2020版高考文科数学一轮复习文档:第八章第五节椭圆Word版含答案
专题8.5 椭圆及其几何性质-2020届高考数学一轮复习学霸提分秘籍(原卷版)

第八篇平面解析几何专题8.05椭圆及其几何性质【考试要求】1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用;2.掌握椭圆的定义、几何图形、标准方程及简单几何性质.【知识梳理】1.椭圆的定义在平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.其数学表达式:集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质【微点提醒】点P (x 0,y 0)和椭圆的位置关系(1)点P (x 0,y 0)在椭圆内⇔x 20a 2+y 20b 2<1;(2)点P (x 0,y 0)在椭圆上⇔x 20a 2+y 20b 2=1;(3)点P (x 0,y 0)在椭圆外⇔x 20a 2+y 20b2>1.【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.( ) (2)椭圆的离心率e 越大,椭圆就越圆.( )(3)方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆.( ) (4)x 2a 2+y 2b 2=1(a >b >0)与y 2a 2+x 2b 2=1(a >b >0)的焦距相同.( )【教材衍化】2.(选修2-1P49T1改编)若F 1(3,0),F 2(-3,0),点P 到F 1,F 2的距离之和为10,则P 点的轨迹方程是________.3.(选修2-1P49A6改编)已知点P 是椭圆x 25+y 24=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,则点P 的坐标为________.【真题体验】4.(2018·张家口调研)椭圆x 216+y 225=1的焦点坐标为( )A.(±3,0)B.(0,±3)C.(±9,0)D.(0,±9)5.(2018·全国Ⅰ卷)已知椭圆C :x 2a 2+y 24=1的一个焦点为(2,0),则C 的离心率为( )A.13B.12C.22D.2236.(2018·武汉模拟)曲线x 225+y 29=1与曲线x 225-k +y 29-k =1(k <9)的( )A.长轴长相等B.短轴长相等C.离心率相等D.焦距相等【考点聚焦】考点一 椭圆的定义及其应用【例1】 (1)如图,圆O 的半径为定长r ,A 是圆O 内一个定点,P 是圆上任意一点,线段AP 的垂直平分线l 和半径OP 相交于点Q ,当点P 在圆上运动时,点Q 的轨迹是( )A.椭圆B.双曲线C.抛物线D.圆(2)(2018·德阳模拟)设P 为椭圆C :x 249+y 224=1上一点,F 1,F 2分别是椭圆C 的左、右焦点,且△PF 1F 2的重心为点G ,若|PF 1|∶|PF 2|=3∶4,那么△GPF 1的面积为( ) A.24 B.12C.8D.6【规律方法】 (1)椭圆定义的应用主要有:判断平面内动点的轨迹是否为椭圆,求焦点三角形的周长、面积及弦长、最值和离心率等.(2)通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题.【训练1】 (1)(2018·福建四校联考)已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) A.2 3B.6C.4 3D.2(2)(2018·衡水中学调研)设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任意一点,点M 的坐标为(6,4),则|PM |-|PF 1|的最小值为________.考点二 椭圆的标准方程【例2】 (1)已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为( ) A.x 264-y 248=1 B.x 248+y 264=1 C.x 248-y 264=1D.x 264+y 248=1 (2)(一题多解)若椭圆经过两点(2,0)和(0,1),则椭圆的标准方程为________________.【规律方法】 根据条件求椭圆方程的主要方法有:(1)定义法:根据题目所给条件确定动点的轨迹满足椭圆的定义.(2)待定系数法:根据题目所给的条件确定椭圆中的a ,b .当不知焦点在哪一个坐标轴上时,一般可设所求椭圆的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ),不必考虑焦点位置,用待定系数法求出m ,n 的值即可. 【训练2】 (1)(2018·济南模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),若长轴长为6,且两焦点恰好将长轴三等分,则此椭圆的标准方程为( ) A.x 236+y 232=1 B.x 29+y 28=1 C.x 29+y 25=1D.x 216+y 212=1 (2)(2018·榆林模拟)已知F 1(-1,0),F 2(1,0)是椭圆C 的焦点,过F 2且垂直于x 轴的直线交椭圆C 于A ,B 两点,且|AB |=3,则C 的方程为( ) A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1D.x 25+y 24=1考点三 椭圆的几何性质多维探究角度1 椭圆的长轴、短轴、焦距【例3-1】 (2018·泉州质检)已知椭圆x 2m -2+y 210-m =1的长轴在x 轴上,焦距为4,则m 等于( )A.8B.7C.6D.5角度2 椭圆的离心率【例3-2】 (2018·全国Ⅱ卷)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( ) A.23 B.12C.13D.14角度3 与椭圆性质有关的最值或范围问题【例3-3】 (2017·全国Ⅰ卷)设A ,B 是椭圆C :x 23+y 2m =1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A.(0,1]∪[9,+∞)B.(0,3]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,3]∪[4,+∞)【规律方法】1.求椭圆离心率的方法(1)直接求出a,c的值,利用离心率公式直接求解.(2)列出含有a,b,c的齐次方程(或不等式),借助于b2=a2-c2消去b,转化为含有e的方程(或不等式)求解.2.在求与椭圆有关的一些量的范围,或者最值时,经常用到椭圆标准方程中x,y的范围、离心率的范围等不等关系.【训练3】(1)以椭圆上一点和两个焦点为顶点的三角形的面积的最大值为1,则椭圆长轴长的最小值为()A.1B. 2C.2D.2 2(2)(2019·豫南九校联考)已知两定点A(-1,0)和B(1,0),动点P(x,y)在直线l:y=x+3上移动,椭圆C 以A,B为焦点且经过点P,则椭圆C的离心率的最大值为()A.55 B.105 C.255 D.2105【反思与感悟】1.椭圆的定义揭示了椭圆的本质属性,正确理解、掌握定义是关键,应注意定义中的常数大于|F 1F 2|,避免了动点轨迹是线段或不存在的情况.2.求椭圆的标准方程,常采用“先定位,后定量”的方法(待定系数法).先“定位”,就是先确定椭圆和坐标系的相对位置,以椭圆的中心为原点的前提下,看焦点在哪条坐标轴上,确定标准方程的形式;再“定量”,就是根据已知条件,通过解方程(组)等手段,确定a 2,b 2的值,代入所设的方程,即可求出椭圆的标准方程.若不能确定焦点的位置,这时的标准方程常可设为mx 2+ny 2=1(m >0,n >0且m ≠n )【易错防范】1.判断两种标准方程的方法为比较标准形式中x 2与y 2的分母大小.2.在解关于离心率e 的二次方程时,要注意利用椭圆的离心率e ∈(0,1)进行根的取舍,否则将产生增根.3.椭圆的范围或最值问题常常涉及一些不等式.例如,-a ≤x ≤a ,-b ≤y ≤b ,0<e <1等,在求椭圆相关量的范围时,要注意应用这些不等关系. 【分层训练】【基础巩固题组】(建议用时:40分钟) 一、选择题1.椭圆x 2m +y 24=1的焦距为2,则m 的值等于( )A.5B.3C.5或3D.82.(2019·聊城模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为23,过F 2的直线l交C 于A ,B 两点,若△AF 1B 的周长为12,则C 的方程为( ) A.x 23+y 2=1 B.x 23+y 22=1 C.x 29+y 24=1D.x 29+y 25=1 3.已知圆(x -1)2+(y -1)2=2经过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点F 和上顶点B ,则椭圆C 的离心率为( ) A.12 B. 2 C.2 D.224.(2019·湖北重点中学联考)已知椭圆x 24+y 23=1的左、右焦点分别为F 1,F 2,过F 2且垂直于长轴的直线交椭圆于A ,B 两点,则△ABF 1内切圆的半径为( ) A.43 B.1C.45D.345.已知椭圆x 24+y 22=1的两个焦点是F 1,F 2,点P 在该椭圆上,若|PF 1|-|PF 2|=2,则△PF 1F 2的面积是( ) A. 2 B.2 C.2 2 D. 3二、填空题6.已知椭圆的中心在原点,一个焦点为(0,-23)且a =2b ,则椭圆的标准方程为________.7.设F 1,F 2为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,经过F 1的直线交椭圆C 于A ,B 两点,若△F 2AB的面积为43的等边三角形,则椭圆C 的方程为______________.8.(2019·昆明诊断)椭圆x 29+y 225=1上的一点P 到两焦点的距离的乘积为m ,当m 取最大值时,点P 的坐标是________.三、解答题9.已知椭圆的中心在原点,两焦点F 1,F 2在x 轴上,且过点A (-4,3).若F 1A ⊥F 2A ,求椭圆的标准方程.10.已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率;(2)若AF 2→=2F 2B →,AF 1→·AB →=32,求椭圆的方程.【能力提升题组】(建议用时:20分钟)11.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点为M ,上顶点为N ,右焦点为F ,若NM →·NF →=0,则椭圆的离心率为( ) A.32 B.2-12 C.3-12 D.5-1212.(2019·湖南湘东五校联考)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是椭圆上一点,△PF 1F 2是以F 2P 为底边的等腰三角形,且60°<∠PF 1F 2<120°,则该椭圆的离心率的取值范围是( )A.(3-12,1)B.(3-12,12)C.⎝⎛⎭⎫12,1D.⎝⎛⎭⎫0,12 13.(2018·浙江卷)已知点P (0,1),椭圆x 24+y 2=m (m >1)上两点A ,B 满足AP →=2PB →,则当m =________时,点B 横坐标的绝对值最大.14.(2019·石家庄月考)已知点M (6,2)在椭圆C :x 2a 2+y 2b 2=1(a >b >0)上,且椭圆的离心率为63. (1)求椭圆C 的方程;(2)若斜率为1的直线l 与椭圆C 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2),求△PAB 的面积.【新高考创新预测】15.(多填题)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (1,0),其关于直线y =bx 的对称点Q 在椭圆上,则离心率e =________,S △FOQ =________.。
2020高考数学一轮复习 第8章第5节 椭圆课件 文 新课标版 精品

2.注意椭圆几何性质的挖掘.
(1)设椭圆方程ax22+by22=1(a>b>0)上任意一点为 P(x,y),
则 |OP| = x2+y2 =
x2+ab22a2-x2 =
c2x2+a2b2 a
.
因
为
-
a≤x≤a,所以 x=0 时,|OP|有最小值 b,这时,P 在短轴端
考点一 应用椭圆的定义解题
【案例1】 已知圆(x+2)2+y2=36的圆心 为M,设A为圆上任一点,N(2,0),线段AN的垂 直平分线交MA于点P,则动点P的轨迹是( )
A.圆
B.椭圆
C.双曲线
D.抛物线
解析:点P在线段AN的垂直平分线上,
故|PA|=|PN|.
又AM是圆的半径,所以|PM|+|PN|=|PM| +|PA|=|AM|=6>|MN|,由椭圆定义知,P点的 轨迹是椭圆.
对称中心: 原点
顶点坐标:
顶点坐标:
性
A1 (-a,0) ,A2 (a,0) A1(0,-a) ,A2(0,a)
质
顶点 B1(0,-b) ,B2 (0,b) B1 (-b,0) ,B2 (b,0)
长轴线段A1A2 的长为 2a 长轴 线段A1A2 的长为 2a
短轴 线段B1B2 的长为 2b 短轴 线段B1B2 的长为2b
答案:D
2.已知椭圆10x-2 m+my-2 2=1,长轴在 y 轴上,若焦距
为 4,则 m 的值为(
A.4 C.7
)
B.5 D.8
解析:依题意得mm--22>1-0-10m->0m,=4, 解得 m=8.
答案:D
2020版高考数学一轮复习教案 第8章_第5节_椭圆(含答案解析)

a,b,c 的关系
c2=a2-b2
[常用结论] 与椭圆定义有关的结论
x2 y2
以椭圆 + =1(a>b>0)上一点 a2 b2
P(x0,y0)(y0≠0)和焦点
F1(-c,0),F2(c,0)为顶点的
△PF1F2 中,若∠F1PF2=θ,则
(1)|PF1|+|PF2|=2a. (2)4c2=|PF1|2+|PF2|2-2|PF1||PF2|·cos θ.
|CA|+|CF|=2a,所以△ABC 的周长为|BA|+|BC|+|CA|=|BA|+|BF|+|CF|+|CA|=(|BA|+|BF|)
+(|CF|+|CA|)=2a+2a=4a=4 3.]
2.(2019·济南调研)已知两圆 C1:(x-4)2+y2=169,C2:(x+4)2+y2=9,动圆在圆 C1 内
部且和圆 C1 相内切,和圆 C2 相外切,则动圆圆心 M 的轨迹方程为( )
x2 y2 A. - =1
64 48
x2 y2 B. + =1
48 64
x2 y2 C. - =1
48 64
x2 y2 D. + =1
64 48
D [设圆 M 的半径为 r,则|MC1|+|MC2|=(13-r)+(3+r)=16>8=|C1C2|,所以 M 的轨
y2 x2 + =1(a>b>0)
a2 b2
图形
-a≤x≤a,
-b≤x≤b,
范围
-b≤y≤b
-a≤y≤a
性质
对称性 顶点 离心率
对称轴:坐标轴;对称中心:原点 A1(-a,0),A2(a,0), A1(0,-a),A2(0,a), B1(0,-b),B2(0,b) B1(-b,0),B2(b,0)
2020版高考数学一轮复习第八章平面解析几何8_5_1椭圆课件理新人教A版

(2)已知椭圆4x92 +2y42 =1 上一点 P 与椭圆的两焦点 F1,F2 的连线夹角为 直角,则|PF1|·|PF2|=________。
解析 (2)依题意 a=7,b=2 6,c= 49-24=5,|F1F2|=2c=10,由 于 PF1⊥PF2,所以由勾股定理得|PF1|2+|PF2|2=|F1F2|2,即|PF1|2+|PF2|2= 100。又由椭圆定义知|PF1|+|PF2|=2a=14,所以(|PF1|+|PF2|)2-2|PF1|·|PF2| =100,即 196-2|PF1|·|PF2|=100。解得|PF1|·|PF2|=48。
-b≤x≤b -a≤y≤a ;对称中心: 原点
顶点
A1 (-a,0),A2 (a,0) A1(0,-a),A2 (0,a) B1(0,-b),B2 (0,b) B1 (-b,0) ,B2 (b,0)
性 轴 长轴 A1A2 的长为 2a ;短轴 B1B2 的长为 2b
质 焦距
|F1F2|= 2c
离心率
二、走近高考 3.(2018·全国卷Ⅱ)已知 F1,F2 是椭圆 C:ax22+by22=1(a>b>0)的左、右焦
点,A 是 C 的左顶点,点 P 在过 A 且斜率为 63的直线上,△PF1F2 为等腰三
角形,∠F1F2P=120°,则 C 的离心率为( )
A.23
B.12
C.13
D.14
解析 由题意可得椭圆的焦点在 x 轴上,如图所示,设|F1F2|=2c,因 为△PF1F2 为等腰三角形,且∠F1F2P=120°,所以|PF2|=|F1F2|=2c。因为 |OF2|=c,所以点 P 坐标为(c+2ccos60°,2csin60°),即点 P(2c, 3c)。因 为点 P 在过 A 且斜率为 63的直线上,所以2c+3ca= 63,解得ac=14,所以 e =14,故选 D。
高考数学全程一轮复习第八章解析几何第五节椭圆课件

课前自主预习案
课堂互动探究案
课前自主预习案
必备知识
1.椭圆的定义 平面内与两个定点F1,F2的距离的和等于___常_数____(大于|F1F2|)的点 的轨迹叫做椭圆.这两个定点叫做椭圆的_____焦_点______,两焦点间的 距离叫做椭圆的_____焦__距_____.
2.椭圆的标准方程和几何性质
AABB121___(2(-____0(____a,(a____,0,____,-____00____)bb)____)) ,,,_
AABB121___(2(0____-(,0____(,____bb-____,,a____a)____00)____)) ,,,_
长轴A1A2的长为___2_a____; 短轴B1B2的长为__2_b_____
(6)焦点三角形的周长为2(a+c).
夯实基础
1.思考辨析(正确的打“√”,错误的打“×”)
(1)平面内与两个定点F1,F2的距离的和等于常数的点的轨迹是椭 圆.( × )
(2)椭圆的离心率e越大,椭圆就越圆.( × )
(3)椭圆是轴对称图形,也是中心对称图形.( √ )
(4)
椭
圆
x2 a2
+
y2 b2
∴|PF2|=12-3=9,
即点P到另一个焦点的距离为9.
5
.
(
易
错
)
已
知
椭
圆
x2 5
+
y2 m
=
1(m>0)
的
离
心
率
e
=
10 5
,
则
m
的
值
为
___3_或__23_5 _.
(新课标)2020年高考数学一轮总复习第八章平面解析几何8_5椭圆课件文新人教A版

点,P为C上一点,满足|OP|=|OF|,且|PF|=6,则椭圆C的方程为( )
A.3x62 +1y62 =1 C.4x92 +2y42 =1
B.4x02 +1y52 =1 D.4x52 +2y02 =1
[解析]
(1)因为O,M分别为F1F2和PF1的中点,所以OM∥PF2,且|OM|=
1 2
|PF2|,
中心到l的距离为其短轴长的14,则该椭圆的离心率为( )
1
1
A.3
B.2
2
3
C.3
D.4
(2)如图,焦点在x轴上的椭圆
x2 4
+
y2 b2
=1的离心率e=
1 2
,F,A分别是椭圆的左焦点
和右顶点,P是椭圆上任意一点.则P→F·P→A的最大值为________.
[解析] (1)如图,|OB|为椭圆中心到l的距离,则|OA|·|OF|=|AF|·|OB|,即bc=a·b2, 所以e=ac=12.故选B.
②设直线 AM 的方程为 y=k(x+2)(k>0),
代入x2+y2=1 得(3+4k2)x2+16k2x+16k2-12=0. 43
由
x1·(-2)=163k+2-4k122得
x1=
2(3 4k 2 ) 3 4k 2
,
故|AM|=|x1+2| 1+k2=123+14+k2k2.
由题设直线 AN 的方程为 y=-1(x+2), k
点,则△AF1B的周长为________.
答案:20
考点一|椭圆的定义及方程 (易错突破)
【例 1】 (1)椭圆 C:ax22+y2=1(a>0)的左、右焦点分别为 F1,F2,P 为椭圆上异
于端点的任意一点,PF1,PF2 的中点分别为 M,N.O 为坐标原点,四边形 OMPN
数学一轮复习第八章解析几何第五讲椭圆学案含解析

第五讲椭圆知识梳理·双基自测错误!错误!错误!错误!知识点一椭圆的定义平面内与两个定点F1、F2的__距离的和等于常数(大于|F1F 2|)__的点的轨迹叫做椭圆,这两个定点叫做椭圆的__焦点__,两焦点间的距离叫做椭圆的__焦距__.注:若集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a、c为常数,则有如下结论:(1)若a>c,则集合P为__椭圆__;(2)若a=c,则集合P为__线段F1F2__;(3)若a<c,则集合P为__空集__.知识点二椭圆的标准方程和几何性质标准方程错误!+错误!=1(a>b>0)错误!+错误!=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:坐标轴对称中心:原点错误!错误!错误!错误!1.a+c与a-c分别为椭圆上的点到焦点距离的最大值和最小值.2.过椭圆的焦点且与长轴垂直的弦|AB|=错误!,称为通径.3.若过焦点F1的弦为AB,则△ABF2的周长为4a.4.e=错误!.5.椭圆的焦点在x轴上⇔标准方程中x2项的分母较大,椭圆的焦点在y轴上⇔标准方程中y2项的分母较大.6.AB为椭圆错误!+错误!=1(a>b>0)的弦,A(x1,y1),B(x2,y2),弦中点M(x0,y0),则(1)弦长l=错误!|x1-x2|=错误!|y1-y2|;(2)直线AB的斜率k AB=-错误!.7.若M、N为椭圆错误!+错误!=1长轴端点,P是椭圆上不与M、N重合的点,则K PM·K PN=-错误!.错误!错误!错误!错误!题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×")(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.(×)(2)椭圆的离心率e越大,椭圆就越圆.(×)(3)方程mx2+ny2=1(m>0,n>0,m≠n)表示的曲线是椭圆.(√)(4)错误!+错误!=1(a>b>0)与错误!+错误!=1(a>b>0)的焦距相同.(√)题组二走进教材2.(必修2P42T4)椭圆x210-m+错误!=1的焦距为4,则m等于(C)A.4 B.8C.4或8 D.12[解析]当焦点在x轴上时,10-m>m-2>0,10-m-(m-2)=4,∴m=4.当焦点在y轴上时,m-2>10-m>0,m-2-(10-m)=4,∴m=8.∴m=4或8.3.(必修2P68A组T3)过点A(3,-2)且与椭圆错误!+错误!=1有相同焦点的椭圆的方程为(A)A.错误!+错误!=1 B.错误!+错误!=1C.错误!+错误!=1 D.错误!+错误!=1题组三走向高考4.(2018·课标全国Ⅱ)已知F1,F2是椭圆C的两个焦点,P是C 上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为(D)A.1-错误!B.2-错误!C.错误!D.错误!-1[解析]设|PF2|=x,则|PF1|=3x,|F1F2|=2x,故2a=|PF1|+|PF2|=(1+错误!)x,2c=|F1F2|=2x,于是离心率e=错误!=错误!=错误!=错误!-1.5.(2019·课标Ⅰ,10)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为(B)A.x22+y2=1 B.错误!+错误!=1C.错误!+错误!=1 D.错误!+错误!=1[解析]设|F2B|=x(x>0),则|AF2|=2x,|AB|=3x,|BF1|=3x,|AF1|=4a-(|AB|+|BF1|)=4a-6x,由椭圆的定义知|BF1|+|BF2|=2a=4x,所以|AF1|=2x.在△BF1F2中,由余弦定理得|BF1|2=|BF2|2+|F1F2|2-2|F2B|·|F1F2|cos∠BF2F1,即9x2=x2+22-4x·cos∠BF2F1,①在△AF1F2中,由余弦定理可得|AF1|2=|AF2|2+|F1F2|2-2|AF2|·|F1F2|cos∠AF2F1,即4x2=4x2+22+8x·cos∠BF2F1,②由①②得x=错误!,所以2a=4x=2错误!,a=错误!,所以b2=a2-c2=2.所以椭圆的方程为错误!+错误!=1.故选B.考点突破·互动探究考点一椭圆的定义及应用——自主练透例1 (1)(2021·泉州模拟)已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果M是线段F1P的中点,那么动点M的轨迹是(B)A.圆B.椭圆C.双曲线的一支D.抛物线(2)已知F是椭圆5x2+9y2=45的左焦点,P是此椭圆上的动点,A(1,1)是一定点.则|PA|+|PF|的最大值和最小值分别为__6+错误!,6-错误!__.(3)已知F1,F2是椭圆C:错误!+错误!=1(a>b>0)的两个焦点,P为椭圆C上的一点,且∠F1PF2=60°.若△PF1F2的面积为3错误!,则b=__3__.[解析](1)如图所示,由题知|PF1|+|PF2|=2a,设椭圆方程:错误!+错误!=1(其中a>b>0).连接MO,由三角形的中位线可得:|F1M|+|MO|=a(a>|F1O|),则M的轨迹为以F1、O为焦点的椭圆.(2)如下图所示,设椭圆右焦点为F1,则|PF|+|PF1|=6.∴|PA|+|PF|=|PA|-|PF1|+6.由椭圆方程x29+y25=1知c=错误!=2,∴F1(2,0),∴|AF1|=错误!.利用-|AF1|≤|PA|-|PF1|≤|AF1|(当P、A、F1共线时等号成立).∴|PA|+|PF|≤6+错误!,|PA|+|PF|≥6-错误!.故|PA|+|PF|的最大值为6+2,最小值为6-错误!.(3)|PF1|+|PF2|=2a,又∠F1PF2=60°,所以|PF1|2+|PF2|2-2|PF1||PF2|cos 60°=|F1F2|2,即(|PF1|+|PF2|)2-3|PF1||PF2|=4c2,所以3|PF1||PF2|=4a2-4c2=4b2,所以|PF1||PF2|=错误!b2,又因为S△PF1F2=错误!|PF1||PF2|sin 60°=错误!×错误!b2×错误!=错误!b2=3错误!,所以b=3.故填3.[引申]本例(2)中,若将“A(1,1)”改为“A(2,2)”,则|PF|-|PA|的最大值为__4__,|PF|+|PA|的最大值为__8__.[解析]设椭圆的右焦点为F1,则∵|PF1|+|PA|≥|AF1|=2(P在线段AF1上时取等号),∴|PF|-|PA|=6-(|PF1|+|PA|)≤4,∵|PA|-|PF1|≤|AF1|=2,(当P在AF1延长线上时取等号),∴|PF|+|PA|=6+|PA|-|PF1|≤8.名师点拨(1)椭圆定义的应用范围:①确认平面内与两定点有关的轨迹是否为椭圆.②解决与焦点有关的距离问题.(2)焦点三角形的应用:椭圆上一点P与椭圆的两焦点组成的三角形通常称为“焦点三角形”,利用定义可求其周长;利用定义和余弦定理可求|PF1||PF2|;通过整体代入可求其面积等.〔变式训练1〕(1)(2021·大庆模拟)已知点M(3,0),椭圆错误!+y2=1与直线y=k(x+错误!)交于点A、B,则△ABM的周长为__8__.(2)(2019·课标Ⅲ,15)设F1,F2为椭圆C:错误!+错误!=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为__(3,错误!)__.(3)(2021·河北衡水调研)设F1、F2分别是椭圆错误!+错误!=1的左、右焦点,P为椭圆上任意一点,点M的坐标为(6,4),则|PM|-|PF1|的最小值为__-5__.[解析](1)直线y=k(x+错误!)过定点N(-错误!,0).而M、N恰为椭圆错误!+y2=1的两个焦点,由椭圆定义知△ABM的周长为4a=4×2=8.(2)因为F1,F2分别是椭圆C的左,右焦点,由M点在第一象限,△MF1F2是等腰三角形,知|F1M|=|F1F2|,又由椭圆方程错误!+错误!=1,知|F1F2|=8,|F1M|+|F2M|=2×6=12,所以|F1M|=|F1F2|=8,所以|F2M|=4.设M(x0,y0)(x0>0,y0>0),则错误!解得x0=3,y0=错误!,即M(3,错误!).(3)由题意可知F2(3,0),由椭圆定义可知|PF1|=2a-|PF2|.∴|PM|-|PF1|=|PM|-(2a-|PF2|)=|PM|+|PF2|-2a≥|MF2|-2a,当且仅当M,P,F2三点共线时取得等号,又|MF2|=错误!=5,2a=10,∴|PM|-|PF2|≥5-10=-5,即|PM|-|PF1|的最小值为-5.考点二椭圆的标准方程——师生共研例2 求满足下列各条件的椭圆的标准方程:(1)长轴是短轴的3倍且经过点A(3,0);(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为错误!;(3)经过点P(-2错误!,1),Q(错误!,-2)两点;(4)与椭圆错误!+错误!=1有相同离心率,且经过点(2,-错误!).[解析](1)若焦点在x轴上,设方程为错误!+错误!=1(a >b>0).∵椭圆过点A(3,0),∴错误!=1,∴a=3.∵2a=3×2b,∴b=1.∴方程为错误!+y2=1.若焦点在y轴上,设方程为错误!+错误!=1(a>b>0).∵椭圆过点A(3,0),∴9b2=1,∴b=3.又2a=3×2b,∴a=9.∴方程为错误!+错误!=1.综上所述,椭圆方程为错误!+y2=1或错误!+错误!=1.(2)由已知,有错误!解得错误!从而b2=a2-c2=9.∴所求椭圆方程为x212+错误!=1或错误!+错误!=1.(3)设椭圆方程为mx2+ny2=1(m>0,n>0,m≠n),∵点P(-2错误!,1),Q(错误!,-2)在椭圆上,∴错误!解得m=错误!,n=错误!.故椭圆方程为错误!+错误!=1.(4)若焦点在x轴上,设所求椭圆方程为错误!+错误!=t(t>0),将点(2,-错误!)代入,得t=错误!+错误!=2.故所求方程为错误!+错误!=1.若焦点在y轴上,设方程为错误!+错误!=λ(λ>0)代入点(2,-3),得λ=错误!,∴所求方程为错误!+错误!=1.综上可知椭圆方程为x28+错误!=1或错误!+错误!=1.名师点拨(1)求椭圆的方程多采用定义法和待定系数法,利用椭圆的定义定形状时,一定要注意常数2a>|F1F2|这一条件.(2)用待定系数法求椭圆标准方程的一般步骤:①作判断:根据条件判断焦点的位置;②设方程:焦点不确定时,要注意分类讨论,或设方程为mx2+ny2=1(m>0,n>0,m≠0);③找关系:根据已知条件,建立关于a,b,c或m,n的方程组;④求解,得方程.(3)椭圆的标准方程的两个应用①方程错误!+错误!=1(a>b>0)与错误!+错误!=λ(λ>0)有相同的离心率.②与椭圆错误!+错误!=1(a>b>0)共焦点的椭圆系方程为错误!+错误!=1(a>b>0,k+b2>0),恰当运用椭圆系方程,可使运算简便.〔变式训练2〕(1)“2<m<6”是“方程错误!+错误!=1表示椭圆”的(B)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)(2021·广东深圳二模)已知椭圆C:x2a2+错误!=1(a>0)的右焦点为F,O为坐标原点,C上有且只有一个点P满足|OF|=|FP|,则C的方程为(D)A.错误!+错误!=1 B.错误!+错误!=1C.错误!+错误!=1 D.错误!+错误!=1[解析](1)错误!+错误!=1表示椭圆⇔错误!⇔2<m<6且m≠4,∴“2<m<6”是方程“错误!+错误!=1表示椭圆”的必要不充分条件,故选B.(2)根据对称性知P在x轴上,|OF|=|FP|,故a=2c,a2=3+c2,解得a=2,c=1,故椭圆方程为:错误!+错误!=1.故选:D.考点三,椭圆的几何性质-—师生共研例3 (1)(2017·全国)椭圆C的焦点为F1(-1,0),F2(1,0),点P在C上,F2P=2,∠F1F2P=错误!,则C的长轴长为(D)A.2 B.2错误!C.2+错误!D.2+2错误!(2)(2021·河北省衡水中学调研)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的错误!,则该椭圆的离心率为(B)A.错误!B.错误!C.错误!D.错误!(3)(2021·广东省期末联考)设F1,F2分别是椭圆错误!+错误!=1(a >b>0)的左、右焦点,若在直线x=错误!上存在点P,使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是(D)A.错误!B.错误!C.错误!D.错误椭圆C的焦点为F1(-1,0),F2(1,0),则c=1,∵|PF2|=2,∴|PF1|=2a-|PF2|=2a-2,由余弦定理可得|PF1|2=|F1F2|2+|PF2|2-2|F1F2|·|PF2|·cos 错误!,即(2a-2)2=4+4-2×2×2×错误!,解得a=1+错误!,a=1-错误!(舍去),∴2a=2+2错误!,故选D.(2)不妨设直线l:错误!+错误!=1,即bx+cy-bc=0⇒椭圆中心到l的距离错误!=错误!⇒e=错误!=错误!,故选B.(3)如图F2H⊥PF1,∴|F1F2|=|PF2|,由题意可知错误!-c≤2c,∴e2=错误!≥错误!,即e≥错误!,又0<e<1,∴错误!≤e<1.故选D.名师点拨椭圆离心率的求解方法求椭圆的离心率,常见的有三种方法:一是通过已知条件列方程组,解出a,c的值;二是由已知条件得出关于a,c的二元齐次方程,然后转化为关于离心率e的一元二次方程求解;三是通过取特殊值或特殊位置,求出离心率.椭圆离心率的范围问题一般借助几何量的取值范围求解,遇直线与椭圆位置关系通常由直线与椭圆方程联立所得方程判别式Δ的符号求解.求椭圆离心率的取值范围的方法方法解读适合题型几何法利用椭圆的几何性质,如|x|≤a,|y|≤b,0<e<1,建立不等关系,或者根据几何图形的临界情况建立题设条件有明显的几何关系〔变式训练3〕(1)(2017·全国卷Ⅲ)已知椭圆C:x2a2+错误!=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx -ay+2ab=0相切,则C的离心率为(A)A.错误!B.错误!C.错误!D.错误!(2)(2021·内蒙古呼和浩特市质检)已知椭圆C:错误!+错误!=1(a>b>0)的左、右顶点分别为A1,A2,点P是椭圆上的动点,若∠A1PA2的最大可以取到120°,则椭圆C的离心率为(D)A.错误!B.错误!C.错误!D.错误!(3)已知F1,F2是椭圆x2a2+错误!=1(a>b>0)的左、右焦点,若椭圆上存在点P,使∠F1PF2=90°,则椭圆的离心率的取值范围是__错误!__.[解析](1)由题意知以A1A2为直径的圆的圆心为(0,0),半径为a.又直线bx-ay+2ab=0与圆相切,∴圆心到直线的距离d=错误!=a,解得a=错误!b,∴ba=错误!,∴e=错误!=错误!=错误!=错误!=错误!.故选A.(2)当P为短轴端点时∠A1PA2最大,由题意可知错误!=tan 60°=错误!,∴错误!=错误!,∴e=错误!=错误!,故选D.(3)由题意可知当P为椭圆短轴端点时∠OPF1=∠OPF2≥45°,即c≥b,∴c2≥a2-c2,∴错误!≥错误!,即e≥错误!,又0<e<1,∴错误!≤e<1.考点四,直线与椭圆—-多维探究角度1直线与椭圆的位置关系例4 若直线y=kx+1与椭圆x25+错误!=1总有公共点,则m的取值范围是(D)A.m>1 B.m>0C.0<m<5且m≠1D.m≥1且m≠5[解析]解法一:由于直线y=kx+1恒过点(0,1),所以点(0,1)必在椭圆内或椭圆上,则0<错误!≤1且m≠5,故m≥1且m≠5.故选D.解法二:由错误!消去y整理得(5k2+m)x2+10kx+5(1-m)=0.由题意知Δ=100k2-20(1-m)(5k2+m)≥0对一切k∈R 恒成立,即5mk2+m2-m≥0对一切k∈R恒成立,∴错误!,即m≥1,又m≠5,∴m≥1且m≠5.故选D.角度2中点弦问题例5 (1)(2021·湖北省宜昌市调研)过点P(3,1)且倾斜角为错误!的直线与椭圆错误!+错误!=1(a>b>0)相交于A,B两点,若AP→=错误!,则该椭圆的离心率为(C)A.错误!B.错误!C.错误!D.错误!(2)已知椭圆错误!+y2=1,点P错误!,则以P为中点的椭圆的弦所在直线的方程为__2x+4y-3=0__.[解析](1)由题意可知P为AB的中点,且k AB=-1,设A (x1,y1),B(x2,y2),则错误!+错误!=1,错误!+错误!=1,两式相减得错误!=-错误!,∴k AB=错误!=-错误!=-错误!=-1,即错误!=错误!,∴e =错误!=错误!,故选C .(2)设弦的两端点为A (x 1,y 1),B (x 2,y 2),中点为M (x 0,y 0),则有错误!+y 错误!=1,错误!+y 错误!=1.两式作差,得错误!+(y 2-y 1)(y 2+y 1)=0.∵x 1+x 2=2x 0,y 1+y 2=2y 0,错误!=k AB ,代入后求得k AB =-错误!=-错误!,∴其方程为y -错误!=-错误!错误!,即2x +4y -3=0.角度3 弦长问题例6 已知椭圆E :x 2a 2+错误!=1(a >b >0)经过点P 错误!,椭圆E 的一个焦点为(3,0).(1)求椭圆E 的方程;(2)若直线l 过点M (0,错误!)且与椭圆E 交于A ,B 两点,求|AB |的最大值.[解析] (1)依题意,设椭圆E 的左、右焦点分别为F 1(-错误!,0),F 2(3,0).由椭圆E 经过点P 错误!,得|PF 1|+|PF 2|=4=2a ,∴a =2,c =错误!,∴b 2=a 2-c 2=1.∴椭圆E 的方程为错误!+y 2=1.(2)当直线l 的斜率存在时,设直线l 的方程为y =kx +2,A(x1,y1),B(x2,y2).由错误!得(1+4k2)x2+8错误!kx+4=0.由Δ>0得(8错误!k)2-4(1+4k2)×4>0,∴4k2>1.由x1+x2=-错误!,x1x2=错误!得|AB|=错误!·错误!=2错误!.设t=11+4k2,则0<t<错误!,∴|AB|=2错误!=2错误!≤错误!,当且仅当t=错误!时等号成立.当直线l的斜率不存在时,|AB|=2<错误!.综上,|AB|的最大值为错误!.名师点拨直线与椭圆综合问题的常见题型及解题策略(1)直线与椭圆位置关系的判断方法①联立方程,借助一元二次方程的判别式Δ来判断;②借助几何性质来判断.(2)求椭圆方程或有关几何性质.可依据条件寻找满足条件的关于a,b,c的等式,解方程即可求得椭圆方程或椭圆有关几何性质.(3)关于弦长问题.一般是利用根与系数的关系、弦长公式求解.设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|=错误!=错误!(其中k为直线斜率).提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.(4)对于中点弦或弦的中点问题,一般利用点差法求解.若直线l与圆锥曲线C有两个交点A,B,一般地,首先设出A(x1,y1),B(x2,y2),代入曲线方程,通过作差,构造出x1+x2,y1+y2,x1-x2,y1-y2,从而建立中点坐标和斜率的关系.注意答题时不要忽视对判别式的讨论.〔变式训练4〕(1)(角度1)直线y=kx+k+1与椭圆错误!+错误!=1的位置关系是__相交__.(2)(角度2)(2021·广东珠海期末)已知椭圆错误!+错误!=1(a >b>0)的右焦点为F,离心率错误!,过点F的直线l交椭圆于A,B两点,若AB中点为(1,1),则直线l的斜率为(D)A.2 B.-2C.错误!D.-错误!(3)(角度3)斜率为1的直线l与椭圆错误!+y2=1相交于A,B 两点,则|AB|的最大值为(C)A.2 B.错误!C.错误!D.错误由于直线y=kx+k+1=k(x+1)+1过定点(-1,1),而(-1,1)在椭圆内,故直线与椭圆必相交.(2)因为错误!=错误!,∴4c2=2a2,∴4(a2-b2)=2a2,∴a2=2b2,设A(x1,y1),B(x2,y2),且x1+x2=2,y1+y2=2,错误!,相减得b2(x1+x2)(x1-x2)+a2(y1+y2)(y1-y2)=0,所以2b2(x1-x2)+2a2(y1-y2)=0,所以2b2+4b2错误!=0,所以1+2k=0,∴k=-错误!,选D.(3)设A,B两点的坐标分别为(x1,y1),(x2,y2),直线l的方程为y=x+t,由错误!消去y,得5x2+8tx+4(t2-1)=0,则x1+x2=-错误!t,x1x2=错误!.∴|AB|=错误!|x1-x2|=1+k2·错误!=2·错误!=错误!·错误!,当t=0时,|AB|max=错误!.故选C.名师讲坛·素养提升利用换元法求解与椭圆相关的最值问题例7如图,焦点在x轴上的椭圆错误!+错误!=1的离心率e=错误!,F,A分别是椭圆的一个焦点和顶点,P是椭圆上任意一点,则错误!·错误!的最大值为__4__.[解析]e2=错误!=1-错误!=1-错误!=错误!,∴b2=3,∴椭圆方程为x24+错误!=1,且F(-1,0),A(2,0),设P(2sin θ,错误!cos θ),则错误!·错误!=(-1-2sin θ,-错误!cos θ)·(2-2sin θ,-错误!cos θ)=sin2θ-2sin θ+1=(sin θ-1)2≤4.当且仅当sin θ=-1时取等号,故错误!·错误!的最大值为4.另解:设P(x,y),由上述解法知错误!·错误!=(-1-x,-y)·(2-x,-y)=x2+y2-x-2=错误!(x-2)2(-2≤x≤2),显然当x =-2时,错误!·错误!最大且最大值为4.名师点拨遇椭圆错误!+错误!=1(a>b>0)上的点到定点或定直线距离相关的最值问题,一般用三角换元法求解,即令x=a sin θ,y=b cos θ,将其化为三角最值问题.〔变式训练5〕椭圆错误!+错误!=1上的点到直线x+2y-错误!=0的最大距离是(D)A.3 B.11C.2错误!D.错误![解析]设椭圆错误!+错误!=1上的点P(4cos θ,2sin θ),则点P 到直线x+2y-2=0的距离为d=错误!=错误!,∴d max=错误!=错误!.。
2020版高考数学(文)高分计划一轮高分讲义:第8章平面解析几何 8.5 椭圆 Word版含解析

8.5 椭圆[知识梳理] 1.椭圆的定义(1)定义:在平面内到两定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.(2)集合语言:P ={M ||MF 1|+|MF 2|=2a ,且2a >|F 1F 2|},|F 1F 2|=2c ,其中a >c >0,且a ,c 为常数.注:当2a >|F 1F 2|时,轨迹为椭圆;当2a =|F 1F 2|时,轨迹为线段F 1F 2;当2a <|F 1F 2|时,轨迹不存在.2.椭圆的标准方程和几何性质图3.直线与椭圆位置关系的判断直线与椭圆方程联立方程组,消掉y ,得到Ax 2+Bx +C =0的形式(这里的系数A 一定不为0),设其判别式为Δ:(1)Δ>0⇔直线与椭圆相交; (2)Δ=0⇔直线与椭圆相切; (3)Δ<0⇔直线与椭圆相离. 4.弦长公式(1)若直线y =kx +b 与椭圆相交于两点A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=1+1k 2|y 1-y 2|.(2)焦点弦(过焦点的弦):最短的焦点弦为通径长2b 2a ,最长为2a . 5.必记结论(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,P点在短轴端点处;当x=±a时,|OP|有最大值a,P点在长轴端点处.(2)已知过焦点F1的弦AB,则△ABF2的周长为4a.[诊断自测]1.概念思辨(1)平面内与两个定点F1、F2的距离之和等于常数的点的轨迹是椭圆.()(2)方程mx2+ny2=1(m>0,n>0且m≠n)表示的曲线是椭圆.()(3)椭圆上一点P与两焦点F1,F2构成△PF1F2的周长为2a+2c(其中a为椭圆的长半轴长,c为椭圆的半焦距).()(4)x2a2+y2b2=1(a>b>0)与y2a2+x2b2=1(a>b>0)的焦距相同.()答案(1)×(2)√(3)√(4)√2.教材衍化(1)(选修A1-1P35例3)已知椭圆的方程是x2a2+y225=1(a>5),它的两个焦点分别为F1,F2,且F1F2=8,弦AB过点F1,则△ABF2的周长为()A.10 B.20C.241 D.441答案 D解析因为a>5,所以椭圆的焦点在x轴上,所以a2-25=42,解得a=41.由椭圆的定义知△ABF2的周长为4a=441.故选D.(2)(选修A1-1P42A组T6)已知点P是椭圆x25+y24=1上y轴右侧的一点,且以点P及焦点F1,F2为顶点的三角形的面积等于1,则点P的坐标为________.答案 ⎝ ⎛⎭⎪⎫152,1或⎝ ⎛⎭⎪⎫152,-1 解析 设P (x ,y ),由题意知c 2=a 2-b 2=5-4=1,所以c =1,则F 1(-1,0),F 2(1,0),由题意可得点P 到x 轴的距离为1,所以y =±1,把y =±1代入x 25+y 24=1,得x =±152,又x >0,所以x =152,∴P 点坐标为⎝ ⎛⎭⎪⎫152,1或⎝ ⎛⎭⎪⎫152,-1. 3.小题热身(1)(2014·大纲卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1 B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1答案 A解析 由题意及椭圆的定义知4a =43,则a =3,又c a =c 3=33,∴c =1,∴b 2=2,∴C 的方程为x 23+y 22=1,故选A.(2)椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2c .若直线y =3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.答案3-1解析 由已知得直线y =3(x +c )过M ,F 1两点,所以直线MF 1的斜率为3,所以∠MF 1F 2=60°,则∠MF 2F 1=30°,∠F 1MF 2=90°,则MF 1=c ,MF 2=3c ,由点M 在椭圆Γ上知:c +3c =2a ,故e =ca =3-1.题型1 椭圆的定义及应用典例1 已知椭圆x 225+y 216=1上一点P 到椭圆一个焦点F 1的距离为3,则P 到另一个焦点F 2的距离为( )A .2B .3C .5D .7应用椭圆的定义.答案 D解析 根据椭圆的定义|PF 1|+|PF 2|=2a =10,得|PF 2|=7,故选D.[条件探究] 若将典例中的条件改为“F 1,F 2分别为左、右焦点,M 是PF 1的中点,且|OM |=3”,求点P 到椭圆左焦点的距离?解 由M 为PF 1中点,O 为F 1F 2中点,易得|PF 2|=6,再利用椭圆定义易知|PF 1|=4.典例2 (2018·漳浦县校级月考)椭圆x 24+y 2=1上的一点P 与两焦点F 1,F 2所构成的三角形称为焦点三角形.(1)求PF 1→·PF 2→的最大值与最小值; (2)设∠F 1PF 2=θ,求证:S △F 1PF 2=tan θ2.(1)利用向量数量积得到目标函数,利用二次函数求最值;(2)利用余弦定理、面积公式证明.解 (1)设P (x ,y ),∴F 1(-3,0),F 2(3,0),则PF 1→·PF 2→=(-3-x ,-y )·(3-x ,-y )=x 2+y 2-3=34x 2-2, ∵x 2∈[0,4],∴34x 2-2∈[-2,1].∴PF 1→·PF 2→的最大值为1,最小值为-2. (2)证明:由椭圆的定义可知||PF 1|+|PF 2||=2a , |F 1F 2|=2c ,设∠F 1PF 2=θ, 在△F 1PF 2中,由余弦定理可得: |F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos θ =(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|(1+cos θ),可得4c 2=4a 2-2|PF 1|·|PF 2|(1+cos θ)⇒|PF 1|·|PF 2|=2b21+cos θ,即有△F 1PF 2的面积S =12|PF 1|·|PF 2|sin ∠F 1PF 2=b 2·sin θ1+cos θ=b 2tan θ2=tan θ2.方法技巧椭圆定义的应用技巧1.椭圆定义的应用主要有两个方面:一是判定平面内动点与两定点的轨迹是否为椭圆;二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率等.2.通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题.见典例2.冲关针对训练1.已知A ⎝ ⎛⎭⎪⎫-12,0,B 是圆⎝ ⎛⎭⎪⎫x -122+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于点P ,则动点P 的轨迹方程为________.答案 x 2+43y 2=1解析 如图,由题意知|P A |=|PB |,|PF |+|BP |=2.所以|P A |+|PF |=2且|P A |+|PF |>|AF |,即动点P 的轨迹是以A ,F 为焦点的椭圆,a =1,c =12,b 2=34.所以动点P 的轨迹方程为x 2+43y 2=1.2.已知△ABC 的顶点A (-4,0)和C (4,0)顶点B 在椭圆x 225+y 29=1上,则sin A +sin Csin B =________.答案 54解析 由题意知,A ,C 为椭圆的两焦点,由正弦定理,得sin A +sin C sin B =|BC |+|AB ||AC |=2a 2c =a c =54.题型2 椭圆的标准方程及应用典例1(2018·湖南岳阳模拟)在平面直角坐标系xOy 中,椭圆C 的中心为坐标原点,F 1、F 2为它的两个焦点,离心率为22,过F 1的直线l 交椭圆C 于A ,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为________.在未明确焦点的具体位置时,应分情况讨论.答案 x 216+y 28=1或x 28+y 216=1解析 由椭圆的定义及△ABF 2的周长知4a =16,则a =4,又ca =22,所以c =22a =22,所以b 2=a 2-c 2=16-8=8.当焦点在x 轴上时,椭圆C 的方程为x 216+y 28=1;当焦点在y 轴上时,椭圆C 的方程为y 216+x 28=1.综上可知,椭圆C 的方程为x 216+y 28=1或x 28+y 216=1.典例2(2017·江西模拟)椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2为椭圆的左、右焦点,且焦距为23,O 为坐标原点,点P 为椭圆上一点,|OP |=24a ,且|PF 1|,|F 1F 2|,|PF 2|成等比数列,求椭圆的方程.用待定系数法,根据已知列出方程组.解 设P (x ,y ),则|OP |2=x 2+y 2=a28,由椭圆定义,|PF 1|+|PF 2|=2a ,|PF 1|2+2|PF 1|·|PF 2|+|PF 2|2=4a 2,又∵|PF 1|,|F 1F 2|,|PF 2|成等比数列, ∴|PF 1|·|PF 2|=|F 1F 2|2=4c 2, |PF 1|2+|PF 2|2+8c 2=4a 2,∴(x +c )2+y 2+(x -c )2+y 2+8c 2=4a 2,整理得x 2+y 2+5c 2=2a 2,即a 28+5c 2=2a 2,整理得c 2a 2=38,又∵2c =23,∴c =3, ∴a 2=8,b 2=5.所求椭圆的方程为x 28+y 25=1. 方法技巧求椭圆标准方程的步骤1.判断椭圆焦点位置. 2.设出椭圆方程.3.根据已知条件,建立方程(组)求待定系数,注意a 2=b 2+c 2的应用.4.根据焦点写出椭圆方程.见典例1,2.提醒:当椭圆焦点位置不明确时,可设为x 2m +y 2n =1(m >0,n >0,m ≠n ),也可设为Ax 2+By 2=1(A >0,B >0,且A ≠B ).可简记为“先定型,再定量”.冲关针对训练已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2.P 为椭圆上的一点,PF 1与y 轴相交于M ⎝ ⎛⎭⎪⎫0,14,且M 为PF 1的中点,S △PF 1F 2=32.求椭圆的方程.解 设P (x 0,y 0)∵M 为PF 1的中点,O 为F 1F 2的中点.∴x 0=c ,y 0=12.PF 2∥y 轴,△PF 1F 2是∠PF 2F 1=90°的直角三角形,由题意得,⎩⎪⎨⎪⎧c 2a 2+14b 2=1,12·2c ·12=32,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.所求椭圆的方程为x 24+y 2=1. 题型3 椭圆的几何性质典例1 (2016·全国卷Ⅲ)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13B.12C.23D.34用方程思想.A ,M ,E 三点共线,B ,N,M 三点共线.答案 A解析 由题意知过点A 的直线l 的斜率存在且不为0,故可设直线l 的方程为y =k (x +a ),当x =-c 时,y =k (a -c ),当x =0时,y =ka ,所以M (-c ,k (a -c )),E (0,ka ).如图,设OE 的中点为N ,则N ⎝ ⎛⎭⎪⎫0,ka 2,由于B ,M ,N 三点共线,所以k BN =k BM ,即ka 2-a =k (a -c )-c -a ,所以12=a -c a +c,即a =3c ,所以e =13.故选A.典例2 F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆上存在点P ,使∠F 1PF 2=90°,则椭圆的离心率的取值范围是________.由∠F 1PF 2=90°,求出x 20=a 2(c 2-b 2)c2后,利用x 20∈[0,a 2]求解. 答案 ⎣⎢⎡⎭⎪⎫22,1 解析 设P (x 0,y 0)为椭圆上一点,则x 20a 2+y 20b 2=1.PF 1→=(-c -x 0,-y 0),PF 2→=(c -x 0,-y 0), 若∠F 1PF 2=90°,则PF 1→·PF 2→=x 20+y 20-c 2=0.∴x 20+b 2⎝ ⎛⎭⎪⎫1-x 20a 2=c 2,∴x 20=a 2(c 2-b 2)c 2.∵0≤x 20≤a 2,∴0≤c 2-b 2c 2≤1.∴b 2≤c 2,∴a 2≤2c 2,∴22≤e <1.[条件探究] 将典例2中条件“∠F 1PF 2=90°”改为“∠F 1PF 2为钝角”,求离心率的取值范围.解椭圆上存在点P 使∠F 1PF 2为钝角⇔以原点O 为圆心,以c 为半径的圆与椭圆有四个不同的交点⇔b <c ,如图,由b <c ,得a 2-c 2<c 2,即a 2<2c 2,解得e =c a >22,又0<e <1,故椭圆C 的离心率的取值范围是⎝ ⎛⎭⎪⎫22,1. 方法技巧求解椭圆离心率(或其范围)常用的方法1.若给定椭圆的方程,则根据椭圆方程确定a 2,b 2,进而求出a ,c 的值,从而利用公式e =ca 直接求解.2.若椭圆的方程未知,则根据条件及几何图形建立关于a ,b ,c 的齐次等式(或不等式),化为关于a ,c 的齐次方程(或不等式),进而化为关于e 的方程(或不等式)进行求解.见典例1,2.冲关针对训练(2015·重庆高考)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程; (2)若|PF 1|=|PQ |,求椭圆的离心率e .解 (1)由椭圆的定义,有2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2.设椭圆的半焦距为c ,由已知PF 1⊥PF 2, 得2c =|F 1F 2| =|PF 1|2+|PF 2|2 =(2+2)2+(2-2)2 =23,即c =3,从而b =a 2-c 2=1. 故所求椭圆的标准方程为x 24+y 2=1.(2)连接QF 1,由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a .从而由|PF 1|=|PQ |=|PF 2|+|QF 2|,有|QF 1|=4a -2|PF 1|.又由PF 1⊥PQ ,|PF 1|=|PQ |,知|QF 1|=2|PF 1|,因此,4a -2|PF 1|=2|PF 1|.|PF 1|=2(2-2)a ,从而|PF 2|=2a -|PF 1|=2a -2(2-2)a =2(2-1)a .由PF 1⊥PF 2,知|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2, 因此e =c a =|PF 1|2+|PF 2|22a = (2-2)2+(2-1)2=9-62=6- 3.题型4 直线与椭圆的综合问题角度1 利用直线与椭圆的位置关系研究椭圆的标准方程及性质 典例(2014·全国卷Ⅱ)设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .本题(2)用代入法列出方程,用方程组法求解.解 (1)根据c =a 2-b 2及题设知M ⎝ ⎛⎭⎪⎫c ,b 2a ,2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12或ca =-2(舍去).故C 的离心率为12.(2)由题意,得原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a =4,即b 2=4a .①由|MN |=5|F 1N |得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎨⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a =1.解得a =7,b 2=4a =28,故a =7,b =27.角度2 利用直线与椭圆的位置关系研究直线及弦的问题 典例 (2014·全国卷Ⅰ)已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.直线与椭圆构成方程组,用设而不求的方法求弦长,再求△OPQ 的面积.解 (1)设F (c,0),由条件知,2c =233,得c = 3. 又c a =32,所以a =2,b 2=a 2-c 2=1. 故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2).将y =kx -2代入x 24+y 2=1得(1+4k 2)x 2-16kx +12=0.当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-34k 2+1.从而|PQ |=k 2+1|x 1-x 2|=4k 2+1·4k 2-34k 2+1. 又点O 到直线PQ 的距离d =2k 2+1,所以△OPQ 的面积 S △OPQ =12d ·|PQ |=44k 2-34k 2+1.设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t.因为t +4t ≥4,当且仅当t =2,即k =±72时等号成立,且满足Δ>0, 所以,当△OPQ 的面积最大时,l 的方程为y =72x -2或y =-72x -2.方法技巧直线与椭圆相交时有关弦问题的处理方法1.合理消元,消元时可以选择消去y ,也可以消去x .见角度1典例.2.利用弦长公式、点到直线的距离公式等将所求量表示出来. 3.构造基本不等式或利用函数知识求最值.见角度2典例. 4.涉及弦中点的问题常用“点差法”解决.冲关针对训练(2015·陕西高考)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的半焦距为c ,原点O 到经过两点(c,0),(0,b )的直线的距离为12c .(1)求椭圆E 的离心率;(2)如图,AB 是圆M :(x +2)2+(y -1)2=52的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程.解 (1)过点(c,0),(0,b )的直线方程为bx +cy -bc =0,则原点O到该直线的距离d =bc b 2+c2=bca ,由d =12c ,得a =2b =2a 2-c 2,解得离心率c a =32. (2)由(1)知,椭圆E 的方程为 x 2+4y 2=4b 2.①依题意,圆心M (-2,1)是线段AB 的中点,且|AB |=10. 易知,AB 与x 轴不垂直,设其方程为y =k (x +2)+1,代入①得 (1+4k 2)x 2+8k (2k +1)x +4(2k +1)2-4b 2=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-8k (2k +1)1+4k 2,x 1x 2=4(2k +1)2-4b 21+4k 2.由x 1+x 2=-4,得-8k (2k +1)1+4k 2=-4,解得k =12. 从而x 1x 2=8-2b 2. 于是|AB |=1+⎝ ⎛⎭⎪⎫122|x 1-x 2| =52(x 1+x 2)2-4x 1x 2=10(b 2-2).由|AB |=10,得10(b 2-2)=10,解得b 2=3.故椭圆E 的方程为x 212+y 23=1.1.(2017·浙江高考)椭圆x 29+y 24=1的离心率是( ) A.133 B.53 C.23D.59答案 B解析 ∵椭圆方程为x 29+y 24=1,∴a =3,c =a 2-b 2=9-4=5.∴e =c a =53.故选B.2.(2017·河北衡水中学二调)设椭圆x 216+y 212=1的左、右焦点分别为F 1,F 2,点P 在椭圆上,且满足PF 1→·PF 2→=9,则|PF 1|·|PF 2|的值为( )A .8B .10C .12D .15答案 D解析 由椭圆方程x 216+y 212=1,可得c 2=4,所以|F 1F 2|=2c =4,而F 1F 2→=PF 2→-PF 1→,所以|F 1F 2→|=|PF 2→-PF 1→|,两边同时平方,得|F 1F 2→|2=|PF 1→|2-2PF 1→·PF 2→+|PF 2→|2,所以|PF 1→|2+|PF 2→|2=|F 1F 2→|2+2PF 1→·PF 2→=16+18=34,根据椭圆定义得|PF 1|+|PF 2|=2a =8,所以34+2|PF 1||PF 2|=64,所以|PF 1|·|PF 2|=15.故选D.3.(2018·武汉调研)已知直线MN 过椭圆x 22+y 2=1的右焦点F ,与椭圆交于M ,N 两点.直线PQ 过原点O 且与直线MN 平行,直线PQ 与椭圆交于P ,Q 两点,则|PQ |2|MN |=________.答案 2 2解析 解法一:由题意知,直线MN 的斜率不为0,设直线MN :x =my +1,则直线PQ :x =my .设M (x 1,y 1),N (x 2,y 2),P (x 3,y 3),Q (x 4,y 4).⎩⎨⎧x =my +1,x 22+y 2=1⇒(m 2+2)y 2+2my -1=0⇒y 1+y 2=-2mm 2+2,y 1y 2=-1m 2+2.∴|MN |=1+m 2|y 1-y 2|=22·m 2+1m 2+2.⎩⎨⎧x =my ,x 22+y 2=1⇒(m 2+2)y 2-2=0⇒y 3+y 4=0,y 3y 4=-2m 2+2.∴|PQ |=1+m 2|y 3-y 4|=2 2m 2+1m 2+2.故|PQ |2|MN |=2 2. 解法二:取特殊位置,当直线MN 垂直于x 轴时,易得|MN |=2b 2a =2,|PQ |=2b =2,则|PQ |2|MN |=2 2.4.(2015·安徽高考)设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足|BM |=2|MA |,直线OM 的斜率为510.(1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程.解 (1)由题设条件知,点M 的坐标为⎝⎛⎭⎪⎫23a ,13b ,又k OM =510,从而b 2a =510,进而得a =5b ,c =a 2-b 2=2b ,故e =c a =255.(2)由题设条件和(1)的计算结果可得,直线AB 的方程为x 5b+yb =1,点N 的坐标为⎝ ⎛⎭⎪⎫52b ,-12b .设点N 关于直线AB 的对称点S 的坐标为⎝ ⎛⎭⎪⎫x 1,72,则线段NS 的中点T 的坐标为⎝ ⎛⎭⎪⎫54b +x 12,-14b +74.又点T在直线AB 上,且k NS ·k AB =-1,从而有⎩⎪⎪⎨⎪⎪⎧5b 4+x 125b+-14b +74b =1,72+12b x 1-52b=5,解得b =3.所以a =35, 故椭圆E 的方程为x 245+y 29=1.[重点保分 两级优选练]A 级一、选择题1.(2018·江西五市八校模拟)已知正数m 是2和8的等比中项,则圆锥曲线x 2+y 2m =1的焦点坐标为( )A .(±3,0)B .(0,±3)C .(±3,0)或(±5,0)D .(0,±3)或(±5,0)答案 B解析 因为正数m 是2和8的等比中项,所以m 2=16,则m =4,所以圆锥曲线x 2+y 2m =1即为椭圆x 2+y24=1,易知其焦点坐标为(0,±3),故选B.2.(2017·湖北荆门一模)已知θ是△ABC 的一个内角,且sin θ+cos θ=34,则方程x 2sin θ-y 2cos θ=1表示( )A .焦点在x 轴上的双曲线B .焦点在y 轴上的双曲线C .焦点在x 轴上的椭圆D .焦点在y 轴上的椭圆解析 因为(sin θ+cos θ)2=1+2sin θcos θ=916,所以sin θcos θ=-732<0,结合θ∈(0,π),知sin θ>0,cos θ<0,又sin θ+cos θ=34>0,所以sin θ>-cos θ>0,故1-cos θ>1sin θ>0,因为x 2sin θ-y 2cos θ=1可化为y 2-1cos θ+x 21sin θ=1,所以方程x 2sin θ-y 2cos θ=1表示焦点在y 轴上的椭圆.故选D.3.(2018·湖北八校联考)设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( )A.514B.513C.49D.59答案 B解析 由题意知a =3,b =5,c =2.设线段PF 1的中点为M ,则有OM ∥PF 2,∵OM ⊥F 1F 2,∴PF 2⊥F 1F 2,∴|PF 2|=b 2a =53.又∵|PF 1|+|PF 2|=2a =6,∴|PF 1|=2a -|PF 2|=133,∴|PF 2||PF 1|=53×313=513,故选B.4.(2017·全国卷Ⅲ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( )A.63B.33C.23D.13解析 由题意知以A 1A 2为直径的圆的圆心为(0,0),半径为a . 又直线bx -ay +2ab =0与圆相切, ∴圆心到直线的距离d =2ab a 2+b2=a ,解得a =3b , ∴b a =13,∴e =ca =a 2-b 2a =1-⎝ ⎛⎭⎪⎫b a 2= 1-⎝ ⎛⎭⎪⎫132=63.故选A. 5.已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n 2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),若c 是a ,m 的等比中项,n 2是2m 2与c 2的等差中项,则椭圆的离心率为( )A.32B.22C.12D.14答案 C解析 因为椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n 2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),所以c 2=a 2-b 2=m 2+n 2.因为c 是a ,m 的等比中项,n 2是2m 2与c 2的等差中项,所以c 2=am,2n 2=2m 2+c 2,所以m 2=c 4a 2,n 2=c 4a 2+c 22,所以2c 4a 2+c22=c 2,化为c 2a 2=14,所以e =c a =12.故选C.6.(2017·荔湾区期末)某宇宙飞船运行的轨道是以地球中心为一焦点的椭圆,测得近地点距地面m 千米,远地点距地面n 千米,地球半径为r 千米,则该飞船运行轨道的短轴长为( )A .2(m +r )(n +r )千米 B.(m +r )(n +r )千米 C .2mn 千米 D .mn 千米答案 A解析 ∵某宇宙飞船的运行轨道是以地球的中心F 2为一个焦点的椭圆,设长半轴长为a ,短半轴长为b ,半焦距为c , 则近地点A 距地心为a -c ,远地点B 距地心为a +c . ∴a -c =m +r ,a +c =n +r , ∴a =m +n 2+r ,c =n -m 2.又∵b 2=a 2-c 2=⎝ ⎛⎭⎪⎫m +n 2+r2-⎝ ⎛⎭⎪⎫n -m 22=mn +(m +n )r +r 2=(m +r )(n +r ).∴b =(m +r )(n +r ),∴短轴长为2b =2(m +r )(n +r )千米,故选A.7.(2017·九江期末)如图,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,A 和B 是以O 为圆心,以|OF 1|为半径的圆与该椭圆左半部分的两个交点,且△F 2AB 是等边三角形,则该椭圆的离心率为( )A.32B.12 C.3-1 D.22答案 C解析 连接AF 1,∵F 1F 2是圆O 的直径,∴∠F 1AF 2=90°,即F 1A ⊥AF 2,又∵△F 2AB 是等边三角形,F 1F 2⊥AB , ∴∠AF 2F 1=12∠AF 2B =30°, 因此,在Rt △F 1AF 2中,|F 1F 2|=2c , |F 1A |=12|F 1F 2|=c ,|F 2A |=32|F 1F 2|=3c .根据椭圆的定义,得2a =|F 1A |+|F 2A |=(1+3)c ,解得a =1+32c ,∴椭圆的离心率为e =ca =3-1.故选C.8.(2018·郑州质检)椭圆x 25+y 24=1的左焦点为F ,直线x =a 与椭圆相交于点M ,N ,当△FMN 的周长最大时,△FMN 的面积是( )A.55B.655C.855D.455答案 C解析 设椭圆的右焦点为E ,由椭圆的定义知△FMN 的周长为L =|MN |+|MF |+|NF |=|MN |+(25-|ME |)+(25-|NE |).因为|ME |+|NE |≥|MN |,所以|MN |-|ME |-|NE |≤0,当直线MN 过点E 时取等号,所以L =45+|MN |-|ME |-|NE |≤45,即直线x =a 过椭圆的右焦点E 时,△FMN 的周长最大,此时S △FMN =12×|MN |×|EF |=12×2×45×2=855,故选C.9.如图所示,内外两个椭圆的离心率相同,从外层椭圆顶点向内层椭圆引切线AC ,BD ,设内层椭圆方程为x 2a 2+y 2b 2=1(a >b >0),若直线AC 与BD 的斜率之积为-14,则椭圆的离心率为( )A.12B.22 C.32 D.34答案 C解析 设外层椭圆方程为x 2(ma )2+y 2(mb )2=1(a >b >0,m >1),则切线AC 的方程为y =k 1(x -ma ),切线BD 的方程为y =k 2x +mb ,则由⎩⎪⎨⎪⎧y =k 1(x -ma ),(bx )2+(ay )2=a 2b 2,消去y ,得(b 2+a 2k 21)x 2-2ma 3k 21x +m 2a 4k 21-a 2b 2=0.因为Δ=(2ma 3k 21)2-4(b 2+a 2k 21)(m 2a 4k 21-a 2b 2)=0,整理,得k 21=b 2a 2·1m 2-1. 由⎩⎪⎨⎪⎧y =k 2x +mb ,(bx )2+(ay )2=a 2b 2,消去y ,得(b 2+a 2k 22)x 2+2a 2mbk 2x +a 2m 2b 2-a 2b 2=0,因为Δ2=(2a 2mbk 2)2-4×(b 2+a 2k 22)(a 2m 2b 2-a 2b 2)=0,整理,得k 22=b 2a2·(m 2-1).所以k 21·k 22=b 4a 4.因为k 1k 2=-14,所以b 2a 2=14,e 2=c 2a 2=a 2-b 2a 2=34,所以e =32,故选C.10.(2018·永康市模拟)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)和圆x 2+y 2=b 2,若椭圆C 上存在点P ,使得过点P 引圆O 的两条切线,切点分别为A,B,满足∠APB=60°,则椭圆的离心率e的取值范围是()A.0<e≤32 B.12≤e<1C.32<e<1 D.32≤e<1答案 D解析由椭圆C:x2a2+y2b2=1(a>b>0)焦点在x轴上,连接OA,OB,OP,依题意,O,P,A,B四点共圆,∵∠APB=60°,∠APO=∠BPO=30°,在直角三角形OAP中,∠AOP=60°,∴cos∠AOP=b|OP|=12,∴|OP|=b12=2b,∴b<|OP|≤a,∴2b≤a,∴4b2≤a2,由a2=b2+c2,即4(a2-c2)≤a2,∴3a2≤4c2,即c2a2≥34,∴e≥32,又0<e<1,∴32≤e<1,∴椭圆C的离心率的取值范围是32≤e<1.故选D.二、填空题11.(2017·湖南东部六校联考)设P ,Q 分别是圆x 2+(y -1)2=3和椭圆x 24+y 2=1上的点,则P ,Q 两点间的最大距离是________.答案 733解析 依据圆的性质可知,P ,Q 两点间的最大距离可以转化为圆心到椭圆上点的距离的最大值加上圆的半径3,设Q (x ,y ),则圆心(0,1)到椭圆上点的距离为d =x 2+(y -1)2=-3y 2-2y +5=-3⎝ ⎛⎭⎪⎫y +132+163,∵-1≤y ≤1,∴当y =-13时,d 取最大值433,所以P ,Q 两点间的最大距离为d max +3=733.12.(2018·广州二测)已知中心在坐标原点的椭圆C 的右焦点为F (1,0),点F 关于直线y =12x 的对称点在椭圆C 上,则椭圆C 的方程为________.答案 5x 29+5y 24=1解析 设F (1,0)关于直线y =12x 的对称点为(x ,y ),则⎩⎨⎧0+y 2=12×1+x 2,y -0x -1×12=-1,解得⎩⎪⎨⎪⎧x =35,y =45,由于椭圆的两个焦点为(-1,0),(1,0),所以2a =⎝ ⎛⎭⎪⎫35-12+⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫35+12+⎝ ⎛⎭⎪⎫452=655,a =355,又c =1,所以b 2=a 2-c 2=95-1=45,所以椭圆C 的方程为x 295+y 245=1,即5x 29+5y 24=1.13.(2018·江西五市联考)已知椭圆x 2a 2+y 2b 2=1(a >b >0),A ,B 为椭圆上的两点,线段AB 的垂直平分线交x 轴于点M ⎝ ⎛⎭⎪⎫a 5,0,则椭圆的离心率e 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫55,1 解析 设A (x 1,y 1),B (x 2,y 2),x 1≠x 2,则⎩⎪⎨⎪⎧ ⎝ ⎛⎭⎪⎫x 1-a 52+y 21=⎝ ⎛⎭⎪⎫x 2-a 52+y 22,x 21a 2+y21b 2=1,x 22a 2+y 22b2=1,即⎩⎪⎨⎪⎧2a 5(x 1-x 2)=x 21-x 22+y 21-y 22,y 21=b 2-b2a 2x 21,y 22=b 2-b 2a2x 22,所以2a 5(x 1-x 2)=a 2-b 2a 2(x 21-x 22),所以2a 35(a 2-b 2)=x 1+x 2.又-a ≤x 1≤a ,-a ≤x 2≤a ,x 1≠x 2,所以-2a <x 1+x 2<2a ,则2a 35(a 2-b 2)<2a ,即b 2a 2<45,所以e 2>15.又0<e <1,所以55<e <1. 14.(2016·江苏高考)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.答案 63解析 由已知条件易得B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,F (c,0),∴BF →=⎝ ⎛⎭⎪⎫c +32a ,-b 2,CF →=⎝⎛⎭⎪⎫c -32a ,-b 2,由∠BFC =90°,可得BF →·CF→=0, 所以⎝⎛⎭⎪⎫c -32a ⎝ ⎛⎭⎪⎫c +32a +⎝ ⎛⎭⎪⎫-b 22=0,c 2-34a 2+14b 2=0,即4c 2-3a 2+(a 2-c 2)=0,亦即3c 2=2a 2, 所以c 2a 2=23,则e =c a =63.B 级三、解答题15.(2018·安徽合肥三校联考)已知椭圆的中心在原点,焦点在x 轴上,离心率为22,且椭圆经过圆C :x 2+y 2-4x +22y =0的圆心C .(1)求椭圆的方程;(2)设直线l 过椭圆的焦点且与圆C 相切,求直线l 的方程. 解 (1)圆C 方程化为(x -2)2+(y +2)2=6, 圆心C (2,-2),半径r = 6. 设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),则⎩⎨⎧4a 2+2b 2=1,1-⎝ ⎛⎭⎪⎫b a 2=⎝ ⎛⎭⎪⎫222,所以⎩⎪⎨⎪⎧a 2=8,b 2=4.所以所求的椭圆方程是x 28+y 24=1.(2)由(1)得椭圆的左、右焦点分别是F 1(-2,0),F 2 (2,0), |F 2C |=(2-2)2+(0+2)2=2<r = 6.F 2在圆C 内,故过F 2没有圆C 的切线,所以直线l 过焦点F 1. 设l 的方程为y =k (x +2),即kx -y +2k =0, 点C (2,-2)到直线l 的距离为d =|2k +2+2k |1+k 2, 由d =6,得|2k +2+2k |1+k2= 6. 化简,得5k 2+42k -2=0,解得k =25或k =- 2.故l 的方程为2x -5y +22=0或2x +y +22=0.16.(2018·陕西咸阳模拟)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点P (2,1),且离心率e =32.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点.求△P AB 面积的最大值.解 (1)∵e 2=c 2a 2=a 2-b 2a 2=34,∴a 2=4b 2.又椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点P (2,1), ∴4a 2+1b 2=1.∴a 2=8,b 2=2. 故所求椭圆方程为x 28+y 22=1.(2)设l 的方程为y =12x +m ,点A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =12x +m ,x 28+y 22=1,整理得x 2+2mx +2m 2-4=0.∵Δ=4m 2-8m 2+16>0,解得|m |<2. ∴x 1+x 2=-2m ,x 1x 2=2m 2-4. 则|AB |=1+14×(x 1+x 2)2-4x 1x 2=5(4-m 2).点P 到直线l 的距离d =|m |1+14=2|m |5. ∴S△P AB=12d |AB |=12×2|m |5×5(4-m 2)=m 2(4-m 2)≤m 2+4-m 22=2. 而且仅当m 2=2,即m =±2时取得最大值. ∴△P AB 面积的最大值为2.17.(2018·兰州模拟)已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶点为A ,左焦点为F 1(-2,0),点B (2,2)在椭圆C 上,直线y =kx (k ≠0)与椭圆C 交于P ,Q 两点,直线AP ,AQ 分别与y 轴交于点M ,N .(1)求椭圆C 的方程;(2)以MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.解 (1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0), ∵椭圆的左焦点为F 1(-2,0),∴a 2-b 2=4. ∵点B (2,2)在椭圆C 上,∴4a 2+2b 2=1, 解得a 2=8,b 2=4,∴椭圆C 的方程为x 28+y 24=1.(2)依题意点A 的坐标为(-22,0),设P (x 0,y 0)(不妨设x 0>0),则Q (-x 0,-y 0),由⎩⎨⎧y =kx ,x 28+y 24=1,得x 0=221+2k 2,y 0=22k1+2k2, ∴直线AP 的方程为y =k1+1+2k 2(x +22), 直线AQ 的方程为y =k1-1+2k2(x +22), ∴M ⎝ ⎛⎭⎪⎪⎫0,22k 1+1+2k 2,N ⎝ ⎛⎭⎪⎪⎫0,22k 1-1+2k 2, ∴|MN |=⎪⎪⎪⎪⎪⎪⎪⎪22k 1+1+2k2-22k 1-1+2k 2 =22(1+2k 2)|k |. 设MN 的中点为E ,则点E 的坐标为⎝⎛⎭⎪⎫0,-2k ,则以MN 为直径的圆的方程为x 2+⎝⎛⎭⎪⎫y +2k 2=2(1+2k 2)k 2,即x 2+y 2+22k y =4,令y =0得x =2或x =-2,即以MN 为直径的圆经过两定点P 1(-2,0),P 2(2,0).18.(2018·湖南十校联考)如图,设点A ,B 的坐标分别为(-3,0),(3,0),直线AP ,BP 相交于点P ,且它们的斜率之积为-23.(1)求点P 的轨迹方程;(2)设点P 的轨迹为C ,点M ,N 是轨迹C 上不同于A ,B 的两点,且满足AP ∥OM ,BP ∥ON ,求证:△MON 的面积为定值.解 (1)设点P 的坐标为(x ,y ),由题意得, k AP ·k BP =y x +3·y x -3=-23(x ≠±3), 化简得,点P 的轨迹方程为x 23+y 22=1(x ≠±3).(2)证明:由题意知,M ,N 是椭圆C 上不同于A ,B 的两点,且AP ∥OM ,BP ∥ON ,则直线AP ,BP 的斜率必存在且不为0.因为AP ∥OM ,BP ∥ON ,所以k OM ·k ON =k AP ·k BP =-23. 设直线MN 的方程为x =my +t ,代入椭圆方程x 23+y 22=1,得(3+2m 2)y 2+4mty +2t 2-6=0,①设M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1,y 2是方程①的两根,所以y 1+y 2=-4mt3+2m 2,y 2y 2=2t 2-63+2m 2.又k OM ·k ON =y 1y 2x 1x 2=y 1y 2m 2y 1y 2+mt (y 1+y 2)+t 2=2t 2-63t 2-6m 2, 所以2t 2-63t 2-6m 2=-23,即2t 2=2m 2+3. 又S △MON =12|t ||y 1-y 2|海阔天空专业文档=12·|t|-24t2+48m2+723+2m2,所以S△MON=26t24t2=62,即△MON的面积为定值6 2.。
高考数学总复习(一轮)(人教A)教学课件第八章 平面解析几何第5节 椭 圆

则|PA|=r+1,|PB|=8-r,
可得|PA|+|PB|=9,又9>2=|AB|,
则动圆的圆心P的轨迹是以A,B为焦点,长轴长为9的椭圆.故选A.
角度二
椭圆的焦点三角形
[例2] (多选题)(2024·山东青岛模拟)已知椭圆 C: + =1 的左、
右焦点分别是F1,F2, M( ,y0) 为椭圆C上一点,则下列结论正确的是
轴三等分,则此椭圆的方程是(
A.+=1
B.+ =1 源自 √C.+=1
D. +=1
)
解析:根据题意可设椭圆方程为 + =1,易知 2a=18,且 2c= ×2a,
解得a=9,c=3,
所以a2=81,b2=a2-c2=72,
所以 a=2 ,则离心率 e== .故选 C.
)
5.若方程
为
(0, )
+
=1 表示焦点在y轴上的椭圆,则实数m的取值范围
-
.
解析:由题可知,1-m>m>0,解得 0<m< ,所以实数m的取值范围为
(0,).
提升·关键能力
类分考点,落实四翼
考点一
椭圆的定义及应用
角度一
根据定义判断曲线的形状
[例1] 一动圆P与圆A:(x+1)2+y2=1外切,而与圆B:(x-1)2+y2=64内切,
那么动圆的圆心P的轨迹是(
√
A.椭圆
B.双曲线
2025年高考数学一轮知识点复习-8.5.1椭圆的定义、方程与性质-专项训练【含答案】

第一章集合、常用逻辑用语与不等式第二节常用逻辑用语1.命题“∃x∈R,1<f(x)≤2”的否定形式是()A.∀x∈R,1<f(x)≤2B.∃x∈R,1<f(x)≤2C.∃x∈R,f(x)≤1或f(x)>2D.∀x∈R,f(x)≤1或f(x)>22.下列命题中是全称量词命题并且是真命题的是()A.∀x∈R,x2+2x+1>0B.对任意实数a,b,若a-b<0,则a<bC.若2x为偶数,则x∈ND.π是无理数3.已知向量a=(m2,-9),b=(1,-1),则“m=-3”是“a∥b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知p:方程x2-4x+4a=0有实根;q:函数f(x)=(2-a)x为增函数,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(2023·北京高考8题)若xy≠0,则“x+y=0”是“+=-2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.(多选)使2≥1成立的一个充分不必要条件是()A.0<x<1B.0<x<2C.x<2D.0<x≤27.(多选)已知命题p:∃x∈R,x2-2x+a+6=0,q:∀x∈R,x2+mx+1>0,则下列说法正确的是()A.p的否定是“∀x∈R,x2-2x+a+6≠0”B.q的否定是“∃x∈R,x2+mx+1>0”C.若p为假命题,则a的取值范围是(-∞,-5)D.若q为真命题,则m的取值范围是(-2,2)8.命题p:若直线l与平面α内的所有直线都不平行,则直线l与平面α不平行.则命题p是命题(填“真”或“假”).9.能说明命题“∀x∈R且x≠0,x+1≥2”是假命题的x的值可以是(写出一个即可).10.已知命题p:∀x∈R,x2-a≥0;命题q:∃x∈R,x2+2ax+2-a=0.若命题p,q都是真命题,则实数a的取值范围为.11.命题“∀x∈R,∃n∈N*,使得n≤x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n>x2B.∀x∈R,∀n∈N*,都有n>x2C.∃x∈R,∃n∈N*,使得n>x2D.∃x∈R,∀n∈N*,都有n>x212.设计如图所示的四个电路图,则能表示“开关A闭合”是“灯泡B亮”的必要不充分条件的一个电路图是()13.(多选)下列四个条件中,能成为x>y的充分不必要条件的是()A.xc2>yc2B.1<1<0C.|x|>|y|D.ln x>ln y14.集合A={x|x>2},B={x|bx>1},其中b是实数.若A是B的充要条件,则b=;若A是B的充分不必要条件,则b的取值范围是.15.已知函数f(x)=x2-2x+3,g(x)=log2x+m,对任意的x1,x2∈[1,4]有f(x1)>g(x2)恒成立,则实数m的取值范围是.参考答案与解析1.D存在量词命题的否定是全称量词命题,原命题的否定形式为“∀x∈R,f(x)≤1或f(x)>2”.故选D.2.B对于A,∀x∈R,x2+2x+1=(x+1)2≥0,故A错误;对于B,含有全称量词“任意”,是全称量词命题且是真命题,故B正确;对于C,当x=-1时,2x=-2,为偶数,但x∉N,故C错误;对于D,π是无理数不是全称量词命题,故D错误.故选B.3.A若m=-3,则a=(9,-9)=9b,所以a∥b;若a∥b,则m2×(-1)-(-9)×1=0,解得m=±3,得不出m=-3.所以“m=-3”是“a∥b”的充分不必要条件.故选A.4.B方程x2-4x+4a=0有实根,故Δ=16-16a≥0,∴a∈(-∞,1],函数f(x)=(2-a)x 为增函数,故2-a>1,∴a∈(-∞,1).∵(-∞,1)⫋(-∞,1],∴p是q的必要不充分条件,故选B.5.C法一因为xy≠0,且+=-2⇔x2+y2=-2xy⇔x2+y2+2xy=0⇔(x+y)2=0⇔x+y=0.所以“x+y=0”是“+=-2”的充要条件.=-1-1=-2.法二充分性:因为xy≠0,且x+y=0,所以x=-y,所以+=-+-必要性:因为xy≠0,且+=-2,所以x2+y2=-2xy,即x2+y2+2xy=0,即(x+y)2=0,所以x+y=0.所以“x+y=0”是“+=-2”的充要条件.6.AB由2≥1得0<x≤2,依题意由选项组成的集合是(0,2]的真子集,故选A、B.7.AD A、B选项,p的否定是“∀x∈R,x2-2x+a+6≠0”,q的否定是“∃x∈R,x2+mx+1≤0”,所以A正确,B不正确;C选项,若p为假命题,则p的否定“∀x∈R,x2-2x+a+6≠0”是真命题,即方程x2-2x+a+6=0在实数范围内无解,Δ=4-4(a+6)<0,得a>-5,C不正确;D 选项,q为真命题,则Δ=m2-4<0,解得-2<m<2,D正确.故选A、D.8.假解析:若直线l与平面α内的所有直线都不平行,则直线l与平面α相交,所以直线l与平面α不平行,所以命题p为真命题,所以p为假命题.9.-1(答案不唯一)解析:由于当x>0时,x+1≥2,当且仅当x=1时等号成立,当x<0时,x +1≤-2,当且仅当x=-1时等号成立,所以x取负数,即可满足题意.例如x=-1时,x+1=-2.10.(-∞,-2]解析:由命题p为真,得a≤0;由命题q为真,得Δ=4a2-4(2-a)≥0,即a≤-2或a≥1,所以a≤-2.11.D∀改写为∃,∃改写为∀,n≤x2的否定是n>x2,则该命题的否定形式为“∃x∈R,∀n∈N*,都有n>x2”.12.C选项A:“开关A闭合”是“灯泡B亮”的充分不必要条件;选项B:“开关A闭合”是“灯泡B亮”的充要条件;选项C:“开关A闭合”是“灯泡B亮”的必要不充分条件;选项D:“开关A闭合”是“灯泡B亮”的既不充分也不必要条件.故选C.13.ABD对于A选项,若xc2>yc2,则c2≠0,则x>y,反之x>y,当c=0时得不出xc2>yc2,所以“xc2>yc2”是“x>y”的充分不必要条件,故A正确;对于B选项,由1<1<0可得y<x<0,即能推出x>y;但x>y不能推出1<1<0(因为x,y的正负不确定),所以“1<1<0”是“x>y”的充分不必要条件,故B正确;对于C选项,由|x|>|y|可得x2>y2,则(x+y)(x-y)>0,不能推出x>y;由x>y也不能推出|x|>|y|(如x=1,y=-2),所以“|x|>|y|”是“x >y”的既不充分也不必要条件,故C错误;对于D选项,若ln x>ln y,则x>y,反之x>y得不出ln x>ln y,所以“ln x>ln y”是“x>y”的充分不必要条件,故D正确.14.12(12,+∞)解析:若A是B的充要条件,则A=B,即x=2是方程bx=1的解,故b=12;若A是B的充分不必要条件,则A⫋B,易知b>0,则B={x|x>1},故1<2,即b>12,故b的取值范围是(12,+∞).15.(-∞,0)解析:由题意知,当x∈[1,4]时,f(x)min=f(1)=2,g(x)max=g(4)=2+m,则f(x)min>g(x)max,即2>2+m,解得m<0,故实数m的取值范围是(-∞,0).。
8.6 椭 圆-2020-2021学年新高考数学一轮复习讲义

§8.6椭圆1.椭圆的概念平面内与两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆.这两个定点F1,F2叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M|MF1+MF2=2a},F1F2=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质-a≤x≤a-b≤x≤b3.椭圆的第二定义平面内动点P 到定点F 的距离和它到定直线l (点F 不在直线l 上)的距离的比是常数e (0<e <1)的点的轨迹是椭圆.定点F 是焦点,定直线l 是准线,常数e 是离心率. 概念方法微思考1.在椭圆的定义中,若2a =F 1F 2或2a <F 1F 2,动点P 的轨迹如何?提示 当2a =F 1F 2时动点P 的轨迹是线段F 1F 2;当2a <F 1F 2时动点P 的轨迹是不存在的. 2.椭圆的离心率的大小与椭圆的扁平程度有怎样的关系? 提示 由e =ca=1-⎝⎛⎭⎫b a 2知,当a 不变时,e 越大,b 越小,椭圆越扁;e 越小,b 越大,椭圆越圆.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)椭圆是轴对称图形,也是中心对称图形.( √ )(2)椭圆上一点P 与两焦点F 1,F 2构成△PF 1F 2的周长为2a +2c (其中a 为椭圆的长半轴长,c 为椭圆的半焦距).( √ )(3)方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆.( √ )(4)x 2a 2+y 2b 2=1(a >b >0)与y 2a 2+x 2b 2=1(a >b >0)的焦距相等.( √ ) 题组二 教材改编2.椭圆x 210-m +y 2m -2=1的焦距为4,则m 等于( )A .4B .8C .4或8D .12 答案 C解析 当焦点在x 轴上时,10-m >m -2>0, 10-m -(m -2)=4,∴m =4.当焦点在y 轴上时,m -2>10-m >0,m -2-(10-m )=4,∴m =8. ∴m =4或8.3.过点A (3,-2)且与椭圆x 29+y 24=1有相同焦点的椭圆的方程为( )A.x 215+y 210=1 B.x 225+y 220=1 C.x 210+y 215=1 D.x 220+y 215=1 答案 A 解析 由题意知c 2=5,可设椭圆方程为x 2λ+5+y 2λ=1(λ>0),则9λ+5+4λ=1,解得λ=10或λ=-2(舍去), ∴所求椭圆的方程为x 215+y 210=1.4.已知点P 是椭圆x 25+y 24=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,则点P 的坐标为__________________. 答案 ⎝⎛⎭⎫152,1或⎝⎛⎭⎫152,-1 解析 设P (x ,y ),由题意知c 2=a 2-b 2=5-4=1,所以c =1,则F 1(-1,0),F 2(1,0). 由题意可得点P 到x 轴的距离为1, 所以y =±1,把y =±1代入x 25+y 24=1,得x =±152,又x >0,所以x =152, 所以P 点坐标为⎝⎛⎭⎫152,1或⎝⎛⎭⎫152,-1.题组三 易错自纠5.若方程x 25-m +y 2m +3=1表示椭圆,则m 的取值范围是( )A .(-3,5)B .(-5,3)C .(-3,1)∪(1,5)D .(-5,1)∪(1,3)答案 C解析 由方程表示椭圆知⎩⎪⎨⎪⎧5-m >0,m +3>0,5-m ≠m +3,解得-3<m <5且m ≠1.6.已知椭圆x 25+y 2m =1(m >0)的离心率e =105,则m 的值为________.答案 3或253解析 若a 2=5,b 2=m ,则c =5-m , 由c a =105,即5-m 5=105,解得m =3. 若a 2=m ,b 2=5,则c =m -5.由c a =105,即m -5m =105,解得m =253.7.设点P (x ,y )在椭圆4x 2+y 2=4上,则5x 2+y 2-6x 的最大值为________,最小值为________. 答案 11 -1解析 由椭圆的几何性质知-1≤x ≤1,由y 2=-4x 2+4,得5x 2+y 2-6x =x 2-6x +4=(x -3)2-5,所以当x =-1时,5x 2+y 2-6x 取得最大值11;当x =1时5x 2+y 2-6x 取得最小值-1.第1课时 椭圆及其性质椭圆的定义及其应用1.(2019·保定模拟)与圆C 1:(x +3)2+y 2=1外切,且与圆C 2:(x -3)2+y 2=81内切的动圆圆心P 的轨迹方程为________. 答案 x 225+y 216=1解析 设动圆的半径为r ,圆心为P (x ,y ),则有PC 1=r +1,PC 2=9-r .所以PC 1+PC 2=10>C 1C 2=6,即P 在以C 1(-3,0),C 2(3,0)为焦点,长轴长为10的椭圆上,得点P 的轨迹方程为x 225+y 216=1.2.如图,△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC 的周长是________.答案 43解析 ∵a 2=3,∴a = 3.△ABC 的周长为AC +AB +BC =AC +CF 2+AB +BF 2=2a +2a =4a =4 3.3.设点P 为椭圆C :x 2a 2+y 24=1(a >2)上一点,F 1,F 2分别为C 的左、右焦点,且∠F 1PF 2=60°,则△PF 1F 2的面积为________.答案433解析 由题意知,c =a 2-4.又∠F 1PF 2=60°,F 1P +PF 2=2a ,F 1F 2=2a 2-4,∴F 1F 22=(F 1P +PF 2)2-2F 1P ·PF 2-2F 1P ·PF 2·cos 60°=4a 2-3F 1P ·PF 2=4a 2-16, ∴F 1P ·PF 2=163,∴12PF F S △=12F 1P ·PF 2sin 60°=12×163×32=433.4.已知F 是椭圆5x 2+9y 2=45的左焦点,P 是此椭圆上的动点,A (1,1)是一定点,则P A +PF 的最大值为________,最小值为________. 答案 6+2 6-2解析 椭圆方程化为x 29+y 25=1,设F 1是椭圆的右焦点,则F 1(2,0), ∴AF 1=2,∴P A +PF =P A -PF 1+6,又-AF 1≤P A -PF 1≤AF 1(当P ,A ,F 1共线时等号成立), ∴P A +PF ≤6+2,P A +PF ≥6- 2. 思维升华 椭圆定义的应用技巧(1)椭圆定义的应用主要有:求椭圆的标准方程,求焦点三角形的周长、面积及弦长、最值和离心率等. (2)通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题.椭圆的标准方程命题点1 定义法例1 (1)(2020·湖北“荆、荆、襄、宜”四地七校联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为12,过F 2的直线与椭圆C 交于A ,B 两点,若△F 1AB 的周长为8,则椭圆方程为( )A.x 24+y 23=1 B.x 216+y 212=1 C.x 22+y 2=1 D .x 24+y 22=1 答案 A解析 如图,由椭圆的定义可知,△F 1AB 的周长为4a ,∴4a =8,a =2,又离心率为12,∴c =1,b 2=3,所以椭圆方程为x 24+y 23=1. (2)(2019·全国Ⅰ)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若AF 2=2F 2B ,AB =BF 1,则C 的方程为( ) A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1 D .x 25+y 24=1 答案 B解析 由题意设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),连接F 1A ,令F 2B =m ,则AF 2=2m ,BF 1=3m .由椭圆的定义知,4m =2a ,得m =a2,故F 2A =a =F 1A ,则点A 为椭圆C 的上顶点或下顶点. 令∠OAF 2=θ(O 为坐标原点),则sin θ=c a =1a.在等腰三角形ABF 1中,cos 2θ=(2m )2+(3m )2-(3m )22×2m ·3m =13,因为cos 2θ=1-2sin 2θ,所以13=1-2⎝⎛⎭⎫1a 2,得a 2=3. 又c 2=1,所以b 2=a 2-c 2=2, 椭圆C 的方程为x 23+y 22=1,故选B.命题点2 待定系数法例2 (1)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点⎝⎛⎭⎫-32,52,(3,5),则椭圆方程为__________. 答案 y 210+x 26=1解析 设椭圆方程为mx 2+ny 2=1(m ,n >0,m ≠n ). 由⎩⎪⎨⎪⎧⎝⎛⎭⎫-322m +⎝⎛⎭⎫522n =1,3m +5n =1,解得m =16,n =110.∴椭圆方程为y 210+x 26=1.(2)过点(3,-5),且与椭圆y 225+x 29=1有相同焦点的椭圆的标准方程为________.答案 y 220+x 24=1解析 方法一 (待定系数法):设所求椭圆方程为y 225-k +x 29-k =1(k <9),将点(3,-5)的坐标代入可得(-5)225-k +(3)29-k =1,解得k =5(k =21 舍去),所以所求椭圆的标准方程为y 220+x 24=1.方法二 (定义法):椭圆y 225+x 29=1的焦点为(0,-4),(0,4),即c =4.由椭圆的定义知,2a =(3-0)2+(-5+4)2+(3-0)2+(-5-4)2,解得a =2 5. 由c 2=a 2-b 2可得b 2=4.所以所求椭圆的标准方程为y 220+x 24=1.思维升华 (1)利用定义法求椭圆方程,要注意条件2a >F 1F 2;利用待定系数法要先定形(焦点位置),再定量,也可把椭圆方程设为mx 2+ny 2=1(m >0,n >0,m ≠n )的形式. (2)椭圆的标准方程的两个应用①方程x 2a 2+y 2b 2=1与x 2a 2+y 2b2=λ(λ>0)有相同的离心率.②与椭圆x 2a 2+y 2b 2=1(a >b >0)共焦点的椭圆系方程为x 2a 2+k +y 2b 2+k =1(a >b >0,k +b 2>0)恰当运用椭圆系方程,可使运算简便.跟踪训练1 (1)(2019·福建泉州模拟)已知椭圆的两个焦点为F 1(-5,0),F 2(5,0),M 是椭圆上一点,若MF 1⊥MF 2,MF 1·MF 2=8,则该椭圆的方程是( ) A.x 27+y 22=1 B.x 22+y 27=1 C.x 29+y 24=1 D .x 24+y 29=1 答案 C解析 设MF 1=m ,MF 2=n ,∵MF 1⊥MF 2,MF 1·MF 2=8,F 1F 2=25,∴m 2+n 2=20,mn =8, ∴(m +n )2=36,∴m +n =2a =6,∴a =3.∵c =5,∴b =a 2-c 2=2.∴椭圆的方程是x 29+y 24=1. (2)与椭圆x 24+y 23=1有相同离心率且经过点(2,-3)的椭圆标准方程为________.答案 y 2253+x 2254=1或x 28+y 26=1解析 方法一 ∵e =ca =a 2-b 2a=1-b 2a2=1-34=12,若焦点在x 轴上,设所求椭圆方程为x 2m 2+y 2n2=1(m >n >0),则1-⎝⎛⎭⎫n m 2=14.从而⎝⎛⎭⎫n m 2=34,n m =32. 又4m 2+3n2=1,∴m 2=8,n 2=6. ∴所求椭圆的标准方程为x 28+y 26=1.若焦点在y 轴上,设椭圆的方程为y 2m 2+x 2n 2=1(m >n >0),则3m 2+4n 2=1,且n m =32,解得m 2=253,n 2=254. 故所求椭圆的标准方程为y 2253+x 2254=1.方法二 若焦点在x 轴上,设所求椭圆方程为 x 24+y 23=t (t >0),将点(2,-3)代入,得 t =224+(-3)23=2. 故所求椭圆的标准方程为x 28+y 26=1.若焦点在y 轴上,设方程为y 24+x 23=λ(λ>0)代入点(2,-3),得λ=2512,∴所求椭圆的标准方程为y 2253+x 2254=1.椭圆的几何性质命题点1 离心率例3 (1)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( ) A.23 B.12 C.13 D.14 答案 D解析 如图,作PB ⊥x 轴于点B .由题意可设F 1F 2=PF 2=2,则c =1, 由∠F 1F 2P =120°, 可得PB =3,BF 2=1, 故AB =a +1+1=a +2, tan ∠P AB =PB AB =3a +2=36,解得a =4,所以e =c a =14.(2)若椭圆上存在三点,使得这三点与椭圆中心恰好是一个正方形的四个顶点,则该椭圆的离心率为( )A.5-12 B.33 C.22 D.63答案 D解析 设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),根据椭圆与正方形的对称性,可画出满足题意的图形,如图所示,因为OB =a ,所以OA =22a , 所以点A 的坐标为⎝⎛⎭⎫a 2,a 2,又点A 在椭圆上,所以a 24a 2+a 24b 2=1,所以a 2=3b 2,所以a 2=3(a 2-c 2),所以3c 2=2a 2, 所以椭圆的离心率e =c a =63.(3)已知F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆上存在点P ,使∠F 1PF 2=90°,则椭圆的离心率的取值范围是________. 答案 ⎣⎡⎭⎫22,1解析 若存在点P ,则圆x 2+y 2=c 2与椭圆有公共点, 则∠F 1BF 2≥90°(B 为短轴端点), 即b ≤c <a ,即b 2≤c 2, ∴a 2-c 2≤c 2,∴a 2≤2c 2, ∴22≤e <1. 命题点2 与椭圆有关的范围(最值)例4 (1)已知椭圆x 24+y 2b 2=1(0<b <2)的左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若BF 2+AF 2的最大值为5,则b 的值是________. 答案3解析 由椭圆的方程可知a =2,由椭圆的定义可知,AF 2+BF 2+AB =4a =8, 所以AB =8-(AF 2+BF 2)≥3,当AB 垂直于x 轴时AB 有最小值,则2b 2a =3.所以b 2=3,即b = 3.(2)设A ,B 是椭圆C :x 23+y 2m =1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A .(0,1]∪[9,+∞)B .(0,3]∪[9,+∞)C .(0,1]∪[4,+∞)D .(0,3]∪[4,+∞) 答案 A解析 方法一 设焦点在x 轴上,点M (x ,y ). 过点M 作x 轴的垂线,交x 轴于点N , 则N (x ,0).故tan ∠AMB =tan(∠AMN +∠BMN ) =3+x|y |+3-x |y |1-3+x |y |·3-x |y |=23|y |x 2+y 2-3. 又tan ∠AMB =tan 120°=-3, 且由x 23+y 2m =1,可得x 2=3-3y 2m ,则23|y |3-3y 2m +y 2-3=23|y |⎝⎛⎭⎫1-3m y 2=- 3.解得|y |=2m3-m. 又0<|y |≤m ,即0<2m3-m ≤m ,结合0<m <3解得0<m ≤1.对于焦点在y 轴上的情况,同理亦可得m ≥9. 则m 的取值范围是(0,1]∪[9,+∞). 故选A.方法二 当0<m <3时,焦点在x 轴上, 要使C 上存在点M 满足∠AMB =120°, 则a b ≥tan 60°=3,即3m ≥3, 解得0<m ≤1.当m >3时,焦点在y 轴上,要使C 上存在点M 满足∠AMB =120°, 则a b ≥tan 60°=3,即m3≥3,解得m ≥9. 故m 的取值范围为(0,1]∪[9,+∞). 故选A.思维升华 (1)求椭圆离心率或其范围的方法解题的关键是借助图形建立关于a ,b ,c 的关系式(等式或不等式),转化为e 的关系式,常用方法如下: ①直接求出a ,c ,利用离心率公式e =ca求解.②由a 与b 的关系求离心率,利用变形公式e =1-b 2a2求解. ③构造a ,c 的齐次式.离心率e 的求解中可以不求出a ,c 的具体值,而是得出a 与c 的关系,从而求得e .(2)利用椭圆几何性质求值或范围的思路①将所求问题用椭圆上点的坐标表示,利用坐标范围构造函数或不等关系. ②将所求范围用a ,b ,c 表示,利用a ,b ,c 自身的范围、关系求范围.跟踪训练2 (1)正方形ABCD 的四个顶点都在椭圆x 2a 2+y 2b 2=1(a >b >0)上,若椭圆的焦点在正方形的内部,则椭圆的离心率的取值范围是( ) A.⎝⎛⎭⎪⎫5-12,1 B.⎝⎛⎭⎪⎫0,5-12 C.⎝⎛⎭⎪⎫3-12,1 D.⎝⎛⎭⎪⎫0,3-12 答案 B解析 设正方形的边长为2m , ∵椭圆的焦点在正方形的内部,∴m >c .又正方形ABCD 的四个顶点都在椭圆x 2a 2+y 2b 2=1(a >b >0)上,∴m 2a 2+m 2b 2=1>c 2a 2+c 2b 2=e 2+e 21-e 2, 整理得e 4-3e 2+1>0,e 2<3-52=(5-1)24,∴0<e <5-12,故选B. (2)已知点P (0,1),椭圆x 24+y 2=m (m >1)上两点A ,B 满足AP →=2PB →,则当m =________时,点B 横坐标的绝对值最大. 答案 5解析 设A (x 1,y 1),B (x 2,y 2),由AP →=2PB →,得⎩⎪⎨⎪⎧-x 1=2x 2,1-y 1=2(y 2-1),即x 1=-2x 2,y 1=3-2y 2, 因为点A ,B 在椭圆上,所以⎩⎨⎧4x 224+(3-2y 2)2=m ,x224+y 22=m ,得y 2=14m +34,所以x 22=m -(3-2y 2)2=-14m 2+52m -94 =-14(m -5)2+4≤4,所以当m =5时,点B 横坐标的绝对值最大,最大值为2.1.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )A.x 23+y 24=1 B.x 24+y 23=1 C.x 24+y 22=1 D .x 24+y 23=1 答案 D解析 由题意可知椭圆焦点在x 轴上, 所以设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),由题意可知c =1,e =c a =12,可得a =2,又a 2=b 2+c 2,可得b 2=3, 所以椭圆方程为x 24+y 23=1.2.若椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴长等于焦距,则椭圆的离心率为( )A.12B.33C.22D.24 答案 C解析 依题意可知,c =b , 又a =b 2+c 2=2c , ∴椭圆的离心率e =c a =22.3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),若长轴的长为6,且两焦点恰好将长轴三等分,则此椭圆的标准方程为( ) A.x 236+y 232=1 B.x 29+y 28=1 C.x 29+y 25=1 D .x 216+y 212=1 答案 B解析 由题意知2a =6,2c =13×6,所以a =3,c =1,则b =32-12=22,所以此椭圆的标准方程为x 29+y 28=1.4.(2020·湖北八市重点高中联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,过点F 作圆x 2+y 2=b 2的切线,若两条切线互相垂直,则椭圆C 的离心率为( ) A.12 B.22 C.23 D.63 答案 D解析 如图,由题意可得,2b =c ,则2b 2=c 2,即2(a 2-c 2)=c 2,则2a 2=3c 2, ∴c 2a 2=23,即e =c a =63. 5.已知F 1,F 2分别是椭圆的左、右焦点,现以F 2为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M ,N ,若过F 1的直线MF 1是圆F 2的切线,则椭圆的离心率为( )A.3-1 B .2- 3 C.22 D.32答案 A解析 ∵过F 1的直线MF 1是圆F 2的切线, ∴∠F 1MF 2=90°,MF 2=c ,∵F 1F 2=2c ,∴MF 1=3c ,由椭圆定义可得MF 1+MF 2=c +3c =2a ,∴椭圆的离心率e =21+3=3-1. 6.(2020·广东华附、省实、广雅、深中联考)设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c 上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( )A.⎝⎛⎦⎤0,22 B.⎝⎛⎦⎤0,33 C.⎣⎡⎭⎫22,1 D.⎣⎡⎭⎫33,1 答案 D解析 设P ⎝⎛⎭⎫a 2c ,m ,F 1(-c ,0),F 2(c ,0),由线段PF 1的中垂线过点F 2得PF 2=F 1F 2,即⎝⎛⎭⎫a 2c -c 2+m 2=2c ,得m 2=4c 2-⎝⎛⎭⎫a 2c -c 2=-a 4c 2+2a 2+3c 2≥0,即3c 4+2a 2c 2-a 4≥0,得3e 4+2e 2-1≥0,解得e 2≥13,又0<e <1,故33≤e <1.7.(多选)某颗人造地球卫星的运行轨道是以地球的中心F 为一个焦点的椭圆,如图所示,已知它的近地点A (离地面最近的点)距地面m 千米,远地点B (离地面最远的点)距地面n 千米,并且F ,A ,B 三点在同一直线上,地球半径约为R 千米,设该椭圆的长轴长、短轴长、焦距分别为2a ,2b ,2c ,则( )A .a -c =m +RB .a +c =n +RC .2a =m +nD .b =(m +R )(n +R ) 答案 ABD解析 由题意可知a -c -R =m ,a +c -R =n , 可得a -c =m +R ,所以A 正确; a +c =R +n ,所以B 正确; 可得a =m +n 2+R ,c =n -m2.则b 2=a 2-c 2=⎝⎛⎭⎫m +n 2+R 2-⎝⎛⎭⎫n -m 22=(m +R )(n +R ).则b =(m +R )(n +R ).所以D 正确. 故选ABD.8.(多选)已知椭圆C 的中心为坐标原点,焦点F 1,F 2在y 轴上,短轴长等于2,离心率为63,过焦点F 1作y 轴的垂线交椭圆C 于P ,Q 两点,则下列说法正确的是( ) A .椭圆C 的方程为y 23+x 2=1B .椭圆C 的方程为x 23+y 2=1C .PQ =233D .△PF 2Q 的周长为43 答案 ACD解析 由已知得,2b =2,b =1,c a =63,又a 2=b 2+c 2,解得a 2=3. ∴椭圆方程为x 2+y 23=1. 如图.∴PQ =2b 2a =23=233,△PF 2Q 的周长为4a =4 3. 故选ACD.9.焦距是8,离心率等于45的椭圆的标准方程为________________.答案 x 225+y 29=1或y 225+x 29=1解析 由题意知⎩⎪⎨⎪⎧2c =8,c a =45,解得⎩⎪⎨⎪⎧a =5,c =4,又b 2=a 2-c 2,∴b 2=9,当焦点在x 轴上时,椭圆的标准方程为x 225+y 29=1,当焦点在y 轴上时,椭圆的标准方程为y 225+x 29=1.10.已知椭圆x 29+y 225=1上的一点P 到两焦点的距离的乘积为m ,当m 取最大值时,点P 的坐标是________. 答案 (-3,0)或(3,0)解析 记椭圆的两个焦点分别为F 1,F 2,由题意知a =5,b =3,PF 1+PF 2=2a =10.则m =PF 1·PF 2≤⎝⎛⎭⎫PF 1+PF 222=25,当且仅当PF 1=PF 2=5,等号成立,即点P 位于椭圆的短轴的顶点处时,m 取得最大值25.所以点P 的坐标为(-3,0)或(3,0).11.已知点P 是圆F 1:(x +1)2+y 2=16上任意一点(F 1是圆心),点F 2与点F 1关于原点对称.线段PF 2的垂直平分线m 分别与PF 1,PF 2交于M ,N 两点.求点M 的轨迹方程.解 由题意得F 1(-1,0),F 2(1,0),圆F 1的半径为4,且MF 2=MP ,从而MF 1+MF 2=MF 1+MP =PF 1=4>F 1F 2,所以点M 的轨迹是以F 1,F 2为焦点的椭圆,其中长轴长为4,焦距为2,则短半轴长为3,所以点M 的轨迹方程为x 24+y 23=1. 12.如图所示,已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率;(2)若椭圆的焦距为2,且AF 2→=2F 2B →,求椭圆的方程.解 (1)若∠F 1AB =90°,则△AOF 2为等腰直角三角形,所以有OA =OF 2,即b =c .所以a =2c ,e =c a =22. (2)由题意知A (0,b ),F 2(1,0),设B (x ,y ),由AF 2→=2F 2B →,得⎩⎪⎨⎪⎧2(x -1)=1,2y =-b , 解得x =32,y =-b 2.代入x 2a 2+y 2b 2=1,得94a 2+b 24b2=1. 即94a 2+14=1,解得a 2=3. 所以椭圆方程为x 23+y 22=1.13.在平面直角坐标系xOy 中,P 是椭圆y 24+x 23=1上的一个动点,点A (1,1),B (0,-1),则P A +PB 的最大值为( )A .5B .4C .3D .2答案 A解析 ∵椭圆的方程为y 24+x 23=1.∴a 2=4,b 2=3,c 2=1,∴B (0,-1)是椭圆的一个焦点,设另一个焦点为C (0,1),如图所示,根据椭圆的定义知,PB +PC =4,∴PB =4-PC ,∴P A +PB =4+P A -PC ≤4+AC =5.14.(2019·浙江)已知椭圆x 29+y 25=1的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是________.答案 15解析 如图,左焦点F (-2,0),右焦点F ′(2,0).线段PF 的中点M 在以O (0,0)为圆心,2为半径的圆上,因此OM =2.在△FF ′P 中,OM 綊12PF ′,所以PF ′=4.根据椭圆的定义,得PF +PF ′=6,所以PF =2.又因为FF ′=4,所以在Rt △MFF ′中,tan ∠PFF ′=MF ′MF =FF ′2-MF 2MF =15,即直线PF 的斜率是15.15.(2019·衡水模拟)阿基米德(公元前287年-公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C 的对称轴为坐标轴,焦点在y 轴上,且椭圆C 的离心率为74,面积为12π,则椭圆C 的方程为( ) A.x 29+y 216=1 B.x 23+y 24=1 C.x 218+y 232=1 D.x 24+y 236=1 答案 A解析 由题意可得⎩⎪⎨⎪⎧ ab π=12π,c a =74,a 2=b 2+c 2,解得a =4,b =3,因为椭圆的焦点坐标在y 轴上,所以椭圆方程为y 216+x 29=1. 16.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),若椭圆上存在点P 使1-cos 2∠PF 1F 21-cos 2∠PF 2F 1=a 2c2,求该椭圆的离心率的取值范围. 解 由1-cos 2∠PF 1F 21-cos 2∠PF 2F 1=a 2c 2得c a =sin ∠PF 2F 1sin ∠PF 1F 2. 又由正弦定理得sin ∠PF 2F 1sin ∠PF 1F 2=PF 1PF 2, 所以PF 1PF 2=c a ,即PF 1=c aPF 2. 又由椭圆的定义得PF 1+PF 2=2a ,所以PF 2=2a 2a +c ,PF 1=2ac a +c, 因为PF 2是△PF 1F 2的一边,所以有2c -2aca +c <2a 2a +c <2c +2aca +c ,即c 2+2ac -a 2>0,所以e 2+2e -1>0(0<e <1),解得2-1<e <1,故椭圆离心率的取值范围为(2-1,1).第2课时 直线与椭圆直线与椭圆的位置关系1.若直线y =kx +1与椭圆x 25+y 2m =1总有公共点,则m 的取值范围是()A .m >1B .m >0C .0<m <5且m ≠1D .m ≥1且m ≠5答案 D解析 方法一 由于直线y =kx +1恒过点(0,1),所以点(0,1)必在椭圆内或椭圆上,则0<1m ≤1且m ≠5,故m ≥1且m ≠5.方法二 由⎩⎪⎨⎪⎧ y =kx +1,mx 2+5y 2-5m =0,消去y 整理得(5k 2+m )x 2+10kx +5(1-m )=0.由题意知Δ=100k 2-20(1-m )(5k 2+m )≥0对一切k ∈R 恒成立,即5mk 2+m 2-m ≥0对一切k ∈R 恒成立,由于m >0且m ≠5,∴5k 2+m -1≥0,∴m ≥1且m ≠5.2.已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C : (1)有两个不重合的公共点;(2)有且只有一个公共点;(3)没有公共点.解 将直线l 的方程与椭圆C 的方程联立,得方程组⎩⎪⎨⎪⎧y =2x +m , ①x 24+y 22=1, ② 将①代入②,整理得9x 2+8mx +2m 2-4=0.③方程③根的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)当Δ>0,即-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点.(3)当Δ<0,即m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点.思维升华 研究直线与椭圆位置关系的方法(1)研究直线和椭圆的位置关系,一般转化为研究直线方程与椭圆方程组成的方程组解的个数.(2)对于过定点的直线,也可以通过定点在椭圆内部或椭圆上判定直线和椭圆有交点. 弦长及中点弦问题命题点1 弦长问题例1 斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则AB 的最大值为( ) A .2 B.455 C.4105 D.8105答案 C解析 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +t ,消去y ,得5x 2+8tx +4(t 2-1)=0, 则x 1+x 2=-85t ,x 1x 2=4(t 2-1)5. ∴AB = 2 |x 1-x 2| =2(x 1+x 2)2-4x 1x 2 =2⎝⎛⎭⎫-85t 2-4×4(t 2-1)5=4 25·5-t 2, 当t =0时,AB max =4105. 命题点2 中点弦问题例2 已知P (1,1)为椭圆x 24+y 22=1内一定点,经过P 引一条弦,使此弦被P 点平分,则此弦所在的直线方程为________________.答案 x +2y -3=0解析 方法一 易知此弦所在直线的斜率存在,∴设其方程为y -1=k (x -1),弦所在的直线与椭圆相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧ y -1=k (x -1),x 24+y 22=1, 消去y 得,(2k 2+1)x 2-4k (k -1)x +2(k 2-2k -1)=0,∴x 1+x 2=4k (k -1)2k 2+1,又∵x 1+x 2=2, ∴4k (k -1)2k 2+1=2,解得k =-12.经检验,k =-12满足题意. 故此弦所在的直线方程为y -1=-12(x -1), 即x +2y -3=0.方法二 易知此弦所在直线的斜率存在,∴设斜率为k ,弦所在的直线与椭圆相交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2),则x 214+y 212=1,① x 224+y 222=1,② ①-②得(x 1+x 2)(x 1-x 2)4+(y 1+y 2)(y 1-y 2)2=0, ∵x 1+x 2=2,y 1+y 2=2,∴x 1-x 22+y 1-y 2=0,∴k =y 1-y 2x 1-x 2=-12. 经检验,k =-12满足题意. ∴此弦所在的直线方程为y -1=-12(x -1), 即x +2y -3=0.思维升华 (1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,应用根与系数的关系,解决相关问题.涉及中点弦的问题时用“点差法”解决,往往会更简单.记住必须检验.(2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则AB =(1+k 2)[(x 1+x 2)2-4x 1x 2] =⎝⎛⎭⎫1+1k 2[(y 1+y 2)2-4y 1y 2](k 为直线斜率). (3)利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.跟踪训练1 (1)已知椭圆两顶点A (-1,0),B (1,0),过焦点F (0,1)的直线l 与椭圆交于C ,D 两点,当CD =322时,则直线l 的方程为______________.答案 2x -y +1=0或2x +y -1=0.解析 由题意得b =1,c =1.∴a 2=b 2+c 2=1+1=2.∴椭圆方程为y 22+x 2=1. 若直线l 斜率不存在时,CD =22,不符合题意.若l 斜率存在时,设l 的方程为y =kx +1,联立⎩⎪⎨⎪⎧y =kx +1,y 2+2x 2=2,得(k 2+2)x 2+2kx -1=0. Δ=8(k 2+1)>0恒成立.设C (x 1,y 1),D (x 2,y 2).∴x 1+x 2=-2k k 2+2,x 1x 2=-1k 2+2. ∴|CD |=1+k 2|x 1-x 2| =1+k 2(x 1+x 2)2-4x 1x 2 =22(k 2+1)k 2+2. 即22(k 2+1)k 2+2=322, 解得k 2=2,∴k =± 2.∴直线l 方程为2x -y +1=0或2x +y -1=0.(2)(2019·石家庄模拟)已知椭圆x 2a 2+y 2b2=1(a >b >0),点F 为左焦点,点P 为下顶点,平行于FP 的直线l 交椭圆于A ,B 两点,且AB 的中点为M ⎝⎛⎭⎫1,12,则椭圆的离心率为( ) A.22 B.12 C.14 D.32答案 A解析 设A (x 1,y 1),B (x 2,y 2).∵AB 的中点为M ⎝⎛⎭⎫1,12,∴x 1+x 2=2,y 1+y 2=1. ∵PF ∥l ,∴k PF =k l =-b c =y 1-y 2x 1-x 2. ∵x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1. ∴(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0, ∴2a 2+-b c b 2=0,可得2bc =a 2, ∴4c 2(a 2-c 2)=a 4,化为4e 4-4e 2+1=0,解得e 2=12, 又∵0<e <1,∴e =22. 直线与椭圆的综合问题例3 (2019·天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为55. (1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上,若ON =OF (O 为原点),且OP ⊥MN ,求直线PB 的斜率.解 (1)设椭圆的半焦距为c ,依题意知,2b =4,c a =55, 又a 2=b 2+c 2,可得a =5,b =2,c =1.所以,椭圆的方程为x 25+y 24=1.(2)由题意,设P (x P ,y P )(x P ≠0),M (x M ,0).设直线PB 的斜率为k (k ≠0),又B (0,2),则直线PB 的方程为y =kx +2,与椭圆方程联立⎩⎪⎨⎪⎧y =kx +2,x 25+y 24=1,整理得(4+5k 2)x 2+20kx =0, 可得x P =-20k 4+5k 2, 代入y =kx +2得y P =8-10k 24+5k 2, 进而直线OP 的斜率为y P x P =4-5k 2-10k. 在y =kx +2中,令y =0,得x M =-2k. 由题意得N (0,-1),所以直线MN 的斜率为-k 2. 由OP ⊥MN ,得4-5k 2-10k ·⎝⎛⎭⎫-k 2=-1, 化简得k 2=245,从而k =±2305. 所以,直线PB 的斜率为2305或-2305. 思维升华 (1)解答直线与椭圆相交的题目时,常用到“设而不求”的方法,即联立直线和椭圆的方程,消去y (或x )得一元二次方程,然后借助根与系数的关系,并结合题设条件,建立有关参变量的等量关系求解.(2)涉及直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.跟踪训练2 已知椭圆C 的两个焦点分别为F 1(-1,0),F 2(1,0),短轴的两个端点分别为B 1,B 2.(1)若△F 1B 1B 2为等边三角形,求椭圆C 的方程;(2)若椭圆C 的短轴长为2,过点F 2的直线l 与椭圆C 相交于P ,Q 两点,且F 1P →⊥F 1Q →,求直线l 的方程.解 (1)由题意知,△F 1B 1B 2为等边三角形,则⎩⎨⎧ c =3b ,c =1,即⎩⎪⎨⎪⎧ a 2-b 2=3b 2,a 2-b 2=1,解得⎩⎨⎧ a 2=43,b 2=13,故椭圆C 的方程为3x 24+3y 2=1. (2)易知椭圆C 的方程为x 22+y 2=1, 当直线l 的斜率不存在时,其方程为x =1,不符合题意;当直线l 的斜率存在时,设直线l 的方程为y =k (x -1),由⎩⎪⎨⎪⎧y =k (x -1),x 22+y 2=1,得(2k 2+1)x 2-4k 2x +2(k 2-1)=0, Δ=8(k 2+1)>0,设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k 22k 2+1,x 1x 2=2(k 2-1)2k 2+1, F 1P →=(x 1+1,y 1),F 1Q →=(x 2+1,y 2),因为F 1P →⊥F 1Q →,所以F 1P →·F 1Q →=0,即(x 1+1)(x 2+1)+y 1y 2=x 1x 2+(x 1+x 2)+1+k 2(x 1-1)(x 2-1)=(k 2+1)x 1x 2-(k 2-1)(x 1+x 2)+k 2+1=7k 2-12k 2+1=0,解得k 2=17,即k =±77, 故直线l 的方程为x +7y -1=0或x -7y -1=0.1.若直线mx +ny =4与⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是( ) A .至多为1B .2C .1D .0答案 B解析 由题意知,4m 2+n2>2,即m 2+n 2<2, ∴点P (m ,n )在椭圆x 29+y 24=1的内部, 故所求交点个数是2.2.直线y =kx +1,当k 变化时,此直线被椭圆x 24+y 2=1截得的最大弦长是( ) A .2 B.433C .4D .不能确定答案 B解析 直线恒过定点(0,1),且点(0,1)在椭圆上,可设另外一个交点为(x ,y ),则弦长为x 2+(y -1)2=4-4y 2+y 2-2y +1=-3y 2-2y +5,当y =-13时,弦长最大为433. 3.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.43 B.53 C.54 D.103答案 B解析 由题意知椭圆的右焦点F 的坐标为(1,0),则直线AB 的方程为y =2x -2.联立⎩⎪⎨⎪⎧ x 25+y 24=1,y =2x -2,解得交点坐标为(0,-2),⎝⎛⎭⎫53,43, 不妨设A 点的纵坐标y A =-2,B 点的纵坐标y B =43,∴S △OAB =12·OF ·|y A -y B |=12×1×⎪⎪⎪⎪-2-43=53,故选B.4.已知椭圆x 236+y 29=1以及椭圆内一点P (4,2),则以P 为中点的弦所在直线的斜率为()A.12 B .-12 C .2 D .-2答案 B解析 设弦所在直线的斜率为k ,弦的端点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8,y 1+y 2=4,⎩⎨⎧ x 2136+y 219=1,x 2236+y 229=1,两式相减,得(x 1+x 2)(x 1-x 2)36+(y 1+y 2)(y 1-y 2)9=0,所以2(x 1-x 2)9=-4(y 1-y 2)9,所以k =y 1-y 2x 1-x 2=-12.经检验,k =-12满足题意.故弦所在直线的斜率为-12.故选B.5.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点,若AB 的中点为M (1,-1),则椭圆E 的方程为( )A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 答案 D解析 k AB =0+13-1=12,k OM=-1, 由k AB ·k OM =-b 2a 2,得b 2a 2=12,∴a 2=2b 2. ∵c =3,∴a 2=18,b 2=9,椭圆E 的方程为x 218+y 29=1. 6.(2020·南昌模拟)椭圆ax 2+by 2=1(a >0,b >0)与直线y =1-x 交于A ,B 两点,过原点与线段AB 中点的直线的斜率为32,则b a的值为( ) A.32 B.233 C.932 D.2327答案 B解析 方法一 设A (x 1,y 1),B (x 2,y 2),则ax 21+by 21=1,ax 22+by 22=1,即ax 21-ax 22=-(by 21-by 22),则by 21-by 22ax 21-ax 22=-1,b (y 1-y 2)(y 1+y 2)a (x 1-x 2)(x 1+x 2)=-1, 由题意知,y 1-y 2x 1-x 2=-1, 过点⎝⎛⎭⎫x 1+x 22,y 1+y 22与原点的直线的斜率为32,即y 1+y 2x 1+x 2=32, ∴b a ×(-1)×32=-1, ∴b a =233,故选B. 方法二 由⎩⎪⎨⎪⎧y =1-x ,ax 2+by 2=1消去y , 得(a +b )x 2-2bx +b -1=0,可得AB 中点P 的坐标为⎝⎛⎭⎫b a +b ,a a +b , ∴k OP =a b =32,∴b a =233. 7.(多选)已知椭圆x 24+y 23=1的左、右焦点分别为F 1,F 2,过F 1的直线l 1与过F 2的直线l 2交于点M ,设M 的坐标为(x 0,y 0),若l 1⊥l 2,则下列结论正确的有( )A.x 204+y 203<1B.x 204+y 203>1C.x 04+y 03<1 D .4x 20+3y 20>1 答案 ACD 解析 由椭圆x 24+y 23=1, 可得a =2,b =3,c =1.∴左、右焦点分别为F 1(-1,0),F 2(1,0),设A (0,3),则tan ∠AF 1F 2=3,可得∠AF 1F 2=π3, ∴∠F 1AF 2=π3.∵l 1⊥l 2,∴直线l 1与直线l 2的交点M 在椭圆的内部.∴x 204+y 203<1,A 正确;B 不正确; 直线x 4+y 3=1与椭圆x 24+y 23=1联立, 可得7y 2-24y +27=0无解,因此直线x 4+y 3=1与椭圆x 24+y 23=1无交点. 而点M 在椭圆的内部,在直线的左下方,∴满足x 04+y 03<1,C 正确. ∵x 20+y 20=1,0≤y 20≤1, ∴4x 20+3y 20=4(1-y 20)+3y 20=4-y 20>1,因此D 正确.故选ACD.8.设F 1,F 2为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,经过F 1的直线交椭圆C 于A ,B 两点,若△F 2AB 是面积为43的等边三角形,则椭圆C 的方程为___________________.答案 x 29+y 26=1 解析 ∵△F 2AB 是面积为43的等边三角形,∴AB ⊥x 轴,∴A ,B 两点的横坐标为-c ,代入椭圆方程,可求得F 1A =F 1B =b 2a. 又F 1F 2=2c ,∠F 1F 2A =30°,∴b 2a =33×2c .① 又2F AB S △=12×2c ×2b 2a =43,② a 2=b 2+c 2,③由①②③解得a 2=9,b 2=6,c 2=3,∴椭圆C 的方程为x 29+y 26=1. 9.设F 1,F 2分别是椭圆x 24+y 2=1的左、右焦点,若椭圆上存在一点P ,使(OP →+OF 2→)·PF 2→=0(O 为坐标原点),则△F 1PF 2的面积是________.答案 1解析 ∵(OP →+OF 2→)·PF 2→=(OP →+F 1O →)·PF 2→=F 1P →·PF 2→=0,∴PF 1⊥PF 2,∠F 1PF 2=90°.设PF 1=m ,PF 2=n ,则m +n =4,m 2+n 2=12,∴2mn =4,mn =2,∴12F PF S △=12mn =1. 10.(2020·湖北部分重点中学联考)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过左焦点F 1的直线与椭圆C 交于A ,B 两点,且AF 1=3BF 1,AB =BF ,则椭圆C 的离心率为________.答案 105 解析 设BF 1=k ,则AF 1=3k ,BF 2=4k .由BF 1+BF 2=AF 1+AF 2=2a ,得2a =5k ,AF 2=2k .在△ABF 2中,cos ∠BAF 2=(4k 2)+(2k )2-(4k )22×4k ×2k=14, 又在△AF 1F 2中,cos ∠F 1AF 2=(3k )2+(2k )2-(2c )22×3k ×2k=14,所以2c =10k ,故离心率e =c a =105. 11.已知椭圆C :x 22+y 24=1,过椭圆C 上一点P (1,2)作倾斜角互补的两条直线P A ,PB ,分别交椭圆C 于A ,B 两点,则直线AB 的斜率为________. 答案 2解析 设A (x 1,y 1),B (x 2,y 2),同时设P A 的方程为y -2=k (x -1),代入椭圆方程化简,得(k 2+2)x 2-2k (k -2)x +k 2-22k -2=0,显然1和x 1是这个方程的两解,因此x 1=k 2-22k -2k 2+2,y 1=-2k 2-4k +22k 2+2, 由-k 代替x 1,y 1中的k ,得x 2=k 2+22k -2k 2+2,y 2=-2k 2+4k +22k 2+2, 所以y 2-y 1x 2-x 1= 2. 故直线AB 的斜率为 2.12.设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,E 的离心率为22,点(0,1)是E 上一点. (1)求椭圆E 的方程;(2)过点F 1的直线交椭圆E 于A ,B 两点,且BF 1→=2F 1A →,求直线BF 2的方程.解 (1)由题意知,b =1,且e 2=c 2a 2=a 2-b 2a 2=12, 解得a 2=2,所以椭圆E 的方程为x 22+y 2=1. (2)由题意知,直线AB 的斜率存在且不为0,故可设直线AB 的方程为x =my -1,设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x 22+y 2=1,x =my -1,得(m 2+2)y 2-2my -1=0,则y 1+y 2=2m m 2+2,① y 1y 2=-1m 2+2,② 因为F 1(-1,0),所以BF 1→=(-1-x 2,-y 2),F 1A →=(x 1+1,y 1),由BF 1→=2F 1A →可得,-y 2=2y 1,③由①②③可得B ⎝⎛⎭⎫-12,±144, 则kBF 2=146或-146, 所以直线BF 2的方程为14x -6y -14=0或14x +6y -14=0.13.(2019·全国100所名校联考)已知椭圆C :x 2+y 2b 2=1(b >0,且b ≠1)与直线l :y =x +m 交于M ,N 两点,B 为上顶点.若BM =BN ,则椭圆C 的离心率的取值范围是( )A.⎝⎛⎭⎫0,22 B.⎣⎡⎭⎫22,1 C.⎝⎛⎭⎫63,1 D.⎝⎛⎦⎤0,63 答案 C解析 设直线y =x +m 与椭圆x 2+y 2b 2=1的交点为M (x 1,y 1),N (x 2,y 2), 联立⎩⎪⎨⎪⎧ y =x +m ,x 2+y 2b 2=1,得(b 2+1)x 2+2mx +m 2-b 2=0, 所以x 1+x 2=-2m b 2+1,x 1x 2=m 2-b 2b 2+1,Δ=(2m )2-4(b 2+1)(m 2-b 2)=4b 2(b 2+1-m 2)>0.设线段MN 的中点为G ,知G 点坐标为⎝⎛⎭⎫-m b 2+1,b 2m b 2+1, 因为BM =BN ,所以直线BG 垂直平分线段MN ,所以直线BG 的方程为y =-x +b ,且经过点G ,可得b 2m b 2+1=m b 2+1+b ,解得m =b 3+b b 2-1. 因为b 2+1-m 2>0,所以b 2+1-⎝ ⎛⎭⎪⎫b 3+b b 2-12>0, 解得0<b <33, 因为e 2=1-b 2,所以63<e <1. 14.(2019·衡水调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),斜率为-12的直线l 与椭圆C 交于A ,B 两点.若△ABF 1的重心为G ⎝⎛⎭⎫c 6,c 3,则椭圆C 的离心率为________.答案63 解析 设A (x 1,y 1),B (x 2,y 2),则x 21a 2+y 21b 2=1,x 22a 2+y 22b2=1, 两式相减得(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0.(*) 因为△ABF 1的重心为G ⎝⎛⎭⎫c 6,c 3,所以⎩⎨⎧ x 1+x 2-c 3=c 6,y 1+y 23=c 3,故⎩⎪⎨⎪⎧x 1+x 2=3c 2,y 1+y 2=c , 代入(*)式得3(x 1-x 2)c 2a 2+(y 1-y 2)c b 2=0,所以y 1-y 2x 1-x 2=-3b 22a 2=-12,即a 2=3b 2, 所以椭圆C 的离心率e =63.15.已知椭圆具有如下性质:若椭圆的方程为x 2a 2+y 2b2=1(a >b >0),则椭圆在其上一点A (x 0,y 0)处的切线方程为x 0x a 2+y 0y b 2=1.试运用该性质解决以下问题,椭圆C 1:x 2a 2+y 2b 2=1(a >b >0),其焦距为2,且过点⎝⎛⎭⎫1,22,点B 为C 1在第一象限中的任意一点,过B 作C 1的切线l ,l 分别与x 轴和y 轴的正半轴交于C ,D 两点,则△OCD 面积的最小值为( ) A.22 B. 2 C. 3 D .2 答案 B解析 由题意可得2c =2,即c =1,a 2-b 2=1,将点⎝⎛⎭⎫1,22代入椭圆方程,可得1a 2+12b 2=1, 解得a =2,b =1,即椭圆的方程为x 22+y 2=1,设B (x 2,y 2), 则椭圆C 1在点B 处的切线方程为x 22x +y 2y =1, 令x =0,得y D =1y 2,令y =0,可得x c =2x 2, 所以S △OCD =12·1y 2·2x 2=1x 2y 2, 又点B 为椭圆在第一象限上的点,所以x 2>0,y 2>0,x 222+y 22=1,即有1x 2y 2=x 222+y 22x 2y 2=x 22y 2+y 2x 2≥2x 22y 2·y 2x 2=2, 即S △OCD ≥2,当且仅当x 222=y 22=12, 即点B 的坐标为⎝⎛⎭⎫1,22时,△OCD 面积取得最小值2,故选B. 16.已知椭圆C 的两个焦点分别为F 1(-3,0),F 2(3,0),且椭圆C 过点P ⎝⎛⎭⎫1,32. (1)求椭圆C 的标准方程;(2)若与直线OP (O 为坐标原点)平行的直线交椭圆C 于A ,B 两点,当OA ⊥OB 时,求△AOB 的面积.解 (1)设椭圆C 的标准方程为x 2a 2+y 2b2=1(a >b >0), 由题意可得⎩⎪⎨⎪⎧ a 2-b 2=3,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1. 故椭圆C 的标准方程为x 24+y 2=1. (2)直线OP 的方程为y =32x ,设直线AB 的方程为y =32x +m ,A (x 1,y 1),B (x 2,y 2).将直线AB 的方程代入椭圆C 的方程并整理得x 2+3mx +m 2-1=0,由Δ=3m 2-4(m 2-1)>0,得m 2<4,所以x 1+x 2=-3m ,x 1x 2=m 2-1.由OA ⊥OB ,得OA →·OB →=0,OA →·OB →=x 1x 2+y 1y 2=x 1x 2+⎝⎛⎭⎫32x 1+m ⎝⎛⎭⎫32x 2+m =74x 1x 2+32m (x 1+x 2)+m 2=74(m 2-1)+32m ·(-3m )+m 2=54m 2-74=0,得m 2=75. 又AB =1+34(x 1+x 2)2-4x 1x 2=72·4-m 2, O 到直线AB 的距离d =|m |1+34=|m |72,所以S△AOB=1 2·AB·d=12×72×4-m2×|m|72=9110.。
2020年高考文科数学新课标第一轮总复习练习:8-5椭圆 Word版含解析

姓名,年级:时间:课时规范练A组基础对点练1.(2018·长春质检)已知椭圆错误!+错误!=1的左、右焦点分别为F1,F2,过点F2的直线交椭圆于A,B两点,则△ABF1的周长为( C ) A.4 B.6C.8 D。
162.(2018·武汉调研)曲线C1:错误!+错误!与曲线C2:错误!+错误!=1(0〈k〈9)的( D )A.长轴长相等B。
短轴长相等C.离心率相等D。
焦距相等解析:因为0〈k〈9,所以25-k>9-k>0,所以曲线C2是焦点在x轴上的椭圆,记其长半轴长为a2,短半轴长为b2,半焦距为c2,则c错误!=a错误!-b错误!=25-k-(9-k)=16.曲线C1也是焦点在x轴上的椭圆,记其长半轴长为a1,短半轴长为b1,半焦距为c1,则c错误!=a21-b错误!=25-9=16,所以曲线C1和曲线C2的焦距相等,故选D。
3.若对任意k∈R,直线y-kx-1=0与椭圆错误!+错误!=1恒有公共点,则实数m的取值范围是( C )A.(1,2] B.[1,2)C.[1,2)∪(2,+∞) D.[1,+∞)4.(2017·高考浙江卷)椭圆错误!+错误!=1的离心率是( B ) A.错误!B。
错误!C.错误!D.错误!5.已知椭圆的中心在原点,离心率e=错误!,且它的一个焦点与抛物线y2=-4x的焦点重合,则此椭圆方程为( A )A.错误!+错误!=1B.错误!+错误!=1C.错误!+y2=1D.错误!+y2=16.若椭圆错误!+错误!=1(a〉b>0)的右焦点F是抛物线y2=4x的焦点,两曲线的一个交点为P,且|PF|=4,则该椭圆的离心率为( A ) A.错误!B。
错误!C。
错误! D.错误!7.已知椭圆错误!+错误!=1,其中α∈错误!,则椭圆形状最圆时的方程为( A )A.x2+y22=1 B。
x2+错误!=1C.x2+错误!=1 D。
x2+错误!=18.若x2+ky2=2表示焦点在y轴上的椭圆,则实数k的取值范围是__(0,1)__.9.(2018·福州质量)在三角形MAB中,点A(-1,0),B(1,0),且它的周长为6,记点M的轨迹为曲线E。
2020版高考数学一轮复习 第8章 平面解析几何 第5讲 椭圆讲义 理(含解析)

A.3
B.6
C.9
D.12
答案 A
解析 画出图形如图所示.
∵椭圆方程为错误!+错误!=1, ∴a=3,b= 5,c=2。 又△ABF2 的内切圆的面积为 π, ∴△ABF2 内切圆的半径 r=1, ∴S△ABF2=12×(|AB|+|BF2|+|AF2|)×r =错误!×4a×r=2ar=6, 又 S△ABF2=错误!×|y1-y2|×2c=2|y1-y2|, ∴2|y1-y2|=6,∴|y1-y2|=3。
(3)椭圆上一短轴顶点到一焦点的距离等于实半轴长 a. 2.待定系数法求椭圆的标准方程的四步骤
提 醒 : 当 椭 圆 的 焦 点 位 置 不 明 确 时 , 可 设 为 错误! + 错误! = 1(m 〉 0 , n>0,m≠n),也可设为 Ax2+By2=1(A>0,B〉0,且 A≠B).可简记为“先定 型,再定量”.
1.“2〈m〈6"是“方程错误!+错误!=1 表示椭圆"的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
答案 B 解析 方程错误!+错误!=1 表示椭圆⇔错误! 解得 2<m〈6 且 m≠4, 所以“2〈m〈6"是“方程错误!+错误!=1 表示椭圆"的必要不充分条 件. 2.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为 10,一个焦点的 坐标是(- 5,0),则椭圆的标准方程为________. 答案 错误!+错误!=1 解析 由题意得,该椭圆的焦点在 x 轴上, c=错误!,2a+2b=10,即 a+b=5, 又因为 a2-b2=c2=5, 所以 a-b=1,解得 a=3,b=2。 所以椭圆的标准方程是错误!+错误!=1. 3.已知 A错误!,B 是圆错误!2+y2=4(F 为圆心)上一动点,线段 AB 的垂 直平分线交 BF 于点 P,则动点 P 的轨迹方程为________. 答案 x2+错误!y2=1
2024届新高考一轮总复习人教版 第八章 第5节 第2课时 直线与椭圆 课件(30张)

2.过圆 x2+y2=r2 上一定点 P(x0,y0)的圆的切线方程为 x0x+y0y=r2,此结论可推
广到圆锥曲线上.过椭圆1x22 +y42=1 上的点 A(3,-1)作椭圆的切线 l,则过 A 点且与直
线 l 垂直的直线方程为( )
A.x+y-2=0
B.x-y-3=0
C.2x+3y-3=0
D.3x-y-10=0
【思维升华】 弦长的求解方法 (1)当弦的两端点坐标易求时,可直接利用两点间的距离公式求解. (2)当直线的斜率存在时,斜率为 k 的直线 l 与椭圆相交于 A(x1,y1),B(x2,y2)两个 不同的点,可利用弦长公式|AB|= 1+k2|x1-x2|= (1+k2)[(x1+x2)2-4x1x2]求解.
【思维升华】判断直线与椭圆位置关系的方法 (1)判断直线与椭圆的位置关系,一般转化为研究直线方程与椭圆方程组成的方程组 解的个数. (2)对于过定点的直线,也可以通过定点在椭圆内部或椭圆上判定直线和椭圆有交 点.
考点 2 中点弦及弦长问题
【典例引领】
中点弦问题
[例 1](1) (2023·福建三明模拟)以椭圆x42+y32=1 内一点 P1,1为中点的弦所在的直线
②当两弦所在直线的斜率均存在且不为 0 时, 设直线 AB 的方程为 y=k(x-1),A(x1,y1),B(x2,y2), 则直线 CD 的方程为 y=-1k(x-1). 将直线 AB 的方程代入椭圆方程中并整理得(3+4k2)x2-8k2x+4k2-12=0, 则 x1+x2=3+8k42k2,x1x2=43k+2-4k122,
x1+x2+
的重心,得
3
22a=0,y1+y23+
2
2
b =0,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以 e=ca= 21+1= 2-1。故选 D。
答案 D
二、走近高考
3.(2018 全·国卷Ⅱ )已知 F1,F2 是椭圆 C 的两个焦点, P 是 C 上的一点。若 PF1⊥ PF2,且∠ PF2F1= 60°,则 C 的离心率为
()
A .1-
3 2
B.2- 3
C.
3-1 2
D. 3-1
解析 在△ F1PF2 中,∠ F1PF2= 90°,∠ PF2F1= 60°, |F1F2|
是( )
A .(0,1] ∪[9 ,+∞ ) C.(0,1]∪ [4,+∞ )
B.(0, 3] ∪[9 ,+∞ ) D.(0, 3] ∪[4 ,+∞ )
解析
依题意得,
3≥ m
∠ tan
AMB 2
,
0<m<3
或
m≥ tan∠ 3
A2MB,
m>3,
所以
3 ≥tan60 °, m
0<m<3
m≥tan60 °, 或3
第五节 椭 圆 2019 考纲考题考情
1. 椭圆的概念 平面内与两定点 F1、F2 的距离的和等于常数 (大于 |F1F2|)的点 的轨迹叫椭圆。 这两定点叫做椭圆的焦点, 两焦点间的距离叫做 焦距。 集合 P={ M||MF 1|+ |MF 2|= 2a,|F1F2|= 2c,其中 a>0,c>0, 且 a,c 为常数 } 。 (1)若 a> c,则 M 点的轨迹为椭圆。 (2)若 a= c,则 M 点的轨迹为线段 F1F2。 (3)若 a< c,则 M 点不存在。 2. 椭圆的标准方程和几何性质
考点一 椭圆的定义及应用
【例 1】
(1)左焦点
F1 作直线
l 交椭圆
于 A, B 两点, F2 是椭圆右焦点,则△ ABF2 的周长为 ( )
A.8
B.4 2
C. 4
D.2 2
(2)在平面直角坐标系
xOy
中,
P
是椭圆
y2+ 4
x2= 3
1
上的一个
动点,点 A(1,1), B(0,- 1),则 |PA|+|PB|的最大值为 ( )
=1,则 F1(- 1,0),F2(1,0)。由题意可得点 P 到 x 轴的距离为 1,
所以
y= ±1,把
y=
±1
代入
x52+
y2 4
=
1,得
x= ± 215,又
x>0,所
以 x= 215,所以 P 点坐标为 215,1 或 215,- 1 。
答案
15,1 或 15,- 1
2
2
第 1 课时 椭圆的定义及简单几何性质
= 3,b=
a2- c2 = 4,故点
P 的轨迹方程为
x2 + 25
y2 = 16
1。故选
A。
答案 A
2.(选修 1-1P42A 组 T4 改编 )设椭圆的两个焦点分别为 F1, F2,过点 F2 作椭圆长轴的垂线交椭圆于点 P,若△ F1PF2 为等腰 直角三角形,则椭圆的离心率是 ( )
A.
2 2
(10-m)=4,所以 m=8。所以 m=4 或 8。
答案 C
7.已知点
P
是椭圆
x2+ 5
y2=1 4
上
y
轴右侧的一点,且以点
P
及焦点 F1,F2 为顶点的三角形的面积等于 1,则点 P 的坐标为
________________。
解析 设 P(x,y),由题意知 c2= a2- b2= 5-4=1,所以 c
3.焦点三角形 椭圆上的点 P 与焦点 F1,F2 若构成三角形,则称△ PF1F2 为焦点三角形,焦点三角形问题注意与椭圆定义、正弦定理、余
弦定理的联系。
一、走进教材
1.(选修 1-1P42A 组 T1 改编 )若 F1(-3,0),F2(3,0),点 P 到
F1,F2 距离之和为 10,则 P 点的轨迹方程是 ( )
=2c,所以 |PF2|=c,|PF1|= 3c,又由椭圆定义可知 |PF1|+|PF2|
=2a,即 3c+c= 2a,故椭圆 C 的离心率 e=ac= 3-1。故选 D。
答案 D
4.(2017 ·全国卷Ⅰ )设
A,B 是椭圆
C:
x2+ 3
y2= m
1
长轴的两
个端点。若 C 上存在点 M 满足∠ AMB= 120°,则 m 的取值范围
|MF 2|=|F1F2|,所以点 M 的轨迹是一条线段。
答案 线段 F1F2
6.椭圆
x2 10-
+ m
y2 m-
= 2
1
的焦距为
4,则
m 等于 (
)
A.4
B.8
C.4 或 8
D . 12
解析 当焦点在 x 轴上时, 10- m>m-2>0,10- m- (m-2)
=4,所以 m= 4。当焦点在 y 轴上时, m- 2>10- m>0,m-2-
1.椭圆方程中的 a, b,c (1)a, b,c 关系: a2=b2+c2。
(2)e 与ba:因为
e= ca=
a2- a
b2
=
1-
b a
2,所以离心率
e
越大,则 ba越小,椭圆就越扁;离心率 e 越小,则 ab越大,椭圆就
越圆。
2.在求焦点在 x 轴上椭圆的相关量的范围时,要注意应用
以下不等关系:- a≤x≤a,- b≤ y≤b,0<e<1。
B.
2- 1 2
C.2- 2
D. 2-1
解析 设椭圆方程为 ax22+by22=1,依题意,显然有 |PF2|= |F1F2|,
则b2= 2c,即 a2- c2=2c,即 e2+ 2e-1=0,又 0<e<1,解得 e=
a
a
2- 1。故选 D。
解析:因为△ F1PF2 为等腰直角三角形,所以 |PF2|= |F1F2| =2c,|PF1|= 2 2c。因为 |PF1|+ |PF2|=2a,所以 2 2c+2c=2a,
m>3,
解得 0<m≤ 1 或 m≥ 9。
答案 A
三、走出误区
微提醒: ①忽视椭圆定义中的限制条件; ②忽视椭圆标准方
程焦点位置的讨论;③忽视点 P 坐标的限制条件。
5.平面内一点 M 到两定点 F1(0,- 9),F2(0,9)的距离之和 等于 18,则点 M 的轨迹是 ________。
解析 由题意知 |MF 1|+|MF 2|=18,但 |F1F2|= 18,即 |MF 1|+
A.5
B.4
C. 3
D.2
解析 (1)因为 x42+ y2=1,所以 a=2。由椭圆的定义可得 |AF1|
A .2x52 +1y62 =1
B . 1x020+ y92= 1
C.
y2 + 25
x2 = 16
1
D.
x2 + 25
y2 = 16
1
或
y2 + 25
1x62 =1
解析 设点 P 的坐标为 (x, y),因为 |PF1|+|PF2|=10>|F1F2|
=6,所以点 P 的轨迹是以 F1,F2 为焦点的椭圆,其中 a=5,c