全等三角形讲义
《全等三角形》 讲义
《全等三角形》讲义一、全等三角形的定义两个能够完全重合的三角形叫做全等三角形。
“完全重合”意味着它们的形状和大小完全相同,包括三角形的三条边和三个角。
例如,我们有两个三角形△ABC 和△DEF,如果将△DEF 放到△ABC 上,能够完全覆盖住△ABC,没有任何多余的部分或者空缺,那么我们就说△ABC 和△DEF 是全等三角形。
二、全等三角形的性质1、对应边相等如果△ABC ≌△DEF,那么 AB = DE,BC = EF,AC = DF。
2、对应角相等∠A =∠D,∠B =∠E,∠C =∠F。
3、周长相等由于对应边相等,所以两个全等三角形的周长也相等。
4、面积相等全等三角形能够完全重合,所以它们的面积相等。
三、全等三角形的判定方法1、 SSS(边边边)如果两个三角形的三条边分别对应相等,那么这两个三角形全等。
例如,在△ABC 和△DEF 中,AB = DE,BC = EF,AC = DF,那么可以判定△ABC ≌△DEF。
2、 SAS(边角边)如果两个三角形的两条边及其夹角分别对应相等,那么这两个三角形全等。
比如,在△ABC 和△DEF 中,AB = DE,∠B =∠E,BC = EF,那么△ABC ≌△DEF。
3、 ASA(角边角)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。
假设在△ABC 和△DEF 中,∠A =∠D,AB = DE,∠B =∠E,就能够得出△ABC ≌△DEF。
4、 AAS(角角边)如果两个三角形的两个角和其中一个角的对边分别对应相等,那么这两个三角形全等。
例如,在△ABC 和△DEF 中,∠A =∠D,∠C =∠F,AB = DE,那么△ABC ≌△DEF。
5、 HL(斜边、直角边)这是针对直角三角形的特殊判定方法。
如果两个直角三角形的斜边和一条直角边分别对应相等,那么这两个直角三角形全等。
比如,在 Rt△ABC 和 Rt△DEF 中,AB = DE(斜边),AC = DF (直角边),那么 Rt△ABC ≌ Rt△DEF。
三角形全等的讲义
三角形全等的判定一、判定两个三角形全等的方法一般有以下4种:1、三边对应相等的两个三角形全等(能够简写成“边边边”或“SSS”)。
2、两边和它们的夹角对应相等的两个三角形全等(能够简写成“边角边”或“SAS”)。
3、两角和它们夹边对应相等的两个三角形全等(能够简写成“角边角”或“ASA”)。
4、两个角和其中一个角的对边对应相等的两个三角形全等(能够简写成“角角边”或“AAS”)。
二、判别两个直角三角形全等时,除了能够应用以上4种判别方法外,还能够应用“斜边、直角边”:斜边和一条直角边对应相等的两个直角三角形全等(能够简写成“斜边、直角边”或“HL”)。
三、尺规作图使用尺规作图作相等角、相等线段以及全等三角形。
四、应用三角形的判定方法三角形全等是证明线段相等,角相等最基本、最常用的方法,这不但因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.那么我们应该怎样应用三角形全等的判别方法呢?(1)条件充足时直接应用在证明与线段或角相等的相关问题时,常常需要先证明线段或角所在的两个三角形全等,而从近年的中考题来看,这类试题难度不大,证明两个三角形的条件比较充分.只要同学们认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.(2)条件缺乏,会增加条件用判别方法此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充使三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,逐步分析,探索结论成立的条件,从而得出答案.(3)条件比较隐蔽时,可通过添加辅助线用判别方法在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利使用全等三角形的判别方法证明两个三角形全等.常见的隐藏条件有:①公共边,公共角,对顶角;②线段的相加减;③角度的互余,互补,三角形的外角等于与它不相邻的内角和。
全等三角形的讲义整理讲义
全等三角形专题一 全等三角形的性质【知识点1】能够完全重合的两个三角形叫做全等三角形。
(两个三角形全等是指两个三角形的大小和形状完全一样,与他们的位置没有关系。
)【知识点2】两个三角形重合在一起,重合的顶点叫做对应顶点;重合的边叫做 对应边;重合的角叫做对应角。
【例题1】如图,已知图中的两个三角形全等,填空:(1)AB 与 是对应边,BC 与 是对应边, CA 与 是对应边;(2)∠A 与 是对应角,∠ABC 与 是对应角, ∠BAC 与 是对应角【方法总结】在两个全等三角形中找对应边和对应角的方法。
(1)有公共边的,公 共边一定是对应边;(2)有公共角的,公共角一定是对应角;(3)有对顶角的,对顶角是对应角;(4)在两个全等三角形中,最长的边对最长的边,最短的边对最短的边,最大的角对最大的角,最小的角对最小的角。
【练习1】 如图,图中有两对三角形全等,填空: (1)△BOD ≌ ; (2)△ACD ≌ .【知识点3】 全等三角形的对应边相等,对应角相等。
(由定义还可知道,全等三角形的周长相等,面积相等,对应边上的中线和高相DABCOE ABCD等,对应角的角平分线相等)【例题2】 (海南省中考卷第5题) 已知图2中的两个三角形全等,则∠α度数是( )A.72°B.60°C.58°D.50°【例题3】(清远)如图,若111ABC A B C △≌△,且11040A B ∠=∠=°,°,则1C ∠= .【练习2】 如图,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为( )A 20° B.30° C .35° D .40°【练习3】如图,△ABD 绕着点B 沿顺时针方向旋转90°到△EBC , 且∠ABD=90°。
全等三角形培优竞赛讲义(全集)
全等三角形培优竞赛讲义(一)知识点全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法: (1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等. (4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.例题精讲板块一、截长补短【例1】 (06年北京中考题)已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.DOEC B A4321FDOE CB A【解析】 BE CD BC +=,理由是:在BC 上截取BF BE =,连结OF , 利用SAS 证得BEO ∆≌BFO ∆,∴12∠=∠,∵60A ∠=︒,∴1901202BOC A ∠=+∠=,∴120DOE ∠=,∴180A DOE ∠+∠=,∴180AEO ADO ∠+∠=,∴13180∠+∠=, ∵24180∠+∠=,∴12∠=∠,∴34∠=∠,利用AAS 证得CDO ∆≌CFO ∆,∴CD CF =,∴BC BF CF BE CD =+=+.【例2】 如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?N E B M A DGNEB M A D【解析】 猜测DM MN =.过点M 作MG BD ∥交AD 于点G ,AG AM =,∴GD MB =又∵120ADM DMA +∠=∠,120DMA NMB +=∠∠ ∴ADM NMB =∠∠,而120DGM MBN ==∠∠, ∴DGM MBN ∆∆≌,∴DM MN =.【变式拓展训练】如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC∠外角的平分线交于点N ,MD 与MN 有怎样的数量关系?N CDE B M A NCDEB M A【解析】 猜测DM MN =。
全等三角形经典讲义
全等三角形状元笔记【知识要点】1.全等三角形能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质全等三角形的对应边相等,全等三角形的对应角相等.3.三角形全等的判定方法(1)三边分别相等的两个三角形全等(简写成“边边边”或“SSS”).(2)两边和它们的夹角分别相等的两个三角形全等(简写成“边角边”或“SAS”).(3)两角和它们的夹边分别相等的两个三角形全等(简写成“角边角”或“ASA”).(4)两个角和其中一个角的对边分别相等的两个三角形全等(简写成“角角边”或“AAS”).4.直角三角形全等的判定方法斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).【温馨提示】1.两个三角形全等的条件中必须有一条边分别相等,只有角分别相等不能证明两个三角形全等.2.有两边和其中一边的对角分别相等的两个三角形不一定全等.3.“HL”定理指的是斜边和一条直角边分别相等,而不是斜边和直角分别相等.【方法技巧】1.应用全等三角形性质解决问题的前提是准确地确定全等三角形的对应边和对应角,其规律主要有以下几点:(1)以对应顶点为顶点的角是对应角;(2)对应顶点所对应的边是对应边;(3)公共边(角)是对应边(角);(4)对顶角是对应角;(5)最大边(角)是对应边(角),最小边(角)是对应边(角).全等三角形的对应边和对应角可以依据字母的对应位置来确定,如若△ABC≌△DEF,说明A与D,B与E, C与F是对应点,则∠ABC与∠DEF是对应角,边AC与边DF是对应边.2.判定两个三角形全等的解题思路:专题一 三角形全等的判定1.如图,BD 是平行四边形ABCD 的对角线,∠ABD 的平分线BE 交AD 于点E ,∠CDB 的平分线DF 交BC 于点F .求证:△ABE≌△CDF .2.如图,在△ABC 中,D 是BC 边上的点(不与B ,C 重合),F ,E 分别是AD 及其延长线上的点,CF ∥BE . 请你添加一个条件,使△BDE ≌△CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1)你添加的条件是:__________; (2)证明:SAS SSS AAS SAS ASA AAS ASA AAS ⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎨⎪⎩⎩找夹角——已知两边找另一边——边为角的对边——找任一角——找夹角的另一边——已知一边一角边为角的邻边找夹边的另一角——找边的对角——找夹边——已知两角找任一边——3.如图,△ABC中,点D在BC上,点E在AB上,BD=BE,要使△ADB≌△CEB,还需添加一个条件.(1)给出下列四个条件:①AD=CE;②AE=CD;③∠BAC=∠BCA;④∠ADB=∠CEB;请你从中选出一个能使△ADB≌△CEB的条件,并给出证明;(2)在(1)中所给出的条件中,能使△ADB≌△CEB的还有哪些?直接在题后横线上写出满足题意的条件序号.__________________.专题二 全等三角形的判定与性质4.如图,已知△ABC 中,∠ABC =45°,AC =4,H 是高AD 和BE 的交点,则线段BH 的长度为( )AB .4C .D .55.【2013·襄阳】如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,将△ADC 绕点A 顺时针旋转,使AC 与AB 重合,点D 落在点E 处,AE 的延长线交CB 的延长线于点M ,EB 的延长线交AD 的延长线于点N .求证:AM =AN .6.【2012·泸州】如图,△ABC 是等边三角形,D 是AB 边上一点,以CD 为边作等边三角形CDE ,使点E 、A 在直线DC 的同侧,连接AE .求证:AE ∥BC .NME D B CA专题三全等三角形的应用7.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是()A.60° B.90° C.120° D.150°8.有一座小山,现要在小山A、B的两端开一条隧道,施工队要知道A、B两端的距离,于是先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B两端的距离,你能说说其中的道理吗?9.已知如图,要测量水池的宽AB ,可过点A 作直线AC ⊥AB ,再由点C 观测,在BA 延长线上找一点B′,使∠ACB′=∠ACB ,这时只要量出AB′的长,就知道AB 的长,对吗?为什么?10.如图,点D 、B 分别在∠A 的两边上,C 是∠A 内一点,AB = AD ,BC = CD ,CE ⊥AD 于E ,CF ⊥AF于F .求证:CE = CF11.已知:如图,在△ABC 中,∠A =90°,AB = AC ,BD 平分∠ABC .求证:BC = AB + ADFA BECD12.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB13.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B14.如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.DBACPEDCBA D CBA15.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):16.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .OEDCBAFEA17.已知:在△ABC中,∠BAC=90,AB=AC,AE是过点A的一条直线,且BD⊥AE于D,CE⊥AE于E.(1)当直线AE处于如图①的位置时,有BD=DE+CE,请说明理由;(2)当直线AE处于如图②的位置时,则BD、DE、CE的关系如何?请说明理由;(3)归纳(1)、(2),请用简洁的语言表达BD、DE、CE之间的关系.18、两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B C E,,在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);图1图2DCAB(2)证明:DC BE⊥.19.如图-1,ABC△的边BC在直线l上,AC BC⊥,且AC BC=;EFP△的边FP也在直线l上,边EF与边AC重合,且EF FP=.(1)在图-1中,请你通过观察、测量,猜想并写出AB与AP关系;(2)将EFP△沿直线l向左平移到图-2的位置时,EP交AC于点Q,连结AP,BQ.猜想并写出BQ与AP的关系,请证明你的猜想;(3)将EFP△沿直线l向左平移到图-3的位置时,EP的延长线交AC的延长线于点Q,连结AP,BQ.你认为(2)中所猜想的BQ与AP的关系还成立吗?若成立,给出证明;若不成立,请说明理由.A (E)B C (F)Pl l l图-1 图-2图-3全等三角形——角的平分线的性质状元笔记【知识要点】1.角的平分线的性质角的平分线上的点到角的两边的距离相等.2.角的平分线的判定角的内部到角的两边的距离相等的点在角的平分线上.【温馨提示】1.到三角形三边距离相等的点是三角形三条角平分线的交点,不是其他线段的交点.2.到三角形三边距离相等的点不仅有内角的平分线的交点,还有相邻两外角的平分线的交点,这样的点共有4个.【方法技巧】1.利用角的平分线的性质解决问题的关键是:挖掘角的平分线上的一点到角两边的垂线段.若已知条件存在两条垂线段——直接考虑垂线段相等,若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段.2.利用角平分线的判定解决问题的策略是:挖掘已知图形中一点到角两边的垂线段.若已知条件存在两条垂线段——先证明两条垂线段相等,然后说明角平分线或角的关系;若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,再证明两条垂线段相等;若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段后,证明两条垂线段相等.专题一利用角的平分线的性质解题1.如图,在△ABC中,AC=AB,D在BC上,若DF⊥AB,垂足为F,DG⊥AC,垂足为G,且DF=DG.求证:AD⊥BC.2.如图,已知CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC.求证:OB=OC.3.如图,在Rt △ABC 中,∠C=90°,,AD 是∠BAC 的角平分线,DE ⊥AB 于点E ,AC =3 cm ,求BE 的长.专题二 角平分线的性质的应用 4.如图,三条公路把A 、B 、C 三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在()A .在AC 、BC 两边高线的交点处B .在AC 、BC 两边中线的交点处C .在∠A 、∠B 两内角平分线的交点处D .在AC 、BC 两边垂直平分线的交点处5.如图,要在河流的南边,公路的左侧M 区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A 处的距离为1cm (指图上距离),则图中工厂的位置应在__________,理由是__________.21BAC B ∶∶∠∠6. 如图, ∠ B= ∠ C=90 °, M 是 BC 中点, DM 平分 ∠ ADC ,求证: AM 平分 ∠ DAB .7. 如图,已知 △ ABC 的周长是 22 , OB 、 OC 分别平分 ∠ ABC 和 ∠ ACB , OD ⊥ BC 于 D ,且 OD=3 , △ ABC 的面积是多少?8.如图,已知 ∠ 1= ∠ 2 , P 为 BN 上的一点, PF ⊥ BC 于 F , PA=PC ,求证: ∠ PCB+ ∠ BAP=180 º9.如图,△ ABC 中, P 是角平分线 AD , BE 的交点. 求证:点 P 在∠ C 的平分线上.10. 如图,在 △ ABC 中, BD 为 ∠ ABC 的平分线, DE ⊥ AB 于点 E ,且 DE=2cm , AB=9cm , BC=6cm ,求 △ ABC 的面积.21NP F C BA11.如图, D 、 E 、 F 分别是△ ABC 的三条边上的点, CE=BF ,△ DCE 和△ DBF 的面积相等.求证: AD 平分∠ BAC .。
《全等三角形》ppt课件
《全等三角形》ppt课件•全等三角形基本概念与性质•判定全等三角形方法探讨•辅助线在证明全等过程中作用•相似三角形与全等三角形关系探讨目录•生活中全等三角形应用举例•总结回顾与拓展延伸全等三角形基本概念与性质全等三角形定义及判定方法定义SSS(边边边)SAS(边角边)HL(斜边、直角边)ASA(角边角)AAS(角角边)对应边相等对应角相等对应关系确定030201对应边、对应角关系全等三角形性质总结判定全等三角形方法探讨SSS判定法定义应用举例注意事项应用举例SAS判定法定义在证明两个三角形全等时,若已知两边及夹角相等,则可直接应用SAS判定法。
注意事项ASA判定法定义AAS判定法定义比较分析案例分析01020304ASA和AAS判定法比较与案例分析辅助线在证明全等过程中作用构造辅助线策略与技巧分享观察图形特征在证明全等三角形时,首先要仔细观察图形,分析已知条件和目标结论,从而确定需要构造的辅助线类型。
利用基本图形熟悉并掌握一些基本图形(如角平分线、中线、高线等)的性质,可以帮助我们更快地构造出合适的辅助线。
构造平行线或垂直线根据题目条件,有时需要构造平行线或垂直线来利用相关性质进行证明。
典型辅助线构造方法剖析角平分线法01中线法02高线法03复杂图形中辅助线应用实例在复杂图形中,有时需要综合运用多种辅助线构造方法才能解决问题。
例如,可以先构造角平分线,再利用中线或高线的性质进行证明。
在一些特殊情况下,可能需要构造多条辅助线才能找到解决问题的突破口。
这时需要仔细分析图形特点,灵活运用所学知识进行构造和证明。
通过学习和掌握典型辅助线的构造方法和应用实例,可以提高学生的几何思维能力和解决问题的能力,为后续的数学学习打下坚实的基础。
相似三角形与全等三角形关系探讨性质面积比等于相似比的平方。
定义:两个三角形如果它们的对应角相等,则称这两个三角形相似。
周长比等于相似比;010203040506相似三角形定义及性质回顾相似三角形判定方法简介预备定理判定定理1判定定理2判定定理3相似三角形与全等三角形联系和区别联系区别全等三角形的性质在相似三角形中同全等三角形的性质更为严格和具体,而相似三角形的性质相对较为宽松和生活中全等三角形应用举例建筑设计中全等三角形应用稳定性美学效果美术创作中全等三角形构图技巧平衡感动态感其他领域(如工程、测量)中全等三角形应用工程测量机械设计地图制作总结回顾与拓展延伸全等三角形的判定方法熟练掌握SSS、SAS、ASA、AAS及HL等全等三角形的判定方法。
全等三角形讲义知识点
全等三角形讲义知识点一、全等三角形的概念。
1. 定义。
- 能够完全重合的两个三角形叫做全等三角形。
重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
- 例如,在△ABC和△DEF中,如果△ABC与△DEF能够完全重合,那么A与D、B 与E、C与F是对应顶点,AB与DE、BC与EF、AC与DF是对应边,∠A与∠D、∠B与∠E、∠C与∠F是对应角。
2. 表示方法。
- 全等用符号“≌”表示,读作“全等于”。
- 例如,△ABC≌△DEF,表示△ABC全等于△DEF。
书写时要注意对应顶点写在对应的位置上。
二、全等三角形的性质。
1. 对应边相等。
- 如果△ABC≌△DEF,那么AB = DE,BC = EF,AC = DF。
- 这一性质可以用于求线段的长度。
例如,已知两个全等三角形的一组对应边的长度,就可以根据全等三角形对应边相等的性质求出另一组对应边的长度。
2. 对应角相等。
- 若△ABC≌△DEF,则∠A=∠D,∠B = ∠E,∠C = ∠F。
- 在解决角度问题时,这个性质非常有用。
比如在几何证明中,当证明两个角相等时,如果能证明包含这两个角的三角形全等,就可以得出角相等的结论。
三、全等三角形的判定。
1. SSS(边边边)判定定理。
- 内容:三边对应相等的两个三角形全等。
- 例如,在△ABC和△DEF中,如果AB = DE,BC = EF,AC = DF,那么△ABC≌△DEF。
- 应用:当已知两个三角形的三条边分别相等时,可以直接判定这两个三角形全等。
在实际解题中,可能需要通过计算或者已知条件推导出三边相等的关系。
2. SAS(边角边)判定定理。
- 内容:两边和它们的夹角对应相等的两个三角形全等。
- 即如果在△ABC和△DEF中,AB = DE,∠A = ∠D,AC = DF,那么△ABC≌△DEF。
- 注意这里的角必须是两边的夹角。
在解题时,要准确找出两个三角形中对应的两边及其夹角。
3. ASA(角边角)判定定理。
《全等三角形》讲义(完整版)
全等三角形讲义一、知识点总结全等三角形定义:形状大小相同,并且能够完全重合的两个三角形叫做全等形三角形。
补充说明:重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等 全等三角形判定定理:(1)边边边定理:三边对应相等的两个三角形全等。
(简称SSS ) (2)边角边定理:两边和它们的夹角对应相等的两个三角形全等。
(简称SAS) (3)角边角定理:两角和它们的夹边对应相等的两个三角形全等。
(简称ASA ) (4)角角边定理:两个角和其中一个角的对边对应相等的两个三角形全等。
(简称AAS ) (5)斜边、直角边定理:斜边和一条直角边对应相等的两个直角三角形全等。
(简称HL ) 角平分线的性质:在角平分线上的点到角的两边的距离相等.∵OP 平分∠AOB ,PM ⊥OA 于M ,PN ⊥OB 于N , ∴PM=PN角平分线的判定:到角的两边距离相等的点在角的平分线上.∵PM ⊥OA 于M ,PN ⊥OB 于N ,PM=PN ∴OP 平分∠AOB三角形的角平分线的性质:三角形三个内角的平分线交于一点,并且这一点到三边的距离等。
二、典型例题举例A BC PMNO A BC PMNO例1、如图,△ABN ≌△ACM,∠B 和∠C 是对应角,AB 与AC 是对应边,写出其他对应边和对应角.例2、如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .例3、已知:点A 、F 、E 、C 在同一条直线上, AF =CE ,BE ∥DF ,BE =DF . 求证:△ABE ≌△CDF .例4、如图:D 在AB 上,E 在AC 上,AB =AC ,∠B =∠C .求证AD =AE .例5、如图:∠1=∠2,∠3=∠4 求证:AC=AD例6、如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F ,DE ⊥BC 于E ,AB=DC ,BE=CF ,你认为AB 平行于CD 吗?说说你的理由D CB ACADB123 4例7、如图1,△ABC 的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断△ABC 与△AEG 面积之间的关系,并说明理由.例8、如图,OC 是∠AOB 的平分线,P 是OC 上的一点,PD ⊥OA 交OA 于D ,PE ⊥OB 交OB 于E ,F 是OC 上的另一点,连接DF ,EF ,求证DF =EF例9、如图,△ABC 中,AD 是它的角平分线,P 是AD 上的一点,PE ∥AB 交BC 于E ,PF ∥AC 交BC 于F ,求证:D 到PE 的距离与D 到PF 的距离相等例10、如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是282cm ,AB =20cm ,AC =8cm ,求DE 的长.AGF C BDE图1AEB DCFAB CDE D C EFBA 例10、已知:BE ⊥CD ,BE =DE ,BC =DA ,求证:① △BEC ≌△DAE ;②DF⊥BC .例11、如图,已知:E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C ,D 是垂足,连接CD ,求证:(1)∠ECD=∠EDC ;(2)OD=OC ;(3)OE 是CD 的中垂线.三、专题版块专题一: 全等三角形的判定和性质的应用例1、如图,在△ABC 中,AB=AC , BAC=40°,分别以AB 、AC 为边作两个等腰三角形ABD 和ACE ,使∠BAD=∠CAE=90°.(1)求∠DBC 的度数.(2)求证:BD=CE.例2、如图,A B ∥CD,AF ∥DE,BE=CF,求证:AB=CD.例3、如图在△ABC 中,BE 、CF 分别是AC 、AB 边上的高,在BE 延长线上截取BM =AC ,在CF 延长线上截到CN =AB ,求证:AM =AN 。
第十二章 全等三角形讲义
例 3. (利用全等三角形证明角等、边等、平行) 如图,AB=CD,BF=DE,E、F 是 AC 上两点,且 AE=CF.求证 AB//CD. 举一反三: 1. 已知:如图:BE=CF,AB=DE,AC=DF ,求证:求证 AC//FD. 2. 已知:如图,A、E、F、B 在一条直线上,AC=BD , AE=BF,CF=DE。求证:AC∥BD 3. 如图,已知:AB=AC,BE=CE ,E 为 AD 上一点,求证:∠BED=∠CED。 4.如图,已知 AB=AC,AD=AE,BD=CE,B,D,E 三点在同一直线上,求证:∠3=∠1+∠2.
例 2. (认识图形条件--对顶角)如图,AD,BC 相交于点 O,OA=OD,OB=OC.求证:BA∥CD. 1. 如图,OA=OC,OB=OD,求证: DA∥CB.
10
例 3. (差条件需要先行证明---角)如图,AB=AD,AC=AE,∠BAE=∠DAC,求证:△ABC≌△ADE. 举一反三: 1.如图,已知,∠AOB=90o,∠EOF=90o,OA=OB,OE=OF,连结 AE、BF. 求证: AE=BF.
举一反三: 1.如图,已知:AC=DF,AC∥FD,AE=DB,求证:△ABC≌△DEF.
11
2.如图,已知 AD⊥BC,D 为 CB 的中点,求证: △ABD≌△ACD. 3. 已知:如图,AD是BC上的中线,且DF=DE.求证:BE∥CF.
4.如图,点 E,F 在 BC 上,BE=CF,AB=DC,∠B=∠C,求证:△ABF≌△DCE. 课后练习: 1.已知:AD∥BC,AD=CB,求证:△ADC≌△CBA. 2.如图:AB=AC,AD=AE,AB⊥AC,AD⊥AE.求证:∠B=∠C. 3.已知:如图,AC=AB,AE=AD,∠1=∠2.求证:∠3=∠4。
全等三角形讲义
全等三角形讲义(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--全等三角形一、知识点:1.全等形的定义2.全等三角形的定义3.对应顶点、对应边、对应角的定义4.全等三角形的性质二、重难点:1.全等三角形的概念2.对应顶点、对应边、对应角的定义3.全等三角形的性质三、考点全等三角形的性质一、全等形1. 叫做全等形。
全等用符号表示,读作2.两个图形是否为全等形,关键是看两个图形的是否相同,是否相等,而与图形所在的无关;判断两个图形是否是全等形,只要把它们在一起,看是否完全;一个图形经过、、等变换后,所得到的图形与原图形全等。
例题:1.下列说法不正确的是()A.形状相同的两个图形是全等形 B.大小不同的两个图形不是全等形C. 形状、大小都相同的两个图形是全等形D.能够完全重合的两个图形是全等形2.下列说法正确的是()A.面积相等的两个图形是全等图形 B.周长相等的两个图形是全等图形C. 形状相同的两个图形是全等图形D.能够重合的两个图形是全等图形二、全等三角形1. 叫做全等三角形2. 两个全等三角形重合在一起,重合的顶点叫做,重合的边叫做,重合的角叫做3.寻找对应因素的方法:①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;②全等三角形对应边所对的角是对应角,两个对应边所夹的角是对应角;③全等三角形的公共角是对应角;④全等三角形的公共边是对应边;⑤全等三角形中的对顶角是对应角;⑥全等三角形中一对最长(短)的边是对应边,一对最大(小)的角是对应角例题:1.下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角oO BCDCDABCDCBD2.将ABC ∆沿直线BC 平移,得到DEF ∆,说出你得到的结论,说明理由B AD3.如图,,ACD ABE ∆≅∆AB 与AC ,AD 与AE 是对应边,已知: 30,43=∠=∠B A ,求ADC ∠的大小。
全等三角形的判定复习讲义
全等三角形的判定知识要点1、两个三角形全等的条件【重点】(1)判定1——边边边公理三边对应相等的两个三角形全等,简写成“边边边”或“SSS”。
“边边边”公理的实质:三角形的稳定性(用三根木条钉三角形木架)。
注意:边边边是三条边都相等,并且在书写时边与边要对应书写。
在已知两边相等的情况下优先考虑。
(2)判定2——边角边公理两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”。
注意:边角边中,角是指两对应边的夹角,如上图中,同样在书写时对应边角对准。
比如上图中正确的写法是:△ABC≌△A'B'C'(3)判定3——角边角公理角和它们的夹边对应相等的两个三角形全等。
简写为“角边角”或“ASA”。
注意:角边角中,边是两个角中间时,才能描述为角边角,否则就是下面的角角边。
(4)判定4——角角边推论两角和其中一角的对边对应相等的两个三角形全等。
简称“角角边”或“AAS”。
(5)直角三角形全等的判定——斜边直角边公理斜边和一条直角边对应相等的两个直角三角形全等。
简写成“斜边直角边”或“HL”。
判定直角三角形全等的方法:①一般三角形全等的判定方法都适用;②斜边-直角边公理2、证明三角形全等一般有以下步骤:(1)读题:明确题中的已知和求证;(2)要观察待证的线段或角,在哪两个可能全等的三角形中(3)、分析要证两个三角形全等,已有什么条件,还缺什么条件。
有公共边的,公共边一定是对应边,有公共角的,公共角一定是对应角,有对顶角,对顶角也是对应角(4)、先证明缺少的条件(5)、再证明两个三角形全等(要符合书写步骤:先写在某两个三角形中、然后写条件,再写结论)典例例1:如图,∆ABC 是一个屋顶钢架,AB=AC ,D 是BC 中点。
求证:AD BC ⊥练习一已知:如图,AB=AD ,BC=DC 。
求证:∠B=∠D 。
例2:已知:如图,CF=AE ,AB ∥CD ,且AB=CD .求证:△CDE ≌△ABF .练习二2、如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF2、如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A.AB=AC B.DB=DCC.∠ADB=∠ADC D.∠B=∠C例3、如图,已知点E,C在线段BF上,BE=CF,AB∥DE,∠ACB=∠F.求证:△ABC≌△DEF.练习三1、如图,AB∥CD,AB=CD,点B、E、F、D在一条直线上,∠A=∠C.求证:AE=CF.例4:如图,在△ABC 中,∠ACB=90°,AC=BC ,BE ⊥CE 于点E .AD ⊥CE 于点D .求证:△BEC ≌△CDA . 练习四如图:已知AE 交BC 于点D ,∠1=∠2=∠3, AB=AD. 求证:DC=BE 。
《直角三角形全等的判定》 讲义
《直角三角形全等的判定》讲义一、直角三角形全等的概念在平面几何中,如果两个直角三角形能够完全重合,那么它们就是全等的。
全等的直角三角形具有相同的形状和大小,对应的边和角都相等。
二、直角三角形全等的判定方法1、 SSS(边边边)如果两个直角三角形的三条边分别对应相等,那么这两个直角三角形全等。
2、 SAS(边角边)如果两个直角三角形的两条边及其夹角分别对应相等,那么这两个直角三角形全等。
3、 ASA(角边角)如果两个直角三角形的两个角及其夹边分别对应相等,那么这两个直角三角形全等。
4、 AAS(角角边)如果两个直角三角形的两个角和其中一个角的对边分别对应相等,那么这两个直角三角形全等。
5、 HL(斜边、直角边)如果两个直角三角形的斜边和一条直角边分别对应相等,那么这两个直角三角形全等。
这是直角三角形全等特有的判定方法。
因为在直角三角形中,斜边是最长的边,当斜边和一条直角边对应相等时,由勾股定理可以推出另一条直角边也对应相等,从而满足边边边(SSS)的判定条件。
三、HL 判定方法的证明已知:在 Rt△ABC 和 Rt△A'B'C' 中,∠C =∠C' = 90°,AB =A'B',AC = A'C' 。
求证:Rt△ABC ≌ Rt△A'B'C'证明:在 Rt△ABC 中,根据勾股定理:BC²= AB² AC²在 Rt△A'B'C' 中,根据勾股定理:B'C'²= A'B'² A'C'²因为 AB = A'B',AC = A'C' ,所以 BC = B'C'因为 AB = A'B',AC = A'C' ,BC = B'C' ,所以 Rt△ABC ≌Rt△A'B'C'(SSS)四、直角三角形全等判定方法的应用1、证明线段相等例如,已知两个直角三角形全等,那么它们对应的边相等,从而可以证明某些线段相等。
全等三角形讲义整理讲义
全等三角形讲义整理讲义一、全等三角形的定义与判定条件1.1 定义全等三角形是指两个三角形的三边分别相等,三个角度也是完全相等的三角形。
1.2 判定条件两个三角形全等的条件有以下几点: - SSS(边边边):若两个三角形各边分别相等,则两个三角形全等。
- SAS(边角边):若两个三角形两边和夹角都相等,则两个三角形全等。
- ASA(角边角):若两个三角形的两角和一边相等,则两个三角形全等。
- RHS(直角斜边边):若两个直角三角形的斜边和一条直角边相等,则两个三角形全等。
二、全等三角形的性质2.1 全等三角形的对应角度和对应边长相等对于全等三角形,它的三个角度分别对应,三个边长也对应,也就是说:在全等三角形中,任意两个角度应相等,边长也是相等的。
2.2 全等三角形的任意一对对应边和对应角都相等对于全等三角形,若两个三角形是全等的,那么它们对应的任意一个角度和边长都是相等的。
2.3 全等三角形的对边平行对于全等三角形来说,如果我们将两个全等三角形重合,那么对应边就会重合,此时,它们的对边将会互相平行。
三、全等三角形的应用3.1 计算两个全等三角形之间的比例关系通过全等三角形的性质,我们可以计算出两个全等三角形之间的比例关系,这在解决一些类似于“影子问题”等数学题目时非常实用。
3.2 解决几何题目在解决几何题目时,有些问题常常需要使用到全等三角形的性质,例如,通过证明两个三角形全等,来计算出未知的边长或角度等。
四、常见误区4.1 认为两个形状相同的图形就是全等三角形形状相同的图形不一定是全等三角形,两个三角形只有在三边或者两边一角相等的情况下才能被认定为全等的。
4.2 认为两个三角形的相似一定就是全等的两个相似的三角形不一定是全等的三角形,相似三角形只是其中的边长成比例。
五、全等三角形是一种非常重要的基础概念,它的应用十分广泛,对于许多与求解边长、角度有关的几何题目都有很大的帮助,也对于对称性的研究、空间几何、画图以及设计等领域有着重要的意义。
三角形基础 全等三角形 讲义
三角形基础全等三角形讲义一、三角形的定义与基本元素三角形是由不在同一条直线上的三条线段首尾顺次相接所组成的图形。
这三条线段就是三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。
三角形有三条边、三个内角和三个顶点。
边可以用小写字母 a、b、c 表示,角可以用大写字母 A、B、C 表示。
例如,边 a 所对的角就是角 A。
三角形按照边的关系可以分为等边三角形(三条边都相等)、等腰三角形(至少有两条边相等)和不等边三角形(三条边都不相等);按照角的大小可以分为锐角三角形(三个角都是锐角)、直角三角形(有一个角是直角)和钝角三角形(有一个角是钝角)。
二、三角形的内角和三角形的内角和是 180°。
这是三角形的一个重要性质,可以通过多种方法来证明。
比如,我们可以将三角形的三个角剪下来,拼在一起,会发现正好组成一个平角,也就是 180°。
又或者,我们作三角形一条边的平行线,利用平行线的性质,也能证明三角形的内角和是 180°。
这个性质在解决很多与三角形内角有关的问题中非常有用。
三、三角形的外角三角形的一边与另一边的延长线组成的角,叫做三角形的外角。
三角形的每个顶点处都有两个外角,它们是对顶角,所以三角形共有六个外角。
三角形的一个外角等于与它不相邻的两个内角的和。
例如,在三角形 ABC 中,外角∠ACD 等于∠A +∠B。
三角形的一个外角大于任何一个与它不相邻的内角。
四、三角形的三边关系三角形的任意两边之和大于第三边,任意两边之差小于第三边。
这个关系可以通过实际操作来理解。
比如,我们用三根长度分别为3cm、4cm、5cm 的小棒来摆三角形,能摆成一个三角形;但是如果用1cm、2cm、4cm 的小棒,就无法摆成三角形。
在判断三条线段能否组成三角形时,只需要判断两条较短的线段之和是否大于最长的线段即可。
五、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。
三角形全等的判定ppt课件
5.HL(H.L.) 在Rt△ABC与Rt△A1B1C1中,
AB=A1B1(已知)
BC=B1C1(已证) ∴△ABC≌△A1B1C1(HL)
例题精讲
例:已知:如图,点A,C,B,D在同一条直线上,
AC=BD,AM=CN,BM=DN 求证:AM∥CN,BM∥DN.
拓展延伸
8.如图所示,AB=AC,EB=EC,AE的延长线交BC于D,且D
为BC边的中点,那么图中的全等三角形有哪几对?并选
择一对进行证明
△ABD≌△ACD
证明:∵D为BC边的中点
A
∴BD=CD
在△ABD和△ACD中
E
AB=AC
BD=CD
AD=AD
B
D
C
∴ △ABD≌△ACD(SSS)
拓展延伸
8.如图所示,AB=AC,EB=EC,AE的延长线交BC于D,且D
证明:∵AC=BD ∴AC+CB=BD+BC 即AB=CD
M
N
在△AMB和△CND中 AM=CN
BM=DN
A
C
B
D
AB=CD
∴ △AMB≌△CND(SSS)
∴∠A=∠NCD,∠MBA=∠D ∴AM∥CN,BM∥DN
例:如图,A,E,C,F在同一条直线上,AB=FD,BC=DE,
AE=FC
求证:△ABC≌△FDE.
(2)全等三角形对应角相等
PART II 全等三角形的判定 1.SSS(S.S.S.) 在△ABC与△A1B1C1中,
AB=A1B1(已知) BC=B1C1(已知) AC=A1C1(已证)
∴△ABC≌△A1B1C1(SSS)
三角形全等的判定(讲义)
11.2 三角形全等的判定考点:全等三角形判定的五条性质⎪⎪⎪⎩⎪⎪⎪⎨⎧全等相等的两个直角三角形斜边和一条直角边对应角形全等对边对应相等的两个三两个角和其中一个角的相等的两个三角形全等两角和它们的夹边对应相等的两个三角形全等两边和它们的夹角对应角形全等三边对应相等的两个三HL AAS ASA SAS SSS 其中形全等对应相等,那么两三角对应相等,任意一组边归为一条:已知两组角⎩⎨⎧⎭⎬⎫AAS ASA 【典型题解】例1、如图,已知AB=CD,BC=AD,求证△ABC ≌△CDA.分析:已知两组边相等,很显然还差一组边或一组角就可以证明两个三角形全等。
当我们无法从现有的图形找出我们所需要的条件时,就应该很自然地想到借助辅助线。
作辅助线的意识是在几何的学习中尤为重要的。
证明:连接AC ,在△ABC 和△CDA 中,有⎪⎩⎪⎨⎧===CA AC DA BC CD AB△ABC ≌△CDA(SSS)例2:在△ABC 中,D 是BC 中点,且AD ⊥BC.求证△ABD ≌△ACD.证明: D 是BC 的中点∴BD=CD又AD ⊥BC∴∠ADC=∠ADB在△ABD 和△ACD 中⎪⎩⎪⎨⎧=∠=∠=AD AD ADB ADC CDBD∴△ABD ≌△ACD(SAS)例3:如图所示,D 在AB 上,E 在AC 上,AB=AC, ∠B=∠C.求证:AD=AE证明:在△ABE 和△ACD 中C O BD A D C B A (2) (1) ⎪⎩⎪⎨⎧=∠=∠∠=∠AC AB C B A A∴△ABE ≌△ACD(ASA)∴AD=AE例4:如图,AB ⊥BC, AD ⊥DC, ∠1=∠2.求证:AB=AD证明:在△ABC 和△ADC 中⎪⎩⎪⎨⎧=∠=∠∠=∠AC AC D B 21∴△ABC ≌△ADC(AAS)∴AB=AD例5:在∠AOB 的两边OA 和OB 上分别取OM=ON ,MC ⊥OA ,NC ⊥OB .MC 与NC 交于C 点.求证:∠MOC=∠NOC .证明:在Rt △MOC 和Rt △NOC 中⎩⎨⎧==OC OC ON OM ∴Rt △MOC ≌Rt △NOC(HL)∴∠MOC=∠NOC【举一反三】1. 如图(1),如果△AOC ≌ △BOD ,则对应边是 ,对应角是________; 如图(2),△ABC ≌ △CDA ,则对应边是 ,对应角是 。
全等三角形ppt课件
其他领域的应用在工程领源自中,全等三角形可用于解 决一些复杂的几何问题,例如机构设 计、零件配合等。
在物理学中,全等三角形可用于分析 光的反射、折射等现象,以及解决一 些与角度、长度相关的物理问题。
2024/1/25
在地理学和地质学中,全等三角形可 用于测量地形高度、计算地层厚度等 。
18
05
全等三角形拓展知识
误区二
忽视三角形的边长和角度的对应关系。
2024/1/25
纠正
在判断三角形是否全等时,必须确保边长和角度的 对应关系正确。
误区三
错误使用SSS、SAS、ASA、AAS或HL判定方法。
纠正
熟练掌握并正确应用各种全等三角形的判定方法,注意 判定条件的准确性和完整性。
6
02
全等三角形证明方法
2024/1/25
12
求解角度大小问题
利用全等三角形对应角相等的 性质,通过构造全等三角形来 求解角度大小。
2024/1/25
在复杂图形中,通过寻找或构 造全等三角形,将问题转化为 简单的角度计算。
利用全等三角形的性质进行角 度的平移、旋转等操作,以简 化问题并求解角度大小。
13
判定图形形状问题
利用全等三角形的性质来判断图 形的形状,例如通过证明两个三 角形全等来证明四边形是平行四
7
边角边定理及应用
边角边定理:如果两个三角形有两边和 夹角分别对应相等,则这两个三角形全 等。
在几何图形中,通过已知条件寻找全等 三角形,从而推导其他边的长度或角的 大小。
用于证明两个三角形全等。
2024/1/25
示例:在△ABC和△DEF中,如果AB=DE ,BC=EF,∠B=∠E,则△ABC≌△DEF。
全等三角形讲义
ADB C E FO A DEB C F 平移型对称型全等三角形讲义【知识要点】1、全等三角形的定义:(1)操作方式:能够完全重合的两个三角形叫全等三角形; (2)几何描述:大小、形状完全相同的两个三角形叫全等三角形;(几何中就是借助于边、角以及其它可度量的几何量来描述几何图形的大小和形状) 2、全等三角形的几何表示:如图,△ABC ≌△DEF ;(注意对应点、对应边、对应角) 3、全等的性质:(求证线段相等、求证角相等的常规思维方法) 性质1:全等三角形对应边相等; 性质2:全等三角形对应角相等; 几何语言 ∵△ABC ≌△DEF∴AB=DE ;AC=DF ,BC=EF ;∠A=∠D ,∠B=∠E ,∠C=∠F. 性质3:全等三角形的对应边上的高、对应角平分线、对应边上的中线相等 性质4:全等三角形的周长、面积相等 4、三角形全等的常见基本图形【新知讲授】例1、如图,△OAB ≌△OCD ,AB ∥EF ,求证:CD ∥EF.例2、如图,在△ABC 中,AD ⊥BC 于点 D ,BE ⊥AC 于 点E ,AD 、BE 交于点F ,△ADC ≌△BDF (1)∠C=50°,求∠ABE 的度数.(2)若去掉原题条件“AD ⊥BC 于点 D ,BE ⊥AC 于 点E ”,仅保持“△ADC ≌△BDF ”不变,试问:你能证明:“AD ⊥BC 于点 D ,BE ⊥AC ”吗?AD B CE 例3、如图,△ABC ≌△ADE ,延长边BC 交DA 于点F ,交DE 于点G.(1)求证:∠DGB=∠CAE ; (2)若∠ACB=105°,∠CAD=10°,∠ABC=25°,求∠DGB 的度数.例4、如图,Rt △ABC 中,∠C=90°,将Rt △ABC 沿DE 折叠,使A 点与B 点重合,折痕为DE. (1)图中有全等三角形吗?请写出来;(2)若∠A=35°,求∠CBD 的度数;(3)若AC=4,BC=3,AB=5,求△BCD 的周长.例5、如图,△ABF ≌△CDE.(1)求证:AB ∥CD ;AF ∥CE ;(2)若△AEF ≌△CFE ,求证:∠BAE=∠DCF ;(3)在(2)的条件下,若∠B=35°,∠CED=30°,∠DCF=20°,求∠EAF 的度数.AE F C【课后练习】一、选择题1、下面结论是错误的是( ). (A )全等三角形对应角所对的边是对应边 (B )全等三角形两条对应边所夹的角是对应角 (C )全等三角形是一个特殊的三角形(D )如果两个三角形都与另一个三角形全等,那么这两个三角形全等 2、如图,△ABC ≌△AEF ,则下列结论中不一定成立的是( ).(A )AC=AF (B )∠EAB=∠FAC (C )EF=BC (D )EF 平分∠AFB3、如图,已知△ABC ≌△DEF ,AB=DE ,AC=DF ,则下列结论:①BC=EF ;②∠A=∠D ;③∠ACB=∠DEF ;④BE=CF ,其中正确结论的个数是( ).(A )1个 (B )2个 (C )3个 (D )4个4、如图,△ABD ≌△EFC ,AB=EF ,∠A=∠E ,AD=EC ,若BD=5,DF=2.2则CD=( ). (A )2.2 (B )2.8 (C )3.4 (D )4(第2题图) (第3题图) (第4题图) 5、如图,已知△ABD≌△ACD,下列结论: ①△ABC 为等腰三角形;②AD 平分∠BAC ;③AD ⊥BC ;④AD=BC. 其中正确结论的个数是( ).(A)1个 (B)2个 (C)3个 (D)4个二、填空题6、已知:如图,△ACD ≌△AEB ,其中CD=EB ,AB=AD ,则∠ADC 的对边是 ,AC 的对应边是 ,∠C 的对应角是 .7、如图,已知△ABD ≌△DCA ,AB 的对应边是DC ,AD 的对应边是 ,∠BAD 的对应角是 ,AB 与CD 的位置关系是 .8、如图,若△OAD ≌△OBC ,且∠O=65°,∠C=20°则∠OAD= .AAFA D C E F(第6题图) (第7题图) (第8题图)三、解答题9、如图,直线l ⊥BC ,将△ABC 沿直线l 翻折得到△DEF ,AB 分别交DF 、DE 于M 、Q 两点,AC 交DF 于点Q.(1)图中共有多少对全等三角形?(不添加其它字母)(2)写出(1)中所有的全等的三角形. 10、如图,△ABC ≌△ADE ,点E 正好在线段BC 上.(1)求证:∠DEB=∠EAC ;(2)若∠1=50°,求∠DEB 的度数.【知识要点】全等三角形判定定理 1、“SAS ”定理:有两边及夹角对应相等的两个三角形全等;①求证全等的格式:(“全等五行”)如:②利用全等进行几何证明的三大环节:预备证明、“全等五行”、全等应用; ③“边边角”不能证明两个三角形全等;DBDA1FB CDAA BC D EO在△ABC 和△DEF 中:AB DE A D AC DF =⎧⎪∠=∠⎨⎪=⎩∴△ABC ∽△DEF.(SAS )【新知讲授】“SAS”公理的运用例1、如图,C为AB的中点,CD∥BE,CD=BE,求证:∠D=∠E.巩固练习1、如图,点E、A、C在同一条直线上,AB∥CD,AB=CE,AC=CD,求证:BC=DE.2、已知:如图,AB=AC,D、E分别为AB、AC的中点,求证:∠B=∠C.例2、已知:如图,AB=CD,∠ABC=∠DCB,求证:∠ABD=∠ACD.巩固练习:1、已知:如图,AB ∥CD ,AB=CD ,AE=DF ,求证:CE ∥BF.2、已知:如图,AB=AD ,AC=AE ,∠1=∠2,求证:∠DEB=∠2.例3、如图,BD 、CE 为△ABC 的两条中线,延长BD 到G ,使BD=DG ,延长CE 到F ,使CE=EF.(1)求证:AF=AG ;(2)试问:F 、A 、G 三点是否在同一直线线?证明你的结论.巩固练习:1.已知:如图,AB ⊥BD 于点B ,CD ⊥BD 于点D ,AB=CD ,BE=DF ,求证:∠EAF=∠ECF.A BC DEF A B C D EF2.已知:如图,AB=AC,AD平分∠BAC,求证:∠DBE=∠DCE.例4、已知:如图,OA=OB,OC=OD,求证:∠ACD=∠BDC. (提示:不能用等腰三角形的性质)巩固练习:1、已知:如图,OD=OE,OA=OB,求证:∠A=∠B.2、已知:如图,AB=CD,BE=CF,∠B=∠C,求证:∠EAF=∠EDF.AD B C EF A D B C EA DC B 【课后作业】1、已知:如图,AB ⊥BD ,CD ⊥BD ,AB=DE ,BE=CD ,试判断△ACE 的形状并说明理由.2、如图,点A 、B 、C 、D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,AE=DF ,AB=DC ,求证:∠ACE=∠DBF.3、已知:如图,OD=OE ,OC 平分∠AOB ,求证:∠A=∠B.4、如图,四边形ABCD 中,AD=BC ,AD ∥BC ,求证:AB=CD ,AB ∥CD.5、如图,已知,AB=AC ,AD=AE ,∠BAC=∠DAE.(1)求证:BD=CE ;(2)若∠BAC=∠DAE=α,延长BD 交CE 于点P ,则∠BPC 的度数为 .(用含α的式子表示)ABED C ADBC EF6、如图,C 是线段AB 的中点,CD 平分∠ACE ,CE 平分∠BCD ,CD=CE .(1)求证:△ACD≌△BCE; (2)若∠D=50°,求∠B 的度数.2、“SSS ”定理:三边对应相等的两个三角形全等;如:3、①“ASA ”定理:两角及两角所夹的边对应相等的两个三角形全等;②“AAS ”定理:两角及其中一角所对的边对应相等的两个三角形全等; 如:【定理运用】例1、如图,E 、F 两点在线段BC 上,AB=CD ,AF=DE ,BE=CF ,求证:∠AFB=∠DEC.巩固练习:1、如图,已知,AB=AC ,AD=AE ,BD=CE ,延长BD 交CE 于点P ,求证:∠BAC=∠DAE ;在△ABC 和△DEF 中:AB DE BC EF AC DF =⎧⎪=⎨⎪=⎩∴△ABC ∽△DEF.(SSS )在△ABC 和△DEF 中: B E BC EF C F ∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴△ABC ∽△DEF.(ASA ) 在△ABC 和△DEF 中:A DB E BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ∽△DEF.(AAS )C A E BD例2、已知:如图,AB=AC ,AD=AE ,∠1=∠2,求证:AF=AG.巩固练习:1、如图,已知,AB=CD ,BE=DF ,AF=CE ,求证:AD ∥BC.例3、如图,C 为线段AB 的中点,AD ∥CE ,∠D=∠E ,求证:CD=EB.巩固练习1、如图,AD 为△ABC 的高线,E 、F 为直线AD 上两点,DE=DF ,BE ∥CF ,求证:AB=AC.E AF DC B 2、如图,∠ABC=∠DCB,BD 、CA 分别是∠ABC、∠DCB 的平分线,求证:AB=DC.例4、如图,△ABC 中,AB=AC ,D 、E 分别在BC 、AC 的延长线上,∠1=∠2=∠3,求证:AD=AE.巩固练习:1、已知:如图,∠A=∠D ,OA=OD ,求证:∠1=∠2.2、已知:AD ∥BC ,AE ⊥BD ,CF ⊥BD ,AE=CF ,求证:AB=CD.E A D C B 例5、已知:如图,AB=CD ,∠A=∠D ,求证:∠ABC=∠DCB.巩固练习:1、已知:如图,AB=AC ,AD=AE ,求证:∠DBC=∠ECB.2、已知:如图,△ABC 中,∠BAC=∠BCA ,延长BC 边的中线AD 到E 点,使AD=DE ,F 为BC 延长线上一点,且CE=CF ,求证:AF=2AD.例6、在△OAB 和△OCD 中,OA=OB ,OC=OD ,∠AOB=∠COD ,AC 、BD 交于点P.(1)①如图1,∠AOB=∠COD=60°,则∠APD= ,AC 与BD 的数量关系是 ;②如图2,∠AOB=∠COD=90°,则∠APD= ,AC 与BD 的数量关系是 ;(2)如图3,∠AOB=∠COD=α°,则∠APD 的度数为 (用含α的式子表示),AC 与BD 之间的等量关系是 ;填写你的结论,并给出你的证明;图1 图2 图3AB CE FDO P D C BA O P D CB AααO P D CB AEBCD CEABE A D B CF ADF图1图2图3F巩固练习:点C 为线段AB 上一点,分别以AC 、BC 为腰在直线AB 的同侧作等腰△ACD 和等腰△BCE ,且CA=CD ,CB=CE ,∠ACD=∠BCE ,直线AE 、BD 交于点F.(1)如图1,若∠ACD=60°,则∠AFB= ;(2)如图2,若∠ACD=α°,则∠AFB= ;(用α的代数式表示) (3)如图3,将图2中的△ACD 绕点C 顺时针旋转一个角度,延长BD 交线段AE 于点F ,试探究∠AFB 与α之间的数量关系,并给出你的证明.例7、已知:AB=AC ,AD=AE ,AF ⊥CD ,AG ⊥BE ,求证:AF=AG.巩固练习:1、如图,已知,AB=AD ,AC=AE ,∠1=∠2.(1)求证:BC=DE ;(2)若AF 平分∠BAC ,求证:AF=AC.AB EDC2、已知:如图,AB=AC ,AD=AE ,求证:AO 平分∠BAC.3、如图,等腰Rt △ABC 中AB=AC ,过A 任作直线l ,BD ⊥l 于点D ,CE ⊥l 于点E. (1) 若l 与BC 不相交,求证:BD+CE=DE ;(2) 当直线l 绕A 点旋转到与BC 相交时,其它条件不变,试猜想BD 、CE 和DE 的关系? 画图并给出证明.课后作业:1、如图,等腰Rt △ABC 和等腰Rt △ADE 中,AB=AC ,AD=AE ,∠BAC=∠DAE=90°. (1)求证:BD=CE ;(2)求证:BD ⊥CE.A B C D EA B CA BDCOA DBC E AD C B 2、已知:如图,AB=AC ,AD=AE ,BD=CE ,求证:∠BAE=∠CAD.3、如图,四边形ABCD 中,AB=CD ,AD=BC ,求证:AB ∥CD ,AD ∥BC.4、已知:如图,在四边形ABCD 中,AB=CB ,AD=CD ,求证:∠A=∠C.5、已知:如图,AD=BC ,AC=BD ,求证:∠D=∠C.A DBCC M E A BD 6、如图1,等腰△ABC 中AB=AC ,D 、E 分别在AC 、AB 上,且AD 、AE ,M 、N 分别BE 、CD 的中点.(1)CD BE ,AM AN ;(填“>”、“=”、“<”)(2)如图2,把图1中的△ADE 绕A 点逆时针旋转任意一个角度,(1)中的两个结论是否仍然成立?若成立请证明,若不成立请说明理由.7、如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,求证:AB=CD ,AD=BC.8、已知:如图,AB//DE ,AE//BD ,AF=DC ,EF=BC 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形全等三角形性质图形全等:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没..............................有改变,即平移、翻折、旋转前后的图形全等。
“全等”用..........................≅表示,读作“全等........于”..全等三角形的定义:两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如DEF ABC ∆∆和全等时,点A 和点D ,点B 和点E ,点C 和点F 是对应顶点,记作DEF ABC ∆≅∆。
FEDA BC把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等。
........................1.下列说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,其中正确的说法为( ) A .①②③④ B .①③④ C .①②④ D .②③④2.如图,△ABD ≌△ACE,则AB 的对应边是_______,∠BAD 的对应角是______.3.已知:如图,△ABE ≌△ACD,∠B=∠C,则∠AEB=_______,AE=______.4.如图:△ABC ≌△DCB,AB 和DC 是对应边,∠A 和∠D 是对应角,则其它对应边是______________,对应角是____________________.5.已知:如图,△ABC ≌△DEF,BC ∥EF,∠A=∠D,BC=EF,则另外两组对应边是____,另外两组对应角是_____. 2题3题4题5题三角形全等的条件一(SSS)三角形有六个条件:三条边和三个角如果两个三角形满足上述六个条件中的一个或两个时有几种情形,能否保证两个三角形全等?满足一个条件:①只有一条边对应相等;②只有一个角对应相等;结论:满足两个条件:①两角对应相等;②两边对应相等; 一边一角对应相等结论:如果两个三角形满足上述六个条件中的三个时,有几种可能的情况?①两边一角对应相等结论:②两角一边对应相等结论:③三边对应相等结论:④ 三个角对应相等结论:定义:如果两个三角形的三条边分别对应相等,那么这两个三角形全等.简..............................写为“边边边”,或简记为(.............S.S.S.......)。
..例1. 已知:如图,DE=CE ,DF=CF .求证:△DEF ≌△CEF .例2. 已知:如图,DA=CB ,DB=CA .求证:△DAB ≌△CBA .A例3.已知:如图AB=CD,AD=BC,求证:AD∥BC。
例4..已知:如图,点A、C、B、D在同一条直线上,AC=BD,AM=CN,BM=DN, 求证:△AMB≌△CND.例6.已知AB=CD,BF=CE,AE=CF,问AB∥CD吗?例6.已知:如图,AB=AE,AC=AD,BC=DE, C,D在BE边上.求证:∠CAE=∠DAB.课堂练习:1.如图,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是( )A.120°B.125°C.127°D.104°2.如图,线段AD与BC交于点O,且AC=BD,AD=BC,则下面的结论中不正确的是( )A.△ABC≌△BADB.∠CAB=∠DBAC.OB=OCD.∠C=∠D3.如图,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论.4.如图,AD⊥BC,垂足为D,BD=CD.求证:△ABD≌△ACD.6.已知:如图,AB=DC,BD=AC,AC,BD交于O.求证:△AOB≌△DOC.7.如图,已知:AB=AC,BE=CE ,E为AD上一点,求证:∠BED=∠CED。
8.已知:如图,A、E、F、B在一条直线上,AC=BD , AE=BF,CF=DE。
求证:AD∥BC课后练习:1.工人师傅常用角尺平分任意角,做法如下:如图:∠AOB是一个任意角,在OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M、N重合,过角尺顶点P的射线OP便是∠AOB的平分线。
你知道这样做的理由吗?2.已知:如图:BE=CF,AB=DE,AC=DF ,求证:△ABC≌△DEF。
3.如图,AB=AC,BD=CD,求证:∠1=∠2.4.已知AC=BD,AE=CF,BE=DF,问AE∥CF吗?10.如图,AC=BD, BC=AD,求证: △ABC≌△BAD.能力提高:1.如图,AC=DF,BC=EF,AD=BE,∠BAC=72°,∠F=32°,则∠ABC=2.已知:如图 , E是AD上的一点 , AB=AC , AE=BD , CE=BD+DE.求证:∠B=∠CAE.3.如图:AB=DC,BE=CF,AF=DE。
(1)求证:△ABE≌△DCF;(2)CF∥BE.4.如图,AD=BC,AB=DC. 求证:∠A+∠D=180°.三角形全等的条件二(SAS)定义:...如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等.................................简.写成“边角边”或简记为(............S.A.S.......).两边一角对应相等AB C ED F结论:例1.如图,AE=DB,BC=EF,BC∥EF,求证:△ABC≌△DEF.例2.如图,AB=AD,AC =AE,∠BAE=∠DAC,求证:△ABC≌△ADE.例3.已知:如图,AD是BC上的中线,且DF=DE.求证:BE∥CF.3题例4.如图,已知,等腰Rt △OAB 中,∠AOB=90o ,等腰Rt △EOF 中,∠EOF=90o,连结AE 、BF . 求证:(1)AE=BF ;(2)AE ⊥BF .例5.如图,在△ABE 中,AB =AE,AD =AC,∠BAD =∠EAC, BC 、DE 交于点O. 求证:(1) △ABC ≌△AED ; (2) OB =OE .课堂练习:1.在△ABC 和△A'B'C'中 , 要使△ABC ≌△A'B'C' , 需满足条件( ) A.AB=A'B',AC=A'C',∠B=∠B' B.AB=A'B', BC=B'C',∠A=∠A' C.AC=A'C',BC=B'C',∠C=∠C' D.AC=A'C', BC=B'C',∠C=∠B'2.如图 , 在∠AOB 的两边上截取AO=BO , 在AO 和BO 上截取CO=DO , 连结AD 和BC 交于点P , 则△AOD ≌△BOC 理由是( )A.ASAB.SASC.AASD.SSS3.如图,在ABC △和DEF △中,已知AB DE =,BC EF =,根据(SAS )判定ABC DEF △≌△,还需的条件是( )A.A D ∠=∠B.B E ∠=∠C.C F ∠=∠D.以上三个均可以4.如图,AD=AE,AB=AC,BE 、CD 交于F,则图中相等的角共有___对,(除去∠DFE=∠BFC )( ) A.5 B.4 C.3 D.22题4题6.如果两个三角形全等,则不正确的是()A.它们的最小角相等B.它们的对应外角相等C.它们是直角三角形D.它们的最长边相等7.如图,已知:△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE7题8题8.下图中全等的三角形是()A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ9.如图,已知∠1=∠2,要使△ABC≌△ADE,还需条件()A.AB=AD,BC=DEB.BC=DE,AC=AEC.∠B=∠D,∠C=∠ED.AC=AE,AB=AD10.已知:AD∥BC,AD=CB,求证:△ADC≌△CBA.11.如图,△ABC中,AB=AC,AD平分∠BAC,试说明△ABD≌△ACD.12.如图,AD =BC,∠ADC =∠BCD.求证:∠BAC =∠ABD .13.如图,已知:AC=DF,AC ∥FD,AE=DB,求证:△ABC ≌△DEF.14.如图,在ABC △中,40AB AC BAC =∠=,°,分别以AB,AC 为边作两个等腰直角△ABD 和△ACE , 使90BAD CAE ∠=∠=°.(1)求DBC ∠的度数;(2)求证:BD CE =.15.如图:AB=AC ,AD=AE ,AB ⊥AC ,AD ⊥AE.求证:(1)∠B=∠C ,(2)BD=CE16.如图∠BAC=∠DAE ,∠ABD=∠ACE ,BD=CE 。
求证:AB=AC 。
课后练习:1.下面各条件中,能使△ABC ≌△DEF 的条件的是( ) A.AB=DE,∠A=∠D,BC=EF B.AB=BC,∠B=∠E,DE=EF C.AB=EF,∠A=∠D,AC=DF D.BC=EF,∠C=∠F,AC=DF2.如图,AD,BC 相交于点O ,OA=OD ,OB=OC .下列结论正确的是( )A.AOB DOC △≌△B.ABO DOC △≌△C.A C ∠=∠D.B D ∠=∠3.如图,已知AB AC =,AD AE =,BAC DAE ∠=∠.下列结论不正确的有( ). A.BAD CAE ∠=∠ B.ABD ACE △≌△ C.AB=BC D.BD=CE4.如图所示,△ABC 与△BDE 都是等边三角形,AB<BD,若△ABC 不动,将△BDE 绕B 点旋转,则旋转过程中,AE 与CD 的大小关系为( )A.AE=CDB.AE>CDC.AE<CDD.无法确定5.已知:如图 , CE ?AB , DF ?AB , 垂足分别为E , F , AF=BE , 且AC=BD , 则不正确的结论是( )A.Rt △AEC ≌Rt △BFDB.∠C+∠B=90°C.∠A=∠DD.AC ∥BD.6.如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI______全等, 如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△ABC 和△GHI______全等.(填“一定”或“不一定”或“一定不”)7.如图,已知AB ⊥BD 于B ,ED ⊥BD 于D ,AB=CD ,BC=DE ,则∠ACE=____.8.已知如图,F 在正方形ABCD 的边BC 边上,E 在AB 的延长线上,FB =EB ,AF 交CE 于G ,则∠AGC 的度数是______.9.如图,△ABC是不等边三角形,DE=BC,以D ,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出_____个.10.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是。