,那么a 5+ a 6 =( ) (A) 210 (B) 240 (C) 480 (D) 700第Ⅱ卷(非选择题,共40分)二、填空题(本大题共4小题,每小题3分,共12分)31. 某超市大米3.5元/千克,现设x表示购买大米的重量(千克),y表示应付款数(元),将,x y 的函数关系用列表法表示为:32.若正四棱锥的体积为12,底面对角线的长为_____.33. 若圆的方程222230x y by b+--=,则圆心坐标为_______,半径为_______.34.已知t anα是方程x2-2x-3=0的一个根,且α是第一象限的角,则cosα·tanα= . 三、解答题(本大题共4小题,共28分)35. (7分)设二次函数的图象的顶点是(-2, 32)与x轴的两个交点之间的距离是6,求这个二次函数的解析式.36. (7分) 角α.37.(7分) 如图,正三棱柱ABC —A 1B 1C 1的底面边长为a ,在侧棱BB 1上取BD =2a,在侧棱CC 1上截取CE =a ,过A 、D 、E 作棱柱的截面,试证明截面ADE 与侧面ACC 1A 1垂直。
2020年对口高职高考数学模拟试卷
2020年口高职高考数学模拟试卷一、 选择题1.集合P={1、2、3、4},Q={x ||x |≤2,x ∈R }则P ∩Q 等于( )A 、{1、2}B 、{3、4}C 、{1}D 、{-1、-2、0、1、2}2.数f(x)=√1+x 的定义域为( )A.[0,+∞) B (-1, +∞) C.(-∞,-1) D.R3.数y = 3 sinx + 4 cosx 的最小正周期为( )A. πB. 2πC. 2π D. 5π 4.数y = ㏒2(6-x-x 2)的单调递增区间是( )A.(-∞,- 21]B.( -3,-21)C. [-21,+∞)D. [-21,2) 5.等比数列{a n }中,a n >0,a 2a 4+2a 3a 5+a 4a 5=36那么a 3+a 5的值等于( )A.6B.12C.18D.246.函数y =log 3( x +x1) (x>1)的最大值是( ) A.-2 B.2 C.-3 D.37.直线L:4x+3y-12=0与两坐村轴围成三角形的面积是( )A.24B.12C.6D.188.函数f (x)=3cos 2x+21sin2x 的最大值为( ) A.1-23 B. 23+1 C. 23-1 D.1 9.在等差数列中,已知S 4=1 ,S 8=4则a 17 + a 18 + a 19+ a 20( )A.8B.9C.10D.1110.|a |=|b |是a 2=b 2的( )A 、充分条件而悲必要条件,B 、必要条件而非充分条件,C 、充要条件,D 、非充分条件也非必要条件11.在⊿ABC 中内角A,B 满足t anAtanB=1则⊿ABC 是( )A 、等边三角形,B 、钝角三角形,C 、非等边三角形,D 、直角三角形12.函数y=sin(43x +4π )的图象平移向量(- 3π,0)后,新图象对应的函数为y=( ) A.Sin 43x B.- Sin 43x c. Cos 43x D.-Cos 43x 13.顶点在原点,对换称轴是x 轴,焦点在直线3x-4y-12=0上的抛物线方程是( )A.y 2=16xB. y 2=12xC. y 2=-16xD. y 2=-12x第二部分 非选择题(共75分)二、 填空题(每小题5分,共25分)14.x 2-32y =1的两条渐近线的夹角是 . 15.若直线(m-2)x+2y-m+3=0的斜率等于2,则直线在轴上的截距2是 .16.等比数列{a n }中,前n 项和S n = 2 n + a 则a = .17.函数f(x)=log 24x+203,则f(1)= .18.函数y=2x-3+√13−4x 的值域 .三、解答题(21、22两小题各10分,23、24两小题各15分)21、解不等式:log 3( 3 +2x-x 2)> log 3( 3 x+1)22、设等差数列{a n }的公差是正数,且a 2a 6 = -12, a 3+a 5 = -4求前项20的和.23、如图所示若过点M (4,0)且斜率为-1的直线L 与抛物线C :y 2=2px(p>0),交于A 、B 两点,若OA ⊥OB求(1)直线L 的方程,(2)抛物线C 的方程,(3)⊿ABC 的面积24、B 船位于A 船正东26公里处,现A 、B 两船同时出发,A 船以每小时12公里的速度朝正北方向行驶,B 船以每小时5公里的速度朝正西方向行驶,那么何时两船相距最近,最近距离是多少。
中职对口升学-2020年高考数学模拟试卷选择题汇总
一、单项选择题
1.设集合 M={-2,0,2}, N={0}, 则 ( )
A.N=Ø B. N∈M C.N⊆M D.M⊆N
2.下列不等式中正确得到是 ( )
A.5a>3a
B.5+a>3+a
C.3+a>3-a
D. 5 3 aa
3.函数 y x 2 6x 5 的定义域为是( ) A. (-,1] [5,) B.(-,1)(5,) C.(-,1] (5,)
a
B. a - b 0
C. ab 0
5.下列相互垂直的向量是( )
) D. 1 1
ba
A. a =(3,-5), b =(-3,1) B. a =(-2,4), b =(8,4)
C. a =(0,-2), b =(0,2)
D. a =(3,-4), b =(-4,3)
6.在平面直角坐标中,已知点 A(-2,3),点 B(1,-1),则 AB 的距离是( )
面平行;
D.如果在一个平面内有两条相交直线分别平行于另一个平面,那么这两个平 面互相平行。
8.体育课中,进行投 3 分篮比赛,甲同学投进 3 分的概率是 0.3,乙同学投进 3 分的概率是 0.2,问甲乙同学都投进 3 分的概率是( )
A.0.5
B.0.06
C.0.1
D.0
第二部分 数学(模拟题 3)
D.(-,1) [5,)
4.若 f(x) 2x 2 1,且x {1,0,1} 则 f(x)的值域是( )
A.{1,0,1}
B (1,3)
C. [1,3]
D.{3,1}
5.函数 y 3x 与y (1) x 的图像关于( ) 3
中职对口升学资料-2020年高考数学模拟试卷5(2)
第二部分 数学(模拟题5)一、单项选择题.(每题5分,共8小题,共40分)1、设A ={a },则下列写法正确的是( )。
A .a =A B.a ∈A C. a ⊆A D.a ∉A2.函数f (x )=lg (1-x )的定义域为( )A .x ≠1B .{x |x ≠1 }C .(1,+∞)D .[1,+∞)3.如果函数f (x )=g (x )+2 ,已知g (2)=-2,那么f (2)=( )A .2B . 5C .4D .04.已知→a =(0,-2),→b =(-1,1),则→a ∙→b =( ) A .-2 B .0 C .-3 D .25.与角-450终边相同的角是 ( )A 、π45B 、-405ºC 、π47- D 、765º 6.已知直线l : 2x -y -1=0,那么这条直线的斜率和截距分别为( )A .2,1B .1,2C .2,-1D .-2,-1下列命题中,正确的是( )A 、平面就是平行四边形 。
B 、过直线外一点有且只有一条直线与这条直线平行 。
C 、空间内不相交的两条直线一定是平行直线。
D 、垂直于同条直线的两条直线平行。
8. 书架上有语文、英语、数学、物理、化学共5本不同的书,现从中任抽一本,则没有抽到物理书的概率是( ).A .51B . 52C .53D .54 二、填空题(本大题共5小题,每题6分,共30分)9. 已知集合A ={小于4的自然数},B ={0,1},则A ∩B = ;10.函数y =1+3sin (2x +1)的最小正周期是 ;11.已知两直线l 1: x -y+2=0与l 2: x -y -1=0,则这两条直线的距离为 ;12.假设某人从甲地到乙地有8种不同的方法,从乙地到丙地有5种不同的方法,则从甲地到丙地一共有种方法;13.已知圆柱体的模具的底面半径为10cm,高15cm,现在在模具中间挖空一个半径为4cm,高为15cm的小圆柱体,问剩下的这个模具的体积为;三、解答题(本大题共2小题,共30分)14.已知数列为:1,2,4,7,11...,求这个数列的第12项。
中职对口升学资料-2020年高考数学模拟试卷-6份-15
第二部分 数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.设集合M ={-1,0,2}, N ={0,1}, 则 ( )A .M ∩N =ØB .N ∈MC .N ⊆MD .-1∉N2.下列不等式中正确得到是 ( )A .5a >3aB .5+a >3-aC .3-a >2-aD .a 3a 5> 3.函数23y 2+-=x x 的定义域为是( )A .(1,2)B .(-∞,1)∪(2,+∞)C .(-∞,1]∪(2,+∞)D .(-∞,1]∪[2,+∞)4.若f (x )=2x 2,且x ∈{-2,0,2} 则f (x ) 的值域是( )A .{-2,0,2}B .{1,9}C .[1,9]D .(1,9)5.函数与x x y y=)21(2=与的图像关于( )A .原点对称B .x 轴对称C .直线y =1对称D .y 轴对称6.若角α是第二象限角,则化简αα2sin 1tan -的结果为( ) A .sin α B .-sin α C .cos α D .-cos α7.已知点A (2,-3),点B (5,2),则向量的坐标为( )A .(3,5)B .(-3,-5)C .(-3,5)D .(3,-5)8.空间中平行于同一条直线的两条直线的位置关系是( )A .相交B .平行C .异面D .以上三种情况都有二、填空题(本大题共5小题,每小题6分,共30分)二、填空题(本大题共5小题,每题6分,共30分)9.已知y =1-2cosα,则y 的最小值是 ,最大值是 ; 10.=-)314sin(π; 11.已知数列:...643-432321-,,,⨯⨯⨯则这个数列的通项公a n = . 12.已知一扇形的半径为5cm ,圆心角为1200,则此扇形的面积为 .13.若某学校高三一班有25个男生,30个女生,要从男女生中各选拔出一个同学作为学校代表参加比赛,共有种选法。
中职对口升学资料-2020年高考数学模拟试卷-5份-1.5小时-改革题型预测题 - 6
第二部分 数学(模拟题1)一、单项选择题.(每题8分,共8小题,共64分)1.下列关系式中不正确的是( )A .Q ⊆RB .6∉{x |x ≥8}C .{0,1,2,3}⊇{1,3}D .Ø∈{0,1}2.函数f (x )=x -1的定义域为是( )A .x ≠0B .(-∞,+∞)C .{x |x ≠0 }D .{x |x >0 }3.如果函数f (x )=2|3x +1| ,那么f (-1)=( )A .(6x -1)B .6C .8D .44.若a >0,b <0,则下列不等式中成立的是( )A .b a 11>B .a +b >0C .ab ≤ 0D .0>ab 5.下列相互垂直的向量是( )A.→a =(4,-5),→b =(-4,5)B.→a =(2,4),→b =(8,4)C.→a =(1,-2),→b =(4,2)D.→a =(3,-4),→b =(-4,3) 6.在平面直角坐标中,已知点A (-1,2),点B (2,-2),则AB 的距离是( )A .5B .10C .25D .37.下列命题错误的是( );A .不共线的三点一定能够确定一个平面。
B .两条相交直线一定能确定一个平面。
C .一条直线与一个平面内无数条直线垂直,则这条直线垂直与这个平面。
D .若两条直线同时垂直于同一个平面,那么这二条直线平行。
8. 在10000张奖券中,有1张一等奖,5张二等奖,2000张三等奖,某人从中任意摸出一张,那么他中三等奖的概率是( )A .110B .51C .201D .100016 二、填空题(本大题共6小题,每题6分,共36分)9.已知y =1-2cosα,则y 的最小值是 ,最大值是 ; 10.=-)314sin(π; 11.已知数列:...643-432321-,,,⨯⨯⨯则这个数列的通项公a n = . 12.已知一扇形的半径为5cm ,圆心角为1200,则此扇形的面积为 .13.若某学校高三一班有25个男生,30个女生,要从男女生中各选拔出一个同学作为学校代表参加比赛,共有 种选法。
2020年职业教育对口数学模拟试题5(带答案)
机密★启用前山东省高等职业教育对口招生数学模拟试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间90分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第Ⅰ卷(选择题,共60分)一、选择题(本大题共30小题,每小题2分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出) 1.设集合M ={a ,-1}, N ={0,1},且M ∩N ={1},则M ∪N =( )(A){a ,-1,0,1} (B){1,-1,0,1} (C) {-1,0,1} (D)不确定 2.已知m = a 2 + a -2, n = 2a 2 – a -1,其中a ∈ R ,则下列不等式成立的是( )(A) m > n (B) n > m (C) m ≥ n (D) n ≥ m3.已知:f (x ) = {-2x +1 (x >0)-x -3 (x <0),则f ( f (f (3) ) )等于 ( )(A) - 3 (B) 3 (C) - 9 (D) 94. 飞机着陆后滑行的距离S (米)与滑行的时间t (秒)之间的函数关系式为260 1.5S t t =-,则飞机着陆后滑行( )米才能停下来.(A ) 200 (B ) 300 (C ) 400 (D ) 600 5.函数y = ⎪ a - 1⎪ x 在(-∞,+∞)上单调递减,则a 的取值范围为( )(A) 0 < a < 2 (B) 0< a < 1 (C) 0 < a < 2 且a ≠1(D) 1 < a < 26. 等差数列{}n a 中,71-=a ,2=d ,则前8项的和为( ).(A ) 2- (B ) 0 (C ) 2 (D ) 7- 7.已知:→a = (5,2),→b = ( 6 ,y ), 且 →a ∥→b ,则y 的值等于( ) (A) 3 (B) 125(C)512 (D) - 1258.已知角α的终边经过点P(2, m ), 若sin α = - 45, 则m 的值为( )(A )- 83 (B ) 83 (C )± 83 (D )- 389.下列条件中,能判定平面α与平面β互相平行的是( ). (A ) α内有不在同一条直线上的三点与β的距离相等 (B ) α、β与同一条直线所成的角相等 (C ) α内有两条不平行的直线都与β平行 (D ) α、β与同一条直线的距离相等10.已知方程22ax ay b -=,且,a b 异号,则方程表示( ). (A ) 焦点在x 轴上的椭圆 (B ) 焦点在y 轴上的椭圆 (C ) 焦点在x 轴上的双曲线 (D ) 焦点在y 轴上的双曲线 11. 下列说法中错误的是( ).(A ) 2000年2月2日晚7:00中央电视台播放新闻联播节目时,电视台有关部门对全国100个城市2222个家庭进行调查,结果有1992户正在收看此节目,占89%,那么我们就可以说,全国所有的城市家庭中,此时收看新闻联播的收视率为89% (B ) 进行产品检验时,应采用随机抽样的方法(C ) 在统计中,要了解一块玉米地里所有单株玉米的产量情况,则这块地里各单株玉米产量的全体是总体(D ) 对产品进行检验时,应该对产品进行一一检验 12. 若“p ∧ q ”是假命题,则下列结论正确的是( )(A) p ∨ q 是真命题 (B) p 和q 都是真命题 (C) ⌝ p 和⌝q 都是真命题 (D) ⌝ p ∨⌝q 是真命题 13.关于x 的不等式ax 2 + 5 x + b > 0的解集是(13 , 12),则a +b 等于( )(A) - 7 (B) 7 (C) -5 (D) 5 14.函数 y =log 2(4x 2 - 4x +1)的定义域是 ( )(A) (-∞, - 1) ∪ (- 1, +∞) (B) (0, +∞) (C) (-∞, 12 ) ∪ (12 , +∞) (D) (-∞, +∞)15.某厂1995年的产值为a 万元,预计产值每年以5%递增,则该厂 到2007年的产值(万元)是( ).(A ) 13(15%)a + (B ) 13(15%)a - (C ) 12(15%)a + (D ) 12(15%)a - 16.在小于100的正自然数中,7的倍数共有( )个,它们的和是( ) (A) 14,735 (B) 15,707 (C) 13,630 (D)13,73517.已知∣→a ∣= 6 ,∣→b ∣= 5,<→a , →b > = 12 0°,则 ∣→a - →b ∣= ( ) (A) 31 (B) 91 (C) 91 (D) 31 18.如果sin α - 3 cos α = 2 a – 3 ,则实数a 的取值范围是( ) (A) (12 ,52 ) (B) [12 ,52 ] (C) [12 , 32 ] (D) (12 , 32 )19.在△ABC 中,AB =4, AC = 6, ,且2cos(B +C )- 1=0 , 那么BC 的长度是( ) (A) 8 (B) 210 (C) 219 (D) 2720. 若双曲线的焦点在y 轴上,且6a =、10c =,则双曲线的标准方程为( ). (A ) 2213664x y -= (B ) 2213664y x -=(C ) 2216436x y -= (D ) 2216436y x -=21.从4名男教工,3名女教工中任选3人参加教工代表大会,则至少选中2名男教工的概率为( ). (A )2235 (B ) 13(C ) 14 (D ) 1835 22.同时抛掷两枚大小相同的骰子,用(x , y )表示结果,记A 为“所的点数之和小于5”,则事件A 包含的基本事件总数是( )(A) 3 (B) 4 (C) 5 (D) 623.已知 y =f (x ) 是奇函数,在区间 (-∞,-1] 上是减函数且有最小值3,则 y =f (x ) 在区间 [1,+∞) 上( )(A) 是增函数且有最小值3 (B) 是增函数且有最小值-3(C) 是减函数且有最大值3 (D) 是减函数且有最大值-324.在等差数列{a n }中,a 1= 20 , a n =54, S n = 999,则n 等于( ) (A) 24 (B) 36 (C) 27 (D) 3725. 已知点1(4,9)P 、2(6,3)P ,⊙o 是以线段12P P 为直径的圆,下列各点中在⊙o 上的点是( ). (A ) (6,9) (B ) (3,3) (C ) (5,3) (D ) (2,4)26.某企业共有职工150人,其中高级职称15人,中级职称45人,一般职员90人. 现在用分层抽样法抽取30人,则样本中各职称人数分别为( )(A) 5,10,15 (B) 3,9,18 (C) 3,10,17 (D)5,9,1627. 若2log 13a<,则a 的取值范围是( ). (A ) 20,(1,)3⎛⎫+∞ ⎪⎝⎭(B ) 2,3⎛⎫+∞ ⎪⎝⎭(C ) 2,13⎛⎫⎪⎝⎭(D )220,(,)33⎛⎫+∞ ⎪⎝⎭28. 抛物线23y x =的焦点坐标和准线方程分别是( ).(A )3(,0)4F -,34x = (B ) 3(,0)4F ,34x =-(C )3(,0)2F -,32x = (D ) 3(,0)2F ,32x =-29. 若函数f (x ) = 3x 2 + b x + c ,对任意的t 都有f (2+t ) = f (2- t ), 则( )(A) f (2) < f (1) < f (4) (B) f (1) < f (2) < f (4) (C) f (2) < f (4) < f (1) (D) f (4) < f (2) < f (1) 30. 如图直线1l 、2l 、3l 的斜率分别是1k 、2k 、3k ,则有( ).(A ) 123<<k k k (B ) 312<<k k k (C )321<<k k k (D ) 132<<k k k第Ⅱ卷(非选择题,共40分)二、填空题(本大题共4小题,每小题3分,共12分)31. 农村常需搭建截面为半圆形的全封闭蔬菜塑料棚,已知菜棚长度为40米,则需塑料膜y平方米与截面半径r米的函数关系式是___________(不考虑塑料膜埋在土里的部分).32.函数y = 2sin 2x+4sin x+2 的最大值和最小值分别为。
中职对口升学复习资料-2020年高考数学模拟试卷-6份-5
第二部分数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.下列正确的是( )A.0 ⊈ØB.0⊆{0,-1}C.Ø∈{0}D.0∈{x|3x≥0}2.函数f (x)=-2x2-1,则函数的值域为( )A.[-2,+∞) B.[-1,+∞) C.[1,+∞) D.R3.已知→a=(-2,6),→b=(4,-2),则→a•→b=( )A.20 B.4 C.-20 D.-44.已知直线4x-3y-1=0与圆(x-2)2+y2=4,则它们的位置关系是( )A. 相交B. 相切C. 相离D. 以上都有可能5.已知cos x=2a-3,则实数a的取值范围是( )A. (-1,2)B.[-1,1]C.[1,2]D.[-5,-1]6.均值是17的样本是( )A .12,15,23 B. 9,16,27 C. 14,18,19 D. 3,19,287. 下列说法不正确的是( )A.两条相交直线一定能确定一个平面。
B.若平面α内不共线的三点到平面β的距离相等,则平面α∥平面β。
C.两平行直线一定能够确定一个平面。
D.一条直线与一个平面内的所有直线都垂直,则这条直线垂直该平面。
8. 已知点A(-2,3)和点B(1,-1),则AB两点的距离为( )A.-5B.3 C.4 D.5二、填空题(本大题共5小题,每小题6分,共30分)9.已知角α的终边经过点M(12,-5),则sinα=;10.若直线经过点(2,5)和(4,-3),那么直线方程为:;11.若三棱锥的棱长都是a,则它的表面积为:;12.从A,B,C三个球队中产生冠亚军各一队,共有种结果;13.某工厂生产一批产品,每月固定成本为12000元,每件产品的可变成本为60元,若某月生产5000件产品,则这个月的成本为元.三、解答题(本大题共2小题,共30分)14. 在4与24之间插入3个数,使这5个数成等差数列,求这3个数.(10分)15.某航空公司规定旅客可以携带一定重量的行李,如果超出规定就要付钱,假如行李费用为y元,行李质量为x千克,y与x成一次函数关系,已知小东携带40千克要付费2块钱,小明携带50千克行李要付费4块钱:(1)请写出y与x的函数关系式; (8分)(2)求旅客携带65千克行李需要付费多少?(6分)(3)求旅客最多可以免费携带多少千克行李?(6分)第二部分 数学(模拟题2)一、单项选择题.(每题5分,共8小题,共40分)1.设集合M ={奇数}, N ={x |x <6,x ∈N },则M ∩N = ( )A .{x |x <6}B .{x |0≤x <6}C .{1,3,5}D .{x |x <6,x ∈N }2.函数13)(--=x x x f 的定义域为是 ( ) A .{x |x ≤0且x ≠1} B .{x |x ≥3且x ≠1} C .(-∞,1)∪[3,+∞) D .(-∞,1)∪(1,+3]3.函数32-=x y 的值域是( ) A .(0,+∞) B . ),3[+∞- C .),3[+∞ D .R4.“以a 为底x 的对数等于y ”记作( )A .x =log y aB .x =log a yC .y =log a xD .y =log x a5.与角-450终边相同的角的集合是( )A .{x |x=-450+k ∙900,k ∈Z }B .{x |x=-450+k ∙1800,k ∈Z }C .}4{Z ,k +k x|x=∈-ππD .}24{Z ,k k +x|x=∈-ππ 6.函数y =3-2sin 2x 的最大、最小值分别是( )A .1,4B .4,1C .7,-1D .5,17.等比数列1,-2,4,..中-128是( )A .第9项B .第8项C .第7项D .第10项8.一容量为n 的样本,分组后,如果某数的频数为60,频率为0.3,则n =( )A .200B .18C .60.3D .180二、填空题(本大题共5小题,每题6分,共30分)9.已知某器械内的转子逆时针旋转,每秒钟旋转80圈,问该转子1分钟内转过的圆心角为 ;(用弧度制表示)10.已知直线l 1: x -y+2=0与l 2: x -2y -1=0的交点坐标为(a,b),则a -b= ;11.已知一副扑克牌有54张,那么任抽一张是红心的概率是= .(保留分数)12.已知矩形ABCD ,AB =4cm ,BC =3cm ,现以BC 为旋转轴旋转一周,得到一个几何体,那么这个几何体的表面积是 cm 2;13.已知⎩⎨⎧--=33)(2x x x f 00x x ≤>,则f(-2)= 。
中职对口升学考试资料-2020年高考数学模拟试卷6
第二部分 数学(模拟题6)一、单项选择题1.x>1是x>2的( )A .充分条件B .必要条件C .充要条件D .无法确定2.函数1x f(x )2+=的值域是( )A .RB .),(1-∞C .()∞+,1 D .)+∞,1[ 3.若函数x log f(x )2= ,那么f (8)=( )A .2 B. 4 C.3 D .84.已知=)(411-cos π( ) A .22 B .22- C .22± D .21 5.已知=== 4,4-6,3),则((( )A.18B.-16C. 12D.-126.23+和2-3的等比中项是( )A .1B .-1C .23 D .1± 7. 下列命题错误的是( );A.如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
B.如果一个平面经过另一个平面的一条平行线,那么这两个平面互相平行。
C . 如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
D .垂直于同一个平面的两条直线互相平行。
8.经过点p (2,-4),且与x 轴平行的直线方程是( )A .X=2B .y=4C .y+4=x -2D .无法确定二、填空题(本大题共4小题,每题5分)9.=∞+==B A B A I ),则,(),集合2-8,5-[ ;=B A Y 。
10.已知数列:2,4,6,8,10...则第50项的值是 。
11.已知一副扑克牌有54张,那么任抽一张是红心的概率是= .(保留分数)12.已知直角三角形ABC ,角C 为直角,AC=4cm ,BC=3cm ,现以AC 为旋转轴旋转一周,得到一个几何体,那么这个几何体的体积是 cm ³。
三、解答题(本大题共3小题)13.解不等式:(10分)x2 ;-x214.已知函数f(x)=1-3sin2x,求f(x)的最大值与最小值:(10分)15.某航空公司允许旅客随身携带一定质量的行李,如果超过规定,就需要购买行李票,要交钱,已知所需购买行李票的费用y(元)与行李(千克)成一次函数关系,旅客甲的行李质量为4千克,被告知要付款10元,旅客乙的行李质量为6千克,被告知要付款30元:(1)求所需要购买行李票的费用y(元)与行李(千克)所成的函数关系式;(10分)(2)旅客可以免费携带的行李最多是多少?(10分)。
2020年对口高职高考数学预测模拟试卷
2020年对口高职高考数学模拟试卷一、 选择题1. 设集合M={ x |X 2>16},N={ x |log 3x >1},则M ∩N=( ).A. {x |x >3}B. {x |x >4}C. {x |x <−4}D. {x |x >4或x <4}2.下列函数既是奇函数又是增函数的是()A.y =x −1B. y =x 3C. y =log 2xD.y=2x 3.直线(√3−√2)x+y=3和x+(√2−√3)y=2的位置关系是( )A.相交不垂直B. 垂直C. 平行D.重合4.等差数列{a n }中, a 1+a 4+a 7=39, a 3+a 6+a 9=27,则数列{a n }的前9项和S n =( )A.66B. 99C. 144D.2975.若抛物线y 2=2px(p>0)过点M(4,4),则点M 到准线的距离d=( ).A.5B. 4C. 3D.26.设全集U={ x |4≤X ≤10,X ≥∈N },A={4,6,8,10},则C U A=( ).A.{5}B.{5,7}C. {5,7,9}D.{7,9} 7. “a>0且b>0”是“ab>0”的( )条件。
A. 充分不必要B.充分且必要C.必要不充分D. 以上答案都不对8.如果f(X)=a x 2+bx+c(a ≠0)是偶函数,那么g(X)=a x 3+b x 2−cx 是( ). A.偶函数 B.奇函数C.非奇非偶函数D. 既是奇函数又是偶函数9.设函数f(X)= log a x(a>0且a ≠1),f(4)=2,则f(8)=( ). A.2 B.3 C.3 D.13 10.sin 800-√3cos 800−2 sin 200的值为( )。
A.0 B.1 C.−sin200 D.4sin200 11.等比数列的前4项和是203,公比q=−13,则a 1=( ). A.-9 B.3 C.9 D.13 12.已知(23) y =(32) x2+1,则y 的最大值是( )。
2020年职业教育对口数学模拟试题(带答案)
机密★启用前山东省高等职业教育对口招生数学模拟试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间90分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第Ⅰ卷(选择题,共60分)一、选择题(本大题共30小题,每小题2分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出) 1.设集合A={1,2,4,5},B={2,5,6,7},则A ∪B 等于﹙ ﹚ (A ){2,5}(B ){1,2,,3,4,5,6,7}(C ){1,2,4,5,6,7} (D ){2,4,5} 2. 对于命题p :x >3,命题q :x >1,则p 是q 的﹙ ﹚ (A )充分条件 (B )必要条件(C )充要条件 (D )既不充分也不必要条件 3.函数y =2x -1的定义域是( )(A ){x ︱x >0} (B ){x ︱x <0} (C ){x ︱x =0} (D )x ∈R 4.设log a 13>1,则a 的取值范围是( )(A )(13 ,1) (B )(0,13)(C)(0,1) (D)(1,+∞)5.等差数列{a n}中,a1=3, a100=36,则a5+a96=()(A)39 (B)36 (C)38 (D)426.已知:∣→a∣= 4, ∣→b∣= 3,<→a,→b>= 60°,则∣→a+2→b∣=()(A)13 (B)10 (C)27(D)219 7.已知f (2x)=x2+x+1,则f (-2) = ( )(A)0 (B)1 (C)3 (D)68.直线y-3=k (x+2)恒过点()(A)(3,-2)(B)(-2,3)(C)(2,-3) (D)(-3,2)9.某同学到4个景点旅游,每个景点游览一天,则不同的游览次序有()种。
中职对口升学-高考数学模拟考试卷
岑 溪 市 中 等 专 业 学 校 2020春季期高考《数学》模拟试卷班级: 学号: 姓名:一、单项选择:(把正确答案填入下列表格中.每小题5分)1.下列数学表达式正确的是( ).A.(){}200,∈ B.φ∈0 C.{}20,⊆φ D.{}34>⊆x x 2.函数21)(-=x x f 的定义域是( ). A.2≠xB.2=xC.{}22><x x x 或D.)(+∞∞-,3.已知函数12)(2++=x x x f ,则=)2(f ( ).A.)(+∞∞-,B.5C.7D.94.已知21sin =α,且α是第二象限的角,则=αcos ( ),=αtan ( ). A.3323, B.3323--, C.3323,-D.3323-, 5.经过点)1,1(A ,且与直线0132=-+y x 平行的直线是( ).A. 3132+-=x y B.0532=-+y x C.032=+y x D.无法确定 6.已知圆的方程为06422=-++y x y x ,则这个圆的圆心是( ),半径是( ).A.1332;,- B.13)32(;,- C.1332);,(- D.1332;,- 7.已知)410(,-=→a ,)6(xb ,=→,且→→⊥b a ,则x 的值为( ). A.25 B.20 C.15 D.20-8.等比数列Λ,,,331中,327 是( ). A.第6项 B.第7项 C.第8项 D.第9项二、 填空题:(每小题5分)1.设{}2-≥=x x A ,{}10<=x x B ,求=B A I,=B A Y .2. 已知)42(,-=→a ,)13(-=→,b ,求=+→→b a 32 . 3. 已知56=x,86=y ,则=-yx 26.4. 直线12321=+y x l :与直线422=-y x l :的交点是 ,该点到直线124=+y x 的距离是 .三、解答题:(本大题共3小题,共40分)解答时要有符号格式,要有相应的文字说明有步骤,有过程,符合逻辑,只写结果不得分。
中职对口升学资料-2020年高考数学模拟试卷-6份- 20
第二部分 数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.设集合M ={奇数}, N ={x |x <6,x ∈N },则M ∩N = ( )A .{x |x <6}B .{x |0≤x <6}C .{1,3,5}D .{x |x <6,x ∈N }2.函数13)(--=x x x f 的定义域为是 ( ) A .{x |x ≤0且x ≠1} B .{x |x ≥3且x ≠1} C .(-∞,1)∪[3,+∞) D .(-∞,1)∪(1,+3]3.函数32-=x y 的值域是( ) A .(0,+∞) B . ),3[+∞- C .),3[+∞ D .R4.“以a 为底x 的对数等于y ”记作( )A .x =log y aB .x =log a yC .y =log a xD .y =log x a5.与角-450终边相同的角的集合是( )A .{x |x=-450+k ∙900,k ∈Z }B .{x |x=-450+k ∙1800,k ∈Z }C .}4{Z ,k +k x|x=∈-ππD .}24{Z ,k k +x|x=∈-ππ 6.函数y =3-2sin 2x 的最大、最小值分别是( )A .1,4B .4,1C .7,-1D .5,17.等比数列1,-2,4,..中-128是( )A .第9项B .第8项C .第7项D .第10项8.一容量为n 的样本,分组后,如果某数的频数为60,频率为0.3,则n =( )A .200B .18C .60.3D .180三、解答题(本大题共2小题,共30分)9.已知y =1-2cosα,则y 的最小值是 ,最大值是 ; 10.=-)314sin(π; 11.已知数列:...643-432321-,,,⨯⨯⨯则这个数列的通项公a n = . 12.已知一扇形的半径为5cm ,圆心角为1200,则此扇形的面积为 .13.若某学校高三一班有25个男生,30个女生,要从男女生中各选拔出一个同学作为学校代表参加比赛,共有种选法。
中职对口升学-2020年高考数学模拟试卷大题试集
第二部数学(模拟题1)三、解答题(本大题共3小题)13.已知集合4}<x <0|{x =A ,5}<x 2|{x = B ≤,求B A B A ,.(10分){15.(1)甲乙二人同时射击,甲的命中率是0.79,乙的命中率为0.83,则至少一人命中的概率是多少?(10分)(2)求以P (4,1)为圆心且与直线5x-12y-60=0相切的圆的标准方程。
(10分)=)(x f .设14.0,23,01,2,1x x 2≥-<≤---<x x x 分)10(21f 3f 2-f )的值。
()(),(求第二部分数学(模拟题2)三、解答题(本大题共3小题)13.计算:(10分)(1)lg2+lg5(2)21414.某电影院有20排座位,第一排有16个座位,后排比前一排多一个座位,若每个座位票价为2元,问满座后营业额是多少?15.为了鼓励节约用水,某地方水费按这样的形式收费,每户每月用水不超过10立方米时,按1.5元每立方米收费,超过10立方米时,超出部分按2元每立方收费,设某用户用水量为x 立方米,应每月缴费f (x )元,(1)列出f (x )的函数解析式?(10分)(2)若该用户某月用了15立方水要多少钱?如交了40元钱,可用多少立方水?(10分)第二部分数学(模拟题3)三、解答题(本大题共3小题)13.计算:(10分)(1)31-021125.02.8-94)()()(++;(2)1522log 5log 10lg 1log -33--+14.已知sina=-21,且a 是第三象限的角,求角a 的余弦和正切值。
(10分)15.某商品的价格为60元时,月销售量为5000件,价格每提高2元,月销量就会减少100件。
在不考虑其他因素的情况下,(20分)(1)试求这种商品的月销量与价格之间的函数关系;(2)当价格提高到多少时,这种商品会卖不出去?三、解答题(本大题共3小题)13.计算:(10分)(1)21169)(;(2)5log 2414.已知圆锥的侧面展开图的圆心角是120°,半径是4,求这个圆锥的全面积(10分)15.某服装厂生产一批某品牌运动服,总量为2000套,定价按80元每套销售,刚好能卖完,如果价格每提高10元,销售量就减少500套,设销售总量为y 套,每套价格定价为x 元:(10分)(3)求这批运动服的销售总量与每套销售价格之间的函数关系;(10分)(4)当价格定价为多少元时,这批运动服卖不出去?(10分)三、解答题(本大题共3小题)13.解不等式,解集用区间表示:(10分)(1)51-x 2≥;14.求值:)427sin(-π(10分)15.某模具厂生产某种模具,如果每日最多可生产200件,每日固定成本为600元,生产每件产品的可变成本为15元:(5)请写出该厂每日的生产成本与生产产量之间的函数关系式;(10分)(6)求产量为50件时生产成本?产量为100件时生产成本?(10分)三、解答题(本大题共3小题)13.解不等式:(10分)x2 ;x2-14.已知函数f(x)=1-3sin2x,求f(x)的最大值与最小值:(10分)15.某航空公司允许旅客随身携带一定质量的行李,如果超过规定,就需要购买行李票,要交钱,已知所需购买行李票的费用y(元)与行李(千克)成一次函数关系,旅客甲的行李质量为4千克,被告知要付款10元,旅客乙的行李质量为6千克,被告知要付款30元:(1)求所需要购买行李票的费用y(元)与行李(千克)所成的函数关系式;(10分)(2)旅客可以免费携带的行李最多是多少?(10分)三、解答题(本大题共3小题)13.解不等式,并把它的解集用区间表示出来:(10分)023x -x 2≥+;14.已知一个小球的体积为)cm (362π,现做一个垂直于这个球的直径的截面,求这个截面的最大面积可以是多少?(10分)15.某城市地铁按以下标准收费:在1到3站以内(包含3站),收费2元,7站以内(包含7站),收费4元,12站以内(包含12站),收费6元,12站以上全部收8元:(1)设搭地铁所需车费为y 元,搭地铁所经过的站数为x 个站,请写出y 与x 的解析式;(2)如果小张在地铁线路的第2个站上车,第13个站下车,小张要给多少车费?如果在第9个站下车,要给多少车费?三、解答题(本大题共3小题)13.已知()53x -2x x f 2+=,求()1-f ,()1f ,()0f 的值。
中职对口升学复习资料-2020年高考数学模拟试卷-6份-4
第二部分数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.下列正确的是( )A.0 ⊈ØB.0⊆{0,-1}C.Ø∈{0}D.0∈{x|3x≥0}2.函数f (x)=-2x2-1,则函数的值域为( )A.[-2,+∞) B.[-1,+∞) C.[1,+∞) D.R3.已知→a=(-2,6),→b=(4,-2),则→a•→b=( )A.20 B.4 C.-20 D.-44.已知直线4x-3y-1=0与圆(x-2)2+y2=4,则它们的位置关系是( )A. 相交B. 相切C. 相离D. 以上都有可能5.已知cos x=2a-3,则实数a的取值范围是( )A. (-1,2)B.[-1,1]C.[1,2]D.[-5,-1]6.均值是17的样本是( )A .12,15,23 B. 9,16,27 C. 14,18,19 D. 3,19,287. 下列说法不正确的是( )A.两条相交直线一定能确定一个平面。
B.若平面α内不共线的三点到平面β的距离相等,则平面α∥平面β。
C.两平行直线一定能够确定一个平面。
D.一条直线与一个平面内的所有直线都垂直,则这条直线垂直该平面。
8. 已知点A(-2,3)和点B(1,-1),则AB两点的距离为( )A.-5B.3 C.4 D.5二、填空题(本大题共5小题,每小题6分,共30分)9.已知角α的终边经过点M(12,-5),则sinα=;10.若直线经过点(2,5)和(4,-3),那么直线方程为:;11.若三棱锥的棱长都是a,则它的表面积为:;12.从A,B,C三个球队中产生冠亚军各一队,共有种结果;13.某工厂生产一批产品,每月固定成本为12000元,每件产品的可变成本为60元,若某月生产5000件产品,则这个月的成本为元.三、解答题(本大题共2小题,共30分)14. 在4与24之间插入3个数,使这5个数成等差数列,求这3个数.(10分)15.某航空公司规定旅客可以携带一定重量的行李,如果超出规定就要付钱,假如行李费用为y元,行李质量为x千克,y与x成一次函数关系,已知小东携带40千克要付费2块钱,小明携带50千克行李要付费4块钱:(1)请写出y与x的函数关系式; (8分)(2)求旅客携带65千克行李需要付费多少?(6分)(3)求旅客最多可以免费携带多少千克行李?(6分)第二部分 数学(模拟题2)一、单项选择题.(每题5分,共8小题,共40分)1.设集合M ={奇数}, N ={x |x <6,x ∈N },则M ∩N = ( )A .{x |x <6}B .{x |0≤x <6}C .{1,3,5}D .{x |x <6,x ∈N }2.函数13)(--=x x x f 的定义域为是 ( ) A .{x |x ≤0且x ≠1} B .{x |x ≥3且x ≠1} C .(-∞,1)∪[3,+∞) D .(-∞,1)∪(1,+3]3.函数32-=x y 的值域是( ) A .(0,+∞) B . ),3[+∞- C .),3[+∞ D .R4.“以a 为底x 的对数等于y ”记作( )A .x =log y aB .x =log a yC .y =log a xD .y =log x a5.与角-450终边相同的角的集合是( )A .{x |x=-450+k ∙900,k ∈Z }B .{x |x=-450+k ∙1800,k ∈Z }C .}4{Z ,k +k x|x=∈-ππD .}24{Z ,k k +x|x=∈-ππ 6.函数y =3-2sin 2x 的最大、最小值分别是( )A .1,4B .4,1C .7,-1D .5,17.等比数列1,-2,4,..中-128是( )A .第9项B .第8项C .第7项D .第10项8.一容量为n 的样本,分组后,如果某数的频数为60,频率为0.3,则n =( )A .200B .18C .60.3D .180二、填空题(本大题共5小题,每题6分,共30分)9. 已知集合A ={小于4的自然数},B ={0,1},则A ∩B = ;10.函数y =1+3sin (2x +1)的最小正周期是 ;11.已知两直线l 1: x -y+2=0与l 2: x -y -1=0,则这两条直线的距离为 ;12.假设某人从甲地到乙地有8种不同的方法,从乙地到丙地有5种不同的方法,则从甲地到丙地一共有 种方法;13.已知圆柱体的模具的底面半径为10cm ,高15cm ,现在在模具中间挖空一个半径为4cm ,高为15cm 的小圆柱体,问剩下的这个模具的体积为 ;三、解答题(本大题共2小题,共30分)14.已知数列为:1,2,4,7,11...,求这个数列的第12项。
中职对口升学考试资料-2020年高考数学模拟试卷5
第二部分 数学(模拟题5)一、单项选择题1.下列表述正确的是( )A .M 平面直线⊂mB .}0x x {}2,1{≥∈C .}{}0{φ=D .R N ⊃2.函数3-x 2f(x )-=x 的定义域为( ) A .}3x 2x x {≠≥且 B .3x ≠ C .()∞+,2 D .)+∞,2[3.如果函数1x f(x )2-+= ,那么f (2)=( )A .45 B 5 C .3- D .3 4.已知→a =(2,-2),→b =(-1,1),则|→a -→b |=( ) A .23- B .9 C .18 D .235.已知{n a }是等差数列,且=+=20120a a 80,则S ( )A.10B.6C. 8D.166.3749log =( ) A .49 B .23 C .7 D .32 7. 下列命题错误的是( );A.如果一条直线与平面内的任意一条直线都垂直,那么这条直线垂直于这个平面。
B.如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
C . 如果两条直线垂直于同一个平面,那么这两条直线互相平行。
D .如果一条直线平行于两个平面,那么这两个平面平行。
8.已知)(),(3,7P 1,3P 21是直线Ax+By+C=0上的两点,那么这两条直线的斜率为( )A .2B .2±C .21D .21± 二、填空题(本大题共4小题,每题5分)9.=≥<}5-x x {}3x x {Y ;=≥<}5-x x {}3x x {I 。
10. 已知某个扇形的圆心角度数是60°,半径是24cm ,则这个扇形的面积 是 cm ²11.已知事件A ,B 为互斥事件,P(A)=0.25,P(B)=0.15,那么P(A+B)= .12.已知一个正方体的棱长为a ,在这个正方体内内切一个体积最大的球,那么这个球与此正方体的体积比为 .三、解答题(本大题共3小题)13.解不等式,解集用区间表示:(10分)(1)51-x 2≥;14.求值:)427sin(-π(10分)15.某模具厂生产某种模具,如果每日最多可生产200件,每日固定成本为600元,生产每件产品的可变成本为15元:(1)请写出该厂每日的生产成本与生产产量之间的函数关系式;(10分)(2)求产量为50件时生产成本?产量为100件时生产成本?(10分)。
中职对口升学资料-2020年高考数学模拟试卷-5份-4
第二部分 数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.下列正确的是( )A .{Ø}=0B .1∈{(-1,1)}C .3⊆{x |x >1}D .Ø⊆{0}2.下列函数是偶函数的是( )A .y =x 2+1B .y =sin xC .y =cos xD .y =2x3.已知函数的定义域为R ,则下列函数正确的是( )A .y =x -1B .y =2x -1C .y =log 2xD .x y =4.已知角α是三角形的一个内角,若21sin α,则α=( ) A .300 B .600 C .1200 D .300 或15005.已知点A(2,1)与点B(-2,-4),则向量BA =( )A. (-4,-5)B.(4,5)C.(-4,5)D.(4,-5)6.已知圆的方程为x 2-2x +y 2+4y -11=0,则它的圆心与半径分别是( )A .(1,2),4B .(-1,2),4C .(1,-2),4D .(-1,-2),47.下列命题错误的是( )A.如果两个平行平面同时和第三个平面相交,那么它们的交线互相平行。
B .如果一条直线与一个平面平行,并且经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
C . 如果在一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面互相平行。
D .如果平面外的一条直线与平面内的所有直线都平行,那么这条直线与这个平面平行。
8.某样本容量为60,若采取分层抽样的方法,若一、二、三级品的个数之比为2:3:5,则从二级品中应抽取( )个。
A .12B .18C .30D .60二、填空题(本大题共5小题,每小题6分,共30分)9.已知sinα∙cosα>0,则α是第 象限角;10.若直线2x -ay +1=0与3x +2y -1=0互相垂直,那么a = ;11.已知球的半径是8cm,则这个球的表面积是;12.由数字1,2,3,4,5可以组成个没有重复数字的三位奇数;13.加工一批零件,先用30分钟准备,若加工5个零件用了1小时,则加工60个零件要用分钟.三、解答题(本大题共2小题,共30分)14. 某林场计划第一年造林50公顷,以后每一年比前一年多造林10%,求该林场五年内的造林数(精确到1).(10分)15.如图,利用一面墙,另三边用长度等于16(单位:米)的篱笆围成一个矩形区域EFGH,设FG=x(单位:米)(1)写出另一边长与x的函数关系式,并指出其定义域;(5分)(2)写出矩形的面积S关于x的函数关系式,并指出其定义域;(5分)(3)当x取何值时,矩形的面积不小于24平方米。
中职对口升学资料-2020年高考数学模拟试卷-5份
第二部分 数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.设集合M ={奇数}, N ={x |x <6,x ∈N },则M ∩N = ( )A .{x |x <6}B .{x |0≤x <6}C .{1,3,5}D .{x |x <6,x ∈N }2.函数13)(--=x x x f 的定义域为是 ( ) A .{x |x ≤0且x ≠1} B .{x |x ≥3且x ≠1} C .(-∞,1)∪[3,+∞) D .(-∞,1)∪(1,+3]3.函数32-=x y 的值域是( ) A .(0,+∞) B . ),3[+∞- C .),3[+∞ D .R4.“以a 为底x 的对数等于y ”记作( )A .x =log y aB .x =log a yC .y =log a xD .y =log x a5.与角-450终边相同的角的集合是( )A .{x |x=-450+k ∙900,k ∈Z }B .{x |x=-450+k ∙1800,k ∈Z }C .}4{Z ,k +k x|x=∈-ππD .}24{Z ,k k +x|x=∈-ππ 6.函数y =3-2sin 2x 的最大、最小值分别是( )A .1,4B .4,1C .7,-1D .5,17.等比数列1,-2,4,..中-128是( )A .第9项B .第8项C .第7项D .第10项8.一容量为n 的样本,分组后,如果某数的频数为60,频率为0.3,则n =( )A .200B .18C .60.3D .180二、填空题(本大题共5小题,每题6分,共30分)9.log 64+log 69= .10.已知若→a =(-2,n ),→b =(1,-4),且b a ρρ⊥,则n 的值为 .11.经过点P(-3,4) ,圆心在(1,1)的圆的标准方程是 .12.样本2,5,6,9,13的均值是 .13.圆锥的底面半径为6cm ,母线长为10cm,则这个圆锥的体积为 .三、解答题(本大题共2小题)14.已知21-=sin α,且角α是第三象限角,求角α的余弦值和正切值.(10分)15.依法纳税时每个公民的应尽义务,国家征收个人工资,薪金所得税是分段计算的。
中职对口升学资料-2020年高考数学模拟试卷-5份-5
第二部分 数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.下列正确的是( )A .{Ø}=0B .1∈{(-1,1)}C .3⊆{x |x >1}D .Ø⊆{0}2.下列函数是偶函数的是( )A .y =x 2+1B .y =sin xC .y =cos xD .y =2x3.已知函数的定义域为R ,则下列函数正确的是( )A .y =x -1B .y =2x -1C .y =log 2xD .x y =4.已知角α是三角形的一个内角,若21sin α,则α=( ) A .300 B .600 C .1200 D .300 或15005.已知点A(2,1)与点B(-2,-4),则向量BA =( )A. (-4,-5)B.(4,5)C.(-4,5)D.(4,-5)6.已知圆的方程为x 2-2x +y 2+4y -11=0,则它的圆心与半径分别是( )A .(1,2),4B .(-1,2),4C .(1,-2),4D .(-1,-2),47.下列命题错误的是( )A.如果两个平行平面同时和第三个平面相交,那么它们的交线互相平行。
B .如果一条直线与一个平面平行,并且经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
C . 如果在一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面互相平行。
D .如果平面外的一条直线与平面内的所有直线都平行,那么这条直线与这个平面平行。
8.某样本容量为60,若采取分层抽样的方法,若一、二、三级品的个数之比为2:3:5,则从二级品中应抽取( )个。
A .12B .18C .30D .60二、填空题(本大题共5小题,每小题6分,共30分)9.已知sinα∙cosα>0,则α是第 象限角;10.若直线2x -ay +1=0与3x +2y -1=0互相垂直,那么a = ;11.已知球的半径是8cm,则这个球的表面积是;12.由数字1,2,3,4,5可以组成个没有重复数字的三位奇数;13.加工一批零件,先用30分钟准备,若加工5个零件用了1小时,则加工60个零件要用分钟.三、解答题(本大题共2小题,共30分)14. 某林场计划第一年造林50公顷,以后每一年比前一年多造林10%,求该林场五年内的造林数(精确到1).(10分)15.如图,利用一面墙,另三边用长度等于16(单位:米)的篱笆围成一个矩形区域EFGH,设FG=x(单位:米)(1)写出另一边长与x的函数关系式,并指出其定义域;(5分)(2)写出矩形的面积S关于x的函数关系式,并指出其定义域;(5分)(3)当x取何值时,矩形的面积不小于24平方米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二部 数学(模拟题1)一、单项选择题1.设集合M={-2,0,2}, N={0}, 则 ( )A .N=Ø B. N ∈M C .N ⊆M D .M ⊆N2.下列不等式中正确得到是 ( )A .5a>3aB .5+a>3+aC .3+a>3-aD .a3a 5> 3.函数56x y 2+-=x 的定义域为是( )A .),5[]1,-(+∞∞YB .),51,-(+∞∞()YC .),5]1,-(+∞∞(YD .),5[1,-(+∞∞Y )4.若}1,0,1{x 12f(x )2-∈+=,且x 则f (x )的值域是( )A .}1,0,1{-B )(3,1 C .]3,1[ D .}1,3{ 5.函数x x y )31(3y ==与的图像关于( ) A .原点对称 B .x 轴对称 C .直线y=1对称 D .y 轴对称6.若角α是第三象限角,则化简αα2sin -1tan ⋅的结果为( )A .αsin -B .αsinC . αcosD .αcos -7.已知点A (5,-3),点B (2,4)则向量BA ( )A .)7,1(B .)3,7(- C .)7,3(- D .)1,7( 8.空间中垂直于同一条直线的两条直线的位置关系是( )A .相交B .平行C .异面D .以上三种情况都有二、填空题(本大题共4小题)9.21-x >的解集是 .10.若角a 的终边上的一点坐标为(-2,1),则cosa 的值为 .11.在4和16之间插入3个数a ,b ,c ,使4,a ,b ,c,16成等差数列,则b 的值是 .12.学校餐厅有10根底面周长为3.6m ,高是5m 的圆柱形柱子,现在要刷上油漆,每平方米用油漆0.5kg ,则刷这些柱子需要用 kg 。
三、解答题(本大题共3小题)13.已知集合4}<x <0|{x =A ,5}<x 2|{x = B ≤,求B A B A Y I , .(10分){15.(1)甲乙二人同时射击,甲的命中率是0.79,乙的命中率为0.83,则至少一人命中的概率是多少? (10分)(2)求以P (4,1)为圆心且与直线5x -12y -60=0相切的圆的标准方程。
(10分)=)(x f .设14.0,23,01,2,1x x 2≥-<≤---<x x x ,分)10(21f 3f 2-f )的值。
()(),(求第二部分 数学(模拟题2)一、单项选择题1.下列数学表达正确的是 ( )A .})2,0({0∈B .φ∈0C .}3,2,1,0{∈φ D .}3x x {4<⊆ 2.函数21f(x)-=x 的定义域为是( ) A .2≠x B .2=x C .}2或2x x {><x D .),-(+∞∞3.若=++=x)(f ,则12f(x)2x x ( )A .),-(+∞∞B 5C .7D .94.已知21sin =α,且α是第二象限的角,则αcos =( ),αtan =( ) A .33,23 B .33-,23- C .33,23- D .33-,23 5.已知经过点A (1,1),且与直线2x+3y -1=0平行的直线是( )A .3132y +-=x B .0532=-+y x C .032=+y x D .无法确定 6.已知圆的方程为,06422=-++y x y x 则这个圆的圆心和半径是( )A .13;3,2-B .13);3,2(-C .13);3,2(-D .13;3,2-7.下列不正确的是( )A .若一条直线有两个点在一个平面内,则这条直线也在此平面内;B .平行于同一条直线的两条直线平行,在空间中也一样;C .如果平面外的一条直线与平面内的所有直线平行,那么这条直线与这个平面平行;D .如果在一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面互相平行。
8.体育课中,进行投3分篮比赛,甲同学投进3分的概率是0.3,乙同学投进3分的概率是0.2,问甲乙同学都投进3分的概率是( )A .0.5B .0.06C .0.1D .0二、填空题(本大题共4小题,每题5分)9.设-2}x |{x = A ≥,10}<x |{x = B ,求。
B A , B A ==Y I10.已知若→a =(-2,4),→b =(3,-1),则2→a +3→b = .11.小王,小李,小张,小高的平均体重为81斤,已知小王重为94斤,小李为80斤,小张比小高重2斤,则小高体重为 .12.若一个球的半径为R ,现经过这个球的半径的中点,作一个垂直于这条半径的截面,那么这个截面的面积为 。
三、解答题(本大题共3小题)13.计算:(10分)(1)lg2+lg5 (2)21414.某电影院有20排座位,第一排有16个座位,后排比前一排多一个座位,若每个座位票价为2元,问满座后营业额是多少?15.为了鼓励节约用水,某地方水费按这样的形式收费,每户每月用水不超过10立方米时,按1.5元每立方米收费,超过10立方米时,超出部分按2元每立方收费,设某用户用水量为x 立方米,应每月缴费f (x )元,(1)列出f (x )的函数解析式? (10分)(2)若该用户某月用了15立方水要多少钱?如交了40元钱,可用多少立方水?(10分)第二部分 数学(模拟题3)一、单项选择题1.设集合M=}4-x {≥x ,N=}6x x {<,则=N M I ( )A .RB .φC .}6x 4x {<<-D .}3x 4x {<≤-2.函数22f(x )--=x x 的定义域为是( ) A .]2,-(∞ B .)+∞,2[ C .)+∞∞,2[]1,-(Y D .]211,-(,()Y ∞ 3.函数2f(x )2+=x 的值域是( )A .)+∞,0(B )+∞,3-(C .)+∞,3[D .R4.“以a 为底的x 的对数等于y ”记做( )A .x a log y =B .y a log x =C .a log x y =D .a log y x =5.与角-21°终边相同的角的集合是( )A.},9021|{Z k k x x ∈︒⋅+︒-=B.},18021|{Z k k x x ∈︒⋅+︒-=C.},27021|{Z k k x x ∈︒⋅+︒-=D.},36021|{Z k k x x ∈︒⋅+︒-=6.函数y=3-sinx 的最大最小值分别是( )A .2,4B .4,2C .3,1D .4,-27. 等比数列1,2,2,...中,28是( );A .第6项B .第7项C .第8项D .第9项8.一容量为n 的样本,如果某数的频数为60,频率为0.375,则n=( )A .150B .160C .170D .180二、填空题(本大题共4小题,每题5分)9.log 62 + log 63 = ;10.已知向量→a =(1,n ),→b =(-3,1),且b a ρρ⊥,则n 的值为 . 11.经过点P (-3,0),圆心在(2,-1)的圆的标准方程是 .12.样本2,5,6,9,13的均值是 ,标准差是 .三、解答题(本大题共3小题)13.计算:(10分)(1)31-021125.02.8-94)()()(++; (2)1522log 5log 10lg 1log -33--+14.已知sina=-21,且a 是第三象限的角,求角a 的余弦和正切值。
(10分)15.某商品的价格为60元时,月销售量为5000件,价格每提高2元,月销量就会减少100件。
在不考虑其他因素的情况下,(20分)(1)试求这种商品的月销量与价格之间的函数关系;(2)当价格提高到多少时,这种商品会卖不出去?第二部分 数学(模拟题4)一、单项选择题1.下列关系式中不正确的是( )A .R Q ⊆B .}2,1,0{∈φC .}3,5{}2,3,4,5{⊇D .}8x x {4≥∉2.函数sinx11f(x)+=的定义域为是( ) A .1x ≠ B .}k ,23k 2x x {Z ∈+≠ππ C .}2x x {π≠ D .)+∞∞,-( 3.如果函数1-x 5f(x)= ,那么f (-1)=( )A .)1-x 5(B 6-C .6D .44.若a>0,b<0,则下列不等式中成立的是( )A .0a b >B .0b -a >C .0ab >D .a1b 1> 5.下列相互垂直的向量是( )A.→a =(3,-5),→b =(-3,1)B.→a =(-2,4),→b =(8,4)C.→a =(0,-2),→b =(0,2)D.→a =(3,-4),→b =(-4,3) 6.在平面直角坐标中,已知点A(-2,3),点B(1,-1),则AB 的距离是( )A .10B .5C .25D .38. 下列命题错误的是( );A.如果平面外的一条直线与平面内的所有直线都平行,那么这条直线与这个平面平行。
B .如果一条直线与一个平面平行,并且经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
C . 如果在一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面互相平行。
D .如果两个平行平面同时和第三个平面相交,那么它们的交线互相平行。
8. 某射击爱好者已测得他一次射击击中6环,7环,8环,9环,10环的概率分别是0.15, 0.13, 0.12, 0.10, 0.08,问他射击一次至少9环的概率是( )A .0.18B .0.008C .0.10D .0.50二、填空题(本大题共4小题,每题5分)9.=>≤+}03-x x {}03x x {Y ;=>≤+}03-x x {}03x x {I 。
10.=+020240cos 400sin .11.已知数列:........16181-4121-,,,,则这个数列的通项公式为=n a . 12.()=2-533x 3log .三、解答题(本大题共3小题)13.计算:(10分)(1)21169)(; (2)5log 2414.已知圆锥的侧面展开图的圆心角是120°,半径是4,求这个圆锥的全面积(10分)15.某服装厂生产一批某品牌运动服,总量为2000套,定价按80元每套销售,刚好能卖完,如果价格每提高10元,销售量就减少500套,设销售总量为y 套,每套价格定价为x 元:(10分)(3)求这批运动服的销售总量与每套销售价格之间的函数关系;(10分)(4)当价格定价为多少元时,这批运动服卖不出去?(10分)第二部分 数学(模拟题5)一、单项选择题1.下列表述正确的是( )A .M 平面直线⊂mB .}0x x {}2,1{≥∈C .}{}0{φ=D .R N ⊃2.函数3-x 2f(x )-=x 的定义域为( ) A .}3x 2x x {≠≥且 B .3x ≠ C .()∞+,2 D .)+∞,2[3.如果函数1x f(x )2-+= ,那么f (2)=( )A .45 B 5 C .3- D .3 4.已知→a =(2,-2),→b =(-1,1),则|→a -→b |=( ) A .23- B .9 C .18 D .235.已知{n a }是等差数列,且=+=20120a a 80,则S ( )A.10B.6C. 8D.166.3749log =( ) A .49 B .23 C .7 D .32 7.下列命题错误的是( );A.如果一条直线与平面内的任意一条直线都垂直,那么这条直线垂直于这个平面。