焦作市第一中学数学代数式单元测试题(Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学代数式解答题压轴题精选(难)

1.|a|的几何意义是数轴上表示数a的点与原点O的距离,例如:|3|=|3﹣0|,即|3﹣0|表示3、0在数轴上对应两点之间的距离.一般地,点A、B在数轴上分别表示数a、b,那么A、B之间的距离可表示为|a﹣b|,解决下面问题:

(1)数轴上表示﹣1和2的两点之间的距离是________;数轴上P、Q两点的距离为6,点P表示的数是2,则点Q表示的数是________;

(2)点A在数轴上表示数为x,点B、C在数轴上表示的数分别为多项式2m2n+mn﹣2的常数项和次数.________

①若B、C两点分别以3个单位长度/秒和2个单位长度/秒的速度同时向右运动t秒.当OC =2OB时,求t的值;________

②用含x的绝对值的式子表示点A到点B、点A到点C的距离之和为________,直接写出距离之和的最小值为________.

【答案】(1)3;8或﹣4

(2)解:∵多项式2m2n+mn﹣2的常数项是﹣2,次数是3,

∴点B、C在数轴上表示的数分别为﹣2、3.

;运动t秒,B点表示的数为﹣2+3t,C点表示的数为3+2t,

∵OC=2OB,

∴3+2t=2× ,

∴3+2t=2(﹣2+3t),或3+2t=2(2﹣3t),

解得t=,或t=,

故所求t的值为或

;;5.

【解析】【解答】(1)解:数轴上表示﹣1和2的两点之间的距离是|2﹣(﹣1)|=3;设点Q表示的数是m,则|m﹣2|=6,

解得m=8或﹣4,

即点Q表示的数是8或﹣4.

故答案为3,8或﹣4。(2)解:②AB+AC=|﹣2﹣x|+|3﹣x|,其最小值为5.

故答案为|﹣2﹣x|+|3﹣x|,5.

【分析】(1)根据数轴上A、B两点之间的距离为|AB|=|a−b|,代入数值运用绝对值的性质即可求数轴上表示−1和2的两点之间的距离;设点Q表示的数是m,根据P、Q两点的距离为6列出方程|m−2|=6,解方程即可求解;

(2)根据多项式的常数项与次数的定义求出点B、C在数轴上表示的数;

①根据OC=2OB列出方程,解方程即可求解;

②根据数轴上A、B两点之间的距离为|AB|=|a−b|即可表示AB+AC,然后可得距离之和的最小值.

2.已知A=2x2+3xy-2x-1,B=x2-xy-1

(1)化简:4A-(2B+3A),将结果用含有x、y的式子表示

(2)若式子4A-(2B+3A)的值与字母x的取值无关,求的值

【答案】(1)解:∵A=2x2+3xy-2x-1,B=x2-xy-1,

∴4A-(2B+3A)=A-2B=2x2+3xy-2x-1-2(x2-xy-1)=5xy-2x+1

(2)解:根据(1)得4A-(2B+3A)= 5xy-2x+1;

∵4A-(2B+3A)的值与字母x的取值无关,

∴4A-(2B+3A)=5xy-2x+1=(5y-2)x+1,

5y-2=0,则y= .

则y3+ A- B= y3+ (A-2B)= y3+ ×1= + = = .

【解析】【分析】(1)先将4A-(2B+3A)化简,再将A,B的值分别代入代数式,去括号合并同类项化为最简形式即可;

(2)根据(1)化简的结果,由4A-(2B+3A)的值与字母x的取值无关,得出5y-2=0,求解得出y的值,再将代数式中含A,B的项,逆用乘法分配律最后整体代入即可算出代数式的值。

3.用正方形硬纸板做三棱柱盒子,每个盒子的侧面为长方形,底面为等边三角形.

(1)每个盒子需________个长方形,________个等边三角形;

(2)硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).

现有相同规格的 19 张正方形硬纸板,其中的 x 张按方法一裁剪,剩余的按方法二裁剪.

①用含 x 的代数式分别表示裁剪出的侧面个数,底面个数;

②若裁剪出的侧面和底面恰好全部用完,求能做多少个盒子.

【答案】(1)3;2

(2)解:①∵裁剪x张时用方法一,

∴裁剪(19−x)张时用方法二,

∴侧面的个数为:6x+4(19−x)=(2x+76)个,

底面的个数为:5(19−x)=(95−5x)个;

②由题意,得

解得:x=7,

经检验,x=7是原分式方程的解,

∴盒子的个数为:

答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.

【解析】【解答】(1)由图可知每个三棱柱盒子需3个长方形,2个等边三角形;

故答案为3,2.

【分析】(1)由图可知两个底面是等边三角形,侧面是长方形,所以需要2个等边三角形和3个长方形。

(2)①由题意知裁剪x张用方法一,则(19-x)张用方法二,再根据方法一二所得的侧面数与底面数列代数式。②根据每个三棱柱的底面数目与侧面数目的比列方程,求解x,由此计算出侧面总个数,即可求得盒子的个数。

4.如图,在数轴上有两点A、B,点A表示的数是8,点B在点A的左侧,且AB=14,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.

(1)写出数轴上点B表示的数:________ ;点P表示的数用含t的代数式表示为________ .

(2)动点Q从点B出发沿数轴向左匀速运动,速度是点P速度的一半,动点P、Q同时出发,问点P运动多少秒后与点Q的距离为2个单位?

(3)若点M为线段AP的中点,点N为线段BP的中点,在点P的运动过程中,线段MN 的长度是否会发生变化?若变化,请说明理由;若不变,求出线段MN的长.

【答案】(1)解:8-14=-6;因此B点为-6;故答案为:-6

;解:因为时间为t,则点P所移动距离为4t,因此点P为8-4t ;故答案为:8-4t

(2)解:由题意得,Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;

所以①P在Q的右侧时

8-4t-(-2t-6)=2

解得x=6

②P在Q左侧时

-2t-6-(8-4t)=2

解得x=8

答:动点P、Q同时出发,问点P运动6或8秒后与点Q的距离为2个单位.

故答案为:6或8秒

相关文档
最新文档