坐标系与函数综合

合集下载

讲平面直角坐标系与函数

讲平面直角坐标系与函数
函数的奇偶性
奇偶性是指函数是否具有对称性的性质。如果一个函数满足f(-x)=f(x),则称该 函数为偶函数;如果满足f(-x)=-f(x),则称该函数为奇函数。
03
一次函数
一次函数的定义
一次函数的定义
一般形式为y=kx+b,其中k、b为常数,k≠0,自变量x的最 高次数为1。
解释定义
一次函数描述了一个直线上的点的变化规律,其中x表示横坐 标,y表示纵坐标。k为直线的斜率,b为直线与y轴的交点坐 标。
值域是函数的重要组成部分,它们反映了函数与实际问题的联系和限制

函数的表示方法
函数的符号表示
通常用一个函数符号f(x)表示一个函数,其中x是自变量,f表示因变量。函数f(x)的值随x 的变化而变化。
表格法表示函数
表格法是一种直观地表示函数的方法,通过列出一些自变量x的值和对应的因变量y的值, 可以清晰地展示函数的变化情况。
当k<0时,函数在x<0和 x>0时都是单调递增的。
反比例函数的应用
在物理学中,反比例函数被用来 描述电磁场、引力场等物理现象 。
在生物学中,反比例函数被用来 描述细胞分裂、神经传导等生物 过程。
反比例函数的应用广泛,如在物 理学、工程学、生物学、数学、 化学和经济学等领域都有广泛的 应用。
在工程学中,反比例函数被用来 描述电路阻抗、流体阻力等物理 量之间的关系。
在数学中,反比例函数被用来研 究函数的奇偶性、单调性和周期 性等性质。
05
对数函数
对数函数的定义
自然对数函数:以数 学常数e为底数的对 数函数,记作f(x) = ln(x)。
对数函数的值域: f(x) ∈ (-∞, +∞)。

第9讲 平面直角坐标系与函数

第9讲 平面直角坐标系与函数
数所涉及变量的变化规律,抓住图象中的关键点(如起点、转折点或交点等),以及各线段的倾斜程
度或函数增减性的变化规律.
[变式5] (2022武汉)匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h随时间t的
变化规律如图所示(图中O-A-B-C为一折线).这个容器的形状可能是(
A
B
C
D
)
A
1
(1)点的对称规律:关于横(或纵)轴对称的点,横(或纵)坐标不变,纵(或横)坐标变号;关于原点对称,
则横、纵坐标都变号.
(2)点的平移规律:左右移,纵不变,横减加;上下移,横不变,纵加减.
(3)有时需要根据点在坐标系中的位置,建立不等式(组)或方程(组),把点的坐标问题转化为不等式
(组)或方程(组)的问题解决.
D.若x-y=0,则点P(x,y)一定在第一、第三象限角平分线上
3.(2022雅安)在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,-b),则ab的值为(
A.-4
B.4
C.12
D.-12
D)
4.小明从家到学校,先匀速步行到车站,等了几分后坐上了公交车,公交车沿着公路匀速行驶一段时间
后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是(
停止.若点 P 的运动速度为 1 cm/s,设点 P 的运动时间为 t(s),AP 的长度为 y(cm),y 与 t 的函数图象
如图②所示.则当 AP 恰好平分∠BAC 时,t 的值为


2 +2
.
1.(2022常州)在平面直角坐标系xOy中,点A与点A1关于x轴对称,点A与点A2关于y轴对称.已知点
2
A-D-C 向终点 C 运动,设点 Q 的运动时间为 x(s),△APQ 的面积为 y(cm ),若 y 与 x 之间的函数关系的

初三数学总复习-坐标系与函数

初三数学总复习-坐标系与函数
之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图) ,表中记录的是 该体温计部分清晰刻度线及其对应水银柱的长度.
水银柱的长度 x(cm) 4.2 体温计的读数 y(℃) 35.0
… …
8.2 40.0
9.8 42.0

(1)求 y 关于 x 的函数关系式(不需要写出函数的定义域) ; (2)用该体温计测体温时,水银柱的长度为 6.2cm,求此时体温计的读数.
描点法 概念 图象 数形结合 性质
应用
二、高中对于函数内容的有关解释 和要求
• 用运动变化的观点研究、描述客观世界中相互 关联的量之间的依存关系。 • 中学数学,函数思想在解题中的应用主要体现 在两个方面: 借助有关初等函数的性质,解有关求值、解 (证)不等式、解方程以及讨论参数的取值范 围等问题; 在问题的研究中,通过建立函数的关系式或构 造中间函数,把所研究的问题转化为讨论函数 的有关性质,达到化难为易,化繁为简的目的
专题二——函数与几何变换
• 翻折 • 认清 翻“谁”,翻的“方向”,别徒劳 • 《西总》P158 7 (2013.5海淀) 轴在动,作图要求高
• 2015.1海淀23
y
5 4 3 2 1 -5 -4 -3 -2 -1
-1 -2 -3 -4 -5
O
1
2
3
4
5
x
专题三——函数的应用
4.(2014•上海,第 21 题 10 分)已知水银体温计的读数 y(℃)与水银柱的长度 x(cm)
三、《中考说明》中对函数内容要 求的变化
• 降 • P61 C降B 能结合图象对简单实际问题中的 函数关系进行分析 • P62 B降A会利用二次函数的图象求一元二次 方程的近似解 • P62 B降A通过图象了解二次函数的性质

1.第9课时 平面直角坐标系与函数

1.第9课时  平面直角坐标系与函数
下平移n(n>0)个单位长度,得到的对应点的坐标是__________
或_(a__,__b_+__n_).口诀(a:,左b-减n右) 加,上加下减
第9课时 平面直角坐标系与函数
1. 在平面直角坐标系中,点M(-2,-5)在( C )
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
2. 下列各点不在x轴上的是( A )
A. (-1,-1)
B. (-1,1)
C. (1,1)
D. (1,-1)
第9课时 平面直角坐标系与函数
返回思 维导图
返回 目录
Байду номын сангаас
5.点P(2,-3)关于y轴对称的点的坐标是_(_-__2_,__-__3_)_. 6. 在平面直角坐标系中,将点P(-3,2)向上平移4个单位长度后得到点P′,则P′ 的坐标为_(_-__3_,__6_). 7. 在平面直角坐标系中,点P的坐标为(2m+4,m-1),若点P在过点A(2,-3)且 与x轴平行的直线上,则点P的坐标为(0_,__-__3_)__.
坐标刻画一个简单图形;
第9课时 平面直角坐标系与函数
返回思 维导图
返回 目录
◎探索简单实例中的数量关系和变化规律,了解常量、变量的意义; ◎结合实例,了解函数的概念和三种表示法,能举出函数的实例; ◎能结合图象对简单实际问题中的函数关系进行分析; ◎ 能确定简单实际问题中函数自变量的取值范围,并会求出函数值; ◎能用适当的函数表示法刻画简单实际问题中变量之间的关系; ◎结合对函数关系的分析,能对变量的变化情况进行初步讨论.
函数表达式的形式 自变量的取值范围
第9课时 平面直角坐标系与函数
返回思 维导图

平面直角坐标系与一次函数

平面直角坐标系与一次函数

平面直角坐标系与函数知识点一、平面直角坐标系1.平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x 轴和y 轴上的点,不属于任何象限。

2.点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。

知识点二、不同位置的点的坐标的特征1.各象限内点的坐标的特征(1)点P(x,y)在第一象限0,0>>⇔y x (2)点P(x,y)在第二象限0,0><⇔y x (3)点P(x,y)在第三象限0,0<<⇔y x (4)点P(x,y)在第四象限0,0<>⇔y x2.坐标轴上的点的特征(1)点P(x,y)在x 轴上0=⇔y ,x 为任意实数. (2)点P(x,y)在y 轴上0=⇔x ,y 为任意实数. (3)点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0).3.两条坐标轴夹角平分线上点的坐标的特征(1)点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等. (2)点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数.4.和坐标轴平行的直线上点的坐标的特征(1)位于平行于x 轴的直线上的各点的纵坐标相同。

(2)位于平行于y 轴的直线上的各点的横坐标相同。

5.关于x 轴、y 轴或远点对称的点的坐标的特征(1)点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数. (2)点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数.(3)点P 与点p ’关于原点对称⇔横、纵坐标均互为相反数.6.点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于y (2)点P(x,y)到y 轴的距离等于x (3)点P(x,y)到原点的距离等于22y x +知识点三、函数及其相关概念1.变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

二次函数与坐标系关系回顾

二次函数与坐标系关系回顾

二次函数与坐标系关系回顾在数学中,二次函数是一种常见的函数类型,具有形如y = ax^2 +bx + c的标准形式。

其中a、b和c是实数常数,且a不等于0。

在本文中,我们将回顾二次函数与坐标系之间的关系。

一、函数图像与坐标系二次函数的图像通常是一个抛物线,其开口方向取决于a的正负值。

当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。

通过观察函数的系数,我们可以预测函数图像在坐标系中的形状。

在笛卡尔坐标系中,横轴表示自变量x,纵轴表示因变量y。

二次函数的图像与坐标系之间存在以下关系:1. 函数对称轴:二次函数图像的对称轴是垂直于x轴的直线。

对称轴的方程可以通过求解x = -b / 2a得到。

2. 函数顶点:二次函数图像的顶点是抛物线的最高或最低点。

顶点的横坐标由对称轴的x值确定,纵坐标可通过代入对称轴的x值计算得出。

3. 函数与坐标轴的交点:二次函数与坐标轴的交点可以用方程y = 0和x = 0求解。

当y = 0时,我们可以得到函数与x轴的交点;当x = 0时,我们可以得到函数与y轴的交点。

二、函数的变化和坐标系改变二次函数的系数a、b和c的值,将会对函数的图像产生不同的影响。

以下是几个常见的变化情况:1. 纵向伸缩:改变a的绝对值将会使抛物线图像在纵向上发生伸缩。

当|a|大于1时,图像纵向压缩;当0 < |a| < 1时,图像纵向拉伸。

2. 横向平移:改变b的值将会使抛物线图像在横向上发生平移。

当b大于0时,图像左移;当b小于0时,图像右移。

3. 纵向平移:改变c的值将会使抛物线图像在纵向上发生平移。

当c大于0时,图像上移;当c小于0时,图像下移。

三、实例分析以下是几个实例,通过对二次函数与坐标系之间的关系进行分析,我们可以更好地理解二次函数的图像特征:1. y = x^2当a = 1,b = 0,c = 0时,二次函数为y = x^2。

由于a大于0,函数图像开口向上。

对称轴为x = 0,顶点为原点,函数与x轴交于原点,不与y轴相交。

第11讲平面直角坐标系与函数课件

第11讲平面直角坐标系与函数课件

3.对称点的坐标
已知点 P(a,b), (1)其关于 x 轴对称的点 P1 的坐标为__(_a_,__-__b_)_. (2)其关于 y 轴对称的点 P2 的坐标为__(_-__a_,__b_)_. (3)其关于原点对称的点 P3 的坐标为__(-__a_,__-__b_)_. 4.点与点、点与线之间的距离
5.常量、变量 在一个变化过程中,始终保持不变的量叫做__常__量__,可以 取不同数值的量叫做__变__量__. 6.函数 (1)概念: 在一个变化过程中,有两个变量 x 和 y,对于 x 的每一个值, y 都有__唯__一__确__定__的值与其对应,那么就称 x 是自变量,y 是 x 的函数.
(1)点 M(a,b)到 x 轴的距离为___|b_|_. (2)点 M(a,b)到 y 轴的距离为___|a_|_. (3)点 M1(x1,0),M2(x2,0)之间的距离为__|_x_1-__x_2_| _. (4)点 M1(0,y1),M2(0,y2)之间的距离为___|y_1_-__y_2|_.
⑥结合对函数关系的分析,能又对变量的变化情况进行初步讨论,了解分 段函数的意义
1.通过知识梳理,了解常量、变量的意义,函数的概念和三种表示方法, 能举出函数的实例 2.通过知识点例题训练,能确定简单实际问题中函数的自变量取值范围, 并会求出函数值,并能结合图象对简单实际问题中的函数关系进行分析 3.通过能力提升,熟练解决有关取值范围与函数图像的问题。 4.通过聚焦中考,感受中考,体验中考,提高学生分析问题解决问题的能 力。
小结与反思:求自变量的取值范围时要全面考虑式子有意 义的条件,特别是根号在分母中时,要考虑分母不为零的情况.
方法指点:确定自变量的取值范围
【点评】代数式有意义的条件问题: (1)若解析式是整式,则自变量取全体实数; (2)若解析式是分式,则自变量取使分母不为0的全体实数; (3)若解析式是偶次根式,则自变量只取使被开方数为非负数的全体实数: (4)若解析式含有零指数或负整数指数幂,则自变量应是使底数 不等于0的全体实数; (5)若解析式是由多个条件限制,必须第一求出式子中各部分 自变量的取值范围,然后再取其公共部分,此类问题要特别注意, 只能就已知的解析式进行求解,而不能进行化简变形,特别是 不能轻易地乘或除以含自变量的因式.

函数-第1讲:平面直角坐标系与函数

函数-第1讲:平面直角坐标系与函数

1、点坐标的特征:x 轴上点坐标的特征:(m,0)y 轴上点坐标的特征:(0,m )平行于x 轴的直线上点的纵坐标相同,平行y 轴的直线上的点的横坐标相同。

2、点坐标的几何意义:(1)点(a ,b )表示到x轴的距离是b ,到y 轴的距离是a (2)根据点到坐标轴的距离可以写出点坐标,但是需要考虑符号,需要分类讨论。

例:点A 到x 轴的距离是2,到y 轴的距离是3,求点A 的坐标。

答:(3,2)或(-3,2)或(-3,-2)或(3,-2)3、确认函数自变量取值范围的方法:【方法技巧】第一节 函数-平面直角坐标系与函【知识梳理】4、函数图象问题的解题技巧:①解题关键步骤:第一步:识别变量(审题):第二步:判断趋势第三步:找特殊值第四步:列解析式小贴士:以上四步没有绝对的向后顺序,若可以利用排除法求,则优先利用排除法,若实在判断不了函数图象,则可求出函数的关系式;注意出现动点时,要标出动点走过的路程和剩下的路程再去找关系,常用勾股定理和相似来求动点解析式②判别图象是曲还是直:要看变量的个数,若一个变量,则为直线;若变量是两个,则为曲线。

两个变量的增加性一样,则开口向上。

若不一样,开口向下。

③识别图象特点:若动点在直线、射线、线段、圆、圆弧上动,则函数图像为连续圆滑的图像,若在有尖点的折线上运动,则函数图像为出现明显的拐点为分段函数。

【考点突破】考点1:平面直角坐标系例1、在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是()A.B.C. D.变式1、已知点P(a+1,2a﹣3)在第一象限,则a的取值范围是()A.a<﹣1 B.a>C.﹣<a<1 D.﹣1<a<例2、已知点P(0,m)在y轴的负半轴上,则点M(﹣m,﹣m+1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限变式1、在平面直角坐标系中,若点A(a,﹣b)在第一象限内,则点B(a,b)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限例3、已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.变式1、画出平面直角坐标系,标出下列各点;(1)点A在y轴上,位于原点上方,距离原点2个单位长度;(2)点B在x轴上,位于原点右侧,距离原点1个单位长度;(3)点C在x轴上方,y轴右侧,距离每条坐标轴都是2个单位长度;(4)点D在x轴上,位于原点右侧,距离原点3个单位长度(5)点E在x轴上方,y轴右侧,距离x轴2个单位长度,距离y轴4个单位长度.依次连接这些点,你能得到什么图形?例4、已知△ABC中,点A(﹣1,2),B(﹣3,﹣2),C(3,﹣3)①在直角坐标系中,画出△ABC;②求△ABC的面积.变式1、如图,在平面直角坐标系中,O为坐标原点,点A(4,1),B(1,1)C(4,5),D(6,﹣3),E(﹣2,5)(1)在坐标系中描出各点,画出△AEC,△BCD.(2)求出△AEC的面积(简要写明简答过程).变式2、已知:A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.例5、已知,如图,点A(a,b),B(c,d)在平面直角坐标系中的任意两点,且AC⊥x轴于点C,BD⊥x轴于点D.(1)CD= ,|DB﹣AC|= ;(用含a,b,c,d的代数式表示)(2)请猜想:A,B两点之间的距离;(3)利用猜想,若A(﹣2,5),B(4,﹣4),求AB两点之间的距离.变式1、先阅读下列一段文字,在回答后面的问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离公式,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A、B两点间的距离.(3)已知一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),你能判定此三角形的形状吗?说明理由.考点二:函数及其图象例1、在函数y=中,自变量x的取值范围是()A.x<B.x≤C.x>D.x≥变式1、函数y=中,自变量x的取值范围是()A.x>4B.x≥2C.x≥2且x≠﹣4D.x≠﹣4变式2、函数y=的自变量x的取值范围为()A.x>2B.x<2C.x≤2D.x≠2例2、如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.变式1、如图,矩形ABCD中,AB=2,BC=4,P为矩形边上的一个动点,运动路线是A→B→C→D→A,设P点经过的路程为x,以A,P,B为顶点的三角形面积为y,则选项图象能大致反映y与x的函数关系的是()A.B.C.D.例3、如图,已知边长为4的正方形ABCD,P是BC边上一动点(与B、C不重合),连结AP,作PE⊥AP交∠BCD的外角平分线于E.设BP=x,△PCE面积为y,则y与x的函数关系式是()A.y=2x+1B.y=x﹣2x2C.y=2x﹣x2D.y=2x变式1、如图,A的坐标是(0,4),点C是x轴上的一个动点,点B与点O在直线AC两侧,∠BAC=∠OAC,BC⊥AC,点B的坐标为(x,y),y与x的函数关系式为()A.y=8x B.y=C.y=D.y=例4、在五边形ABCDE中,∠B=90°,AB=BC=CD=1,AB∥CD,M是CD边的中点,点P由点A出发,按A→B→C→M的顺序运动.设点P经过的路程x为自变量,△APM的面积为y,则函数y的大致图象是()A.B.C.D.变式1、如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P 从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A.B.C.D.例5、如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.变式1、如图,BC是⊙O直径,A是圆周上一点,把△ABC绕点C顺时针旋转得△EDC,连结BD,当BD∥AC时,记旋转角为x度,若∠ABC=y度,则y与x之间满足的函数关系式为()A.y=180﹣2x B.y=x+90C.y=2x D.y=x例6、如图1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发沿图中某一个扇形顺时针匀速运动,设∠APB=y(单位:度),如果y与点P运动的时间x(单位:秒)的函数关系的图象大致如图2所示,那么点P的运动路线可能为()A.O→B→A→O B.O→A→C→O C.O→C→D→O D.O→B→D→O变式1、一个观察员要到如图1所示的A,B,C,D四个观测点进行观测,行进路线由在同一平面上的AB,BC,CD,DA,AC,BD组成.为记录观察员的行进路线,在AB的中点M处放置了一台定位仪器,设观察员行进的路程为x,观察员与定位仪器之间的距离为y,若观察员匀速行进,且表示y与x的函数关系的图象大致如图2所示,则观察员的行进路线可能为()A.A→D→C→B B.A→B→C→D C.A→C→B→D D.A→C→D→B例7、如图1,在矩形ABCD中,AB<BC,点E为对角线AC上的一个动点,连接BE,DE,过E作EF⊥BC于F.设AE=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的()A.线段BE B.线段EF C.线段CE D.线段DE变式1、如图1,在等边三角形ABC中,AB=2,G是BC边上一个动点且不与点B、C重合,H 是AC边上一点,且∠AGH=30°.设BG=x,图中某条线段长为y,y与x满足的函数关系的图象大致如图2所示,则这条线段可能是图中的()A.线段CG B.线段AG C.线段AH D.线段CH例8、小阳在如图①所示的扇形舞台上沿O﹣M﹣N匀速行走,他从点O出发,沿箭头所示的方向经过点M再走到点N,共用时70秒.有一台摄像机选择了一个固定的位置记录了小阳的走路过程,设小阳走路的时间为t(单位:秒),他与摄像机的距离为y(单位:米),表示y与t的函数关系的图象大致如图②,则这个固定位置可能是图①中的()A.点Q B.点P C.点M D.点N变式1、如图1,△ABC是一块等边三角形场地,点D,E分别是AC,BC边上靠近C点的三等分点.现有一个机器人(点P)从A点出发沿AB边运动,观察员选择了一个固定的位置记录机器人的运动情况.设AP=x,观察员与机器人之间的距离为y,若表示y与x的函数关系的图象大致如图2所示,则观察员所处的位置可能是图1的()A.点B B.点C C.点D D.点E例9、如图,⊙O上有两点A与P,且OA⊥OP,若A点固定不动,P点在圆上匀速运动一周,那么弦AP的长度d与时间t的函数关系的图象可能是()A.①B.③C.①或③D.②或④变式1、如图甲,A、B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位的速度匀速运动,回到点A 运动结束.设运动时间为x ,弦BP 的长度为y ,那么如图乙图象中可能表示y 与x 的函数关系的是( )A .①B .④C .①或③D .②或④<A 组>1.已知点P (0,m )在y 轴的负半轴上,则点M (﹣m ,﹣m+1)在( )A .第一象限B .第二象限C .第三象限D .第四象限2.函数y=中,自变量x 的取值范围是( )A .x >4B .x≥2C .x≥2且x≠﹣4D .x≠﹣43.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min 后回家,图中的折线段OA ﹣AB ﹣BC 是她出发后所在位置离家的距离s (km )与行走时间t (min )之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是( )A .B .C .D .4.小明的父亲从家走了20分钟到一个离家900米的书店,在书店看了10分钟书后,用15分钟【分层训练】返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是()A.B.C.D.5.小颍今天发烧了.早晨她烧得很厉害,吃药后她感觉好多了,中午时小颖的体温基本正常,但是下午她的体温又开始上升,直到夜里小颖才感觉没那么发烫.下面四幅图能较好地刻画出小颖今天体温的变化情况的是()A.B.C.D.6.已知点A(m,﹣2),点B(3,m﹣1),且直线AB∥x轴,则m的值为()A.﹣1B.1C.﹣3D.37.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是()A.(2,﹣3)B.(2,3)C.(3,2)D.(3,﹣2)8.如图,直线m∥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(﹣4,2),点B的坐标为(2,﹣4),则坐标原点为()A.O1B.O2C.O3D.O49.如图,在下列正方形网格中,标注了射阳县城四个大型超市的大致位置(小方格的边长为1个单位).若用(0,﹣2)表示苏果超市的位置,用(4,1)表示文峰超市的位置,则大润发超市的位置可表示为.10.如图,是象棋盘的一部分,若“帅”位于点(2,﹣1)上,“相”位于点(4,﹣1)上,则“炮”所在的点的坐标是.<B组>1、如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A2017的坐标是()A.(0,21008)B.(21008,21008)C.(21009,0)D.(21009,﹣21009)2、观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角3.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P60的坐标是.4.在平面直角坐标系中,已知点A(﹣3,0),B(3,0),点C在坐标轴上,且AC+BC=10,写出满足条件的所有点C的坐标.5、如图∥,我们在“格点”直角坐标系上可以清楚看到:要找AB或DE的长度,显然是转化为求Rt∥ABC或Rt∥DEF的斜边长.下面:以求DE为例来说明如何解决:从坐标系中发现:D(﹣7,5),E(4,﹣3).所以DF=|5﹣(﹣3)|=8,EF=|4﹣(﹣7)|=11,所以由勾股定理可得:DE==.下面请你参与:(1)在图∥中:AC=,BC=,AB=.(2)在图∥中:设A(x1,y1),B(x2,y2),试用x1,x2,y1,y2表示AC=,BC=,AB=.(3)(2)中得出的结论被称为“平面直角坐标系中两点间距离公式”,请用此公式解决如下题目:已知:A(2,1),B(4,3),C为坐标轴上的点,且使得∥ABC是以AB为底边的等腰三角形.请求出C点的坐标.6、如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P运动到B点时,P、Q两点同时停止运动.设P点运动的时间为t秒,∥APQ的面积为S,则表示S与t之间的函数关系的图象大致是()A.B.C.D.7、如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),∥OEF 的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.参考答案【考点突破】考点1:平面直角坐标系例1、解:∵点在第三象限,∴点的横坐标是负数,纵坐标也是负数,即﹣2m+3<0,解得m>.故选B.变式1、解:∵点P(a+1,2a﹣3)在第一象限,∴,解得:a,故选:B.例2、解:由点P(0,m)在y轴的负半轴上,得m<0.由不等式的性质,得﹣m>0,﹣m+1>1,则点M(﹣m,﹣m+1)在第一象限,故选:A.变式1、解:∵点A(a,﹣b)在第一象限内,∴a>0,﹣b>0,∴b<0,∴点B(a,b)所在的象限是第四象限.故选D.例3、解:(1)∵点P(a﹣2,2a+8),在x轴上,∴2a+8=0,解得:a=﹣4,故a﹣2=﹣4﹣2=﹣6,则P(﹣6,0);(2))∵点P(a﹣2,2a+8),在y轴上,∴a﹣2=0,解得:a=2,故2a+8=2×2+8=12,则P(0,12);(3)∵点Q的坐标为(1,5),直线PQ∥y轴;,∴a﹣2=1,解得:a=3,故2a+8=14,则P(1,14);(4)∵点P到x轴、y轴的距离相等,∴a﹣2=2a+8或a﹣2+2a+8=0,解得:a1=﹣10,a2=﹣2,故当a=﹣10则:a﹣2=﹣12,2a+8=﹣12,则P(﹣12,﹣12);故当a=﹣2则:a﹣2=﹣4,2a+8=4,则P(﹣4,4).综上所述:P(﹣12,﹣12),(﹣4,4).变式1、解:(1)∵点A在y轴上,位于原点上方,距离原点2个单位长度,∴点A的坐标为(0,2);(2)∵点B在x轴上,位于原点右侧,距离原点1个单位长度,∴点B的坐标为(1,0);(3)∵点C在x轴上方,y轴右侧,距离每条坐标轴都是2个单位长度,∴点C的坐标为(2,2);(4)∵点D在x轴上,位于原点右侧,距离原点3个单位长度,∴点D的坐标为(3,0);(5)∵点E在x轴上方,y轴右侧,距离x轴2个单位长度,距离y轴4个单位长度,∴点E的坐标为(4,2).将A、B、C、D、E标在同一坐标系中,依次连接这些点,如图所示,得到的图形为W形.例4、解:(1)△ABC如图所示;(2)△ABC的面积=6×5﹣×2×4﹣×1×6﹣×5×4,=30﹣4﹣3﹣10,=30﹣17,=13.变式1、解:(1)如图所示:(2)△AEC取EC为底,则EC为6,EC边上高AC=4所以S△AEC=×6×4=12.变式2、解:(1)S△ABC=3×4﹣×2×3﹣×2×4﹣×1×2=4;(2)如图所示:P1(﹣6,0)、P2(10,0)、P3(0,5)、P4(0,﹣3).例5、解:(1)CD=|c﹣a|,|DB﹣AC|=|b﹣d|;(2)AB=;(3)AB==3.故答案为|c﹣a|,|b﹣d|;.变式1、解:(1)∵A(2,4)、B(﹣3,﹣8),∴|AB|==13,即A、B两点间的距离是13;(2)∵A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,∴|AB|=|﹣1﹣5|=6,即A、B两点间的距离是6;(3)∵一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),∴AB=5,BC=6,AC=5,∴AB=AC,∴△ABC是等腰三角形.考点二、函数及其图象例1、解:在函数y=中,自变量x的取值范围是x≤,故选:B.变式1、解:由题意得,解得x≥2,x≠﹣4,∥自变量x的取值范围是x≥2,故选B.变式2、解:∥函数表达式y=的分母中含有自变量x,∥自变量x的取值范围为:x﹣2≠0,即x≠2.故选D.例2、快速解法:由题意可得P经过两个线段,BA,AC,当P在BA上运动时,BD是变化的(增大),PD也是变化的(增大),所以面积是曲线,不是直线,排除A、D当P在AC上运动时,BD是变化的(增大),PD也是变化的(减少),所以面积是曲线,且是下降的。

平面直角坐标系与函数-2023年中考数学第一轮总复习课件(全国通用)

平面直角坐标系与函数-2023年中考数学第一轮总复习课件(全国通用)

地理位置的 ①平面直角坐标系法;②方位角+距离;③经纬度.
表示方法
典例精讲
坐标的几何意义
知识点二
【例2】如图,直线m⊥n,在某直角坐标系中,x轴∥m,y轴∥n,点A的坐标为
(-4,2),点B的坐标为(2,-4),则坐标原点为( A )
A.O1 B.O2 C.O3 D.O4
A n
O1 O4
O2
B m
秒的速度分别沿折线A-D-C与折线A-B-C运动至点C.设阴影部分△AMN的面
积为S,运动时间为t,则S关于t的函数图象大致为( D )
D
Cs
s
s
s
M
A N B O A tO B tO C t O D t 6.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和 BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是( B )
强化训练
平面直角坐标系与函数
提升能力
7.如图,在菱形ABCD中,∠B=60º,AB=2,动点P从点B出发,以每秒1个单位长度
的速度沿折线BA→AC运动到点C,同时动点Q从点A出发,以相同速度沿折线
AC→CD运动到点D,当一个点停止运动时,另一个点也随之停止.设△APQ的
面积P为y,A运动Q时间为Dx秒43y3,则下列图象43y3能大致反映yy4与33 x之间函数4y33关系的是( B )
原点对称,则这时C点的坐标可能是( B )
A.(1,3) B.(2,-1) C.(2,1) D.(3,1)
2.在平面直角坐标系中,A,B,C,D,M,N的位置如图所示,若点M、N的坐标分
别为(-2,0),(2,0)则在第二象限内的点时__A___.

平面直角坐标系

平面直角坐标系
3. 一、三象限,二、四象限角平分线上点的坐标特征
y 在第一、三象限夹角的角平分线上 x y ; 点 Px, y 在第二、四象限夹角的角平分线上 x y 0 ,即 x y . 点 Px,
一、 直接计算 二、 “割补法” . 1. 割:分割,把图形分割成几部分容易求解的图形,分别求解,然后相加即可. 2. 补:补齐,把图形补成一个容易求解的图形,然后再减去补上的那些部分. 一、 坐标找规律的特点 1、 坐标规律和以前学过的数字规律、图形规律一样,只不过是放在坐标系中。 2、 写出前面几个点的坐标,观察横纵坐标的数字变化,转化成数字规律。 3、 观察点的运动规律,找出其中的变化过程。 二、 常见的规律类型: 循环类数字规律,等差数列,等比数列等等 二、用坐标表示地理位置 1、 用有序数对表示平面内点的位置时,要注意坐标中两个数分别表示的意义及顺序,如注 意区分 2,3 与 3, 2 的不同,切勿混淆.在表示点的坐标时,一定要把点的横坐标写在 前面,纵坐标写在后面,不能颠倒. 三、坐标系中点的变换 4. 对称点的坐标特征
b 解. 求直线 y kx b 与 x 轴交点时, 可令 y 0 , 得到方程 kx b 0 , 解方程得 x , k b b 直线 y kx b 交 x 轴于 ( ,0) , 就是直线 y kx b 与 x 轴交点的横坐标. k k
二、一次函数与一元一次不等式的关系: 任何一元一次不等式都可以转化为 ax b 0 或 ax b 0 ( a、b 为常数,a 0 )的形 式,所以解一元一次不等式可以看作:当一次函数值大(小)于 0 时,求自变量相应的 取值范围. 三、一次函数与二元一次方程(组)的关系: 一次函数的解析式 ykxb ( k ) 0 本身就是一个二元一次方程,直线 ykxb ( k ) 0 上有无数个点,每个点的横纵坐标都满足二元一次方程 ykxb ( k ) 0 ,因此二元一次方程的解也就有无数个. 十、一次函数图像的变换

第13课坐标系与函数

第13课坐标系与函数

第13课坐标系与函数
坐标系是数学中用来表示点的位置的一种工具。

它由两条互相垂直的
线组成,分别称为x轴和y轴。

每个点都可以用一对数字(x,y)来表示,
其中x表示点在x轴上的位置,y表示点在y轴上的位置。

在坐标系中,原点是两条轴的交点,坐标轴上的单位长度称为单位长度。

坐标系可以用来表示平面上的几何图形、函数关系等。

函数是一种特殊的关系,它把一个集合的元素映射到另一个集合的元素。

在数学中,通常把函数表示为y=f(x),其中x是自变量,y是因变量,f表示函数关系。

函数可以通过一个算式、图表或者一组数据来表示。

在坐标系中,函数可以用曲线来表示。

曲线上的每个点的坐标都满足
y=f(x)的关系。

通过观察曲线的形状和特点,我们可以了解函数的性质和
行为。

函数可以有各种形式,常见的函数类型包括线性函数、二次函数、指
数函数、对数函数等。

线性函数的图像是一条直线,二次函数的图像是一
个抛物线,指数函数和对数函数的图像则具有特殊的形状。

函数还有一些特点和性质,包括定义域、值域、奇偶性、单调性、极
值等。

函数的定义域是自变量的取值范围,值域是因变量的取值范围。


数的奇偶性表示函数关系在对称轴上是否具有对称性,单调性表示函数在
整个定义域上的变化趋势,极值表示函数在一些点上的最大值或最小值。

平面直角坐标系与函数及图像

平面直角坐标系与函数及图像

第三模块函数3.1平面直角坐标系与函数及图像考点一、平面直角坐标系内点的坐标1.有序数对(1)平面内的点可以用一对有序实数来表示.例如点A在平面内可表示为A(a,b),其中a表示点A的横坐标,b表示点A的纵坐标.(2)平面内的点和有序实数对是一一对应的关系,即平面内的任何一个点可以用一对有序实数来表示;反过来每一对有序实数都表示平面内的一个点.(3)有序实数对表示这一对实数是有顺序的,即(1,2)和(2,1)表示两个不同的点.2.平面内点的坐标规律(1)各象限内点的坐标的特征点P(x,y)在第一象限⇔x>0,y>0;点P(x,y)在第二象限⇔x<0,y>0;点P(x,y)在第三象限⇔x<0,y<0;点P(x,y)在第四象限⇔x>0,y<0.(2)坐标轴上的点的坐标的特征点P(x,y)在x轴上⇔y=0,x为任意实数;点P(x,y)在y轴上⇔x=0,y为任意实数;点P(x,y)在坐标原点⇔x=0,y=0.【例1】在平面直角坐标系中,点P(m,m-2)在第一象限,则m的取值范围是________.解析:由第一象限内点的坐标的特点可得:m>0,m-2>0,解得m>2.方法点拨:此类问题的一般方法是根据点在坐标系中的符号特征,建立不等式组或者方程(组),把点的问题转化为不等式组或方程(组)来解决.考点二、平面直角坐标系内特殊点的坐标特征1.平行于坐标轴的直线上的点的坐标特征(1)平行于x 轴(或垂直于y 轴)的直线上点的纵坐标相同,横坐标为不相等的实数.(2)平行于y 轴(或垂直于x 轴)的直线上点的横坐标相同,纵坐标为不相等的实数.2.平面直角坐标系各象限角平分线上的点的坐标特征(1)第一、三象限角平分线上的点,横、纵坐标相等.(2)第二、四象限角平分线上的点,横、纵坐标互为相反数.3.平面直角坐标系对称点的坐标特征点P (x ,y )关于x 轴的对称点P 1的坐标为(x ,-y );关于y 轴的对称点P 2的坐标为(-x ,y );关于原点的对称点P 3的坐标为(-x ,-y ). 以上特征可归纳为:(1)关于x 轴对称的两点,横坐标相同,纵坐标互为相反数.(2)关于y 轴对称的两点,横坐标互为相反数,纵坐标相同.(3)关于原点对称的两点,横、纵坐标均互为相反数.【例2】已知点M(1-2m ,m -1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是 ( )解析:由题意得,点M 关于x 轴对称的点的坐标为(1-2m ,1-m ).∵M (1-2m ,m -1)关于x 轴的对称点在第一象限, ∴⎩⎨⎧1-2m >0,1-m >0,解得⎩⎨⎧m <12,m <1.考点三、确定物体位置的方位1.平面内点的位置用一对有序实数来确定.2.方法 (1)平面直角坐标法(2)方向角和距离定位法用方向角和距离确定物体位置,方向角是表示方向的角,距离是物体与观测点的距离.用方向角和距离定位法确定平面内点的位置时,要注意中心点的位置,中心点变化了,则方向角与距离也随之变化.考点四、点到坐标轴的距离考点五、平面直角坐标系中的平移与对称点的坐标-4,-1),C(2,0),将△ABC 平移至△A1B1C1的位置,点A、B、C的对应点分别是A1、B1、C1,若点A1的坐标为(3,1),则点C1的坐标为________.解析:由A(-2,3)平移后点A1的坐标为(3,1),可知A点横坐标加5,纵坐标减2,则点C的坐标变化与A点的坐标变化相同,故C1(2+5,0-2),即(7,-2).方法点拨:求一个图形旋转、平移后的图形上对应点的坐标,一般要把握三点:一是根据图形变换的性质;二是利用图形的全等关系;三是确定变换前后点所在的象限.考点六、函数及其图象1.函数的概念(1)在一个变化过程中,我们称数值发生变化的量为变量,有些数值是始终不变的,称它们为常量.(2)函数的定义:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x在其取值范围内的每一个确定的值,y都有唯一确定的值与其对应,那么就说,x是自变量,y是x的函数.函数值:对于一个函数,如果当自变量x =a 时,因变量y =b ,那么b 叫做自变量的值为a 时的函数值注:函数不是数,它是指某一变化过程中的两个变量之间的关系(3)用来表示函数关系的数学式子,叫做函数解析式或函数关系式.2.函数的表示法及自变量的取值范围(1)函数有三种表示方法:解析法,列表法,图象法,这三种方法有时可以互相转化.(表示函数时,要根据具体情况选择适当的方法,有时为了全面认识问题,可同时使用几种方法)(2)当函数解析式表示实际问题或几何问题时,其自变量的取值范围必须符合实际意义或几何意义.3.函数的图象:对于一个函数,把自变量x 和函数y 的每对对应值分别作为点的横坐标与纵坐标在平面内描出相应的点,组成这些点的图形叫这个函数的图象.(1)画函数图象,一般按下列步骤进行:列表、描点、连线.(2)图象上任一点的坐标是解析式方程的一个解;反之以解析式方程的任意一个解为坐标的点一定在函数图象上.温馨提示:画图象时要注意自变量的取值范围,当图象有端点时,要注意端点是否有等号,有等号时画实心点,无等号时画空心圆圈.【例4】函数y =1x +x 的图象在( ) A .第一象限 B .第一、三象限C .第二象限D .第二、四象限解析:先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a的取值范围即可.⎩⎨⎧2x<3(x -3)+1,①3x +24>x +a.② 由①得x >8,由②得x <2-4a ,其解集为8<x <2-4a.因不等式组有四个整数解,为9,10,11,12,则⎩⎨⎧2-4a>12,2-4a≤13,解得-114≤a<-52. 故选B.【例5】[2013·苏州] 在物理实验课上,小明用弹簧秤将铁块悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直到铁块完全露出水面一定高度.下图能反映弹簧秤的度数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是 ( )解析:因为小明用弹簧秤将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度.露出水面前读数y 不变,出水面后y 逐渐增大,离开水面后y 不变.故选C.方法点拨:观察图象时,首先弄清横轴和纵轴所表示的意义,弄清哪个是自变量,哪个是因变量;然后分析图象的变化趋势,结合实际问题的意义进行判断.考点七、自变量取值范围的确定方法求函数自变量的取值范围时,首先要考虑自变量的取值必须使解析式有意义.1.自变量以整式形式出现,它的取值范围是全体实数.2.自变量以分式形式出现,它的取值范围是使分母不为零的实数.3.当自变量以偶次方根形式出现,它的取值范围是使被开方数为非负数;以奇次方根出现时,它的取值范围为全体实数.4.当自变量出现在零次幂或负整数幂的底数中,它的取值范围是使底数不为零的数5.在一个函数关系式中,同时有几种代数式,函数自变量的取值范围应是各种代数式中自变量取值范围的公共部分.【例6】(1)(2010·遵义)函数y =1x -2的自变量x 的取值范围是________. (2)(2010·济宁)在函数y =x +4中,自变量x 的取值范围是________.(3)(2010·黄冈)函数y =x -3x +1的自变量x 的取值范围是________. (4)(2010·玉溪)函数y =x x +1中自变量x 的取值范围是________. 【解答】(1)由x -2≠0得x≠2.(2)由x +4≥0,得x≥-4.(3)由⎩⎨⎧ x -3≥0,x +1≠0,得x≥3. (4)由x +1>0,得x >-1.。

中考一轮复习--第9讲 平面直角坐标系与函数的概念

中考一轮复习--第9讲 平面直角坐标系与函数的概念
是( A )
A.(-1,1) B.(3,1) C.(4,-4) D.(4,0)
解析:∵将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长
度,得到点B,
∴点B的横坐标为1-2=-1,纵坐标为-2+3=1,∴B的坐标为(-1,1).故
选A.
考法1
考法2
பைடு நூலகம்
考法3
对应练3(2019·安徽庐江期末)如图为正方形网格中的一片树叶,
点O是这两条数轴的原点,这样建立的两条数轴构成平面直角坐标
系.
考点梳理
自主测试
3.平面直角坐标系中点的坐标
各象限点
坐标的符
号特征
坐标轴上
点的坐标
特征
象限角平
分线上点
的坐标特

x 轴上的点的纵坐标为 0 ,y 轴上的点的横坐标为
0,原点的坐标为(0,0)
第一、三象限角平分线上点的横、纵坐标相等;第
二、四象限角平分线上点的横、纵坐标互为相反
答案:D
解析:∵点A(-3,0),点P(a,b),点B(m,n)为弦PA的中点,
-3+
0+
∴m= 2 ,n= 2 .
∴a=2m+3,b=2n.
又a,b满足等式:a2+b2=9,
∴(2m+3)2+4n2=9.故选D.
考法1
考法2
考法3
对应练1(2018·四川攀枝花)若点A(a+1,b-2)在第二象限,则点B(a,1-b)在( D )
间的距离为|y2-y| .
考点梳理
自主测试
5.坐标系中的距离公式
(1)点P(a,b)到x轴的距离是|b|
(2)点P(a,b)到y轴的距离是|a|

第11讲 平面直角坐标系与函数

第11讲 平面直角坐标系与函数

一象限内,则m的取值范围是______.
【解析】因为第一象限内的点横坐标为正,纵坐标为正,所以
m 0, m 2 0,
解得
m 0, 所以m>2. m 2,
答案:m>2
求函数自变量的取值范围
◆中考指数:★★★★☆ 函数自变量取值范围的五种情形: 1.若函数解析式是整式,其取值范围是全体实数. 2.若函数解析式是分式,其取值范围应使分母不等于零. 3.若函数解析式是偶次根式,其取值范围应使被开方数为 非负数. 4.若函数解析式为零指数和负整数指数,其取值范围应使 底数不等于0. 5.与实际问题有关的函数解析式,其自变量的取值范围除 了满足上述条件外,还应使实际问题有意义.
平路、上坡、下坡的时间分别为8分钟、10分钟、2分钟,所以
总共需要20分钟.
【对点训练】 6.(2012·益阳中考)在一个标准大气压下,能反映水在均匀 加热过程中,水的温度(T)随加热时间(t)变化的函数图象大 致是( )
【解析】选B.选项A:由图象中发现,水温达到100 ℃时温度
保持了一段时间后又在上升,错误;选项C:由图象中发现,水
【例】(2011·长沙中考)如图,在平面直角坐标系中,
点P(-1,2)向右平移3个单位长度后的坐标是(
(A)(2,2) (C)(-1,5) (B)(-4,2) (D)(-1,-1)
)
【解题导引】根据“右加左减,上加下减”确定点P平移后的
坐标.
【规范解答】选A.借助网格,可以看出在平面直角坐标系中点
3 2 (D) x 3 2
(A)x> 3
2 (C)x 3 2
(B) x
【解析】选D.∵2x-3≥0,解得 x
3 . 2

第1部分 第3章 第1节 平面直角坐标系与函数

第1部分 第3章 第1节 平面直角坐标系与函数

2.(2019·日照)如图,在单位为 1 的方格纸上,△A1A2A3,△A3A4A5,
△A5A6A7,…,都是斜边在 x 轴上,斜边长分别为 2,4,6,…的等腰直角
三角形,若△A1A2A3 的顶点坐标分别为 A规律,A2019 的坐标为( A )
函数(2018.10,2016.9,2014.9,2012.9) 1.函数及相关概念 (1)变量与常数:在一个变化过程中,可以变化的量,是变量;保持不 变的量,是常量. (2)函数:一般地,在一个变化过程中,如果有两个变量 x,y,且对于 x 在它允许取值范围内的每一个值,y 都有⑯ 唯一确定 的值与它对应,那么 就说 x 是自变量,y 是 x 的函数. (3)函数值:对于一个函数,取自变量 x 在允许范围内的一个确定值, 代入函数表达式求得的函数 y 的值,就叫做函数值.
【解析】由题意知,A1(21, 23),A2(1,0),A3(32, 23), A4(2,0),A5(25,- 23),A6(3,0),A7(72, 23),…综上可知,每个点的 横坐标为序号的一半,纵坐标每 6 个点依次为 23,0, 23,0,- 23,0 这 样循环,∴A2019(20219, 23).
【解析】∵不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,x 表示漏水时间,y 表示壶底到水面的高度,∴y 随 x 的增大而减小,符合一 次函数图象.
点的坐标特征(冷考) 1.(2013 安徽,18(2),4 分)我们把正六边形的顶点及其对称中心称作 如图(1)所示基本图的特征点,显然这样的基本图共有 7 个特征点,将此基 本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图(2), 图(3),….
如图所示,三架飞机 P,Q,R 保持编队飞行,某时刻在坐标 系中的坐标分别为(-1,1),(-3,1),(-1,-1).30 秒后,飞机 P 飞到 P′(4, 3)位置,则飞机 Q,R 的位置 Q′,R′分别为( A )

平面直角坐标系与函数(共29张PPT)

平面直角坐标系与函数(共29张PPT)

第9讲┃ 平面直角坐标系与函数
第9讲 平面直角坐标系与函数
┃考点自主梳理与热身反馈 ┃ 考点1 平面直角坐标系 D
C
第9讲┃ 平面直角坐标系与函数
【归纳总结】
第9讲┃ 平面直角坐标系与函数
考点2 平面直角坐标系中点的对称来自平移 CCB 第9讲┃ 平面直角坐标系与函数
【归纳总结】
第9讲┃ 平面直角坐标系与函数
考点3 函数及其图象 C
B
D
第9讲┃ 平面直角坐标系与函数
D
D
C
第9讲┃ 平面直角坐标系与函数
C
第9讲┃ 平面直角坐标系与函数
C
第9讲┃ 平面直角坐标系与函数
第9讲┃ 平面直角坐标系与函数
第9讲┃ 平面直角坐标系与函数
第9讲┃ 平面直角坐标系与函数
第9讲┃ 平面直角坐标系与函数
第9讲┃ 平面直角坐标系与函数
第9讲┃ 平面直角坐标系与函数
[中考点金]
第9讲┃ 平面直角坐标系与函数
A
第9讲┃ 平面直角坐标系与函数
探究二 函数图象与实际问题
A
第9讲┃ 平面直角坐标系与函数
第9讲┃ 平面直角坐标系与函数
[中考点金]
第9讲┃ 平面直角坐标系与函数
C
第9讲┃ 平面直角坐标系与函数
┃考题自主训练与名师预测┃
B
第9讲┃ 平面直角坐标系与函数
【归纳总结】
全体实数 不等于0 大于等于0 不等于0
第9讲┃ 平面直角坐标系与函数
列表法 解析式法
图象法 描点
连线
减小
第9讲┃ 平面直角坐标系与函数
【知识树】
第9讲┃ 平面直角坐标系与函数
┃考向互动探究与方法归纳┃ 探究一 利用平面直角坐标内点的坐标特征求字母的取值范围

函数与坐标系的理解与运用

函数与坐标系的理解与运用

函数与坐标系的理解与运用函数与坐标系是数学中非常重要的概念和工具。

函数是一种关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。

而坐标系则是一个二维或多维空间中的点的表示方式。

一、函数的基本概念和性质函数的定义:函数是一个特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。

函数通常用符号表示,例如f(x),其中x代表输入值,f(x)代表输出值。

函数的可变性:函数的输出值随着输入值的改变而改变。

函数可以是线性的、非线性的、周期性的等等。

函数的可变性可以通过函数图像来表示,函数图像是函数在坐标系中的表示。

函数的性质:函数具有定义域、值域和图像等性质。

定义域是输入值的集合,值域是输出值的集合,而图像是函数在坐标系中的表示。

函数的运算法则:函数之间可以进行加减乘除等运算。

例如,两个函数可以进行加法运算得到一个新的函数。

函数的应用:函数在数学中有广泛的应用,例如在解方程、建模等方面起到重要作用。

二、坐标系的基本概念和性质直角坐标系:直角坐标系是一个由两条相互垂直的线组成的平面,其中一条线称为x轴,另一条线称为y轴。

通过坐标系,可以表示平面上的任意点。

极坐标系:极坐标系是一个由极轴和极径组成的平面。

极轴是一个固定的线,极径是从原点到点的距离。

通过极坐标系,可以表示点的位置和方向。

坐标系的转换:直角坐标系和极坐标系之间可以进行相互转换。

通过坐标系的转换,可以方便地描述复杂的图形和计算相关的量。

三、函数与坐标系的关系函数的图像在坐标系中可以表示为曲线或者直线。

通过函数的图像,可以更直观地理解函数的性质和变化规律。

坐标系可以帮助我们理解函数的定义域、值域和图像。

通过函数在坐标系中的表示,可以更好地理解函数的变化趋势和特点。

函数图像可以通过坐标系的变换来表示。

例如,对于一条直线的方程,可以通过直角坐标系或者极坐标系来表示。

总结:函数与坐标系是数学中重要的概念和工具。

函数是一种关系,将一个集合中的元素映射到另一个集合中的唯一元素。

平面直角坐标系与函数

平面直角坐标系与函数

六边形,所以 OC=OA=1,∠COD=60°,所以 OM=12,CM= 23,因为点 C
在第四象限内,所以点 C 的坐标为
1 2
,-
3 2
.
答案:
1 2
,-
3 2
命题点2 平面直角坐标系内点的坐标特征
【例2】 已知点P(a+1,2a-1)关于x轴的对称点在第一象限,则a的
取值范围是( )
A.a>-1 C.-1<a<12
P(x,y)
向上
平移
b个
向右平移a个单位
单位
P1(x+a,y)
点到坐标 轴及原点 的距离
点P(a,b)到x轴的距离为 b
点P(a,b)到y轴的距离为⑨ a 点P(a,b)到原点的距离为⑩ a2 b2
常量和变量:在某一变化过程中,保持不变的 量叫做常量,可以变化的量叫做变量
相 关 函数:在某一变化过程中,有两个变量x与y, 概 念 如果对于x在某一范围内的每一个确定的值,
解:解法一:∵-1≤x<3,∴2≥-2x>-6,∴2+4≥-2x+4>-6
+4,即6≥-2x+4>-2.∵y=-2x+4,∴6≥y>-2,即-2<y≤6 解
法二:∵y=-2x+4,∴x=
4-y 2
.∵-1≤x<3,∴-1≤
4-y 2
<3,∴-
2≤4-y<6,∴-2-4≤-y<6-4,-6≤-y<2,∴-2<y≤6
[对应训练]
1 在函数 y= x2-5中,自变量 x 的取值范围是( A ) A.x>5 B.x≥5 C.x≠5 D.x<5
2 在 函 数 y = x+4 + x - 2 中 , 自 变 量 x 的 取 值 范 围 是 _______x_≥_-__4_且__x_≠_0_________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备用图
1、如图,△ABC内接于⊙O,AD⊥BC,OE⊥BC, OE=
1
2
BC.(1)求∠BAC的度数.
(2)将△ACD沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H.求证:
四边形AFHG是正方形.
(3)若BD=6,CD=4,求AD的长.
2.如图所示,平面直角坐标系中, 抛物线y=ax2+bx+c 经过 A(0,4)、B(-2,0)、C(6,0).过点A
作AD∥x轴交抛物线于点D,过点D作DE⊥x轴,垂足为点E.点M是四边形OADE的对角线的交点,
点F在y轴负半轴上,且F(0,-2).
(1)求抛物线的解析式,并直接写出四边形OADE的形状;
(2)当点P、Q从C、F两点同时出发,均以每秒1个长度单位的速度沿CB 、FA方向运动,点P
运动到O时P、Q两点同时停止运动.设运动的时间为t秒,在运动过程中,以P、Q、O、M四点为
顶点的四边形的面积为S,求出S与t之间的函数关系式,并写出自变量的取值范围;
(3)在抛物线上是否存在点N,使以B、C、F、N为顶点的四边形是梯形?若存在,直接写出点N
的坐标;不存在,说明理由.
3.如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C
(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.⑴求抛物线的函数表达式;
⑵求直线BC的函数表达式;⑶点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线
于P、Q两点,且点P在第三象限.
①当线段PQ=
3
4
AB时,求tan∠CED的值;
②当以点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标.
4、如图,在平面直角坐标系中,O是坐标原点,直线9
4
3
+
-
=x
y与x轴,y轴分别交于B,C
两点,抛物线c
bx
x
y+
+
-
=2
4
1
经过B,C两点,与x轴的另一个交点为点A,动点P从点A出
发沿AB以每秒3个单位长度的速度向点B运动,运动时间为t(0<t<5)秒.
(1)求抛物线的解析式及点A的坐标;
(2)以OC为直径的⊙O′与BC交于点M,当t为何值时,PM与⊙O′相切?请说明理由。

(3)在点P从点A出发的同时,动点Q从点B出发沿BC以每秒3个单位长度的速度向点C

动,动点N从点C出发沿CA以每秒
5
10
3
个单位长度的速度向点A运动,运动时间和点P相
同。

①记△BPQ的面积为S,当t为何值时,S最大,最大值是多少?
②是否存在△NCQ为直角三角形的情形,若存在,求出相应的t值;若不存在,请说明理由.。

相关文档
最新文档