1.1 不等关系 同步练习(含答案)

合集下载

人教版数学一元一次不等式(组)求字母系数综合练习及答案解析

人教版数学一元一次不等式(组)求字母系数综合练习及答案解析

一元一次不等式(组)求字母系数综合练习1.若不等式组的解集是2<x<3.则a.b的值是()A.2;﹣3 B.3;﹣2 C.3;2 D.2;32.不等式ax>b的解集是x<.则a的取值范围是.3.若a≠0.则不等式ax>b的解集是.4.若关于x的不等式组的解集为﹣1<x<1.那么代数式ab 的值是.5.若a>b>0.关于x的不等式组的解集是.6.不等式组的解集为x>2.则a的取值范围是.7.若不等式组的解集是空集.则a的取值范围是.8.不等式组的解集是0<x<2.则a+b的值等于.9.如果不等式组的解集是0≤x<1.那么a+b的值为.10.如果不等式组的解集是0≤x≤1.那么a+b的值为.11.若不等式组的解集是0≤x<1.则代数式a﹣b的值是.12.若不等式组的解集是﹣1<x<1.则2a+b的值为.13.如果不等式组的解集是0≤x≤1.那么a+b的值为.14.如果不等式组的解集是0≤x<1.那么a+b的值为.15.已知a>b>0.不等式组的解集是.16.不等式(a﹣2)x>b的解集是x<.求a的取值范围.17.已知直线y=3x+b经过点A(2.7).求不等式组3x+b≤0的解集.18.已知a是自然数.关于x的不等式组的解集是x>2.求a的值.19.若不等式组:的解集是5<x<22.求a.b的值.20.如果不等式组的解集是1<x<2.求:a+b的值21.若不等式组的解集是﹣1<x<1.求(a+b)2012的值.22.若不等式组的解集是0≤x<1.求a、b的值.23.已知不等式组的解集为﹣1<x<1.求a、b的值.24.若不等式组的解集为1<x<3.求a+b的值.25.若不等式组的解集为1<x<2.求a.b的值.26.若不等式组的解集为1<x<6.求a.b的值.27.已知关于x的一元一次不等式组的整数解是0和1.求a、b的取值范围.28.已知不等式组的解集是3<x<a+2.求a的取值范围.29.如果不等式组的解集是x>4.求a的取值范围.一元一次不等式(组)求字母系数综合练习一.选择题(共1小题)1.(2015•伊春模拟)若不等式组的解集是2<x<3.则a.b的值是()A.2;﹣3 B.3;﹣2 C.3;2 D.2;3解答:解:∵不等式组的解集是2<x<3.∴a=2.b=3.故选:D.点评:本题考查了一元一次不等式组的解集.解题的关键是:正确理解不等式组的解集的表示.2.(2009春•天长市期末)不等式ax>b的解集是x<.则a的取值范围是a<0 .考点:不等式的解集.专题:计算题.分析:不等式的两边同时除以一个数.不等号的方向改变.则这个数为负数.解答:解:∵ax>b的解集是x<.方程两边除以a时不等号的方向发生了变化.∴a<0.故答案为a<0.点评:本题考查了不等式的性质:不等式两边同乘以(或除以)同一个负数.不等号的方向改变.3.若a≠0.则不等式ax>b的解集是x>或x<.考点:解一元一次不等式.专题:计算题.分析:不等式ax>b的解集即是求x的取值范围.因为x等于0时不等式ax>b不成立.所以x的解集是x>或x<.解答:解:∵a≠0.∴当a>0时.不等式ax>b的解集是:x>;当a<0时.不等式ax>b的解集是:x<;所以.不等式的解为x>或x<.点评:解不等式依据不等式的基本性质.在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.特别是在系数化为1这一个过程中要注意不等号的方向的变化.4.(2009春•北京期中)若关于x的不等式组的解集为﹣1<x<1.那么代数式ab的值是15 .考点:解一元一次不等式组.专题:计算题.分析:先用字母a、b表示出不等式组的解集为<x<.然后再根据已知解集是﹣1<x<1.对应得到相等关系=﹣1.=1.求出a、b的值再代入所求代数式中即可求解.解答:解:解不等式组的可得解集为<x<.因为不等式组的解集为﹣1<x<1.所以=﹣1.=1.解得a=5.b=3代入ab=3×5=15.点评:主要考查了已知一元一次不等式解集求不等式中的字母的值.同样也是利用口诀求解.注意:当符号方向不同.数字相同时(如:x>a.x<a).没有交集也是无解但是要注意当两数相等时.在解题过程中不要漏掉相等这个关系.求不等式组解集的口诀:同大取大.同小取小.大小小大中间找.大大小小找不到(无解).5.若a>b>0.关于x的不等式组的解集是<x<.考点:不等式的解集.分析:先解答组成不等式组的两个不等式的解集.然后再取两个不等式的解集的交集.即为不等式组的解集.解答:解:①∵a>b>0.∴由不等式ax>b的两边同时除以a.得x>;②∵a>b>0.∴由不等式bx<a的两边同时除以b.得x<;综合①②.故原不等式组的解集为:<x<.故答案是:<x<.点评:解答本题的难点是:不等式的两边同时除以小于0的数时.不等号的方向要发生改变.6.(2009春•榕江县校级期末)不等式组的解集为x>2.则a的取值范围是a≤2.考点:解一元一次不等式组.专题:计算题.分析:求解规律是:大大取较大.小小取较小.大小小大中间找.大大小小无解.解答:解:因为不等式组的解集为x>2.所以a≤2.点评:本题考查了不等式组解集表示.注意.这里的a可以等于2的.7.(2012春•城区校级期末)若不等式组的解集是空集.则a的取值范围是a≤1.考点:不等式的解集.分析:根据不等式组解集是空集.可得出a的取值范围.解答:解:∵不等式组解集是空集.∴a≤1.故答案为:≤1.点评:本题考查了不等式的解集.注意掌握“大大取大.小小取小.大小中间找.大大小小找不到”.8.不等式组的解集是0<x<2.则a+b的值等于 1 .考点:解一元一次不等式组.专题:计算题.分析:先求得不等式组中两个不等式的解集.由已知条件求出a.b的值即可.解答:解:解第一个不等式得.x<.解第二个不等式得.x>4﹣2a.∵不等式组的解集是0<x<2.∴4﹣2a=0.=2.解得a=2.b=﹣1.∴a+b=1故答案为1.点评:本题考查了一元一次不等式组的解法.求不等式组解集的口诀:同大取大.同小取小.大小小大中间找.大大小小找不到(无解).9.(2009•烟台)如果不等式组的解集是0≤x<1.那么a+b的值为 1 .考点:解一元一次不等式组.专题:计算题;压轴题.分析:先用含有a、b的代数式把每个不等式的解集表示出来.然后根据已告知的解集.进行比对.得到两个方程.解方程求出a、b.解答:解:由得:x≥4﹣2a由2x﹣b<3得:故原不等式组的解集为:4﹣2a≤又因为0≤x<1所以有:4﹣2a=0.解得:a=2.b=﹣1于是a+b=1.故答案为:1.点评:本题既考查不等式的解法.又考查学生如何逆用不等式组的解集构造关于a、b的方程.从而求得a、b.10.如果不等式组的解集是0≤x≤1.那么a+b的值为﹣3 .考点:解一元一次不等式组.专题:计算题.分析:由题意分别解出不等式组中的两个不等式.由题意不等式的解集为0≤x≤1.再根据求不等式组解集的口诀:大小小大中间找.用a.b表示出不等式的解集.再由不等式解集是0≤x≤1.代入求出a.b的值.解答:解:由a﹣得.2a﹣x≤﹣4.∴x≥2a+4.由2x﹣b≤3得.2x≤b+3.∴x≤.∵不等式组的解集是0≤x≤1.∴2a+4=0..解得a=﹣2.b=﹣1.∴a+b=﹣3.点评:主要考查了一元一次不等式组解集的求法.将不等式组解集的口诀:同大取大.同小取小.大小小大中间找.大大小小找不到(无解)逆用.已知不等式解集反过来求a.b的值.11.(2011•成华区二模)若不等式组的解集是0≤x<1.则代数式a﹣b的值是 3 .考点:解一元一次不等式组.专题:计算题.分析:先求出两个不等式的解集.再根据已知解集与求出的解集是同一个解集.列式求出a、b的值.然后代入代数式进行计算即可得解.解答:解:.解不等式①得.x≥4﹣2a.解不等式②得.a<+.∴不等式组的解集为4﹣2a≤x<+.∵不等式组的解集是0≤x<1.∴4﹣2a=0.+=1.解得a=2.b=﹣1.a﹣b=2﹣(﹣1)=2+1=3.故答案为:3.点评:本题主要考查了一元一次不等式组解集的求法.根据所求不等式组的解集与已知解集是同一个解集列出关于a、b的等式是解题的关键.12.(2012春•新罗区校级月考)若不等式组的解集是﹣1<x<1.则2a+b 的值为0 .考点:解一元一次不等式组.分析:求出不等式组的解集.根据已知得出3+2b=﹣1.=1.求出a b的值代入即可.解答:解:∵解不等式①得:x<.解不等式②得:x>3+2b.∴不等式组的解集为:3+2b<x<.∵不等式组的解集是﹣1<x<1.∴3+2b=﹣1.=1.∴b=﹣2.a=1.∴2a+b=2×1﹣2=0.故答案为:0.点评:本题考查了一元一次不等式组.解一元一次方程的应用.关键是能求出3+2b=﹣1.=1.13.(2014春•金坛市校级月考)如果不等式组的解集是0≤x≤1.那么a+b 的值为 1 .考点:解一元一次不等式组.分析:先用字母a、b表示出不等式组的解集为4﹣2a≤x<.然后再根据已知解集是0≤x≤1.对应得到相等关系4﹣2a=0.=1.求出a、b的值再代入所求代数式中即可求解.解答:解:∵不等式组的解集为4﹣2a≤x<.是0≤x≤1.∴4﹣2a=0.=1.解得:a=2.b=﹣1.∴a+b=1.故答案为:1.点评:本题主要考查了一元一次不等式组解集的求法.其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大.同小取小.大小小大中间找.大大小小找不到(无解).14.如果不等式组的解集是0≤x<1.那么a+b的值为 1 .考点:解一元一次不等式组.专题:计算题.分析:先分别解两个不等式得到x≥4﹣2a和x<.再利用不等式组的解集是0≤x<1得到4﹣2a=0.=1.解方程求出a和b的值.然后计算a+b.解答:解:.解①得x≥4﹣2a.解②得x<.而不等式组的解集是0≤x<1.所以4﹣2a=0.=1.解得a=2.b=﹣1.所以a+b=2﹣1=1.故答案为1.点评:本题考查了解一元一次不等式组:解一元一次不等式组时.一般先求出其中各不等式的解集.再求出这些解集的公共部分.利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.已知a>b>0.不等式组的解集是﹣a<x<﹣b .考点:不等式的解集.专题:计算题.分析:由原题可知﹣a<﹣b<0.根据“小大大小中间找”原则求不等式组的解即可.解答:解:∵a>b>0.∴﹣a<﹣b<0.不等式组的解集是﹣a<x<﹣b.点评:求不等式的解集须遵循以下原则:同大取较大.同小取较小.小大大小中间找.大大小小解不了.三.解答题(共14小题)16.不等式(a﹣2)x>b的解集是x<.求a的取值范围.考点:不等式的性质.分析:根据不等式的性质3.可得答案.解答:解:由不等式(a﹣2)x>b的解集是x<.得a﹣2<0.解得a<2.点评:本题考查了不等式的性质.不等式的两边都乘以或除以同一个负数.不等号的方向改变.17.(2014•硚口区一模)已知直线y=3x+b经过点A(2.7).求不等式组3x+b≤0的解集.考点:一次函数与一元一次不等式.专题:计算题.分析:先根据一次函数图象上点的坐标特征得到6+b=7.解得b=1.然后解不等式3x+1≤0即可.解答:解:∵一次函数y=3x+b图象过点A(2.7).∴6+b=7.解得b=1.∴一次函数解析式为y=3x+1.解不等式3x+1≤0得x≤﹣.即不等式kx+2≤0的解集为x≤﹣.点评:本题考查了一次函数与一元一次不等式的关系:从函数的角度看.就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看.就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.18.已知a是自然数.关于x的不等式组的解集是x>2.求a的值.考点:解一元一次不等式组.分析:先把a当作已知条件表示出不等式组的解集.再与已知解集相比较即可得出a的值.解答:解:.由①得.x≥.由②得.x>2.∵不等式组的解集是x>2.∴≤2.解得a≤2.∵a是自然数.∴a=0或a=1或a=2.点评:本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.若不等式组:的解集是5<x<22.求a.b的值.考点:解一元一次不等式组.专题:计算题.分析:先用字母a.b表示出不等式组的解集(6b﹣5a)<x<(3a+7b).然后再根据已知解集是5<x<22.对应得到相等关系联立成方程组.求出a.b的值.解答:解:原不等式组可化为依题意得(6b﹣5a)<x<(3a+7b).由题意知:5<x<22.∴解得.点评:主要考查了一元一次不等式组的解定义.解此类题是要先用字母a.b表示出不等式组的解集.然后再根据已知解集.对应得到相等关系.解关于字母a.b的一元一次方程求出字母a.b的值.再代入所求代数式中即可求解.20.(2014秋•万州区校级期末)如果不等式组的解集是1<x<2.求:a+b 的值考点:解一元一次不等式组.分析:解出不等式组的解集.根据不等式组的解集是1<x<2.可以求出a、b的值.解答:解:(3分)∵1<x<2∴(4分)∴(5分)∴=(6分)点评:本题是反向考查不等式组的解集.也就是在已知不等式组解集的情况下确定不等式中字母的取值范围.21.(2012春•启东市校级期末)若不等式组的解集是﹣1<x<1.求(a+b)2012的值.考点:解一元一次不等式组.分析:分别解出每个不等式的解集.得到不等式组的解集.再根据不等式组解集的唯一性求出a、b的值.从而得到(a+b)2012的值.解答:解:.由①得.x>a+2;由②得.x<;不等式的解集为a+2<x<.由于不等式解集是﹣1<x<1.可见a+2=﹣1.=1.解得.a=﹣3;b=2.则(a+b)2012=(﹣3+2)2012=1.点评:本题考查了一元一次不等式组的解集.知道不等式组的唯一性是解题的关键.22.(2012春•丰县校级月考)若不等式组的解集是0≤x<1.求a、b的值.考点:不等式的解集.专题:计算题.分析:将a与b看做已知数.表示出不等式组的解集.根据已知解集即可求出a与b的值.解答:解:.由①得:x≥4﹣2a.由②得:x<(b+3).则不等式组的解集为4﹣2a≤x<(b+3).∴4﹣2a=0.(b+3)=1.解得:a=2.b=﹣1.点评:此题考查了不等式的解集.熟练掌握不等式组取解集的方法是解本题的关键.23.已知不等式组的解集为﹣1<x<1.求a、b的值.考点:解一元一次不等式组.分析:解出不等式组的解集.根据不等式组的解集为﹣1<x<1.可以求出a、b的值.解答:解:由得.∵﹣1<x<1.∴=1.3+2b=﹣1.解得.a=1.b=﹣2.点评:本题考查了解一元一次不等式组.解此类题是要先用字母a.b表示出不等式组的解集.然后再根据已知解集.对应得到相等关系.解关于字母a.b的一元一次方程求出字母m.n的值.再代入所求代数式中即可求解.24.若不等式组的解集为1<x<3.求a+b的值.考点:解一元一次不等式组.分析:先求出每个不等式的解集.再求出不等式组的解集.即可得出关于a、b的方程.求出即可.解答:解:∵解不等式①得:x>a+6.解不等式②得:x<b﹣2.∴不等式组的解集是a+6<x<b﹣2.∵不等式组的解集为1<x<3.∴a+6=1.b﹣2=3.解得:a=﹣5.b=5.∴a+b=0.点评:本题考查了解一元一次不等式组.一元一次方程的应用.解此题的关键是得出关于a、b的方程.25.(2014春•颍上县校级月考)若不等式组的解集为1<x<2.求a.b的值.考点:解一元一次不等式组.分析:根据已知不等式组的解集得出方程组.求出方程组的解即可.解答:解:∵不等式组的解集为1<x<2.∴a+b=2.a﹣b=1.即.解方程组得:a=1.5.b=0.5.点评:本题考查了解一元一次不等式组合解二元一次方程组的应用.解此题的关键是能根据题意得出关于a、b的方程组.26.若不等式组的解集为1<x<6.求a.b的值.考点:解一元一次不等式组.分析:先把a、b当作已知把x的取值范围用a、b表示出来.再与已知解集相比较得到关于a、b的二元一次方程组.再用加减消元法或代入消元法求出a、b的值.解答:解:原不等式组可化为.∵它的解为1<x<6.∴.解得.点评:本题考查的是解一元一次不等式组及二元一次方程组.根据题意得到关于a、b的二元一次方程组是解答此题的关键.27.已知关于x的一元一次不等式组的整数解是0和1.求a、b的取值范围.考点:一元一次不等式组的整数解.分析:先求出不等式组中每个不等式的解集.然后求出其公共解集.最后根据其整数解来求a、b的取值范围.解答:解:由原不等式组.得.解得 a﹣3<x<1+b.∵关于x的一元一次不等式组的整数解是0和1.∴a﹣3=﹣1.1+b=2.解得 a=2.b=1.点评:本题考查了一元一次不等式组的整数解.解决此类问题的关键在于正确解得不等式组或不等式的解集.然后再根据题目中对于解集的限制得到下一步所需要的条件.再根据得到的条件进而求得不等式组的整数解.28.已知不等式组的解集是3<x<a+2.求a的取值范围.考点:解一元一次不等式组.专题:计算题.分析:解第一个不等式得到a﹣1<x<a+2.由于等式组的解集为3<x<a+2.根据不等式解集的确定方法得到a﹣1≤3且a+2≤5.然后解关于a的不等式组即可.解答:解:.解①得a﹣1<x<a+2.∵不等式组的解集为3<x<a+2.∴a﹣1≤3且a+2≤5.∴a≤3.点评:本题考查了解一元一次不等式组:求不等式组的解集的过程叫解不等式组.解一元一次不等式组时.一般先求出其中各不等式的解集.再求出这些解集的公共部分.利用数轴可以直观地表示不等式组的解集.29.如果不等式组的解集是x>4.求a的取值范围.考点:解一元一次不等式组.分析:分别求出各不等式的解集.再根据不等式的解集是x>4求出a的取值范围即可.解答:解:.由①得.x>4.∵不等式组的解集是x>4.∴a≤4.点评:本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。

七年级下册数学同步练习题库:一元一次不等式(填空题:较易)

七年级下册数学同步练习题库:一元一次不等式(填空题:较易)

一元一次不等式(填空题:较易)1、不等式2x<4x﹣6的最小整数解为______.2、不等式3x﹣2>x﹣6的最小整数解是_____.3、x的与12的差小于6,用不等式表示为______________.4、m与6的差不大于2,用不等式表示为__________5、甲班人数比乙班人数多人,甲、乙两班人数不足人.设甲班人,则应满足的不等式是_____.6、已知代数式5-2x的值为非负数,则x的取值范围是_____7、一次生活常识竞赛一共有25道题,答对一题得4分,不答得0分,答错一题扣2分,小明有2题没答,竞赛成绩要超过74分,则小明至多答错______道题.8、当x________时,有≤2.9、若不等式ax|a-1|>2是一元一次不等式,则a=____________.10、当x______时,代数式的值是正数.11、不等式2x<4x﹣6的最小整数解为______.12、在实数范围内规定新运算“△”其规则是:a△b=a+b﹣1,则x△(x﹣2)>3的解集为_____.13、如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是____.14、请你写出一个满足不等式的正整数的值__________.15、若关于的不等式的解如图所示,则的值是______。

16、不等式3x﹣2>2x﹣1的解集是_____.17、不等式的最大整数解是________.18、不等式的正整数解是______________________。

19、小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入______小球时有水溢出.20、不等式2x+5<12的正整数解是____________;21、不等式6x+8>3x+17的解集____.22、已知二元一次方程,若的值大于-3,则的取值范围是______.23、不等式的最大整数解是______.24、某种商品的进价为15元,出售标价是22.5元,由于不景气销售情况不好,商店准备降价处理,但要保证利润不低于10%,那么该店最多降价__________元出售该商品。

2.1《不等关系》习题含解析北师大八年级下

2.1《不等关系》习题含解析北师大八年级下

《不等关系》习题一、选择题1.下面给出了5个式子:①3>0,②4x+3y>O,③x=3,④x﹣1,⑤x+2≤3,其中不等式有()A.2个B.3个C.4个D.5个2.若m是非负数,则用不等式表示正确的是()A.m<0B.m>0C.m≤0 D.m≥03.某市今年5月份的最高气温为27℃,最低气温为18℃,已知某一天的气温为t℃,则下面表示气温之间的不等关系正确的是()A.18<t<27B.18≤t<27 C.18<t≤27 D.18≤t≤274.无论x取什么数,下列不等式总成立的是()A.x+5>0B.x+5<0 C.x2<0 D.x2≥05.高钙牛奶的包装盒上注明“每100克内含钙≥150毫克”,它的含义是指()A.每100克内含钙150毫克B.每100克内含钙不低于150毫克C.每100克内含钙高于150毫克D.每100克内含钙不超过150毫克6.在下列式子中,不是不等式的是()A.2x<1B.x≠﹣2C.4x+5>0D.a=37.“a<b”的反面是()A.a≠b B.a>b C.a≥b D.a=b二、填空题8.用不等号“>、<、≥、≤”填空:a2+10.11.k的值大于﹣1且不大于3,则用不等式表示k的取值范围是.(使用形如a≤x≤b的类似式子填空.)三、解答题12.在生活中不等关系的应用随处可见.如图表示机动车驶入前方道路的最低时速限制.此标志设在高速公路或其他道路限速路段的起点,你会表示这些不等关系吗?13.一种药品的说明书上写着:“每日用量120~180mg,分3~4次服完.”一次服用这种药的剂量在什么范围?14.在数轴上有A,B两点,其中点A所对应的数是a,点B所对应的数是1.已知A,B两点的距离小于3,请你利用数轴.(1)写出a所满足的不等式;(2)数﹣3,0,4所对应的点到点B的距离小于3吗?15.用适当的符号表示下列关系:(1)一枚炮弹的杀伤半径不小于300米;(2)三件上衣与四条长裤的总价钱不高于268元;(3)明天下雨的可能性不小于70%;参考答案一、选择题1.答案:B解析:【解答】根据不等式的定义,只要有不等符号的式子就是不等式,所以①②⑤为不等式,共有3个.故选B.【分析】主要依据不等式的定义用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.2.答案:D解析:【解答】非负数即正数或0,即>或等于0的数,则m≥0.故选D.【分析】根据非负数的定义.3.答案:D解析:【解答】∵贵阳市今年5月份的最高气温为27℃,最低气温为18℃,某一天的气温为t℃,∴27≤t≤18.故选D.【分析】用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式是解答此题的关键.4.答案:D解析:【解答】A、当x≤﹣5时,不等式不成立,故此选项错误;B、当x≥﹣5时,不等式不成立,故此选项错误;C、当x=0时,不等式不成立,故此选项错误;D、无论x为何值,不等式总成立,故此选项正确;故选:D.【分析】根据题意,找出能使不等式成立的条件即可.5.答案:B解析:【解答】根据≥的含义,“每100克内含钙≥150毫克”,就是“每100克内含钙不低于150毫克”,故选:B.【分析】“≥”就是不小于,在本题中也就是“不低于”的意思.6.答案:D解析:【解答】A、B、C是不等式,D是等式,故选:D.【分析】根据不等式的概念:用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式可得答案.7.答案:C解析:【解答】a<b的反面是a=b或a>b,即a≥b.故选C.【分析】a与b有三种关系:a=b,a>b,a<b,所以a<b的反面是a=b或a>b,明确“a<b”的反面的意义是解题的关键.二、填空题8.答案:>解析:【解答】根据a2≥0,∴a2+1>0,故答案为:>.【分析】根据非负数的性质可得a2≥0,进而得到a2+1>0.9.答案:﹣4.解析:【解答】因为x≥2的最小值是a,a=2;x≤﹣6的最大值是b,则b=﹣6;则a+b=2﹣6=﹣4,所以a+b=﹣4.故答案为:﹣4.【分析】解答此题要明确,x≥2时,x可以等于2;x≤﹣6时,x可以等于﹣6.10.答案:x2﹣a2≤0.解析:【解答】由题意得:x2﹣a2≤0.故答案是:x2﹣a2≤0.【分析】解决本题的关键是理解“不是正数”用数学符号应表示为:“≤0”.11.答案:﹣1<k≤3.解析:【解答】根据题意,得﹣1<k≤3.故填﹣1<k≤3.【分析】此题考查了不等式的定义,解题时要读懂题意,抓住关键词语,弄清不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式,不大于意思是小于或等于以及大于的意思.三、解答题12.答案:见解答过程.解析:【解答】①设时速为a千米/时,则a≥50;②设车高为bm,则b≤3.5;③设车宽为xm,则x≤3;④设车重为yt,则y≤10.【分析】先要了解图标的含义,然后根据含义列出不等式即可.图①表示最低时速限制;图②表示车辆过桥洞时限制车高的标志;图③表示车辆过桥时限制车宽的标志;图④车辆过桥时限制车重的标志.13.答案:30≤x≤60.解析:【解答】∵120÷3=40,120÷4=30,180÷3=60,180÷4=45,∴一次服用这种药的剂量在30mg~60mg之间,即30≤x≤60.【分析】用120÷3,120÷4得到每天服用100mg时3次或4次每次的剂量;180÷3,180÷4即可得到每天服用180mg时3次或4次每次的剂量,找到最少的剂量和最多的剂量即可.14.答案:(1)﹣2<a<4,(2)0所对应的点到B点的距离小于3.解析:【解答】(1)根据题意得:|a﹣1|<3,得出﹣2<a<4,(2)由(1)得:到点B的距离小于3的数在﹣2和4之间,∴在﹣3,0,4三个数中,只有0所对应的点到B点的距离小于3.【分析】根据数轴上两点之间的距离为这两个数差的绝对值,列出不等式并解出结果.15.答案:(1)有r≥300;(2)3a+4b≤268;(3)P≥70%.解析:【解答】(1)设炮弹的杀伤半径为r,则应有r≥300;(2)设每件上衣为a元,每条长裤是b元,应有3a+4b≤268;(3)用P表示明天下雨的可能性,则有P≥70%;【分析】本题考查了不等式的定义.一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:><≤≥≠.(1)、(3)不小于就是大于等于,用“≥”来表示;(2)不高于就是等于或低于,用“≤”表示.。

最新高中数学苏教版必修一第1章1.1课堂同步练习题含答案(同步练习).doc

最新高中数学苏教版必修一第1章1.1课堂同步练习题含答案(同步练习).doc

1.判断题(对的打“√”,错的打“×”)(1)“全体著名的文学家”构成一个集合.( )(2)小于8但不小于-2的偶数集合是{0,2,4,6}.( )(3)集合{0}中不含元素.( )(4){0,1},{1,0}是两个不同的集合.( )解析:(1)标准不明确,研究的对象不具备确定性,故不可以构成集合.(2)小于8但不小于-2的偶数集合应为{-2,0,2,4,6}.(3)集合{0}中含有一个元素为0.(4)由集合中元素的无序性可知{0,1}与{1,0}是相同的集合.答案:(1)×(2)×(3)×(4)×2.给出下列关系:①12∈R;②2∉Q;③|-5|∉N*;④|-3|∈Q.其中正确的是________.(填序号)解析:|-5|=5∈N*,故③不正确;|-3|=3∉Q,故④不正确;其他两个均正确.答案:①②3.集合A={x|x=|a|a+|b|b,a,b为非零实数}的元素个数为________.解析:若a>0,b>0,则x=2;若a<0,b<0,则x=-2;若a,b异号,则x=0.故A={-2,0,2}.答案:34.如果集合{x|x2-2x+a=0}=∅,则实数a的取值范围是________.解析:Δ=4-4a<0得a>1.答案:a>15.用描述法表示下列集合:(1){0,1,2,3,4}=___________________________________________________ _____________________;(2){13,24,35,46,57}=___________________________________________________ _____________________;(3)不等式2x-4<3在自然数集合中的元构成的集合是___________________________________________________ _____________________.解析:(1)抓住这几个元素的特征:都是自然数,且都不大于4,故可表示为{x|x=n,n∈N且n≤4}.(2)这5个分数都为真分数,分子比分母小2,且分子都在1到5之间,都为正整数.故可表示为{x|x=nn+2,1≤n≤5且n∈N}.(3)抓住元素的特征:为自然数,故可表示为{x|2x-4<3,x ∈N}.答案:(1){x|x=n,n∈N且n≤4}(2){x|x =nn +2,1≤n ≤5且n ∈N}(3){x|2x -4<3,x ∈N}[A 级 基础达标]1.(2012·江阴市一中高一期中试题)若1∈{x ,x 2},则x =________.解析:由1∈{x ,x 2},则x =1或x 2=1,∴x =±1,当x =1时,x =x 2=1,不符合元素的互异性,∴x =-1. 答案:-12.用符号“∈”或“∉”填空:π________Q ,13________Q ,0________∅,2________R ,0________N *,32________{0,1,2},-2________Z. 答案:∉ ∈ ∉ ∈ ∉ ∉ ∈3.集合A ={x 2,3x +2,5y 3-x},B ={周长等于20cm 的三角形},C ={x|x -3<2,x ∈R},D ={(x ,y)|y =x 2-x -1},其中用描述法表示集合的有________.解析:集合A 是用列举法描述的.答案:B 、C 、D4.如图,是用Venn 图表示的集合,用列举法表示为________;用描述法表示为________.解析:其中元素为-2,-1,0,1,2,3.答案:{-2,-1,0,1,2,3} {x|-3<x<4,x ∈Z} 5.若集合{1,a ,b}与{-1,-b ,1}是同一个集合,则a 与b 分别为________.解析:由题意得⎩⎪⎨⎪⎧a =-1b =-b 或⎩⎪⎨⎪⎧a =-b ,b =-1.解得⎩⎪⎨⎪⎧a =-1b =0或⎩⎪⎨⎪⎧a =1,b =-1.当a =1,b =-1时,集合中有重复元素舍去.故a =-1,b =0.答案:-1,06.已知p ∈R ,且集合A ={x|x 2-px -52=0},集合B ={x|x 2-92x -p =0},若12∈A ,求集合B 中的所有元素. 解:由12∈A ,得12为方程x 2-px -52=0的一个根,代入得p =-92,从而B ={x|x 2-92x +92=0}={32,3},即集合B 中的元素为32和3. 7.已知集合A ={x|x ∈N ,126-x ∈N},用列举法表示集合A. 解:∵126-x ∈N ,x ∈N ,∴6-x =1,2,3,4,6,得x =5,4,3,2,0.∴集合A ={0,2,3,4,5}.[B 级 能力提升]8.(2012·黄桥中学州市高一期中试题)已知集合M ={x 2-5x-5,1},则实数x的取值范围为________.解析:∵x2-5x-5≠1,∴x2-5x-6≠0,∴(x+1)(x-6)≠0,∴x≠-1且x≠6.故x的取值范围为{x|x∈R,x≠-1且x≠6}.答案:{x|x∈R,x≠-1且x≠6}9.已知集合A={a,b,c},若a,b,c为△ABC的三边长,那么△ABC一定不是________.(填序号)①等腰三角形;②直角三角形;③锐角三角形;④钝角三角形;⑤等边三角形.解析:由集合中元素的互异性可知a,b,c互不相等,故应填①⑤.答案:①⑤10.用适当的方法表示下列集合,并指出它是有限集还是无限集.(1)由所有小于10的既是奇数又是质数的自然数组成的集合;(2)由平面直角坐标系中所有第三象限内的点组成的集合;(3)由方程x2+x+1=0的实数根组成的集合;(4)由所有周长等于10cm的三角形组成的集合.解:(1)满足条件的数为3,5,7,所以所求集合为B={3,5,7}.集合B是有限集.(2)所求集合可表示为C={(x,y)|x<0且y<0}.集合C是无限集.(3)因为方程x2+x+1=0的判别式Δ<0,故无实根,所以由方程x2+x+1=0的实数根组成的集合是空集.(4)由所有周长等于10cm的三角形组成的集合可表示为P={x|x是周长等于10cm的三角形}.P为无限集.11.(创新题)已知集合A={x|x=a+2b,a∈Z,b∈Z},试判断下列元素x与集合A间的关系:(1)x=0;(2)x=12+1;(3)x=x1+x2,其中x1∈A,x2∈A;(4)x=x1·x2,其中x1∈A,x2∈A.解:(1)∵x=0=0+0×2,取a=b=0,0∈Z,∴x∈A;(2)∵x=12+1=2-1=(-1)+1×2,-1∈Z,1∈Z.∴x∈A;(3)∵x1∈A,x2∈A.∴有a1,a2,b1,b2∈Z,使得x1=a1+2b1,x2=a2+2b2,则x=x1+x2=(a1+a2)+2(b1+b2),而a1+a2∈Z,b1+b2∈Z,∴x∈A;(4)由(3),x=x1·x2=(a1+2b1)(a2+2b2) =(a1a2+2b1b2)+2(a1b2+a2b1),而a1a2+2b1b2∈Z,a1b2+a2b1∈Z,故x∈A.。

不等关系练习含答案

不等关系练习含答案

不等关系一、选择题1.(2014·四川理,4)若a>b>0,c<d<0,则一定有( )A.ac>bdB.ac<bdC.ad>bcD.ad<bc[答案] D[解析] 本题考查不等式的性质,ac-bd=ad-bccd,cd>0,而ad-bc的符号不能确定,所以选项A、B不一定成立.ad-bc=ac-bddc,dc>0,由不等式的性质可知ac<bd,所以选项D成立.2.如果a∈R,且a2+a<0,那么a,a2,-a,-a2的大小关系为( ) A.a2>a>-a2>-a B.-a>a2>-a2>aC.-a>a2>a>-a2D.a2>-a>a>-a2[答案] B[解析] 因为a2+a<0,所以a2<-a,a<-a2,又由于a≠0,∴-a2<a2,即a<-a2<a2<-A.故选B.3.设a,b∈R,若a-|b|>0,则下列不等式中正确的是( )A.b-a>0 B.a3+b3<0C.a2-b2<0 D.b+a>0[答案] D[解析] 利用赋值法:令a=1,b=0排除A,B,C,选D.4.若a>b>c,a+2b+3c=0,则( )A.ab>ac B.ac>bcC.ab>bc D.a|b|>c|b|[答案] A[解析] ∵a>b>c且a+2b+3c=0,∴a>0,c<0.又∵b>c且a>0,∴ab>aC.选A.5.若-1<α<β<1,则下面各式中恒成立的是( )A.-2<α-β<0 B.-2<α-β<-1C.-1<α-β<0 D.-1<α-β<1[答案] A[解析] 由题意得-1<α<1,-1<-β<1,α-β<0,故-2<α-β<2且α-β<0,故-2<α-β<0,因此选A.6.如果a>0,且a≠1,M=log a(a3+1),N=log a(a2+1),那么( ) A.M>N B.M<NC.M=N D.M、N的大小无法确定[答案] A[解析] 当a>1时a3+1>a2+1,y=log a x单增,∴loga(a3+1)>log a(a2+1).当0<a<1时a3+1<a2+1,y=log a x单减.∴log a(a3+1)>log a(a2+1),或对a取值检验.选A.二、填空题7.如果a>b,那么下列不等式:①a3>b3;②1a<1b;③3a>3b;④lg a>lg B.其中恒成立的是________.[答案] ①③[解析] ①a3-b3=(a-b)(a2+b2+ab)=(a-b)[(a+b2)2+34b2]>0;③∵y=3x是增函数,a>b,∴3a>3b当a>0,b<0时,②④不成立.8.设m=2a2+2a+1,n=(a+1)2,则m、n的大小关系是________.[答案] m≥n[解析] m-n=2a2+2a+1-(a+1)2=a2≥0.三、解答题9.有粮食和石油两种物质,可用轮船与飞机两种方式运输,每天每艘轮船和每架飞机的运输效果如下表:机架数所满足的所有不等关系的不等式.[解析] 设需安排x 艘轮船和y 架飞机,则⎩⎨⎧300x +150y ≥2 000250 x +100 y ≥1 500x ≥0y ≥0,∴⎩⎨⎧6x +3y ≥405x +2y ≥30x ≥0y ≥0.10.(1)已知a >b ,e >f ,c >0.求证:f -ac <e -bC . (2)若bc -ad ≥0,bd >0.求证:a +b b ≤c +dd. [证明] (1)∵a >b ,c >0,∴ac >bc ,∴-ac <-bc ,∵f <e ,∴f -ac <e -bC . (2)∵bc -ad ≥0,∴ad ≤bc , 又∵bd >0,∴a b ≤cd, ∴a b +1≤c d+1, ∴a +b b ≤c +dd.。

高中不等式基本知识点和练习题(含答案)

高中不等式基本知识点和练习题(含答案)

不等式的基本知识(一)不等式与不等关系1、应用不等式(组)表示不等关系;不等式的主要性质:(1)对称性: (2)传递性:a b b a <⇔>ca cb b a >⇒>>,(3)加法法则:;(同向可加)c b c a b a +>+⇒>d b c a d c b a +>+⇒>>,(4)乘法法则:; bc ac c b a >⇒>>0,bcac c b a <⇒<>0,(同向同正可乘)bd ac d c b a >⇒>>>>0,0(5)倒数法则: (6)乘方法则:b a ab b a 110,<⇒>>)1*(0>∈>⇒>>n N n b a b a n n 且(7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论)3、应用不等式性质证明不等式(二)解不等式1、一元二次不等式的解法一元二次不等式的解集:()00022≠<++>++a c bx ax c bx ax 或设相应的一元二次方程的两根为,,则不等式的解的各种情()002≠=++a c bx ax 2121x x x x ≤且、ac b 42-=∆况如下表:2、简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿偶不穿;(3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。

()()()如:x x x +--<1120233、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。

不等关系与不等式(含解析)

不等关系与不等式(含解析)

不等关系与不等式班级___________ 姓名_____________ 学号__________层级一 学业水平达标1.李辉准备用自己节省的零花钱买一台学习机,他现在已存60元.计划从现在起以后每个月节省30元,直到他至少有400元.设x 个月后他至少有400元,则可以用于计算所需要的月数x 的不等式是( )A .30x -60≥400B .30x +60≥400C .30x -60≤400D .30x +40≤4002.若abcd <0,且a >0,b >c ,d <0,则( ) A .b <0,c <0 B .b >0,c >0 C .b >0,c <0D .0<c <b 或c <b <03.已知:a ,b ,c ,d ∈R ,则下列命题中必成立的是( ) A .若a >b ,c >b ,则a >c B .若a >-b ,则c -a <c +b C .若a >b ,c <d ,则a c >bdD .若a 2>b 2,则-a <-b4.设α∈⎝⎛⎭⎫0,π2,β∈⎣⎡⎦⎤0,π2,则2α-β3的范围是( ) A.⎝⎛⎭⎫0,56π B.⎝⎛⎭⎫-π6,56π C.()0,πD.⎝⎛⎭⎫-π6,π 5.已知M =2x +1,N =11+x 2,则M ,N 的大小关系为( ) A .M >N B .M <N C .M =ND .不确定6.某校高一年级的213名同学去科技馆参观,租用了某公交公司的x 辆公共汽车.如果每辆车坐30人,则最后一辆车不空也不满.则题目中所包含的不等关系为________.7.比较大小:a 2+b 2+c 2________2(a +b +c )-4.8.已知-1≤x +y ≤4,且2≤x -y ≤3,则z =2x -3y 的取值范围是________(用区间表示).9.(1)若a <b <0,求证:b a <ab ; (2)已知a >b ,1a <1b ,求证:ab >0.层级二 应试能力达标1.若x ∈R ,y ∈R ,则( ) A .x 2+y 2>2xy -1 B .x 2+y 2=2xy -1 C .x 2+y 2<2xy -1D .x 2+y 2≤2xy -12.已知a 1∈(0,1),a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .M ≥N3.若-1<α<β<1,则下列各式中恒成立的是( ) A .-2<α-β<0 B .-2<α-β<-1 C .-1<α-β<0D .-1<α-β<14.有一家三口的年龄之和为65岁,设父亲、母亲和小孩的年龄分别为x ,y ,z ,则下列选项中能反映x ,y ,z 关系的是( )A .x +y +z =65B.⎩⎪⎨⎪⎧x +y +z =65,x >y >z ,x ,y ,z ∈N *C.⎩⎪⎨⎪⎧x +y +z =65,x >z >0,y >z >0,x ,y ,z ∈N*D.⎩⎪⎨⎪⎧x +y +z =65,x <65,y <65,z <65,x ,y ,z ∈N*5.已知|a |<1,则11+a与1-a 的大小关系为________. 6.设a ,b 为正实数,有下列命题: ①若a 2-b 2=1,则a -b <1; ②若1b -1a =1,则a -b <1; ③若|a -b |=1,则|a -b |<1; ④若|a 3-b 3|=1,则|a -b |<1.其中正确的命题为________(写出所有正确命题的序号). 7.比较a 2+b 2与2(2a -b )-5的大小;答案解析1.李辉准备用自己节省的零花钱买一台学习机,他现在已存60元.计划从现在起以后每个月节省30元,直到他至少有400元.设x 个月后他至少有400元,则可以用于计算所需要的月数x 的不等式是( )A .30x -60≥400B .30x +60≥400C .30x -60≤400D .30x +40≤400解析:选B x 月后他至少有400元,可表示成30x +60≥400. 2.若abcd <0,且a >0,b >c ,d <0,则( ) A .b <0,c <0 B .b >0,c >0 C .b >0,c <0D .0<c <b 或c <b <0解析:选D 由a >0,d <0,且abcd <0,知bc >0, 又∵b >c ,∴0<c <b 或c <b <0.3.已知:a ,b ,c ,d ∈R ,则下列命题中必成立的是( ) A .若a >b ,c >b ,则a >c B .若a >-b ,则c -a <c +b C .若a >b ,c <d ,则a c >bd D .若a 2>b 2,则-a <-b解析:选B 选项A ,若a =4,b =2,c =5,显然不成立,选项C 不满足倒数不等式的条件,如a >b >0,c <0<d 时,不成立;选项D 只有a >b >0时才可以.否则如a =-1,b =0时不成立,故选B.4.设α∈⎝⎛⎭⎫0,π2,β∈⎣⎡⎦⎤0,π2,则2α-β3的范围是( ) A.⎝⎛⎭⎫0,56π B.⎝⎛⎭⎫-π6,56π C.()0,πD.⎝⎛⎭⎫-π6,π 解析:选D 0<2α<π,0≤β3≤π6,∴-π6≤-β3≤0,由同向不等式相加得到-π6<2α-β3<π.5.已知M =2x +1,N =11+x 2,则M ,N 的大小关系为( ) A .M >N B .M <N C .M =ND .不确定 解析:选A ∵2x >0,∴M =2x +1>1,而x 2+1≥1, ∴11+x 2≤1,∴M >N ,故选A. 6.某校高一年级的213名同学去科技馆参观,租用了某公交公司的x 辆公共汽车.如果每辆车坐30人,则最后一辆车不空也不满.则题目中所包含的不等关系为________.解析:根据题意得:⎩⎪⎨⎪⎧30(x -1)<213,30x >213.答案:⎩⎪⎨⎪⎧30(x -1)<213,30x >2137.比较大小:a 2+b 2+c 2________2(a +b +c )-4. 解析:a 2+b 2+c 2-[2(a +b +c )-4] =a 2+b 2+c 2-2a -2b -2c +4=(a -1)2+(b -1)2+(c -1)2+1≥1>0, 故a 2+b 2+c 2>2(a +b +c )-4. 答案:>8.已知-1≤x +y ≤4,且2≤x -y ≤3,则z =2x -3y 的取值范围是________(用区间表示).解析:∵z =-12(x +y )+52(x -y ),-2≤-12(x +y )≤12,5≤52(x -y )≤152,∴3≤-12(x +y )+52(x -y )≤8,∴z 的取值范围是[3,8]. 答案:[3,8]9.(1)若a <b <0,求证:b a <ab ;(2)已知a >b ,1a <1b ,求证:ab >0. 证明:(1)由于b a -a b =b 2-a 2ab =(b +a )(b -a )ab , ∵a <b <0,∴b +a <0,b -a >0,ab >0, ∴(b +a )(b -a )ab <0,故b a <ab .(2)∵1a <1b ,∴1a -1b<0,即b -aab <0,而a >b ,∴b -a <0,∴ab >0.层级二 应试能力达标1.若x ∈R ,y ∈R ,则( ) A .x 2+y 2>2xy -1 B .x 2+y 2=2xy -1 C .x 2+y 2<2xy -1D .x 2+y 2≤2xy -1解析:选A 因为x 2+y 2-(2xy -1)=x 2-2xy +y 2+1=(x -y )2+1>0,所以x 2+y 2>2xy-1,故选A.2.已知a 1∈(0,1),a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .M ≥N解析:选B ∵a 1∈(0,1),a 2∈(0,1),∴-1<a 1-1<0,-1<a 2-1<0,∴M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1(a 2-1)-(a 2-1)=(a 1-1)(a 2-1)>0,∴M >N ,故选B.3.若-1<α<β<1,则下列各式中恒成立的是( ) A .-2<α-β<0 B .-2<α-β<-1 C .-1<α-β<0D .-1<α-β<1解析:选A 由-1<α<1,-1<β<1,得-1<-β<1, ∴-2<α-β<2.又∵α<β,故知-2<α-β<0.4.有一家三口的年龄之和为65岁,设父亲、母亲和小孩的年龄分别为x ,y ,z ,则下列选项中能反映x ,y ,z 关系的是( )A .x +y +z =65B.⎩⎪⎨⎪⎧x +y +z =65,x >y >z ,x ,y ,z ∈N *C.⎩⎪⎨⎪⎧x +y +z =65,x >z >0,y >z >0,x ,y ,z ∈N*D.⎩⎪⎨⎪⎧x +y +z =65,x <65,y <65,z <65,x ,y ,z ∈N*解析:选C 由题意得x +y +z =65,x >z >0,y >z >0,x ,y ,z ∈N *.故选C. 5.已知|a |<1,则11+a与1-a 的大小关系为________. 解析:由|a |<1,得-1<a <1. ∴1+a >0,1-a >0. 即11+a 1-a =11-a 2∵0<1-a 2≤1,∴11-a 2≥1,∴11+a≥1-a . 答案:11+a≥1-a 6.设a ,b 为正实数,有下列命题:①若a 2-b 2=1,则a -b <1; ②若1b -1a =1,则a -b <1;③若|a -b |=1,则|a -b |<1; ④若|a 3-b 3|=1,则|a -b |<1.其中正确的命题为________(写出所有正确命题的序号).解析:对于①,由题意a ,b 为正实数,则a 2-b 2=1⇒a -b =1a +b ⇒a -b >0⇒a >b >0,故a +b >a -b >0.若a -b ≥1,则1a +b ≥1⇒a +b ≤1≤a -b ,这与a +b >a -b >0矛盾,故a-b <1成立.对于②,取特殊值,a =3,b =34,则a -b >1.对于③,取特殊值,a =9,b =4时,|a -b |>1. 对于④,∵|a 3-b 3|=1,a >0,b >0, ∴a ≠b ,不妨设a >b >0. ∴a 2+ab +b 2>a 2-2ab +b 2>0, ∴(a -b )(a 2+ab +b 2)>(a -b )(a -b )2. 即a 3-b 3>(a -b )3>0, ∴1=|a 3-b 3|>(a -b )3>0, ∴0<a -b <1, 即|a -b |<1.因此正确. 答案:①④7.(1)比较a 2+b 2与2(2a -b )-5的大小; (2)已知a ,b ∈(0,+∞),求证:a a b b ≥(ab )2+a b ,当且仅当a =b 时等号成立.解:(1)∵a 2+b 2-[2(2a -b )-5]=(a -2)2+(b +1)2≥0, ∴a 2+b 2≥2(2a -b )-5,当且仅当a =2,b =-1时,等号成立.。

2023年中考数学----不等式与不等式组之解与解集知识回顾与专项练习题(含答案解析)

2023年中考数学----不等式与不等式组之解与解集知识回顾与专项练习题(含答案解析)

2023年中考数学----不等式与不等式组之解与解集知识回顾与专项练习题(含答案解析)知识回顾1. 不等式的解:使不等式左右两边不等关系成立的未知数的值叫做不等式的解。

不等式的解有无数个。

2. 不等式的解集:一个含有未知数的不等式的所有解组成这个不等式的解集。

3. 不等式组的解集:不等式组中所有不等式的解集的公共部分构成不等式组的解集。

4. 在数轴上表示解集:步骤:①确定边界是实心圆还是空心圈。

若有等于(即≥或≤)则是实心圆,若无等于(即>或<)则是空心圈。

②确定解集的方向:大于向右,小于向左。

5. 不等式组解集公共部分的确定:若b a >①同大取大。

当⎩⎨⎧≥b x a x >时,则解集为a x ≥。

②同小取小。

当⎩⎨⎧≤bx a x <时,则解集为b x <。

③大小小大去中间。

当⎩⎨⎧≥a x b x <时,则解集为a x b <≤。

④大大小小无解答。

当⎩⎨⎧≥bx a x <时,则无解。

专项练习题(含答案解析)1.(2022•梧州)不等式组⎩⎨⎧−21<>x x 的解集在数轴上表示为( ) A .B .C .D .【分析】求出两个不等式的公共解,并将解集在数轴上表示出来即可.【解答】解:所以不等式组的解集为﹣1<x <2,在数轴上表示为:,故选:C .2.(2022•十堰)关于x 的不等式组中的两个不等式的解集如图所示,则该不等式组的解集为 .【分析】读懂数轴上的信息,然后用不等号连接起来.界点处是实点,应该用大于等于或小于等于.【解答】解:该不等式组的解集为:0≤x <1.故答案为:0≤x <1.。

人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案) (64)

人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案) (64)

人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案)某校计划购买篮球和排球两种球若干.已知购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)求篮球和排球的单价;(2)该校计划购买篮球和排球共30个.某商店有两种优惠活动(两种优惠活动不能同时参加),活动一:一律打九折,活动二:购物不超过600元时不优惠,超过600元时,超过600元的部分打八折.请根据以上信息,说明选择哪一种活动购买篮球和排球更实惠.【答案】(1)篮球每个50元,排球每个30元;(2)当0<m<15时,选择活动一更实惠;当m=15时,两个活动一样实惠;当m>15时,选择活动二更实惠【解析】【分析】根据球的总个数,及总的价格建立二元一次方程组,求解即可.设购买篮球m个,列出两种活动的付款金额,再根据情况分类讨论,从而得到结果.【详解】(1)设篮球每个x元,排球每个y元,根据题意得:2x+3y=190且3x=5y 解得x=50,y=30.答:篮球每个50元,排球每个30元;(2)设购买篮球m个,则购买排球(30﹣x)个,价值:50m+30(30﹣m)=900+20m因为900+20m>600,所以可以参加活动二;按活动一需付款:0.9(900+20m)=810+18m;按活动二付款:600+0.8(900+20m﹣600)=840+16m;若活动一更实惠:810+18m<840+16m,m<15;若活动一和活动二一样实惠:810+18m=840+16m,m=15;若活动二更实惠:810+18m>840+16m,m>15;综上所述,当0<m<15时,选择活动一更实惠;当m=15时,两个活动一样实惠;当m>15时,选择活动二更实惠.【点睛】找到等量关系列出方程组和不等式是解题的关键.32.2018年4月10日0时起,全国铁路开始实施新的列车运行图.调整后,重庆与郑州之间有了始发高铁,两地出行更加便利,想要来重庆旅游的郑州游客,可以下午喝碗胡辣汤,晚上品尝正宗重庆火锅,据重庆火车站介绍,此次列车运行图优化调整新增了郑州东站至重庆西站的调整动车组.试运行首日,商务座票价是二等座票价的2倍,商务座售出10张,二等座售出100张,商务座和二等座总售出不低于6万元.(1)试运行期间,二等座票价至少多少元?(2)现正式投入运行后,铁路部门将二等座票价在试运行首日最低票价的基础上上涨了a%(a为整数),商务座票价在试运行首日最低票价基础上提高了3a%,且正式运行首日二等座售出的数量比试运行首日减少了a张,商务座售出的数量减少为试运行首日的一半,正式运行首日商务座和二等座总销售额为55000元,求a的值.【答案】(1)二等座票价至少为500元.2)a的值为30.【解析】【分析】(1)设试运行期间,二等座票价为x元/张,则商务座票价为2x元/张,根据题意列出不等式,解不等式即可;(2)分别表示出商务座和二等座的销售额,再根据题意列方程,解方程即可.【详解】解:(1)设试运行期间,二等座票价为x元/张,则商务座票价为2x元/张,根据题意得:10×2x+100x≥60000,解得:x≥500.答:试运行期间,二等座票价至少为500元;(2)根据题意得:500(1+a%)(100﹣a)+500×2(1+3a%)×10÷2=55000,整理,得:5a2﹣150a=0,解得:a1=0,a2=30.答:a的值为30.【点睛】本题主要考查一元二次方程的实际应用.33.解下列方程组、不等式组:(1)21 3211 x yx y+=⎧⎨-=⎩(2)3(2)4 1213x xxx--≤⎧⎪+⎨>-⎪⎩【答案】(1)31xy=⎧⎨=-⎩,(2)1≤x<4.【解析】【详解】(1)21 3211x yx y+=⎧⎨-=⎩①②,①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+2y=1,解得:y=﹣1,所以方程组的解为31xy=⎧⎨=-⎩;(2)解不等式x﹣3(x﹣2)≤4,得:x≥1,解不等式123x+>x﹣1,得:x<4,则不等式组的解集为1≤x<4.【点睛】考查了二元一次方程组及一元一次不等式的解法.34.为开展体育大课间活动,某学校需要购买篮球与足球若干个,已知购买3个篮球和2个足球需求共需要575元,购买4个篮球和3个足球共需要785元.()1购买一个篮球,一个足球各需多少元?()2若体育老师带了8000元去购买这种篮球与足球共80个,由于数量较多,店主给出篮球与足球一律打八折的优惠价,那么他最多能购买多少个篮球?同时买了多少个足球?【答案】()1购买一个需要篮球155元,购买一个足球需要55元;(2)这所学校最多可以购买56个篮球,同时买了24个足球.【解析】【分析】()1设购买一个篮球需要x 元,购买一个足球需要y 元,根据题意列出x ,y 的一元一次方程组,然后求解即可;(2)设购买了a 个篮球,则购买了()80a -个足球,根据题意列出关于a 的不等式,然后求解不等式即可得到答案.【详解】()1设购买一个篮球需要x 元,购买一个足球需要y 元,列方程得:3257543785x y x y +=⎧+=⎨⎩, 解得:{15555x y ==,答:购买一个需要篮球155元,购买一个足球需要55元; ()2设购买了a 个篮球,则购买了()80a -个足球,列不等式得:()1550.8550.8808000a a ⨯+⨯⨯-≤,解得56a ≤,∴最多可以购买56个篮球,∴同时购买了80﹣56=24个足球,故这所学校最多可以购买56个篮球,同时买了24个足球.35.某文具店从市场得知如下信息:该文具店计划一次性购进这两种品牌计算器共50台,设该经销商购进A品牌计算器x台,这两种品牌计算器全部销售完后获得利润为y元.(1)求y与x之间的函数关系式;(2)若全部销售完后,获得的利润为1200元,则购进A、B两种品牌计算器的数量各是多少台?(3)若购进计算器的资金不超过4100元,求该文具店可获得的最大利润是多少元?【答案】(1)y与x之间的函数关系式为y=2000﹣20x;(2)购进A种品牌计算器的数量是40台,购进A种品牌计算器的数量是10台;(3)该文具店可获得的最大利润是1400元.【解析】【分析】(1)该文具店计划一次性购进这两种品牌计算器共50台,设该经销商购进A品牌计算器x台,则该经销商购进B品牌计算器(50﹣x)台,根据利润=单个利润×销售量,分别求出A、B的利润,二者之和便是总利润,即可得到答案,(2)把y=1200代入y与x之间的函数关系式即可,(3)根据购进计算器的资金不超过4100元,列出关于x的不等式,求出x的取值范围后,根据一次函数的增减性求得最大利润.【详解】解(1)设该经销商购进A品牌计算器x台,则该经销商购进B品牌计算器(50﹣x)台,A品牌计算器的单个利润为90﹣70=20元,A品牌计算器销售完后利润=20x,B品牌计算器的单个利润为140﹣100=40元,B品牌计算器销售完后利润=40(50﹣x),总利润y=20x+40(50﹣x),整理后得:y=2000﹣20x,答:y与x之间的函数关系式为y=2000﹣20x;(2)把y=1200代入y=2000﹣20x得:2000﹣20x=1200,解得:x=40,则A种品牌计算器的数量为40台,B种品牌计算器的数量为50﹣40=10台,答:购进A种品牌计算器的数量是40台,购进A种品牌计算器的数量是10台;(3)根据题意得:70x+100(50﹣x)≤4100,解得:x≥30,一次函数y=2000﹣20x随x的增大而减小,x为最小值时y取到最大值,把x=30代入y=2000﹣20x得:y=2000﹣20×30=1400,答:该文具店可获得的最大利润是1400元.【点睛】本题综合考察了一次函数的应用及一元一次不等式的相关知识,找出函数的等量关系及掌握解不等式得相关知识是解决本题的关键.36.小诚响应“低碳环保,绿色出行”的号召,一直坚持跑步与步行相结合的上学方式.已知小诚家距离学校2200米,他步行的平均速度为80米/分,跑步的平均速度为200米/分.若他要在不超过20分钟的时间内从家到达学校,至少需要跑步多少分钟?【答案】小诚至少需要跑步5分钟.【解析】【分析】设他需要跑步x分钟,根据他要在不超过20分钟的时间内从家到达学校可以列出相应的不等式,从而可以解答本题.【详解】设他需要跑步x分钟,由题意可得()200x8020x2200+-≥,解得,x5≥.答:小诚至少需要跑步5分钟.【点睛】本题考查了一元一次不等式的应用,弄清题意,找准不等关系列出不等式是解答本题的关键.37.如图,是若干个粗细均匀的铁环最大限度的拉伸组成的链条,已知铁环粗0.5厘米,每个铁环长4.6厘米,设铁环间处于最大限度的拉伸状态(1)填表:(2)设n个铁环长为y厘米,请用含n的式子表示y;(3)若要组成2.17米长的链条,至少需要多少个铁环?【答案】(1)11.8;15.4;(2)y=3.6n+1;(3)至少需要60个铁环【解析】【分析】(1)根据铁环粗0.5厘米,每个铁环长4.6厘米,进而得出3个/4个铁环组成的链条长;(2)根据铁环与环长之间的关系进而得出y与n的关系式;(3)由(2)得,3.6n+1≥217,进而求出即可.【详解】(1)由题意可得:3×4.6-4×0.5=11.8(cm ),故3个铁环组成的链条长为11.8cm .4×4.6-6×0.5=15.4(cm ),故4个铁环组成的链条长为15.4cm .故答案为:11.8;15.4;(2)由题意得:y=4.6n-2(n-1)×0.5,即y=3.6n+1;(3)据题意有:3.6n+1≥217,解得:n ≥60,答:至少需要60个铁环.【点睛】此题主要考查了一元一次不等式的应用,利用链条结构得出链条长的变化规律是解题关键.38.解不等式125164y y +--≥,并把它的解集在数轴上表示出来. 【答案】y ≤54,把不等式的解集在数轴上表示见解析 【解析】【分析】不等式去分母、去括号、移项合并,把y 系数化为1,求出解集,表示在数轴上即可.【详解】两边都乘以12得,()()21325y y +--≥12去括号得,22615y y +-+≥12移项,合并同类项得,4y -≥-5系数化为1得,y ≤54把不等式的解集在数轴上表示如下:【点睛】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.39.某商场销售每个进价为150元和120元的A 、B 两种型号的足球,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A 、B 两种型号的足球的销售单价;(2)若商场准备用不多于8400元的金额再购进这两种型号的足球共60个,求A 种型号的足球最多能采购多少个?(3)在()2的条件下,商场销售完这60个足球能否实现利润超过2550元,若能,请给出相应的采购方案;若不能请说明理由.【答案】(1)A 型号足球单价是200元,B 型号足球单价是150元.(2)40个.(3)有3种采购方案.方案一:A 型号38个,B 型号22个;方案二:A 型号39个,B 型号21个;方案三:A 型号40个,B 型号20个.【解析】【分析】(1)设A 、B 两种型号的足球销售单价分别是x 元和y 元,根据3个A 型号和4个B 型号的足球收入1200元,5个A 型号和5个B 型号的电扇收入1450元,列方程组求解;(2)设A 型号足球购进a 个,B 型号足球购进()60a -个,根据金额不多余8400元,列不等式求解;(3)根据A 型号足球的进价和售价,B 型号足球的进价和售价以及总利润=一个利润×总数,列出不等式,求出a 的值,再根据a 为整数,即可得出答案.【详解】()1解:设A 、B 两种型号的足球销售单价分别是x 元和y 元,列出方程组: 341200531450x y x y +=⎧⎨+=⎩解得200150x y =⎧⎨=⎩A 型号足球单价是200元,B 型号足球单价是150元.()2解:设A型号足球购进a个,B型号足球购进()60a-个,根据题意得:()+-≤150120608400a aa≤,所以A型号足球最多能采购40个.解得40()3解:若利润超过2550元,须()+->a a5030602550a>,因为a为整数,37.5a≤≤所以3840能实现利润超过2550元,有3种采购方案.方案一:A型号38个,B型号22个;方案二:A型号39个,B型号21个;方案三:A型号40个,B型号20个.【点睛】此题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.40.某学校为加强学生的体育锻炼,曾两次在某商场购买足球和篮球.第一次购买6个足球和5个篮球共花费700元;第二次购买3个足球和7个篮球共花费710元.()1求足球和篮球的标价;()2如果现在商场均以标价的6折对足球和篮球进行促销,学校决定从该商场再一次性购买足球和篮球60个,且总费用不能超过2500元,那么最多可以购买多少个篮球?【答案】(1)足球的标价为50元,篮球的标价为80元;(2)最多可以买38个篮球.【解析】【分析】(1)设足球的标价为x 元,篮球的标价为y 元,根据“第一次购买6个足球和5个篮球共花费700元;第二次购买3个足球和7个篮球共花费710元”,列出关于x 和y 的二元一次方程组,解出即可,(2)设可买m 个篮球,根据“商场均以标价的6折对足球和篮球进行促销,学校决定从该商场再一次性购买足球和篮球60个,且总费用不能超过2500元”,列出关于m 的一元一次不等式,解出即可.【详解】(1)设足球的标价为x 元,篮球的标价为y 元,根据题意得:6570037710x y x y +=⎧⎨+=⎩, 解得:5080x y =⎧⎨=⎩, 答:足球的标价为50元,篮球的标价为80元.(2)设可买m 个篮球,根据题意得:0.6×50(60﹣m )+0.6×80m ≤2500.解得:m ≤3889, 因为m 为整数,所以m ≤3889的最大整数解是38. 答:最多可以买38个篮球.【点睛】本题考查了二元一次方程组的应用和一元一次不等式的应用,根据数量关系列出方程组和不等式是解答本题的关键.。

【初中数学】专题三十三 情景问题中的不等关系 (练习题)

【初中数学】专题三十三  情景问题中的不等关系 (练习题)

专题三十三情景问题中的不等关系(361)1.六一儿童节那天,小强去商店买东西,看见每盒饼干的标价是整数,于是小强拿出10元钱递给商店的阿姨,下面是他俩的对话:如果设每盒饼干和每袋牛奶的标价分别为x元,y元,请你根据以上信息,回答以下问题:(1)找出x与y之间的关系式;(2)求出每盒饼干和每袋牛奶的标价.2.一辆轿车在如图所示的公路上匀速行驶,该轿车在11:20从A地出发,到相距50km的B地办事.(1)若车速为60km/h,求该轿车到达B地的时间;(2)若要求在12:00之前(不包括12:00)到达B地,则该轿车的车速应在什么范围内?3.在“爱心传递”活动中,我区某校积极捐款,其中六年级的3个班的捐款金额如下表所示:小杰在统计时不小心把墨水滴到了其中两个班级的捐款数额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:(2)班的捐款金额比(3)班的捐款金额多300元;信息三:(1)班学生平均每人捐款的金额大于48元,小于51元.请根据以上信息,帮助小杰同学解决下列问题:(1)求出(2)班和(3)班的捐款金额各是多少元;(2)求出(1)班的学生人数.4.随着新课程改革的不断深入,越来越多的中学生利用假期参加社会实践活动.小彬在某公司实习调查时,计划发展部经理给了他一份实习作业,规划下个月的产量x(件).有如下信息可供参考:①生产部有工人200名;②每名工人的月劳动时间不超过192小时;③生产一件产品需一名工人劳动3小时;④现库存原料60000千克,下个月准备购进300000千克;⑤每件产品需原料30千克;⑥预计下个月市场对该产品的需求量为11000件.公司准备充分保证市场需求,请你和小彬一起规划下个月的产量范围.参考答案1(1)【答案】解:由题意,得0.9x+y=10−0.8,化简,得y=9.2−0.9x.(2)【答案】根据题意,得不等式组{x<10,①x+y>10.②将y=9.2−0.9x代入②式,得{x<10,③x+9.2−0.9x>10.④解这个不等式组,得8<x<10.因为x为整数,所以x=9,所以y=9.2−0.9×9=1.1.答:每盒饼干的标价为9元,每袋牛奶的标价为1.1元.2(1)【答案】解:t=sv =5060=56(h)=50(min),则到达B地的时间为12:10.(2)【答案】设车速为xkm/h,则有{x≤80,4060x>50,解得75<x≤80.答:该轿车的车速应大于75km/h且小于等于80km/h.3(1)【答案】解:设(2)班的捐款金额为x元,(3)班的捐款金额为y元,根据信息一、二可得{x+y+2000=7700,x−y=300,解得{x=3000,y=2700,答:(2)班的捐款金额为3000元,(3)班的捐款金额为2700元.(2)【答案】设(1)班的学生有z人.根据信息三得{48z<2000,51z>2000,解得391151<z <4123.因为z 是正整数, 所以z 取40或41. 答:(1)班的学生有40人或41人.4.【答案】:解:根据题意,得{3x ≤200×192,30x ≤360000,解得x ≤12000.又因为市场对该产品的需求量为11000件, 所以x ≥11000,所以11000≤x ≤12000.。

人教版数学七年级下册:9.1.1 不等式及其解集 同步练习(附答案)

人教版数学七年级下册:9.1.1 不等式及其解集  同步练习(附答案)

9.1.1 不等式及其解集1.数学表达式:①-5<7;②3y-6>0;③a=6;④x-2x;⑤a≠2;⑥7y-6>5y+2中,是不等式的有( )A.2个 B.3个 C.4个 D.5个2.选择适当的不等号填空:(1)2 3;(2)4;(3)若a为正方形的边长,则a 0;(4)若x≠y,则-x -y.3.如图,左边物体的质量为x g,右边物体的质量为50 g,用不等式表示下列数量关系是.4.用不等式表示:(1)数a小于2;(2)a与5的和是正数;(3)a与2的差是负数;(4)b的10倍大于27.5.下列各数中,是不等式3x-2>1的解的是( )A.1 B.2 C.0 D.-16.不等式的解集x>1在数轴上表示正确的是( )A B C D7.如图,数轴所表示的不等式的解集是 .8.把下列不等式的解集在数轴上表示出来.(1)x >-3; (2)x<-32.9.“满足x<3的每一个数都是不等式x +2<6的解,所以不等式x +2<6的解集是x<3”,这句话是否正确?请你判断,并说明理由.10.语句“x 的18与x 的和不超过5”可以表示为( ) A.x 8+x ≤5 B.x 8+x ≥5 C.8x +5≤5 D.x 8+x =5 11.下列哪个数是不等式2(x -1)+3<0的一个解?( )A .-3B .-12 C.13D .2 12.不等式x<4的非负整数解的个数有( )A .4个B .3个C .2个D .1个13.请写出满足下列条件的一个不等式.(1)0是这个不等式的一个解: ;(2)-2,-1,0,1都是不等式的解: ;(3)0不是这个不等式的解: ;(4)与x<-1的解集相同的不等式: .14.用不等式表示:(1)a 与3的和大于5;(2)x 的2倍与5的差小于1;(3)x 的13与x 的12的和是正数;(4)a 的20%与a 的和大于a 的3倍.15.已知一支圆珠笔1.5元,签字笔与圆珠笔相比每支贵2元.小华想要买x 支圆珠笔和10支签字笔.若付50元仍找回若干元,则如何用含x 的不等式来表示小华所需支付的金额与50元之间的关系?16.阅读下列材料,并回答下面的问题.你能比较2 0202 021和2 0212 020的大小吗?为了解决这个问题,先把问题一般化,比较n n +1和(n +1)n(n >0,且n 为整数)的大小.然后从分析n =1,n =2,n =3,…的简单情形入手,从中发现规律,经过归纳、猜想得出结论.(1)通过计算(可用计算器)比较下列①~⑦组两数的大小:(在横线上填上“>”“=”或“<”) ①12 21;②23 32;③34 43;④45 54;⑤56 65;⑥67 76;⑦78 87;(2)归纳第(1)问的结果,可以猜想出nn +1和(n +1)n 的大小关系; (3)根据以上结论,可以得出2 0202 021和2 0212 020的大小关系.参考答案:1.数学表达式:①-5<7;②3y-6>0;③a=6;④x-2x;⑤a≠2;⑥7y-6>5y+2中,是不等式的有(C)A.2个 B.3个 C.4个 D.5个2.选择适当的不等号填空:(1)2<3;(2)4;(3)若a为正方形的边长,则a>0;(4)若x≠y,则-x≠-y.3.如图,左边物体的质量为x g,右边物体的质量为50 g,用不等式表示下列数量关系是x>50.4.用不等式表示:(1)数a小于2;解:a<2.(2)a与5的和是正数;解:a+5>0.(3)a与2的差是负数;解:a-2<0.(4)b的10倍大于27.解:10b>27.5.下列各数中,是不等式3x-2>1的解的是(B)A.1 B.2 C.0 D.-16.不等式的解集x>1在数轴上表示正确的是(C)A B C D7.如图,数轴所表示的不等式的解集是x<3.8.把下列不等式的解集在数轴上表示出来.(1)x >-3;解:(2)x<-32. 解: 9.“满足x<3的每一个数都是不等式x +2<6的解,所以不等式x +2<6的解集是x<3”,这句话是否正确?请你判断,并说明理由.解:这句话不正确,因为满足x<3的数只是不等式x +2<6的部分解,如:x =3.1,x =3.2等都是不等式x +2<6的解,所以这句话不正确.10.语句“x 的18与x 的和不超过5”可以表示为(A) A.x 8+x ≤5 B.x 8+x ≥5 C.8x +5≤5 D.x 8+x =5 11.下列哪个数是不等式2(x -1)+3<0的一个解?(A)A .-3B .-12 C.13D .2 12.不等式x<4的非负整数解的个数有(A)A .4个B .3个C .2个D .1个13.请写出满足下列条件的一个不等式.(1)0是这个不等式的一个解:x <1;(2)-2,-1,0,1都是不等式的解:x <2;(3)0不是这个不等式的解:x >0;(4)与x<-1的解集相同的不等式:x +2<1.14.用不等式表示:(1)a 与3的和大于5;解:a +3>5.(2)x 的2倍与5的差小于1;解:2x -5<1.(3)x 的13与x 的12的和是正数; 解:13x +12x >0. (4)a 的20%与a 的和大于a 的3倍.解:20%a +a>3a.15.已知一支圆珠笔1.5元,签字笔与圆珠笔相比每支贵2元.小华想要买x 支圆珠笔和10支签字笔.若付50元仍找回若干元,则如何用含x 的不等式来表示小华所需支付的金额与50元之间的关系?解:列不等式为:1.5x +10×(1.5+2)<50.16.阅读下列材料,并回答下面的问题.你能比较2 0202 021和2 0212 020的大小吗?为了解决这个问题,先把问题一般化,比较n n +1和(n +1)n(n >0,且n 为整数)的大小.然后从分析n =1,n =2,n =3,…的简单情形入手,从中发现规律,经过归纳、猜想得出结论.(1)通过计算(可用计算器)比较下列①~⑦组两数的大小:(在横线上填上“>”“=”或“<”) ①12<21;②23<32;③34>43;④45>54;⑤56>65;⑥67>76;⑦78>87;(2)归纳第(1)问的结果,可以猜想出nn +1和(n +1)n 的大小关系; (3)根据以上结论,可以得出2 0202 021和2 0212 020的大小关系. 解:(2)当n =1或2时,nn +1<(n +1)n ; 当n >2时,nn +1>(n +1)n . (3)2 0202 021>2 0212 020.。

七年级数学 一元一次不等式(组)应用题及练习(含答案)

七年级数学 一元一次不等式(组)应用题及练习(含答案)

一元一次不等式组的典型应用题类型一例1.某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案.【思路点拨】本题的关键语句是:“若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人”.理解这句话,有两层不等关系.(1)租用36座客车x辆的座位数小于租用42座客车(x-1)辆的座位数.(2)租用36座客车x辆的座位数大于租用42座客车(x-2)辆的座位数+30.【答案与解析】解:(1)设租36座的车x辆.据题意得:3642(1)3642(2)30x xx x<-⎧⎨>-+⎩,解得:79xx>⎧⎨<⎩.由题意x应取8,则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元),方案②:租42座车7辆的费用:7×440=3080(元),方案③:因为42×6+36×1=288,所以租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元) .所以方案③:租42座车6辆和36座车1辆最省钱.练习一:1.将一筐橘子分给几个儿童,若每人分4个,则剩下9个橘子;若每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.2. 5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1) 设租用甲种汽车x辆,请你设计所有可能的租车方案;(2) 若甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.类型二例 2.某市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:(1)设饮用水有x件,蔬菜有y件,依题意,得320,80, x yx y+=⎧⎨-=⎩解得200,120.xy=⎧⎨=⎩所以饮用水和蔬菜分别为200件和120件.(2)设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得4020(8)200,1020(8)120.m mm m+-≥⎧⎨+-≥⎩解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元).所以方案①运费最少,最少运费是2960元.练习二:1.户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积(单位:亩)种植B类蔬菜面积(单位:亩)总收入(单位:元)甲 3 1 12500乙 2 3 16500说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.2、某公司为了更好得节约能源,决定购买一批节省能源的10台新机器。

人教《不等式的性质》同步练习题及答案

人教《不等式的性质》同步练习题及答案

《不等式的性质》同步练习题(1)知识点:1 、不等式的性质 1:不等式的两边加上 ( 或减去 ) 同一个数 ( 或式子 ) ,不等号的方向不变,用式子表示:假如 a>b,那么 a±c>b±c.2 、不等式的性质 2:不等式的两边乘以 ( 或除以 ) 同一正数,不等号的方向不变,a b>c.用式子表示:假如 a > b , c>0,那么 ac > bc或 c3 、不等式的性质 3:不等式两边乘以 ( 或除以 ) 同一个负数,不等号的方向改变,a b用式子表示: a>b,c<0,那么, ac < bc或c<c.。

二、知识观点1. 用符号“<”“>”“≤”“≥”表示大小关系的式子叫做不等式。

2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。

3.不等式的解集:一个含有未知数的不等式的全部解,构成这个不等式的解集。

4.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,而且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

5.一元一次不等式组:一般地,对于同一未知数的几个一元一次不等式合在一同,就构成6.了一个一元一次不等式组。

7.定理与性质不等式的性质:不等式的基天性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。

不等式的基天性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

不等式的基天性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

本章内容要修业生经历成立一元一次不等式(组)这样的数学模型并应用它解决实质问题的过程,领会不等式(组)的特色和作用,掌握运用它们解决问题的一般方法,提升剖析问题、解决问题的能力,加强创新精神和应用数学的意识。

同步练习:1. 用 a >b ,用“<”或“>”填空:⑴ a + 2 b +2⑵ 3a 3b⑶ - 2a - 2b ⑷ a -b 0 ⑸ -a -4-b -4 ⑹ a -2b - 2;2. 用“<”或“>”填空:⑴若 a - b <c -b ,则 a c⑵若 3a > 3b ,则 a b ⑶若- a <- b ,则 a b ⑷若 2a + 1< 2b +1,则 a b3. 已知 a > b ,若 a <0 则2a ,若 a > 则2a ;a b 0 ab4. 用“<”或“>”填空:⑴ 若 a -b >a 则 b 0 ⑵ 若 ac 2 > bc 2 则 a b ⑶ 若 a<- b 则a- b⑷ 若 a <b 则 a - b 0⑸ 若 a <0,b 0时 ab ≥ 05. 若 a <a,则 a 必定知足( )32A 、 a >0B 、 a < 0C 、 a ≥0D 、 a ≤06. 若 x >- y ,则以下不等式中成立的有( )A 、 x + y < 0B 、 x - y > 0C 、2x >2yD 、>a a 3x+3y 7. 若 0<x <1,则以下不等式成立的是()A 、 x 2> 1> xB、 1> x 2 > xxxC 、 x > 1> x 2D、 1> x > x 2xx8. 若方程组 3x yk 1的解为 x ,y ,且 x+y >0,则 k 的范围是( )x 3y 3A 、k >4B 、 k >- 4C 、k <4D 、k <- 49. 用不等式表示以下各式,并利用不等式性质解不等式。

七年级数学下册《一元一次不等式与不等式组》练习题及答案解析

七年级数学下册《一元一次不等式与不等式组》练习题及答案解析

七年级数学下册《一元一次不等式与不等式组》练习题及答案解析1. 不等式组{x>−1x≤1的解集是( )A. x<1B. x≥1C. −1<x≤1D. 1≤x<−12. 不等式组{x+2<0x+3<0的解集是( )A. x<−2B. x<−3C. −3<x<−2D. x>−23. 下列各式中一元一次不等式是( )A. x≥5xB. 2x>1−x2C. x+2y<1D. 2x+1≤3x4. 若代数式2a+7的值不大于3则a的取值范围是( )A. a≤4B. a≤−2C. a≥4D. a≥−25. 已知a>b>0则下列不等式不一定成立的是( )A. ab>b2B. a+c>b+cC. 1a <1bD. ac>bc6. 不等式4x−511<1的正整数解为( )A. 1个B. 3个C. 4个D. 5个7. 不等式组{x+1≤02x+3<5的解集是( )A. x≤−1或x>1B. −1≤x<1C. x≤−1D. x>18. 亮亮准备用自己节省的零花钱买一台英语复读机他现在已存有45元计划从现在起以后每个月节省30元直到他至少有300元.设x个月后他至少有300元则可以用于计算所需要的月数x的不等式是( )A. 30x−45≥300B. 30x+45≥300C. 30x−45≤300D. 30x+45≤3009. 关于x的不等式组{x+43>x2+1x+a<0的解集为x<2则a的取值范围是( )A. a≤−2B. a≥−2C. a≤2D. a≥210. 如果a<b<0下列不等式中错误的是( )A. ab>0B. a+b<0C. ab<1 D. a−b<011. 不等式12x>−3的解集是______.12. 不等式x+2>12x的负整数解______.13. 不等式组:{x−1<0x>0的解集是______.14. 不等式组{2x+1>x−1x+8>4x−1的正整数解是______.15. 某生物兴趣小组要在温箱里培养A B两种菌苗A种菌苗的生长温度x(℃)的范围是35≤x≤38 B种菌苗的生长温度y(℃)的范围是34≤y≤36.那么温箱里的温度t(℃)d的范围是______.16. 已知不等式3x −a ≤0的正整数解只有1 2 3 那么a 的取值范围是______.17. 若不等式组{x −a >2b −2x >0的解集是−1<x <1 则(a +b)2014等于______. 18. 已知关于x 的不等式组{5−2x ≥1x −a ≥0无解 则a 的取值范围是______. 19. 一位老师说 他班学生的一半在学数学 四分之一的学生在学音乐 七分之一的学生在学外语 还剩不足6名同学在操场上踢足球 则这个班的学生最多有______人.20. 几个小朋友分糖块 如果每人分4块糖 则多余8块糖 如果每人分8块糖 则有一人分到了糖块但不足8块 请你猜想 共有______位小朋友______块糖.21. 解下列不等式 并把它们的解集在数轴上表示出来.(1)−3(1−x)+6>1+4x(2)x −12+1≥x. 22. 解下列不等式组:(1){3x −1<52x +6>0(2){3(x +1)>5x +4x −12≤2x −13. 23. 已知关于x 的方程5x −2m =3x −6m +1的解为x 满足−3<x ≤2 求m 的整数值.24. 某软件公司开发一种图书软件 前期投入的开发、广告宣传费用共50000元 且每售出一套软件 软件公司还需支付安装调试费200元.如果每套定价700元 软件公司至少要售出多少套才能确保不亏本?25. 一本科普读物共98页 晓芬读了一周(七天)还没有读完 而小敏不到一周就读完了.已知小敏平均每天比晓芬多读3页 那么晓芬平均每天读多少页?(答案取整数)26. 扬州火车站有某公司待运的甲种货物1530吨 乙种货物1150吨 现计划用50节A 、B 两种型号的车厢将这批货物运至北京、已知每节A 型货厢的运费是0.5万元 每节B 型货厢的运费是0.8万元 甲种货物35吨和乙种货物15吨可装满一节A 型货厢 甲种货物25吨和乙种货物35吨可装满一节B 型货厢 按此要求安排A 、B 两种货厢的节数 共有几种方案?请你设计出来 并说明哪种方案的运费最少 最少运费是多少?参考答案与解析1.【答案】C【解析】解:把解集表示在数轴上如下:所以不等式组的解集是−1<x ≤1.故选:C.把两个解集表示在数轴上 再找公共部分即可.本题考查一元一次不等式组的解集 熟练掌握在数轴上表示不等式的解集是解题关键.2.【答案】B【解析】解:{x +2<0①x +3<0②由①得:x <−2由②得:x <−3则不等式组的解集为x <−3.故选:B.分别求出不等式组中两不等式的解集 找出两解集的公共部分即可.此题考查了解一元一次不等式组 熟练掌握不等式组的解法是解本题的关键.3.【答案】D【解析】解:A 、不是整式 不符合题意B 、未知数的最高次数是2 不符合题意C 、含有2个未知数 不符合题意D 、是只含有1个未知数 并且未知数的最高次数是1 用不等号连接的整式 符合题意故选D.找到只含有1个未知数 并且未知数的最高次数是1 用不等号连接的整式即可.考查一元一次不等式的定义:只含有1个未知数 并且未知数的最高次数是1 用不等号连接的整式叫做一元一次不等式.4.【答案】B【解析】解:依题意得2a +7≤32a ≤−4a≤−2.故选:B.根据题意列出不等式利用不等式的性质来求a的取值范围.本题考查了解一元一次不等式.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.5.【答案】D【解析】解:A、ab>b2成立B、a+c>b+c成立C、1a <1b成立D、ac<bc不一定成立.故选:D.根据不等式的性质分析判断.不等式两边同时乘以或除以同一个数或式子时一定要注意不等号的方向是否改变.6.【答案】B【解析】解:解不等式得x<4则不等式4x−511<1的正整数解为123共3个.故选:B.首先利用不等式的基本性质解不等式然后找出符合题意的正整数解.本题考查了一元一次不等式的整数解正确解不等式求出解集是解答本题的关键.解不等式应根据不等式的基本性质.7.【答案】C【解析】解:解不等式x+1≤0得:x≤−1解不等式2x+3<5得:x<1则不等式组的解集为x≤−1故选C.分别求出每一个不等式的解集根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组正确求出每一个不等式解集是基础熟知“同大取大同小取小大小小大中间找大大小小找不到”的原则是解答此题的关键.8.【答案】B【解析】解:x个月可以节省30x元根据题意得30x+45≥300.故选:B.此题中的不等关系:现在已存有45元计划从现在起以后每个月节省30元直到他至少有300元.至少即大于或等于.本题主要考查简单的不等式的应用解题时要注意题目中的“至少”这类的词.9.【答案】A【解析】解:根据题意得:x<2x+a<0∴x<−a∴a=−2或a<−2∴a≤−2故选A.根据题意知道不等式组的解集为x<2再由x+a<0直接求出a的取值范围.本题考查了不等式的解集解题的关键是根据题意及不等式的解集直接求出a的取值范围.10.【答案】C【解析】解:A、如果a<b<0则a、b同是负数因而ab>0故A正确B、因为a、b同是负数所以a+b<0故B正确C、a<b<0则|a|>|b|则ab >1也可以设a=−2b=−1代入检验得到ab<1是错误的.故C错误D、因为a<b所以a−b<0故D正确故选:C.根据不等式的性质分析判断.利用特殊值法验证一些式子错误是有效的方法.11.【答案】x>−6【解析】解:去分母得故答案为:x>−6.直接把不等式的两边同时乘以2即可得出结论.本题考查的是解一元一次不等式熟知不等式的基本性质是解答此题的关键.12.【答案】−3−2−1【解析】解:不等式x +2>12xx −12x >−2 12x >−2 解得x >−4故不等式x +2>12x 的负整数解有−3、−2、−1.故答案为:−3、−2、−1.首先利用不等式的基本性质解不等式 再从不等式的解集中找出非负整数解即可.本题考查了一元一次不等式的整数解 正确解不等式 求出解集是解答本题的关键.解不等式应根据不等式的基本性质.13.【答案】0<x <1【解析】解集:由(1)得 x <1由(2)得 x >0所以不等式组{x −1<0x >0的解集是0<x <1. 分别求出两个不等式的解集 求其公共解集.求不等式的公共解集 要遵循以下原则:同大取较大 同小取较小 小大大小中间找 大大小小解不了.14.【答案】1 2【解析】解:{2x +1>x −1①x +8>4x −1②解不等式①得:x >−2解不等式②得:x <3∴原不等式组的解集为:−2<x <3∴该不等式组的正整数解为:1 2故答案为:1按照解一元一次不等式组的步骤 进行计算可得−2<x <3 然后再找出此范围内的正整数即可. 本题考查了一元一次不等式组的整数解 准确熟练地进行计算是解题的关键.15.【答案】35≤t ≤36【解析】解:由题意可得不等式组{35≤x ≤3834≤y ≤36根据求不等式解集的方法可知温箱里的温度t ℃应该设定在35≤t ≤36故答案为:35≤t ≤36.温箱里的温度T ℃应该设定在能使A B 两种菌苗同时满足的温度 即35≤x ≤38与34≤y ≤36的公共部分.此题考查的是不等式的解集.求不等式组的解集 应注意:同大取较大 同小取较小 小大大小中间找 大大小小解不了.16.【答案】9≤x <12【解析】解:不等式的解集是:x ≤a 3∵不等式的正整数解恰是1 2 3∴3≤a 3<4 ∴a 的取值范围是9≤a <12.故答案为:9≤a <12.首先确定不等式组的解集 利用含a 的式子表示 再根据整数解的个数就可以确定有哪些整数解 然后根据解的情况可以得到关于a 的不等式 从而求出a 的范围.本题考查了一元一次不等式的整数解 正确解出不等式的解集 正确确定a 3的范围 是解决本题的关键.解不等式时要用到不等式的基本性质.17.【答案】1【解析】解:{x −a >2①b −2x >0②解不等式①得 x >2+a解不等式②得 x <b 2所以 不等式组的解集是2+a <x <b 2∵不等式组的解集是−1<x <1∴{2+a =−1b 2=1 解得{a =−3b =2所以故答案为:1.先去用a 、b 表示出不等式组的解集 然后根据不等式组的解集列出关于a 、b 的方程组并求出a 、b 最后代入代数式进行计算即可得解.本题主要考查了一元一次不等式组解集的求法 难点在于用a 、b 表示出不等式组的解集再列出方程组.18.【答案】a>2【解析】解:解不等式5−2x≥1得:x≤2解不等式x−a≥0得:x≥a∵不等式组的无解∴a>2故答案为:a>2.分别求出每一个不等式的解集根据口诀:大大小小找不到并结合不等式组的解集可得答案.本题考查的是解一元一次不等式组正确求出每一个不等式解集是基础熟知“同大取大同小取小大小小大中间找大大小小找不到”的原则是解答此题的关键.19.【答案】28【解析】解:设这个班的学生共有x人依题意得:x−12x−14x−17x<6解之得:x<56又∵x为2、4、7的公倍数∴这个班的学生最多共有28人.本题考查一元一次不等式的应用将现实生活中的事件与数学思想联系起来读懂题列出不等关系式即可求解.解决问题的关键是读懂题意找到关键描述语找到所求的量的等量关系.20.【答案】3 20【解析】解:设x个小朋友y块糖由题意可知y−4x=81≤y−8(x−1)<8∴y=8+4x代入不等式可知2<x≤154∵x为整数所以x为3则y为20所以共有3位小朋友20块糖.故答案为3可以设x个小朋友y块糖列出不等式从而根据条件求解x和y的值.本题考查了一元一次不等式的应用解决问题的关键是读懂题意根据实际情况依题意列出不等式进行求解.21.【答案】解:(1)−3(1−x)+6>1+4x−3+3x+6>1+4x3x−4x>1+3−6−x >−2x <2将解集表示在数轴上如图所示:(2)x −12+1≥x x −1+2≥2xx −2x ≥1−2−x ≥−1x ≤1..【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得 然后在数轴上表示出解集即可.本题主要考查解一元一次不等式的基本能力 严格遵循解不等式的基本步骤是关键 尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.22.【答案】解:(1){3x −1<5①2x +6>0②解不等式①得:x <2解不等式②得:x >−3则不等式组的解集为−3<x <2(2){3(x +1)>5x +4①x −12⩽2x −13② 解不等式①得:x <−12解不等式②得:x ≥−1则不等式组的解集为−1≤x <−12.【解析】分别求出每一个不等式的解集 根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组 正确求出每一个不等式解集是基础 熟知“同大取大 同小取小 大小小大中间找 大大小小找不到”的原则是解答此题的关键.23.【答案】解:解方程5x −2m =3x −6m +1 得x =12−2m.∵−3<x ≤2∴{12−2m ≤212−2m>−3解得−34≤m <134∴m 的整数值是0 1. 【解析】先用m 的式子表示x 再根据−3<x ≤2 列出不等式组 求出不等式组的解集 再从中找出m 的整数值.此题考查的是一元一次不等式组的解法和一元一次方程的解 根据x 的取值范围 得出a 的整数解.24.【答案】解:设软件公司要售出x 套软件才能确保不亏本则有:700x ≥50000+200x解得:x ≥100.答:软件公司至少要售出100套软件才能确保不亏本.【解析】要使公司不赔本 那么销售软件的收入≥投资的总费用 然后得出自变量的取值范围.本题考查一元一次不等式的应用 将现实生活中的事件与数学思想联系起来 读懂题列出不等式关系式即可求解.25.【答案】解:设晓芬平均每天读x 页 则小敏平均每天读(x +3)页依题意得:{7x <987(x +3)>98解得:11<x <14又∵x 为整数∴x =12或13.答:晓芬平均每天读12页或13页.【解析】设晓芬平均每天读x 页 则小敏平均每天读(x +3)页 根据“晓芬读了一周(七天)还没有读完 而小敏不到一周就读完了” 即可得出关于x 的一元一次不等式组 解之即可得出x 的取值范围 再取其中的整数值即可得出结论.本题考查了一元一次不等式组的应用 根据各数量之间的关系 正确列出一元一次不等式组是解题的关键.26.【答案】解:设A 型货厢的节数为x 则B 型货厢的节数为(50−x)节.{35x +25(50−x)≥153015x +35(50−x)≥1150解得:28≤x ≤30.∵x 为正整数∴x 可为28 29∴方案为①A型货厢28节B型货厢22节②A型货厢29节B型货厢21节③A型货厢30节B型货厢20节总运费为:0.5x+0.8×(50−x)=−0.3x+40∵−0.3<0∴x越大总运费越小∴x=30最低运费为:−0.3×30+40=31万元.答:A型货厢30节B型货厢20节运费最少最少运费是31万元.【解析】关系式为:A型货厢装甲种货物吨数+B型货厢装甲种货物吨数≥1530A型货厢装乙种货物吨数+B型货厢装乙种货物吨数≥1150把相关数值代入可得一种货厢节数的范围进而求得总运费的等量关系根据函数的增减性可得最少运费方案及最少运费.考查一元一次不等式组的应用及方案的选择问题得到所运货物吨数的两个关系式及总运费的等量关系是解决本题的关键。

八年级数学不等关系综合应用(含参不等式、高次不等式)(含答案)

八年级数学不等关系综合应用(含参不等式、高次不等式)(含答案)

学生做题前请先回答以下问题问题1:遇到高次不等式求解集的处理方法是什么?问题2:如何把一元二次不等式转化成一元一次不等式(组)?不等关系综合应用(含参不等式、高次不等式)一、单选题(共6道,每道16分)1.若关于的不等式组有解,则的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:含参不等式(组)2.若关于的不等式恰好只有三个正整数解,则的取值范围是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:含参不等式(组)3.已知,为实数,则解集可以为的不等式组是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:不等式的基本性质4.王老师给学生示范了一道题的过程,让学生按照这个思路解决同类型的问题.请你也来参与一下.例题:解一元二次不等式.解:把因式分解,得,又∵,∴,由有理数的乘法法则“两数相乘,同号得正”得,①或②解不等式组①得,解不等式组②得,∴的解集为或,∴原不等式的解集为或.按照上述解法,则的解集是( )A. B.无解C. D.答案:A解题思路:试题难度:三颗星知识点:高次不等式5.解一元二次不等式的思路是把一元二次不等式转化为一元一次不等式来解决,那么的解集是( )A.或B.无解C.或D.答案:C解题思路:试题难度:三颗星知识点:高次不等式6.(上接第5题)那么的解集是( )A. B.无解C. D.答案:C解题思路:试题难度:三颗星知识点:高次不等式学生做题后建议通过以下问题总结反思问题1:高次不等式求范围的题目的本质是什么?。

2022年高中数学第三章不等式1不等关系与不等式第1课时练习含解析人教版必修

2022年高中数学第三章不等式1不等关系与不等式第1课时练习含解析人教版必修

第1课时一、选择题1.设M=x2,N=-x-1,则M与N的大小关系是( )A.M>N B.M=NC.M<N D.与x有关[答案] A[解析] M-N=x2+x+1=(x+)2+>0,∴M>N.2.(2013·辽宁鞍山市第一中学高二期中测试)若a<b<0,则下列不等式不能成立的是( )A.> B.2a>2bC.|a|>|b| D.()a>()b[答案] B[解析] ∵a<b,y=2x单调递增,∴2a<2b,故选B.3.已知a<0,-1<b<0,则下列各式正确的是( )A.a>ab>ab2 B.ab>a>ab2C.ab2>ab>a D.ab>ab2>a[答案] D[解析] ∵-1<b<0,∴1>b2>0>b>-1,即b<b2<1,两边同乘以a得,∴ab>ab2>a.故选D.4.如果a、b、c满足c<b<a,且ac<0,那么下列选项中不一定成立的是( )A.ab>ac B.bc>acC.cb2<ab2 D.ac(a-c)<0[答案] C[解析] ∵c<b<a,且ac<0,∴a>0,c<0.∴ab-ac=a(b-c)>0,bc-ac=(b-a)c>0,ac(a-c)<0,∴A、B、D均正确.∵b可能等于0,也可能不等于0.∴cb2<ab2不一定成立.5.设a=lge,b=(lge)2,c=lg,则( )A.a>b>c B.a>c>bC.c>a>b D.c>b>a[答案] B[解析] ∵0<lge<1,∴b=(lg e)2=a2<a,c=lg=lge=a<a.又∵b=(lge)2<lg·lge=lge=c,∴b<c<a.6.下列各式中,对任何实数x都成立的一个式子是( )A.lg(x2+1)≥lg2x B.x2+1>2xC.≤1 D.x+≥2[答案] C[解析] A中x>0;B中x=1时,x2+1=2x;C中任意x,x2+1≥1,故≤1;D中当x<0时,x+≤0.二、填空题7.若a>b,则a3与b3的大小关系是________.[答案] a3>b38.若x=(a+3)(a-5),y=(a+2)(a-4),则x与y的大小关系是________.[答案] x<y[解析] x-y=(a+3)(a-5)-(a+2)(a-4)=(a2-2a-15)-(a2-2a-8)=-7<0,∴x<y.三、解答题9.有粮食和石油两种物质,可用轮船与飞机两种方式运输,每天每艘轮船和每架飞机的运输效果如下表: 方式轮船运输量(t)飞机运输量(t)效果种类 粮食300150石油250100现在要在一天内运输2 000 t粮食和1 500 t石油.写出安排轮船艘数和飞机架数所满足的所有不等关系的不等式.[解析] 设需安排x艘轮船和y架飞机,则,∴.10.设a>0,b>0且a≠b,试比较a a b b与a b b a的大小.[解析] 根据同底数幂的运算法则.=a a-b·b b-a=()a-b,当a>b>0时,>1,a-b>0,则()a-b>1,于是a a b b>a b b a.当b>a>0时,0<<1,a-b<0,则()a-b>1,于是a a b b>a b b a.综上所述,对于不相等的正数a、b,都有a a b b>a b b a.一、选择题1.下列命题正确的是( )A.若ac>bc,则a>b B.若a2>b2,则a>bC.若>,则a<b D.若<,则a<b[答案] D[解析] 对于A,若c<0,其不成立;对于B,若a、b均小于0或a<0,其不成立;对于C,若a>0,b<0,其不成立;对于D,其中a≥0,b>0,平方后显然有a<b.2.(2014·四川理,4)若a>b>0,c<d<0,则一定有( )A.> B.<C.> D.<[答案] D[解析] 本题考查不等式的性质,-=,cd>0,而ad-bc的符号不能确定,所以选项A、B不一定成立.-=,dc>0,由不等式的性质可知ac<bd,所以选项D成立.本题也可以对实数a、b、c、d进行适当的赋值逐一排查.3.设a=sin15°+cos15°,b=sin16°+cos16°,则下列各式正确的是( )A.a<<b B.a<b<C.b<a< D.b<<a[答案] B[解析] a=sin15°+cos15°=sin60°,b=sin16°+cos16°=sin61°,∴a<b,排除C、D两项.又∵a≠b,∴>ab=sin60°×sin61°=sin61°>sin61°=b,故a<b<成立.4.已知-1<a<0,A=1+a2,B=1-a2,C=,比较A、B、C的大小结果为( ) A.A<B<C B.B<A<CC.A<C<B D.B<C<A[答案] B[解析] 不妨设a=-,则A=,B=,C=2,由此得B<A<C,排除A、C、D,选B.具体比较过程如下:由-1<a<0得1+a>0,A-B=(1+a2)-(1-a2)=2a2>0得A>B,C-A=-(1+a2)=-=->0,得C>A,∴B<A<C.二、填空题5.给出四个条件:①b>0>a,②0>a>b,③a>0>b,④a>b>0,能推得<成立的是________.[答案] ①、②、④[解析] <⇔<0,∴①、②、④能使它成立.6.a≠2、b≠-1、M=a2+b2、N=4a-2b-5,比较M与N大小的结果为________.[答案] M>N[解析] ∵a≠2,b≠-1,∴M-N=a2+b2-4a+2b+5=(a-2)2+(b+1)2>0,∴M>N.三、解答题7.某矿山车队有4辆载重为10 t的甲型卡车和7辆载重为6 t的乙型卡车,有9名驾驶员.此车队每天至少要运360 t矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次,写出满足上述所有不等关系的不等式.[解析] 设每天派出甲型卡车x辆,乙型卡车y辆.根据题意,应有如下的不等关系:(1)甲型卡车和乙型卡车的总和不能超过驾驶员人数.(2)车队每天至少要运360 t矿石.(3)甲型车不能超过4辆,乙型车不能超过7辆.要同时满足上述三个不等关系,可以用下面的不等式组来表示:,即.8.已知a、b均为正实数,且2a+8b-ab=0,求a+b的最小值.[解析] ∵2a+8b-ab=0,∴+=1,又a>0,b>0,∴a+b=(a+b)(+)=10++≥10+2=18,当且仅当=,即a=2b时,等号成立.由,得.∴当a=12,b=6时,a+b取最小值18.。

人教版高一数学上册必修一 第二章同步练习题课后练习题含答案解析及章知识点总结

人教版高一数学上册必修一 第二章同步练习题课后练习题含答案解析及章知识点总结

2.1 等式性质与不等式性质 第1课时 不等关系与不等式基 础 练巩固新知 夯实基础 1.若某高速公路对行驶的各种车辆的最大限速为120 km/h ,行驶过程中,同一车道上的车间距d 不得小于10 m ,则用不等式表示为( ) A .v ≤120 km/h 或d ≥10 mB .⎩⎪⎨⎪⎧v ≤120 km/h ,d ≥10 mC .v ≤120 km/hD .d ≥10 m2.若x <y <0,设M =(x 2+y 2)(x -y ),N =(x 2-y 2)(x +y ),则( ) A .M >N B .M <N C .M ≤ND .M ≥N3.若y 1=3x 2-x +1,y 2=2x 2+x -1,则y 1与y 2的大小关系是( ) A .y 1<y 2 B .y 1=y 2C .y 1>y 2D .随x 值变化而变化4.(多选题)下列不等式恒成立的是( ) A .a 2+2>2a B .a 2+1>2a C .a 2+b 2≥2(a -b -1)D .a 2+b 2>ab 5.完成一项装修工程,请木工需付工资每人400元,请瓦工需付工资每人500元,现有工人工资预算不超过20 000元.设木工x 人,瓦工y 人,则工人满足的关系式是( )A .4x +5y ≤200B .4x +5y <200C .5x +4y ≤200D .5x +4y <2006.已知两实数a =-2x 2+2x -10,b =-x 2+3x -9,a ,b 分别对应数轴上两点A ,B ,则点A 在点B 的 (填“左边”或“右边”).7.比较2x 2+5x +3与x 2+4x +2的大小.8.已知a >b >c >0,试比较a -c b 与b -c a 的大小;能 力 练综合应用 核心素养9.已知三角形的任意两边之和大于第三边,设△ABC 的三边长为a ,b ,c ,将上述文字语言用不等式(组)可表示为( ) A .a +b >cB .⎩⎪⎨⎪⎧a +b >c a +c >bC .⎩⎪⎨⎪⎧a +c ≥bb +c ≥aD .⎩⎪⎨⎪⎧a +b >c a +c >bb +c >a10.不等式a 2+1≥2a 中等号成立的条件是( )A.a=±1B.a=1C.a=-1D.a=011.下列不等式:△a 2+3>2a ;△a 2+b 2>2(a -b -1);△x 2+y 2>xy.其中恒成立的不等式的个数为( ) A.0 B.1 C.2 D.3 12.(多选题)若x <a <0,则下列不等式不一定成立的是( ) A .x 2<ax <a 2 B .x 2>ax >a 2 C .x 2<a 2<axD .x 2>a 2>ax13.已知b 克糖水中有a 克糖(b >a >0),若再添上m 克糖(m >0),则糖水就变甜了,试根据此事实提炼一个不等式,当b >a >0且m >0时, .14.已知|a |<1,则11+a与1-a 的大小关系为 .15.用一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长为18 m,靠墙的一边长为x m . (1)若要求菜园的面积不小于110 m 2,试用不等式组表示其中的不等关系; (2)若矩形的长、宽都不能超过11 m,试求x 满足的不等关系.16.已知x <1,比较x 3-1与2x 2-2x 的大小.【参考答案】1.B 解析:考虑实际意义,知v ≤120 km/h ,且d ≥10 m.2.A 解析:M -N =(x 2+y 2)(x -y )-(x 2-y 2)(x +y )=(x -y )[x 2+y 2-(x +y )2]=-2xy (x -y ), 又△x <y <0,△xy >0,x -y <0,△-2xy (x -y )>0,△M >N .3. C 解析:y 1-y 2=(3x 2-x +1)-(2x 2+x -1)=x 2-2x +2=(x -1)2+1>0, 所以y 1>y 2.故选C.4.AC 解析:对于A ,a 2+2-2a =(a -1)2+1>0,故A 成立;对于B ,因a 2+1-2a =(a -1)2≥0,故B 不成立;对于C ,a 2+b 2-2a +2b +2=(a -1)2+(b +1)2≥0,故C 成立;对于D ,a 2+b 2-ab =(a -b 2)2+34b 2≥0,故D 不成立,故选AC .5.A 解析:由题意,可得400x +500y ≤20 000,化简得4x +5y ≤200,故选A .6.左边 解析:△a -b =-2x 2+2x -10-(-x 2+3x -9)=-2x 2+2x -10+x 2-3x +9 =-x 2-x -1=-(x +12)2-34<0,△a <b ,△点A 在点B 的左边.7.解:(2x 2+5x +3)-(x 2+4x +2)=x 2+x +1=(x +12)2+34.因为(x +12)2≥0,所以(x +12)2+34≥34>0,所以(2x 2+5x +3)-(x 2+4x +2)>0,所以2x 2+5x +3>x 2+4x +2. 8.解:a -c b -b -c a=aa -c -b b -cab=a 2-ac -b 2+bc ab =a 2-b 2-a -bc ab=a -ba +b -cab.因为a >b >c >0,所以a -b >0,ab >0,a +b -c >0.所以a -ba +b -c ab >0,即a -c b >b -ca.9.D 解析:由三角形三边关系及题意易知选D . 10.B11.B 解析:∵a 2+3-2a=(a -1)2+2>0,∵a 2+3>2a ,即△正确; ∵a 2+b 2-2(a -b -1)=(a -1)2+(b+1)2≥0,∵△错误; ∵x 2+y 2-xy=(x -y 2)2+34y 2≥0,∵△错误,选B .12.ACD 解析:△x 2-ax =x (x -a )>0,△x 2>ax .又ax -a 2=a (x -a )>0,△ax >a 2,△x 2>ax >a 2,故选项B 一定成立,故选ACD .13.a +m b +m >a b 解析:变甜了,意味着含糖量大了,即浓度高了,所以当b >a >0且m >0时,a +m b +m >a b . 14. 11+a ≥1-a 解析:由|a |<1,得-1<a <1.△1+a >0,1-a >0.△11+a 1-a =11-a 2.15.(1)因为矩形菜园靠墙的一边长为x m,而墙长为18m,所以0<x ≤18,这时菜园的另一边长为30-x2=(15-x2)(m).所以菜园的面积S=x ·(15-x2),依题意有S ≥110,即x (15-x2)≥110,故该题中的不等关系可用不等式组表示为{0<x ≤18,x (15-x 2)≥110.(2)因为矩形的另一边长15-x2≤11,所以x ≥8,又0<x ≤18,且x ≤11,所以8≤x ≤11. 16.解析:x 3-1-(2x 2-2x )=x 3-2x 2+2x -1 =(x 3-x 2)-(x 2-2x +1)=x 2(x -1)-(x -1)2 =(x -1)(x 2-x +1)=(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34. △x <1,△x -1<0.又⎝⎛⎭⎫x -122+34>0, △(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34<0, △x 3-1<2x 2-2x .2.1 第2课时 等式性质与不等式性质基 础 练巩固新知 夯实基础1.下列运用等式的性质,变形不正确的是( )A .若x =y ,则x +5=y +5B .若a =b ,则ac =bcC .若a c =bc,则a =bD .若x =y ,则x a =ya2.若1a <1b<0,则下列结论中不正确的是( )A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b | 3.已知a >b >0,则下列不等式一定成立的是( )A .a +1b >b +1aB .a +1a ≥b +1bC .b a >b +1a +1D .b -1b >a -1a4.(多选题)下列说法中正确的是( )A .若a >b ,则a c 2+1>bc 2+1B .若-2<a <3,1<b <2,则-3<a -b <1C .若a >b >0,m >0,则m a <mbD .若a >b ,c >d ,则ac >bd5.已知三个不等式△ab >0;△c a >db;△bc >ad .若以其中的两个作为条件,余下的一个作为结论,则可以组成________个正确命题.6.已知1<α<3,-4< β <2,若z =12α-β,则z 的取值范围是________.7.已知a >b ,1a <1b,求证:ab >0.8.已知-2<a ≤3,1≤b <2,试求下列代数式的取值范围. (1)|a |; (2)a +b ; (3)a -b ; (4)2a -3b .能 力 练综合应用 核心素养9.设a >b >c ,且a +b +c =0,则下列不等式恒成立的是( ) A .ab >bc B .ac >bc C .ab >ac D .a |b |>c |b | 10.(多选题)设0<b <a <1,则下列不等式不成立的是( ) A .ab <b 2<1 B .a <b <1 C .1<1a <1b D .a 2<ab <111.若abcd <0,且a >0,b >c ,d <0,则( )A .b <0,c <0B .b >0,c >0C .b >0,c <0D .0<c <b 或c <b <0 12.给出下列命题: ①若a <b ,c <0,则c a <cb ;②若ac -3>bc -3,则a >b ; ③若a >b 且k ∈N +,则a k >b k ; ④若c >a >b >0,则a c -a >bc -b .其中正确命题的序号是____.13.实数a ,b ,c ,d 满足下列三个条件:△d >c ;△a +b =c +d ;△a +d <b +c .则将a ,b ,c ,d 按照从小到大的次序排列为________. 14.已知2b <a <-b ,则ab 的取值范围为 .15.已知a >b >0,c <d <0,比较b a -c 与ab -d 的大小.16.已知1≤a -b ≤2,2≤a +b ≤4,求4a -2b 的取值范围.【参考答案】1.D 解析:对于选项A ,由等式的性质3知,若x =y ,则x +5=y +5,正确;对于选项B ,由等式的性质4知,若a =b ,则ac =bc ,正确;对于选项C ,由等式的性质4知,若a c =bc ,则a =b ,正确;对于选项D ,若x =y ,则x a =ya的前提条件为a ≠0,故此选项错误.2.D 解析:△1a <1b <0,△b <a <0,△b 2>a 2,ab <b 2,a +b <0,△A 、B 、C 均正确,△b <a <0,△|a |+|b |=|a +b |,故D 错误.3. A 解析:因为a >b >0,所以1b >1a >0,所以a +1b >b +1a,故选A.4.AC 解析:对于A ,∵c 2+1>0,∴1c 2+1>0,∵a >b ,∴a c 2+1>bc 2+1,故A 正确;对于B ,因为1<b <2,所以-2<-b <-1,同向不等式相加得-4<a -b <2,故B 中说法错误;对于C ,因为a >b >0,所以1a <1b ,又因为m >0,所以m a <mb ,故C 中说法正确;对于D ,只有当a >b >0,c >d >0时,才有ac >bd ,故D 中说法错误,故选AC .5. 3 解析:△△△△,△△△△.(证明略)由△得bc -ad ab>0,又由△得bc -ad >0.所以ab >0△△.所以可以组成3个正确命题.6. ⎩⎨⎧⎭⎬⎫z ⎪⎪-32<z <112 解析:△1<α<3,△12<12α<32,又-4<β<2,△-2<-β<4.△-32<12α-β<112,即-32<z <112. 7.证明:△1a <1b ,△1a -1b <0,即b -a ab <0,而a >b ,△b -a <0,△ab >0. 8. 解:(1)|a |△[0,3].(2)-1<a +b <5.(3)依题意得-2<a ≤3,-2<-b ≤-1,相加得-4<a -b ≤2;(4)由-2<a ≤3得-4<2a ≤6,△由1≤b <2得-6<-3b ≤-3,△由△+△得,-10<2a -3b ≤3. 9. C 解析:选C.因为a >b >c ,且a +b +c =0,所以a >0,c <0,b 可正、可负、可为零. 由b >c ,a >0知,ab >ac .10.ABD 解析:取a =12,b =13验证可得A ,B ,D 不正确.11. D 解析: 由a >0,d <0,且abcd <0,知bc >0,又△b >c ,△0<c <b 或c <b <0. 12.④ 解析:①当ab <0时,c a <cb 不成立,故①不正确;②当c <0时,a <b ,故②不正确;③当a =1,b =-2,k =2时,命题不成立,故③不正确; ④a >b >0⇒-a <-b <0⇒0<c -a <c -b , 两边同乘以1(c -a )(c -b ),得0<1c -b <1c -a,又a >b >0,∴a c -a >bc -b,故④正确.13. a <c <d <b 解析:由△得a =c +d -b 代入△得c +d -b +d <b +c ,△c <d <b . 由△得b =c +d -a 代入△得a +d <c +d -a +c ,△a <c .△a <c <d <b .14.-1<a b <2 解析:∵2b <a <-b ,∴2b <-b .∴b <0. ∴-b b <a b <2b b ,即-1<ab <2.15.解:∵c <d <0,∴-c >-d >0. 又a >b >0, ∴a -c >b -d >0, ∴1b -d >1a -c>0, 又a >b >0,∴a b -d >ba -c.16.解:令4a -2b =m (a -b )+n (a +b ),△⎩⎪⎨⎪⎧ m +n =4,-m +n =-2,解得⎩⎪⎨⎪⎧m =3,n =1.又△1≤a -b ≤2,△3≤3(a -b )≤6,又△2≤a +b ≤4,△5≤3(a -b )+(a +b )≤10,即5≤4a -2b ≤10. 故4a -2b 的取值范围为5≤4a -2b ≤10.2.2 基本不等式1. 已知0a ≥,0b ≥,且2a b +=,则( )A .12ab ≤B .12ab ≥C .222a b +≥D .223a b +≤2. 设0a >,0b >,若3是3a 与3b 的等比中项,则11a b+的最小值为( ) A .8 B .4 C .1 D .143. 已知()110m a a a=++>,()31x n x =<,则m ,n 之间的大小关系是( ) A .m n > B .m n < C .m n = D .m n ≤ 4. 已知0a >,0b >,则112ab a b++的最小值为( ) A .2 B .22C .4D .55. 已知0a >,0b >,2a b +=,则14y a b=+的最小值是( ) A .72B .4C .92D .56. 某车间分批生产某种产品,每批的生产准备费用为800元,若每批生产x 件,则平均仓储时间为8x天,且每件产品每天的仓储费用为1元.为使平均每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件7. 已知54x <,则函数1445y x x =+-的最大值为___________.8.设点(),P x y 在直线1x y +=位于第一象限内的图象上运动,则22log log x y +的最大值是________. 9. 设0a >,0b >,且不等式110k a b a b++≥+恒成立,则实数k 的最小值为___________. 10.函数()log 31a y x =+-(0a >,1a ≠)的图象恒过定点A ,若点A 在直线+1=0mx ny +上,其中0mn >,则12m n+的最小值为___________. 11.求()()2252log 01log f x x x x=++<<的最小值.12.住宅小区为了使居民有一个优雅、舒适的生活环境,计划建一个八边形的休闲小区,它的主体造型的平面图是由两个相同的矩形ABCD和EF GH构成的面积为2200m的十字形区域.现计划在正方形MNPQ上建一花坛,造价为4200元/2m,在四个相同的矩形上(如图中阴影部分)铺花岗岩地坪,造价为210元/2m.m,再在四个空角上铺草坪,造价为80元/2⑴设总造价为S元,AD的边长为xm,试建立S关于x的函数关系式;⑵计划至少要投入多少元,才能建造这个休闲小区?答案与解析1. C 解析:由2a b +=,得212a b ab +⎛⎫≤= ⎪⎝⎭,排除选项A ,B .由22222a b a b ++⎛⎫≥ ⎪⎝⎭,得222a b +≥. 2. B 解析:由题意,知333a b ⋅=,即33a b +=,故1a b +=.因为0a >,0b >,所以()1111a b a b a b ⎛⎫+=++ ⎪⎝⎭2224b a b aa b a b=++≥+⋅=,当且仅当a b =时,等号成立. 3. A 解析:因为0a >,所以111213m a a a a=++≥⋅+=,当且仅当1a =时,等号成立.又因为1x <,所以1333x n =<=,所以m n >.4. C 解析:1122a bab ab a b ab+++=+,因为0a >,0b >,所以2a b ab +≥,当且仅当a b =时,等号成立.所以21222224a b ab ab ab ab ab ab ab +⎛⎫+≥+=+≥⨯= ⎪⎝⎭,当且仅当1ab ab =时,等号成立.综上所述,1a b ==时,取等号. 5. C 解析:因为2a b +=,所以12a b+=,又因为0a >,0b >,所以14142a b y a b a b +⎛⎫=+=+⋅⎪⎝⎭52529222222a b a b b a b a ⎛⎫=++≥+= ⎪⎝⎭(当且仅当22a b b a =,即2b a =时,等号成立),故14a b+的最小值为92. 6. B 解析:设每件产品的平均费用为y 元,由题意,得80080022088x xy x x =+≥⋅=. 当且仅当()80008xx x =>,即80x =时,等号成立.故选B . 7. 3 解析:因为54x <,所以450x -<,所以540x ->.所以()1144554545y x x x x =+=-++--()()11545254535454x x x x⎡⎤=--++≤--⋅+=⎢⎥--⎣⎦当且仅当15454x x-=-,即1x =时,等号成立.故当1x =时,y 取最大值,即max 3y =. 8. 2- 解析:要求22log log x y +的最大值,即求()2log xy 的最大值,应先求xy 的最大值.显然当12x y ==时,xy 的最大值为14,故22log log x y +的最大值为2-. 9. 4- 解析:由0a >,0b >,110ka b a b++≥+,得()2a b k ab +≥-.又因为()224a b b a ab a b +=++≥(a b =时,取等号),所以()24a b ab+-≤-.因此要使()2a b k ab+≥-恒成立,应有4k ≥-,即实数k 的最小值为4-.10.8 解析:因为()log 31a y x =+-恒过点()2,1--,所以()2,1A --.因为A 在直线上,所以210m n --+=,即21m n +=.又因为0mn >,所以0m >,0n >.又因为122m n m n m ++=42m nn++4224248n m m n =+++≥+=,当12n =,14m =时,等号成立,所以12m n +的最小值为8. 11.解:因为01x <<,所以2log 0x <,所以2log 0x ->,250log x->.所以()()222255log 2log log log x x x x ⎛⎫⎛⎫-+-≥--⎪ ⎪⎝⎭⎝⎭25=,即225log 25log x x ⎛⎫-+≥ ⎪⎝⎭.所以225log 25log x x +≤-.所以()2252log 225log f x x x =++≤-,当且仅当225log log x x =,即512x =时,等号成立.所以()max 225f x =-.12.解:⑴设DQ y =,则24200x xy +=,22004x y x -=.221420021048042S x xy y =+⨯+⨯⨯()224000003800040000102x x x=++<< . ⑵2824000003800040003800021610118000S x x =++≥+⨯=,当且仅当224000004000x x =,即10x =时,min 118000S =,即计划至少要投入11.8万元才能建造2.3 第2课时 一元二次不等式的应用基 础 练巩固新知 夯实基础1.不等式4x +23x -1>0的解集是( )A.⎩⎨⎧⎭⎬⎫x | x >13或x <-12 B.⎩⎨⎧⎭⎬⎫x | -12<x <13C.⎩⎨⎧⎭⎬⎫x | x >13D.⎩⎨⎧⎭⎬⎫x | x <-12 2.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的值的集合是 ( ) A .{a |0<a <4} B .{a |0≤a <4} C .{a |0<a ≤4}D .{a |0≤a ≤4}3.若关于x 的不等式x 2-4x -m ≥0对任意x △(0,1]恒成立,则m 的最大值为 ( )A .1B .-1C .-3D .34.在如图所示的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影部分),则其边长x (单位:m)的取值范围是( ) A .15≤x ≤30 B .12≤x ≤25 C .10≤x ≤30 D .20≤x ≤305.若关于x 的不等式x -a x +1>0的解集为(-∞,-1)△(4,+∞),则实数a =________.6.若不等式x 2+mx +1>0的解集为R ,则m 的取值范围是__________.7.解下列分式不等式: (1)x +12x -3≤1; (2)2x +11-x<0.8.当a 为何值时,不等式(a 2-1)x 2-(a -1)x -1<0的解集为R?能 力 练综合应用 核心素养9.不等式x 2-2x -2x 2+x +1<2的解集为( )A .{x |x ≠-2}B .RC .△D .{x |x <-2或x >2}10.若不等式mx 2+2mx -4<2x 2+4x 的解集为R ,则实数m 的取值范围是( ) A .(-2,2)B .(-2,2]C .(-∞,-2)△[2,+∞)D .(-∞,2)11.下列结论错误的是 ( )A.若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为RB.不等式ax 2+bx +c =0≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0C.若关于x 的不等式ax 2+x -1≤0的解集为R ,则a ≤-D.不等式>1的解集为x <112.对任意a △[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,则x 的取值范围是( ) A .1<x <3B .x <1或x >3C .1<x <2D .x <1或x >2 13.在R 上定义运算△:x △y =x (1-y ).若不等式(x -a )△(x +a )<1对任意的实数x 都成立,则a 的取值范围是________.14.已知2≤x ≤3时,不等式2x 2-9x +a <0恒成立,则a 的取值范围为________.15.已知关于x 的一元二次方程x 2+2mx +2m +1=0.若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的取值范围.16.某地区上年度电价为0.8元/kW·h ,年用电量为a kW·h ,本年度计划将电价降低到0.55元/kW·h 至0.75元/kW·h 之间,而用户期望电价为0.4元/kW·h.经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k ).该地区电力的成本价为0.3元/kW·h.(1)写出本年度电价下调后,电力部门的收益y 与实际电价x 的函数关系式;(2)设k =0.2a ,当电价最低定为多少时仍可保证电力部门的收益比上年度至少增长20%? 注:收益=实际用电量×(实际电价-成本价).【参考答案】1. A 解析:4x +23x -1>0△(4x +2)(3x -1)>0△x >13或x <-12,此不等式的解集为⎩⎨⎧⎭⎬⎫x | x >13或x <-12.2.D 解析:a =0时符合题意,a >0时,相应二次方程中的Δ=a 2-4a ≤0,得{a |0<a ≤4},综上得{a |0≤a ≤4}.3.C 解析:由已知可得m ≤x 2-4x 对一切x △(0,1]恒成立, 又f (x )=x 2-4x 在(0,1]上为减函数,△f (x )min =f (1)=-3,△m ≤-3.4.C 解析:设矩形的另一边长为y m ,则由三角形相似知,x 40=40-y40,△y =40-x ,△xy ≥300,△x (40-x )≥300,△x 2-40x +300≤0,△10≤x ≤30.5. 4解析:x -ax +1>0△(x +1)(x -a )>0 △(x +1)(x -4)>0,△a =4.6.-2<m <2 解析:由题意知,不等式x 2+mx +1>0对应的函数的图象在x 轴的上方,所以Δ=(m )2-4×1×1<0,所以-2<m <2.7. 解 (1)△x +12x -3≤1,△x +12x -3-1≤0,△-x +42x -3≤0,即x -4x -32≥0.此不等式等价于(x -4)⎝⎛⎭⎫x -32≥0且x -32≠0,解得x <32或x ≥4.△原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <32或x ≥4. (2)由2x +11-x <0得x +12x -1>0,此不等式等价于⎝⎛⎭⎫x +12(x -1)>0,解得x <-12或x >1, △原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-12或x >1. 8.解 △当a 2-1=0时,a =1或-1.若a =1,则原不等式为-1<0,恒成立.若a =-1,则原不等式为2x -1<0即x <12,不合题意,舍去.△当a 2-1≠0时,即a ≠±1时,原不等式的解集为R 的条件是⎩⎪⎨⎪⎧a 2-1<0,Δ=[-a -1]2+4a 2-1<0.解得-35<a <1.综上a 的取值范围是⎝⎛⎦⎤-35,1. 9.A 解析:△x 2+x +1>0恒成立,△原不等式△x 2-2x -2<2x 2+2x +2△x 2+4x +4>0△(x +2)2>0,△x ≠-2. △不等式的解集为{x |x ≠-2}.10.B 解析:△mx 2+2mx -4<2x 2+4x , △(2-m )x 2+(4-2m )x +4>0.当m =2时,4>0,x △R ;当m <2时,Δ=(4-2m )2-16(2-m )<0,解得-2<m <2.此时,x △R . 综上所述,-2<m ≤2.11.ABD 解析:A 选项中,只有a>0时才成立;B 选项当a=b=0,c≤0时也成立;D 选项x 是大于0的.12.B 解析:设g (a )=(x -2)a +(x 2-4x +4),g (a )>0恒成立且a △[-1,1]△⎩⎪⎨⎪⎧g 1=x 2-3x +2>0g -1=x 2-5x +6>0△⎩⎪⎨⎪⎧x <1或x >2x <2或x >3△x <1或x >3. 13. -12<a <32 解析:根据定义得(x -a )△(x +a )=(x -a )[1-(x +a )]=-x 2+x +a 2-a ,又(x -a )△(x +a )<1对任意的实数x 都成立,所以x 2-x +a +1-a 2>0对任意的实数x 都成立,所以Δ<0,即1-4(a +1-a 2)<0,解得-12<a <32.14. a <9 解析:△当2≤x ≤3时,2x 2-9x +a <0恒成立,△当2≤x ≤3时,a <-2x 2+9x 恒成立. 令y =-2x 2+9x .△2≤x ≤3,且对称轴方程为x =94,△y min =9,△a <9.△a 的取值范围为a <9.15.解 设f (x )=x 2+2mx +2m +1,根据题意,画出示意图由图分析可得, m 满足不等式组⎩⎪⎨⎪⎧f 0=2m +1<0f-1=2>0f1=4m +2<0f2=6m +5>0解得-56<m <-12.16.解(1)设下调后的电价为x 元/kW·h ,依题意知,用电量增至kx -0.4+a ,电力部门的收益为y =⎝⎛⎭⎫k x -0.4+a(x -0.3)(0.55≤x ≤0.75).(2)依题意,有⎩⎪⎨⎪⎧⎝⎛⎭⎫0.2a x -0.4+a (x -0.3)≥[a ×(0.8-0.3)](1+20%),0.55≤x ≤0.75.整理,得⎩⎪⎨⎪⎧x 2-1.1x +0.3≥0,0.55≤x ≤0.75.解此不等式,得0.60≤x ≤0.75.△当电价最低定为0.60元/kW·h 时,仍可保证电力部门的收益比上年度至少增长20%.2.3 第1课时二次函数与一元二次方程、不等式基础练巩固新知夯实基础1.(多选)下面所给关于x的不等式,其中一定为一元二次不等式的是( )A.3x+4<0B.x2+m x-1>0C.a x2+4x-7>0D.x2<02.已知集合M={x|x2-3x-28≤0},N={x|x2-x-6>0},则M∩N为()A.{x|-4≤x<-2或3<x≤7} B.{x|-4<x≤-2或3≤x<7}C.{x|x≤-2或x>3} D.{x|x<-2或x≥3}3.一元二次方程ax2+bx+c=0的根为2,-1,则当a<0时,不等式ax2+bx+c≥0的解()A.{x|x<-1或x>2} B.{x|x≤-1或x≥2}C.{x|-1<x<2} D.{x|-1≤x≤2}4.关于x的不等式ax-b>0的解集是(1,+∞),则关于x的不等式(ax+b)(x-3)>0的解集是() x|x<-1或x>3B.{x|-1<x<3}A.{}C.{x|1<x<3} D.{x|x<1或x>3}5.若不等式ax2-x-c>0的解集为{x|-2<x<1},则函数y=ax2-x-c的图象为()6. 不等式-1<x2+2x-1≤2的解集是________.7.方程x2+(m-3)x+m=0的两根都是负数,则m的取值范围为________.8. 解关于x的不等式:x2+(1-a)x-a<0.能 力 练综合应用 核心素养9.若0<t <1,则关于x 的不等式(t -x )(x -1t)>0的解集是 ( )A.⎩⎨⎧⎭⎬⎫x |1t <x <t B.⎩⎨⎧⎭⎬⎫x |x >1t 或x <tC.⎩⎨⎧⎭⎬⎫x |x <1t 或x >tD.⎩⎨⎧⎭⎬⎫x |t <x <1t10.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6, x <0,则不等式f (x )>f (1)的解集是 ( )A .(-3,1)△(3,+∞)B .(-3,1)△(2,+∞)C .(-1,1)△(3,+∞)D .(-∞,-3)△(1,3)11.不等式x 2-px -q <0的解集是{x |2<x <3},则不等式qx 2-px -1>0的解是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-12或x >-13 B.⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <-13 C.⎩⎨⎧⎭⎬⎫x ⎪⎪13<x <12 D.{}x | x <2或x >3 12. (多选题)已知关于x 的方程x 2+(m -3)x +m =0,下列结论正确的是( ) A .方程x 2+(m -3)x +m =0有实数根的充要条件是m ∈{m |m <1或m >9} B .方程x 2+(m -3)x +m =0有一正一负根的充要条件是m ∈{m |m <0} C .方程x 2+(m -3)x +m =0有两正实数根的充要条件是m ∈{m |0<m ≤1} D .方程x 2+(m -3)x +m =0无实数根的必要条件是m ∈{m |m >1}13.已知x =1是不等式k 2x 2-6kx +8≥0的解,则k 的取值范围是______________. 14.若关于x 的不等式ax 2-6x +a 2>0的解集为{x |1<x <m },则a =________,m =________. 15.若不等式ax 2+bx +c ≥0的解集为⎩⎨⎧⎭⎬⎫x |-13≤x ≤2,求关于x 的不等式cx 2-bx +a <0的解集.16.解关于x 的不等式ax 2-2(a +1)x +4>0.【参考答案】1.BD 解析:根据一元二次不等式的定义以及特征可判定A 一定不是,C 不一定是,B ,D 一定是.2.A 解析:△M ={x |x 2-3x -28≤0}={x |-4≤x ≤7},N ={x |x 2-x -6>0}={x |x <-2或x >3}, △M ∩N ={x |-4≤x <-2或3<x ≤7}.3. D 解析:由方程ax 2+bx +c =0的根为2,-1,知函数y =ax 2+bx +c 的零点为2,-1,又△a <0,△函数y =ax 2+bx +c 的图象是开口向下的抛物线,△不等式ax 2+bx +c ≥0的解集为{x |-1≤x ≤2}.4. A 解析:由题意,知a >0,且1是ax -b =0的根,所以a =b >0,所以(ax +b )(x -3)=a (x +1)(x -3)>0,所以x <-1或x >3,因此原不等式的解集为{x |x <-1或x >3}.5. B 解析:因为不等式的解集为{x |-2<x <1},所以a <0,排除C 、D ;又与坐标轴交点的横坐标为-2,1,故选B.6. {x |-3≤x <-2或0<x ≤1} 解析: △⎩⎪⎨⎪⎧x 2+2x -3≤0,x 2+2x >0,△-3≤x <-2或0<x ≤1.7.{m |m ≥9} 解析:∵⎩⎪⎨⎪⎧Δ=(m -3)2-4m ≥0,x 1+x 2=3-m <0,x 1x 2=m >0,∴m ≥9.8. 解:方程x 2+(1-a )x -a =0的解为x 1=-1,x 2=a .函数y =x 2+(1-a )x -a 的图象开口向上,所以 (1)当a <-1时,原不等式解集为{x |a <x <-1}; (2)当a =-1时,原不等式解集为△; (3)当a >-1时,原不等式解集为{x |-1<x <a }.9.D 解析:△0<t <1,△1t >1,△1t >t .△(t -x )(x -1t )>0△(x -t )(x -1t )<0△t <x <1t .10.A 解析:f (1)=12-4×1+6=3,当x ≥0时,x 2-4x +6>3,解得x >3或0≤x <1; 当x <0时,x +6>3,解得-3<x <0.所以f (x )>f (1)的解集是(-3,1)△(3,+∞).11. B 解析:易知方程x 2-px -q =0的两个根是2,3.由根与系数的关系得⎩⎪⎨⎪⎧ 2+3=p ,2×3=-q ,解得⎩⎪⎨⎪⎧p =5,q =-6,不等式qx 2-px -1>0为-6x 2-5x -1>0,解得-12<x <-13.12. BCD 解析:在A 中,由Δ=(m -3)2-4m ≥0得m ≤1或m ≥9,故A 错误;在B 中,当x =0时,函数y =x 2+(m -3)x +m 的值为m ,由二次函数的图象知,方程有一正一负根的充要条件是m ∈{m |m <0},故B 正确;在C 中,由题意得m>0,3-m>0,解得0<m ≤1,故C 正确;在D 中,由Δ=(m -3)2-4m <0得1<m <9,又{m |1<m <9}⊆{m |m >1},故D 正确,故选BCD .13.k ≤2或k ≥4解析:x =1是不等式k 2x 2-6kx +8≥0的解,把x =1代入不等式得k 2-6k +8≥0,解得k ≥4或k ≤2. 14. -3 -3 解析:在A 中,由Δ=(m -3)2-4m ≥0得m ≤1或m ≥9,故A 错误;在B 中,当x =0时,函数y =x 2+(m -3)x +m 的值为m ,由二次函数的图象知,方程有一正一负根的充要条件是m ∈{m |m <0},故B 正确;在C 中,由题意得m>0,3-m>0,解得0<m ≤1,故C 正确;在D 中,由Δ=(m -3)2-4m <0得1<m <9,又{m |1<m <9}⊆{m |m >1},故D 正确,故选BCD . 可知1,m 是方程ax 2-6x +a 2=0的两个根,且a <0, △⎩⎪⎨⎪⎧1+m =6a 1×m =a解得⎩⎪⎨⎪⎧ a =-3m =-3或⎩⎪⎨⎪⎧a =2m =2(舍去). 15.解 由ax 2+bx +c ≥0的解集为⎩⎨⎧⎭⎬⎫x |-13≤x ≤2,知a <0,且关于x 的方程ax 2+bx +c =0的两个根分别为-13,2,△⎩⎨⎧-13+2=-ba-13×2=ca,△b =-53a ,c =-23a .所以不等式cx 2-bx +a <0可变形为⎝⎛⎭⎫-23a x 2-⎝⎛⎭⎫-53a x +a <0,即2ax 2-5ax -3a >0. 又因为a <0,所以2x 2-5x -3<0,所以所求不等式的解集为⎩⎨⎧⎭⎬⎫x |-12<x <3.16.解 (1)当a =0时,原不等式可化为-2x +4>0,解得x <2,所以原不等式的解集为{x |x <2}. (2)当a >0时,原不等式可化为(ax -2)(x -2)>0,对应方程的两个根为x 1=2a,x 2=2.△当0<a <1时,2a >2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2a ,或x <2; △当a =1时,2a=2,所以原不等式的解集为{x |x ≠2};△当a >1时,2a <2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2,或x <2a . (3)当a <0时,原不等式可化为(-ax +2)(x -2)<0,对应方程的两个根为x 1=2a ,x 2=2,则2a<2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2a<x <2. 综上,a <0时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2a<x <2; a =0时,原不等式的解集为{x |x <2};0<a ≤1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ x >2a,或x <2; 当a >1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ x >2,或x <2a .2.3二次函数与一元二次方程、不等式一、选择题1.不等式9x 2+6x +1≤0的解集是( ) A.1|3x x ⎧⎫≠-⎨⎬⎩⎭B.11|33x x ⎧⎫-≤≤⎨⎬⎩⎭C .∅D.1|3x x ⎧⎫=-⎨⎬⎩⎭2.下列不等式中,解集是R 的是( ) A .x 2+4x +4>0B.20x >C.1102x⎛⎫+> ⎪⎝⎭D .-x 2+2x -1>03.不等式ax 2+5x+c >0的解集为11{|}32x x <<,则a ,c 的值为( ) A .a=6,c=1 B .a=-6,c=-1 C .a=1,c=1 D .a=-1,c=-6 4.若0<t <1,则不等式1()()0x t x t--<的解集为( ) A.1|x x t t⎧⎫<<⎨⎬⎩⎭B.1|x x x t t ⎧⎫><⎨⎬⎩⎭或 C.1|x x x t t⎧⎫<>⎨⎬⎩⎭或D.1|x t x t ⎧⎫<<⎨⎬⎩⎭5.不等式x 2-ax -b <0的解集是{x|2<x <3},则bx 2-ax -1>0的解集是( ) A .{|23}x x << B .11{|}32x x << C .11{|}23x x -<<- D .{|32}x x -<<- 6. 关于x 的不等式(1+m )x 2+mx +m <x 2+1对x ∈R 恒成立,则实数m 的取值范围是( ) A .(-∞,0) B .(-∞,0)∪3,4⎛⎫+∞⎪⎝⎭C .(-∞,0]D .(-∞,0]∪4,3⎛⎫-+∞ ⎪⎝⎭二、填空题7.如果A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是________.8.如果关于x 的方程x 2-(m -1)x+2-m=0的两根为正实数,则m 的取值范围是________. 9. 函数21()31f x ax ax =++的定义域是R ,则实数a 的取值范围为________.10.若关于x 的不等式2260ax x a -+<的解集为(1,)m ,则实数m 等于 . 三、解答题 11.解下列不等式(1)2x 2+7x +3>0; (2)-x 2+8x -3>0;12. 不等式mx 2+1>mx 的解集为实数集R ,求实数m 的取值范围.13. 解关于x 的不等式m 2x 2+2mx -3<0(其中m ∈R ).14.已知2()2(2)4f x x a x =+-+,(1)如果对一切x ∈R ,f(x)>0恒成立,求实数a 的取值范围; (2)如果对x ∈[-3,1],f(x)>0恒成立,求实数a 的取值范围. 15.解下列关于x 的不等式 0)1)(1(>+-x ax ;答案与解析1.【答案】 D【解析】 9x 2+6x +1=(3x +1)2≤0 ∴13x =-,故选D.2.【答案】 C【解析】 ∵x 2+4x +4=(x +2)2≥0, ∴A 不正确;∵2||0x x =≥,∴B 不正确;∵102x ⎛⎫> ⎪⎝⎭,∴11102x⎛⎫+>> ⎪⎝⎭(x ∈R ),故C 正确;∵-x 2+2x -1>0 ∴x 2-2x +1=(x -1)2<0, ∴D 不正确.3.【答案】B【解析】由题意可知方程250ax x c ++>的两根为12x =和13x =,由韦达定理得: 11115,2323c a a⨯=+=-,求得a=-6,c=-14.【答案】 D【解析】 ∵0<t <1,∴11t >,∴1t t< ∴11()()0x t x t x t t--<⇔<<.5.【答案】C【解析】由题意得,方程x 2-ax -b=0的两根为x=2,x=3,由韦达定理得23a +=,23b ⨯=-,求得5 a =,b=-6,从而解得bx 2-ax -1>0的解集为11{|}23x x -<<-6. 【答案】C【解析】 原不等式等价于mx 2+mx+m -1<0对x ∈R恒成立,当m =0时,0·x 2+0·x -1<0对x ∈R恒成立. 当m ≠0时,由题意,得220000404103403m m m m m m m mm m m <⎧<<⎧⎧⎪⇔⇔⇔<⎨⎨⎨<>∆=--<->⎩⎩⎪⎩或. 综上,m 的取值范围为(-∞,0].7.【答案】 [0,4)【解析】 由题意知2040a a a >⎧⎨∆=--<⎩,∴0<a <4. 当a =0时,A ={x |1<0}=∅,符合题意.8.【答案】{|1222}m m -+<< 【解析】由题意得:1212000x x x x ∆>⎧⎪+>⎨⎪>⎩,解得1222m -+<<9. 【答案】 40,9⎡⎫⎪⎢⎣⎭【解析】 由已知f (x )的定义域是R . 所以不等式ax 2+3ax +1>0恒成立.(1)当a =0时,不等式等价于1>0,显然恒成立; (2)当a ≠0时,则有2000400(94)09(3)40a a a a a a a a >>>⎧⎧⎧⎧⇔⇔⇔<<⎨⎨⎨⎨∆<-<-<⎩⎩⎩⎩. 由(1)(2)知,409a ≤<. 即所求a 的取值范围是40,9⎡⎫⎪⎢⎣⎭.10.【答案】2【解析】由题意,得1,m 是关于x 的方程2260ax x a -+=的两根,则2611m a ama ⎧+=⎪⎪⎨⎪⨯=⎪⎩解得 23m m ==-或(舍去)11.【解析】(1)因为Δ=72-4×2×3=25>0,所以方程2x 2+7x +3=0有两个不等实根x 1=-3,212x =-. 又二次函数y =2x 2+7x +3的图象开口向上, 所以原不等式的解集为1|32x x x ⎧⎫>-<-⎨⎬⎩⎭或. (2)因为Δ=82-4×(-1)×(-3)=52>0, 所以方程-x 2+8x -3=0有两个不等实根1413x =-,2413x =+.又二次函数y =-x 2+8x -3的图象开口向下, 所以原不等式的解集为{}|413413x x -<<+.12.【解析】当m =0时,不等式即为1>0,满足条件.当m≠0时,若不等式的解集为R ,则应有⎪⎩⎪⎨⎧<--=∆>0m 4)m (0m 2, 解得0<m <4.综上,m 的取值范围是{m|0≤m<4}.13.【解析】 当m =0时,原不等式可化为-3<0,其对一切x ∈R 都成立, 所以原不等式的解集为R . 当m ≠0时,m 2>0,由m 2x 2+2mx -3<0,得(mx -1)(mx +3)<0, 即130x x m m ⎛⎫⎛⎫-+< ⎪⎪⎝⎭⎝⎭, 若m >0,则13m m>-, 所以原不等式的解集为31,m m ⎛⎫- ⎪⎝⎭; 若m <0,则13m m<-,所以原不等式的解集为13,m m ⎛⎫-⎪⎝⎭.综上所述,当m =0时,原不等式的解集为R ;当m>0时,原不等式的解集为31,m m⎛⎫-⎪⎝⎭;当m<0时,原不等式的解集为13,m m⎛⎫-⎪⎝⎭.14.【解析】(1)由题意得:△=2[2(2)]160a--<,即0<a<4;(2)由x∈[-3,1],f(x)>0得,有如下两种情况:2[3,1](3)0(1)0aff-∉-⎧⎪->⎨⎪>⎩或2[3,1](2)0af a-∈-⎧⎨->⎩综上所述:1,42a⎛⎫∈-⎪⎝⎭.15.【解析】当a=0时,原不等式即为-(x+1)>0,解得x<-1;当a≠0时,原不等式为关于x的一元二次不等式,方程(ax-1)(x+1)=0有两个实数根ax11=和12-=x.(Ⅰ)当21xx<,即11-<a,01<<-a时,函数)1)(1()(+-=xaxxf的图象开口向下,与x轴有两个交点,其简图如下:故不等式0)1)(1(>+-xax的解集为⎪⎭⎫⎝⎛-1,1a;(Ⅱ)当,即1,11-=-=aa时,函数)1)(1()(+-=xaxxf的图象开口向下,与x轴有一个交点,其简图如下:21xx=故不等式0)1)(1(>+-xax的解集为空集;(Ⅲ)当21xx>,即11->a,1-<a或0>a,①若1-<a,函数)1)(1()(+-=xaxxf的图象开口向下,与x轴有两个交点,其简图如下:故不等式0)1)(1(>+-xax的解集为11,a⎛⎫-⎪⎝⎭;②若a>0,数()(1)(1)f x ax x=-+的图象开口向上,与x轴有两个交点,其简图如下:故不等0)1)(1(>+-xax的解集为1(,1),a⎛⎫-∞-+∞⎪⎝⎭;综上所述,当a<-1时,不等式的解集为⎪⎭⎫⎝⎛-a1,1;当a=-1时,不等式的解集为空集;当-1<a<0时,不等式的解集为⎪⎭⎫⎝⎛-1,1a;当a=0时,不等式的解集为)1,(--∞;当a>0时,不等式的解集为⎪⎭⎫⎝⎛+∞--∞,1)1,(a.必修 第一册 第二章 一元二次函数、方程和不等式2.1 等式性质与不等式性质1.比较大小的基本事实:比较两实数大小的方法——求差比较法 0a b a b >⇔->; 0a b a b =⇔-=; 0a b a b <⇔-<。

2022年高中数学第三章不等式1不等关系与不等式练习含解析新人教A版必修

2022年高中数学第三章不等式1不等关系与不等式练习含解析新人教A版必修

课时训练15 不等关系与不等式一、不等式性质的直接应用与判断1.若1a <1b<0,则下列结论不正确的是( )A.a2<b2B.ab<b2C.b a +ab>2 D.ba<1答案:D解析:由1a <1b<0可知,b<a<0,所以ba<1不成立,故选D.2.(2015山东威海高二期中,1)已知a>b,则下列不等式中成立的是( )A.a2>b2B.1a <1bC.1a-b>1aD.a3>b3答案:D解析:A.虽然-1>-2,但(-1)2>(-2)2不成立;B.虽然3>-2,但是13<1-2不成立;C.虽然2>-3,但是12-(-3)>12不成立;D.∵a>b,∴a3-b3=(a-b)(a2+ab+b2)>0. (∵a2+ab+b2=(a+12b)2+34b2>0)成立.综上可知,只有D正确.故选D.3.已知下列说法:①若a<b<0,则a2>ab;②若a≥b,ac≥bc,则c≥0;③若a>b>0,c<0,则ca >cb;④若0<a<1,则log a(1+a)>log a(1+1a)其中正确的有 .答案:①③④解析:对于①,由a<b,a<0,可得a2>ab,故①正确;对于②,当a=b时,c可以为负数,故②错误;对于③,当a>b>0时,得0<1a < 1 b,又c<0,∴ca >cb,故③正确;对于④,当0<a<1时,1a >1,则1+a<1+1a,∴log a(1+a)>log a(1+1a),故④正确.二、利用不等式的性质比大小4.(2015山东威海高二期中,2)不等式:①a2+2>2a;②a2+b2≥2(a-b-1);③a2+b2≥ab恒成立的个数是( )A.0B.1C.2D.3答案:D解析:①a2+2-2a=(a-1)2+1≥1,∴a2+2>2a,正确;②∵a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,∴a2+b2≥2(a-b-1),正确;③a2+b2-ab=(a-12b)2+34b2≥0,当且仅当a=b=0时取等号,正确.综上可得:①②③都恒成立.故选D.5.若A=a2+3ab,B=4ab-b2,则A,B的大小关系是( )A.A≤BB.A≥BC.A<B 或A>BD.A>B答案:B 解析:∵A-B=a 2+3ab-4ab+b 2=a 2-ab+b 2=(a -b 2)2+34b 2≥0,∴A ≥B.6.(2015河南郑州高二期末,16)现有甲、乙两人相约爬山,若甲上山的速度为v 1,下山的速度为v 2(v 1≠v 2),乙上山和下山的速度都是v 1+v 22(甲、乙两人中途不停歇且下山时按原路返回),则甲、乙两人上下山所用的时间t 1,t 2的大小关系为 .答案:t 1>t 2解析:由题意知,甲用的时间t 1=S v 1+S v 2=S ·v 1+v 2v 1v 2,乙用的时间t 2=2×S v 1+v 22=4S v 1+v 2.∵t 1-t 2=S ·v 1+v 2v 1v 2−4S v 1+v 2=S (v 1+v 2v 1v 2-4v 1+v 2)=S (v 1-v 2)2v 1v 2(v 1+v 2)>0.∴t 1>t 2.7.已知a ,b ,x ,y 均为正实数,且1a >1b ,x>y ,试判断x x +a 与y y +b的大小关系.解:因为x x +a −y y +b =bx -ay (x +a )(y +b ),又1a >1b且a>0,b>0,所以b>a>0.又x>y>0,所以bx>ay ,即bx-ay>0.又x+a>0,y+b>0,所以bx -ay (x +a )(y +b )>0,即x x +a >y y +b.三、利用不等式的性质求代数式范围8.设x ,y 为实数,满足3≤xy 2≤8,4≤x 2y ≤9,则x 3y 4的最大值是 .答案:27解析:∵4≤x 2y ≤9,∴16≤x 4y 2≤81.①∵3≤xy 2≤8,∴18≤1x y 2≤13.②由①②可得2≤x 4y 2·1x y 2≤27,即2≤x 3y 4≤27.∴x 3y 4的最大值为27.9.已知1<a<2,3<b<4,求下列各式的取值范围:(1)2a+b ;(2)a-b ;(3)ab .解:(1)因为1<a<2,所以2<2a<4.又3<b<4,所以5<2a+b<8.(2)因为3<b<4,所以-4<-b<-3.又1<a<2,所以-3<a-b<-1.(3)因为3<b<4,所以14<1b <13.又1<a<2,所以14<ab <23.四、利用不等式的性质证明10.已知a>b>0,c<d<0.求证:3√ad <3√bc .思路分析:解答本题可先比较a d 与b c 的大小,进而判断3√a d <3√bc .证明:∵c<d<0,∴-c>-d>0.∴0<-1c <-1d .又a>b>0,∴-ad >-bc>0.∴3√-a d>3√-b c,即-3√a d>-3√b c.两边同乘以-1,得3√a d<3√b c.(建议用时:30分钟) 1.若a,b∈R,且a>b,则( )A.a2>b2B.ba<1C.lg(a-b)>0D.(12)a<(12)b答案:D解析:∵a>b,无法保证a2>b2,ba<1和lg(a-b)>0,∴排除A与B,C,故选D.2.如果a<b<0,那么下列不等式成立的是( )A.1 a <1bB.ab<b2C.-ab<-a2D.-1a <-1b答案:D解析:当a=-2,b=-1时,检验得A,B,C错误,故D正确.3.若a>b>c,则下列不等式成立的是( )A.1 a-c >1b-cB.1a-c<1b-cC.ac>bcD.ac<bc 答案:B解析:∵a>b>c,∴a-c>b-c>0.∴1 a-c <1 b-c.故选B.4.下列结论正确的是( )A.若a>b>0,a>c,则a2>bcB.若a>b>c,则ac > b cC.若a>b,n∈N*,则a n>b nD.a>b>0,则ln a<ln b答案:A解析:对于B,当c<0时,不成立,对于C,当a=1,b=-2,n=2时,a n>b n不成立.对于D,由对数函数性质得不正确,故选A.5.若α,β满足-π2<α<β<π2,则2α-β的取值范围是( )A.-π<2α-β<0B.-π<2α-β<πC.-3π2<2α-β<π2D.0<2α-β<π答案:C解析:∵-π2<α<π2,∴-π<2α<π.又-π2<β<π2,∴-π2<-β<π2.∴-3π2<2α-β<3π2.又α-β<0,α<π2,∴2α-β<π2.故-3π2<2α-β<π2.6.若实数a≠b,则a2-ab ba-b2(填不等号).答案:>解析:(a2-ab)-(ba-b2)=a2-ab-ba+b2=(a-b)2,∵a≠b,∴(a-b)2>0.∴a2-ab>ba-b2.7.已知2b<a<-b,则ab的取值范围为 .答案:-1<ab<2解析:∵2b<a<-b,∴2b<-b.∴b<0.∴-b b <ab<2bb,即-1<ab<2.8.若m<n,p<q且(p-m)(p-n)<0,(q-m)(q-n)<0,则m,n,p,q从小到大顺序是 . 答案:m<p<q<n解析:∵(p-m)(p-n)<0,∴{p-m>0,p-n<0或{p-m<0,p-n>0.又m<n,∴m<p<n.同理m<q<n,又p<q,∴m<p<q<n.9.甲、乙两位采购员同去一家粮食销售公司买了两次粮食(同一品种),两次粮食的价格不同,两位采购员的购粮方式也不同.其中,甲每次购买1 000 kg,乙每次购粮用去1 000元钱,谁的购粮方式更合算?解:设两次价格分别为a元、b元,则甲的平均价格为m=a+b2元,乙的平均价格为n=20001000a+1000b=2aba+b,∴m-n=a +b 2−2ab a +b =(a -b )22(a +b )>0.∴乙更合算.10.已知函数f (x )=ax 2-c ,-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的取值范围.解:因为f (x )=ax 2-c ,所以{f (1)=a -c ,f (2)=4a -c .即{a -c =f (1),4a -c =f (2),解得{a =13[f (2)-f (1)],c =13f (2)-43f (1),所以f (3)=9a-c=83f (2)-53f (1).又因为-4≤f (1)≤-1,-1≤f (2)≤5,所以53≤-53f (1)≤203,-83≤83f (2)≤403,所以-1≤83f (2)-53f (1)≤20,即-1≤f (3)≤20.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1 不等关系
一、目标导航
1.能根据条件列出不等式,理解不等式的意义,用不等关系解决实际问题. 2.通过列不等式,训练学生的分析判断能力和逻辑推理能力. 二、基础过关
1.下面给出了5个式子:①3>0,②4x +3y >O ,③x =3,④x -1,⑤x +2≤3,其中不等
式有( )
A .2个
B .3个
C .4个
D .5个 2.a 、b 两数在数轴上的位置如图所示,下列结论中正确的是( )
A .a >0,b <0
B .a <0,b >0
C .ab >0
D .以上均不对 3.a 是非负数的表达式是( )
A .a >0
B .a ≥0
C .a ≤0
D .a ≤0 4.下列不等关系一定正确的是( )
A .a >0
B .-x 2<0
C .(x +1)2≥0
D .a 2>0
5.小林在水果摊上称了2斤苹果,摊主称了几个苹果说:“你看秤,高高的.”如果设
苹果的实际质量为x 斤,用不等式把这个“高高的”的意思表示出来是( ) A .x ≤2 B .x ≤2 C .x >2 D .x <2 6.如果 a +b <0,且 b >0,那么 a 、b 、-a 、-b 的大小关系为( )
A .a <b <-a <-b
B .-b <a <-a <b
C .a <-b <-a <b
D . a <-b <b <-a 7.用不等号连接下列各对数:21415
(1)_____,(2)1____01516
x -
-+. 8.y 的3倍与x 的4倍的和是负数用不等式表示为____________.
9.一所中学的男子百米赛跑的记录是11.7秒,假设一名男运动员的百米赛跑成绩为x
秒,如果这名运动员破记录,则__________;如果这名运动员没破记录,则________. 10.若0<a <1,用“<”连接a ,1,
1
a
,结果为___________________. 11.从2,3,4,5,6中任取两个数就组成一组数,其中两数之和小于10的数组共有
______组.
2题
12.有如图所示的两种广告牌,其中图(1)是由两个等腰直角三角形构成的,图(2)
是一个矩形,从图形上确定这两个广告牌面积的大小关系,并将这种大小关系用含字母a ,b 的不等式表示为 .
三、能力提升
13.用适当的符号表示下列关系:
(l )a 的2倍比a 与3的和小; (2)y 的一半与5的差是非负数; (3)x 的3倍与1的和小于x 的2倍与5的差.
14.用不等式表示下列关系:
(1)一个数的平方是非负数;(2)某天的气温不高于 25℃.
15.用不等式表示下列关系:a 与b 的和大于a 的2倍而小于b 的3倍.
(1)
(2)
12题
16.有一个两位数,个位上的数字为a,十位上的数字为b,如果把这个两位数的个位与十位上的数字对调,得到的两位数大于原来的两位数,那么a与b哪个大?
17.某班同学去春游花了250元包租了一辆客车,如果参加春游的同学每人交8元钱租车费,还不够,如果每人交9元,还用不了.用不等式表示出上述问题中存在的不等关系.
18.工人小王4月份计划生产零件270个,前10天平均每天生产5个,后来改进技术,提前3天超额完成任务.设小王10天之后平均每天生产零件x个,请你试着写出x 所满足的关系式.
19.某次数学测验,共有16道选择题,评分方法是:答对一题得6分,不答或答错一题扣2分.某同学要想得分为60分以上,他至少应答对多少道题?(只列关系式)
20.比较下面每小题中两个算式结果的大小(在横线上填“>”、“<”或“=”).
⑴32+422×3×4;⑵22+222×2×2;⑶12+
2
4
3





2×1×
4
3

⑷(-2) 2+522×(-2)×5;⑸
2
2
3
2
2
1





+





3
2
2
1
2⨯
⨯.
通过观察上面的算式,请你用字母来表示上面算式中反映的一般规律.
四、聚沙成塔
班级50名学生上体育课,老师出了一道题目:现在我拿来一些篮球,如果每5人一组玩一个篮球,有些同学没有球玩;如果每6人一组玩一个篮球,就会有一组玩篮球的人数不足6个.你们知道有几个篮球吗?
甲同学说:如果有x个篮球,550
x<.
乙同学说:650
x>.
丙同学说:6(1)50
x-<.
你明白他们的意思吗?
参考答案
1.B ; 2.A ; 3.D ; 4.C ; 5.C ;6.D ;7.(1)>,(2)>;8.3y +4x <0;9.x <ll .7,
x ≥11.7;10.a <1<
1a ;11.8;12.12a 2+1
2
b 2>ab (a ≠b ) . 13.(1)2a <a +3,(2)1
502
y -≥,(3)3x +l < 2x -5.
14.(1)设这个数为x ,则x 2≥0;(2)设某天的气温为x ℃, 则≤25. 15.2a <a +b <3b . 16.a >b .
17.设参加春游的同学x 人,则8x <250,9x >250(或8x < 250<9x ). 18.50+(20-3)x >270.
19.设该同学至少应答对x 道题,依题意有6x -(16-x )×2≥60.
20.(1)>(2)=(3)>(4)>(5)>; 2
2
a b +≥2ab (当a =b 时取等号). 聚沙成塔:甲同学说的意思是:如果每5人一组玩一个篮球,那么玩球的人数少于50人,有些同学就没有球玩.
乙同学说的意思是:如果每6人一组玩一个篮球,那么就会有一个组玩篮球的人数不足6人.
丙同学说的意思是:如果每6人一组玩一个篮球,除了一个球以外,剩下的每6人玩一个球,还有几个(不足6人)玩另外一个篮球.。

相关文档
最新文档