人教版八年级数学上册10月月考试卷附答案

合集下载

四川省德阳市中江县2024-2025学年八年级上学期10月月考数学试题[含答案]

四川省德阳市中江县2024-2025学年八年级上学期10月月考数学试题[含答案]

A.4
3
S V ABP ,其中正确的个数是(
2
B.3
C.2
第 II 卷

D.1
非选择题(102 分)
二、填空题(本大题共 7 个小题,每小题 4 分,本大题满分 28 分)
13.如图,在 V ABC 中, D 是 BC 边上一点, E 是边上一点.在 △ACE 中, Ð CAE 的对
边是

14.正十边形的每个外角等于
从点 B 出发,在直线 BC 上以 2cm/ s 的速度移动,过点 E 作 BC 的垂线交直线 CD 于点 F ,当
点 E 运动
s 时, CF
= AB .
19.如图,在 V ABC 中, ÐA = 20°, ÐEBC , ÐDCB 为 V ABC 的外角, ÐEBC 与 ÐDCB 的平分
线交于点 A1 , ÐEBA1 与 ÐDCA1 的平分线交于点 A2 , ¼,ÐEBAn -1 与 ÐDCAn -1 的平分线相交于点
的内角和为(
A. 1800°

B. 1440°
C. 1080°
试卷第 2 页,共 7 页
D. 720°
8.如图,在 V ABC 中,点 E 是 BC 的中点, AB = 7 , AC = 10 , △ACE 的周长是 25,则 V ABE
的周长是( )
A.18
B.22
C.28
D.32
9.如图,在 8 ´ 8 的正方形网格中, V ABC 的顶点和线段 EF 的端点都在小正方形的顶点上,

15.如图,四边形 ABCD 中,点 M、N 分别在 AB、BC 上,将 V BMN 沿 MN 翻折得 V FMN ,
若 MF∥AD,FN∥DC ,则 ÐB =

八年级(上)月考数学试卷(10月份)附答案

八年级(上)月考数学试卷(10月份)附答案

八年级(上)月考数学试卷(10月份)一、选择题(每小题2分,共16分)1.如图,下列图案是轴对称图形的有()A. 1个 B. 2个 C. 3个 D. 4个2.如图,AP平分∠BAF,PD⊥AB于点D,PE⊥AF于点E,则△APD与△APE全等的理由是()A. SSS B. SAS C. SSA D. AAS3.装修工人在搬运中发现有一块三角形的陶瓷片不慎摔成了四块(如图),他要拿哪一块回公司才能更换到相匹配的陶瓷片()A.① B.② C.③ D.④4.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(S、S、S) B.(S、A、S) C.(A、S、A) D.(A、A、S)5.等腰三角形的两边长分别为5cm和10cm,则此三角形的周长是()A. 15cm B. 20cm C. 25cm D. 20cm或25cm6.如图,AC=AD,BC=BD,则有()A. AB垂直平分CD B. CD垂直平分ABC. AB与CD互相垂直平分 D. CD平分∠ACB7.如图,△ABC中,∠ACB=90°,∠B=30°,AD是角平分线,DE⊥AB于E,AD、CE相交于点H,则图中的等腰三角形有()A. 2个 B. 3个 C. 4个 D. 5个二、填空题(每小题2分,共20分)8.角的对称轴是.9.若等腰三角形的顶角为50°,则它的底角为.10.如图,△ABC≌△DEF,由图中提供的信息,可得∠D= °11.如图8,点C、D在BE上,BC=DE,∠1=∠2,要使得△ABD≌△AEC,还需要添加一个条件,你添加的条件是.12.工人师傅砌门时,如图所示,常用木条EF固定矩形木框ABCD,使其不变形,这是利用.13.如图,AB⊥AC,点D在BC的延长线上,且AB=AC=CD,则∠ADB= °.14.如图,在△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若△ADE的周长为9,△ABC的周长是14,则BC= .15.已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有对全等三角形.16.如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有个.17.如图所示,AOB是一钢架,且∠AOB=10°,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH…,添加的钢管长度都与OE相等,则最多能添加这样的钢管根.三、作图题(每小题5分,共10分)18.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)19.利用网格线作图:在BC上找一点P,使点P到AB和AC的距离相等.然后,在射线AP 上找一点Q,使QB=QC.四、解答题20.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()A. 30° B. 40° C. 45° D. 36°21.已知:如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE.22.如图,已知:AD和BC相交于O,∠1=∠2,∠3=∠4.试判断AD和BC的关系,并说明理由.23.已知:如图,等边三角形ABC中,D为AC边的中点,过C作CE∥AB,且AE⊥CE,那么∠CAE=∠ABD吗?请说明理由.24.已知:如图,AD、BC相交于点O,AO=BO,∠C=∠D=90°.求证:AD=BC.25.已知:如图,AB=AD,∠ABC=∠ADC.试说明:CB=CD.26.如图,在△ABC中,AB=AC,∠BAC=120°.AB的垂直平分线交AB于E,交BC于M; AC 的垂直平分线交AC于F,交BC于N.连接AM、AN.(1)∠MAN的大小;(2)求证:BM=CN.27.如图1,在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN 于E.易得DE=AD+BE(不需证明).(1)若直线CE绕C点旋转到图2的位置时,其余条件不变,你认为上述结论是否成立?若成立,写出证明过程;若不成立,请写出此时DE、AD、BE之间的数量关系,并说明理由;(2)若直线CE绕C点旋转到图3的位置时,其余条件不变,请直接写出此时DE、AD、BE 之间的数量关系(不需证明).28.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程证明△ABD≌△ACD的理由.∵AD平分∠BAC,∴∠BAD=∠(角平分线的定义).在△ABD和△ACD中,∴△ABD≌△ACD .参考答案与试题解析一、选择题(每小题2分,共16分)1.如图,下列图案是轴对称图形的有()A. 1个 B. 2个 C. 3个 D. 4个考点:轴对称图形.分析:根据轴对称图形的概念对各图形分析判断即可得解.解答:解:第1个图形是轴对称图形,第2个图形不是轴对称图形,第3个图形是轴对称图形,第4个图形是轴对称图形,综上所述,轴对称图形有3个.故选C.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.如图,AP平分∠BAF,PD⊥AB于点D,PE⊥AF于点E,则△APD与△APE全等的理由是()A. SSS B. SAS C. SSA D. AAS考点:全等三角形的判定.分析:求出∠PDA=∠PEA=90°,∠DAP=∠EAP,根据AAS推出两三角形全等即可.解答:解:∵PD⊥AB,PE⊥AF,∴∠PDA=∠PEA=90°,∵AP平分∠BAF,∴∠DAP=∠EAP,在△APD和△APE中∴△APD≌△APE(AAS),故选D.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.装修工人在搬运中发现有一块三角形的陶瓷片不慎摔成了四块(如图),他要拿哪一块回公司才能更换到相匹配的陶瓷片()A.① B.② C.③ D.④考点:全等三角形的应用.分析:假定选择哪块,再对应三角形全等判定的条件进行验证.解答:解:②、③、④块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第①块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:A.点评:本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.4.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(S、S、S) B.(S、A、S) C.(A、S、A) D.(A、A、S)考点:全等三角形的判定与性质;作图—基本作图.分析:利用SSS可证得△OCD≌△O′C′D′,那么∠A′O′B′=∠AOB.解答:解:易得OC=0′C',OD=O′D',CD=C′D',那么△OCD≌△O′C′D′,可得∠A′O′B′=∠AOB,所以利用的条件为SSS,故选A.点评:考查全等三角形“边边边”的判定以及全等三角形的对应角相等这个知识点.5.等腰三角形的两边长分别为5cm和10cm,则此三角形的周长是()A. 15cm B. 20cm C. 25cm D. 20cm或25cm考点:等腰三角形的性质;三角形三边关系.分析:分5cm是腰长和底边两种情况讨论求解即可.解答:解:5cm是腰长时,三角形的三边分别为5cm、5cm、10cm,∵5+5=10,∴不能组成三角形,10cm是腰长时,三角形的三边分别为5cm、10cm、10cm,能组成三角形,周长=5+10+10=25cm,综上所述,此三角形的周长是25cm.故选C.点评:本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论并利用三角形的三边关系判断是否能够组成三角形.6.如图,AC=AD,BC=BD,则有()A. AB垂直平分CD B. CD垂直平分ABC. AB与CD互相垂直平分 D. CD平分∠ACB考点:线段垂直平分线的性质.专题:压轴题.分析:由已知条件AC=AD,利用线段的垂直平分线的性质的逆用可得点A在CD的垂直平分线上,同理,点B也在CD的垂直平分线上,于是A是符合题意的,是正确的,答案可得.解答:解:∵AC=AD,BC=BD,∴点A,B在线段CD的垂直平分线上.∴AB垂直平分CD.故选A.点评:本题考查的知识点为:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;两点确定一条直线.分别应用垂直平分线性质定理的逆定理是解答本题的关键.7.如图,△ABC中,∠ACB=90°,∠B=30°,AD是角平分线,DE⊥AB于E,AD、CE相交于点H,则图中的等腰三角形有()A. 2个 B. 3个 C. 4个 D. 5个考点:等腰三角形的判定.分析:根据等腰三角形的判定,运用直角三角形的两个锐角互余和角平分线的性质,证得∠CAD=∠BAD=30°,CD=ED,AC=AE,即△ABD、△CDE、△ACE、△BCE是等腰三角形.解答:解:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,∵AD是角平分线,∴∠CAD=∠BAD=30°,∴AD=BD.∴△ABD是等腰三角形.∵AD是角平分线,∠ACB=90°,DE⊥AB,∴CD=ED∴AC=AE∴△CDE、△ACE是等腰三角形;又△CEB也是等腰三角形显然此图中有4个等腰三角形.故选C.点评:本题考查了等腰三角形的判定;要综合运用直角三角形的两个锐角互余和角平分线的性质,找到相等的线段,来判定等腰三角形.二、填空题(每小题2分,共20分)8.角的对称轴是角平分线所在的直线.考点:轴对称图形.分析:关于某条直线对称的图形叫轴对称图形.解答:解:沿角平分线所在的直线折叠后直线两旁的部分能够完全重合,所以角的对称轴是角平分线所在的直线.点评:注意:对称轴必须说成直线.9.若等腰三角形的顶角为50°,则它的底角为65°.考点:等腰三角形的性质.分析:等腰三角形中,给出了顶角为50°,可以结合等腰三角形的性质及三角形的内角和直接求出底角,答案可得.解答:解:∵三角形为等腰三角形,且顶角为50°,∴底角=(180°﹣50°)÷2=65.故填65.点评:本题主要考查了等腰三角形,的性质;等腰三角形中只要知道一个角,就可求出另外两个角,这种方法经常用到,要熟练掌握.10.如图,△ABC≌△DEF,由图中提供的信息,可得∠D= 70 °.考点:全等三角形的性质.分析:根据三角形的内角和定理求出∠A,再根据全等三角形对应角相等可得∠D=∠A.解答:解:在△ABC中,∠A=180°﹣∠B﹣∠C=180°﹣50°﹣60°=70°,∵△ABC≌△DEF,∴∠D=∠A=70°.故答案为:70.点评:本题考查了全等三角形的性质,根据对应边确定出∠A和∠D是对应角是解题的关键.11.如图8,点C、D在BE上,BC=DE,∠1=∠2,要使得△ABD≌△AEC,还需要添加一个条件,你添加的条件是∠B=∠C(答案不唯一).考点:全等三角形的判定.专题:开放型.分析:添加的条件:∠B=∠C,根据等式的性质可得∠BAD=∠EAC,DB=CE,可根据AAS判定△ABD≌△AEC.解答:解:添加的条件:∠B=∠C,∵∠1=∠2,∴∠1+∠CAD=∠2+∠CAD,即∠BAD=∠EAC,∵CB=DE,∴CB+CD=DE+CD,即DB=CE,在△ABD和△AEC中,∴△ABD≌△AEC(AAS),故答案为:∠B=∠C.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.12.工人师傅砌门时,如图所示,常用木条EF固定矩形木框ABCD,使其不变形,这是利用三角形的稳定性.考点:三角形的稳定性.分析:三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.解答:解:这是利用三角形的稳定性.点评:本题考查三角形稳定性的实际应用,三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.13.如图,AB⊥AC,点D在BC的延长线上,且AB=AC=CD,则∠ADB= 22.5 °.考点:等腰三角形的性质;三角形的外角性质.专题:计算题.分析:由已知可得到∠B=∠ACB=45°,∠CAD=∠CDA,再根据三角形外角的性质可得到∠ACB 与∠ADB之间的关系,从而不难求解.解答:解:∵AB=AC=CD,AB⊥AC,∴∠B=∠ACB=45°,∠CAD=∠CDA∵∠ACB=∠CAD+∠CDA=2∠ADB=45°∴∠ADB=22.5°.故答案为:22.5°.点评:此题主要考查等腰三角形的性质及三角形的外角的性质的综合运用.14.如图,在△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若△ADE的周长为9,△ABC的周长是14,则BC= 5 .考点:等腰三角形的判定与性质;平行线的性质.分析:由BO平分∠ABC,CO平分∠ACB,过点O作DE∥BC,易得△BOD与△COE是等腰三角形,又由△ADE的周长为9,可得AB+AC=9,又由△ABC的周长是14,即可求得答案.解答:解:∵BO平分∠ABC,CO平分∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB,∵DE∥BC,∴∠BOD=∠OBC,∠COE=∠OCB,∴∠ABO=∠BOD,∠ACO=∠COE,∴BD=OD,CE=OE,∵△ADE的周长为29,∴AD+DE+AE=AD+OD+OE+AE=AD+BD+CE+AE=AB+AC=9,∵△ABC的周长是14,∴AB+AC+BC=14,∴BC=5.故答案为:5.点评:此题考查了等腰三角形的性质与判定.此题难度适中,注意掌握数形结合思想的应用.15.已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有 3 对全等三角形.考点:全等三角形的判定.分析:由已知条件,结合图形可得△ADB≌△ACB,△ACO≌△ADO,△CBO≌△DBO共3对.找寻时要由易到难,逐个验证.解答:解:∵AD=AC,BD=BC,AB=AB,∴△ADB≌△ACB;∴∠CAO=∠DAO,∠CBO=∠DBO,∵AD=AC,BD=BC,OA=OA,OB=OB∴△ACO≌△ADO,△CBO≌△DBO.∴图中共有3对全等三角形.故答案为:3.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有 5 个.考点:利用轴对称设计图案.分析:利用轴对称图形的性质分别得出符合要求的答案即可.解答:解:如图所示:与△ABC成轴对称的有△ACG、△AFE、△BFD、△CHD、△CGB一共有5个.故答案为:5.点评:此题主要考查了利用轴对称设计图案,根据已知得出所有符合要求的答案注意不要漏解.17.如图所示,AOB是一钢架,且∠AOB=10°,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH…,添加的钢管长度都与OE相等,则最多能添加这样的钢管8 根.考点:等腰三角形的性质.专题:应用题;压轴题.分析:根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,根据规律及三角形的内角和定理不难求解.解答:解:∵添加的钢管长度都与OE相等,∠AOB=10°,∴∠GEF=∠FGE=20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个.故答案为:8.点评:此题考查了三角形的内角和是180度的性质和等腰三角形的性质及三角形外角的性质;发现并利用规律是正确解答本题的关键.三、作图题(每小题5分,共10分)18.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)考点:作图—应用与设计作图.分析:根据点P到∠AOB两边距离相等,到点C、D的距离也相等,点P既在∠AOB的角平分线上,又在CD垂直平分线上,即∠AOB的角平分线和CD垂直平分线的交点处即为点P.解答:解:如图所示:作CD的垂直平分线,∠AOB的角平分线的交点P即为所求,此时货站P到两条公路OA、OB的距离相等.P和P1都是所求的点.点评:此题主要考查了线段的垂直平分线和角平分线的作法.这些基本作图要熟练掌握,注意保留作图痕迹.19.利用网格线作图:在BC上找一点P,使点P到AB和AC的距离相等.然后,在射线AP 上找一点Q,使QB=QC.考点:作图—复杂作图;角平分线的性质;线段垂直平分线的性质.分析:根据网格特点先作出∠A的角平分线与BC的交点就是点P,再作BC的垂直平分线与AP的交点就是点Q.解答:解:如图,点P就是所要求作的到AB和AC的距离相等的点,点Q就是所要求作的使QB=QC的点.点评:本题主要考查了利用网格结构作角的平分线,线段的垂直平分线,找出相应的点是解题的关键.四、解答题20.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()A. 30° B. 40° C. 45° D. 36°考点:等腰三角形的性质.分析:题中相等的边较多,且都是在同一个三角形中,因为求“角”的度数,将“等边”转化为有关的“等角”,充分运用“等边对等角”这一性质,再联系三角形内角和为180°求解此题.解答:解:∵BD=AD∴∠A=∠ABD∵BD=BC∴∠BDC=∠C又∵∠BDC=∠A+∠ABD=2∠A∴∠C=∠BDC=2∠A∵AB=AC∴∠ABC=∠C又∵∠A+∠ABC+∠C=180°∴∠A+2∠C=180°把∠C=2∠A代入等式,得∠A+2•2∠A=180°解得∠A=36°故选:D.点评:本题反复运用了“等边对等角”,将已知的等边转化为有关角的关系,并联系三角形的内角和及三角形一个外角等于与它不相邻的两个内角的和的性质求解有关角的度数问题.21.已知:如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE.考点:全等三角形的判定.专题:证明题.分析:首先根据AC∥DE,利用平行线的性质可得:∠ACB=∠E,∠ACD=∠D,再根据∠ACD=∠B证出∠D=∠B,再由∠ACB=∠E,AC=CE可根据三角形全等的判定定理AAS证出△ABC≌△CDE.解答:证明:∵AC∥DE,∴∠ACB=∠E,∠ACD=∠D,∵∠ACD=∠B,∴∠D=∠B,在△ABC和△EDC中,∴△ABC≌△CDE(AAS).点评:此题主要考查了全等三角形的判定,关键是熟练掌握判定两个三角形全等的方法:SSS、SAS、ASA、AAS,选用哪一种方法,取决于题目中的已知条件,22.如图,已知:AD和BC相交于O,∠1=∠2,∠3=∠4.试判断AD和BC的关系,并说明理由.考点:全等三角形的判定与性质;等腰三角形的判定与性质.分析:根据ASA证△ABD≌△ACD,推出AB=AC,根据等腰三角形的性质得出即可.解答:解:AD⊥BC,AD平分BC,理由是:∵在△ABD和△ACD中∴△ABD≌△ACD(ASA)∴AB=AC,∵∠1=∠2,∴AD⊥BC,AD平分BC(等腰三角形三线合一性质).点评:本题考查了全等三角形的性质和判定,等腰三角形的性质和判定的应用,注意:等腰三角形顶角的平分线,底边上的高,底边上的中线互相重合.23.已知:如图,等边三角形ABC中,D为AC边的中点,过C作CE∥AB,且AE⊥CE,那么∠CAE=∠ABD吗?请说明理由.考点:等边三角形的性质.分析:根据△ABC为等边三角形,D为AC边上的中点得到AC=BA,∠BAC=∠BCA=60°,BD ⊥AC,求出∠BDA=90°,由CE∥AB得∠ACE=∠BAD,利用90°﹣∠ACE=90°﹣∠BAD得出∠CAE=∠ABD.解答:解:∠CAE=∠ABD,理由如下:∵△ABC为等边三角形,D为AC边上的中点,∴AC=BA,∠BAC=∠BCA=60°,BD⊥AC,∴∠BDA=90°,∵AE⊥CE,∴∠AEC=∠BDA=90°,又∵CE∥AB,∴∠ACE=∠BAD,∴90°﹣∠ACE=90°﹣∠BAD,即∠CAE=∠ABD.点评:本题主要考查等边三角形的性质的知识点,解答本题的关键是熟练掌握等边三角形边角之间的关系,此题难度不大.24.已知:如图,AD、BC相交于点O,AO=BO,∠C=∠D=90°.求证:AD=BC.考点:全等三角形的判定与性质.专题:证明题.分析:利用等角对等边以及全等三角形的判定与性质得出即可.解答:证明:∵AO=BO,∴∠OAB=∠OBA,在△ABC和△BAD中,∴△ABC≌△BAD(AAS).∴AD=BC.点评:此题主要考查了全等三角形的判定与性质等知识,根据已知得出△ABC≌△BAD是解题关键.25.已知:如图,AB=AD,∠ABC=∠ADC.试说明:CB=CD.考点:等腰三角形的判定与性质.专题:证明题.分析:连接BD,由AB=AD,根据等边对等角,可得∠ADB=∠ABD,由∠ABC=∠ADC,根据等式的基本性质,可得∠CBD=∠CDB,根据等角对等边,所以CD=CB.解答:证明:连接BD,∵AB=AD,∴∠ADB=∠ABD,∵∠ABC=∠ADC,∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,即∠CBD=∠CDB,∴CD=CB.点评:此题考查了等腰三角形的判定与性质,用角相等来求边相等是本题的解题思路.26.如图,在△ABC中,AB=AC,∠BAC=120°.AB的垂直平分线交AB于E,交BC于M; AC 的垂直平分线交AC于F,交BC于N.连接AM、AN.(1)∠MAN的大小;(2)求证:BM=CN.考点:线段垂直平分线的性质;等腰三角形的性质.分析:(1)由在△ABC中,AB=AC,∠BAC=120°,可求得∠B与∠C的度数,又由AB的垂直平分线交AB于E,交BC于M;可得AM=BM,继而求得∠MAB的度数,则可求得∠AMN的度数,继而求得答案;(2)易得△AMN为等边三角形,则可得AM=AN=MN,又由BM=AM,CN=AN,即可证得结论.解答:(1)解:∵AB=AC,∠A=120°,∴∠B=∠C=30°,∵直线ME垂直平分AB,∴BM=AM,∴∠B=∠MAB=30°,∴∠AMN=∠B+∠MAB=60°,同理可得:∠ANM=60°.∴∠MAN=180°﹣60°﹣60°=60°;(2)证明:∵在△AMN中,∠AMN=∠ANM=∠MAN=60°,∴△AMN为等边三角形.即 AM=AN=MN,又∵BM=AM,CN=AN,∴BM=CN.点评:此题考查了线段垂直平分线的性质以及等边三角形的判定与性质.此题难度不大,注意掌握转化思想与数形结合思想的应用.27.如图1,在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN 于E.易得DE=AD+BE(不需证明).(1)若直线CE绕C点旋转到图2的位置时,其余条件不变,你认为上述结论是否成立?若成立,写出证明过程;若不成立,请写出此时DE、AD、BE之间的数量关系,并说明理由;(2)若直线CE绕C点旋转到图3的位置时,其余条件不变,请直接写出此时DE、AD、BE 之间的数量关系(不需证明).考点:旋转的性质;全等三角形的判定与性质.专题:探究型.分析:(1)DE、AD、BE之间的数量关系是DE=AD﹣BE,理由如下:由∠ACB=90°,BE⊥CE,AD⊥CE,则∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,得到∠CAD=∠BCE,可证得△ACD≌△CBE,得到AD=CE,CD=BE,即有DE=AD﹣BE;(2)DE、AD、BE之间的关系是DE=BE﹣AD.证明的方法与(1)一样.解答:解:(1)不成立.DE、AD、BE之间的数量关系是DE=AD﹣BE,理由如下:如图2,∵∠ACB=90°,BE⊥CE,AD⊥CE,∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE,在△ACD和△CBE中,∵AC=CB,∠CAD=∠BCE,∠ADC=∠CEB=90°∴∴△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=AD﹣BE;(2)DE、AD、BE之间的关系是DE=BE﹣AD.点评:本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心连线段的夹角等于旋转角.也考查了三角形全等的判定与性质.28.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程证明△ABD≌△ACD的理由.∵AD平分∠BAC,∴∠BAD=∠CAD (角平分线的定义).在△ABD和△ACD中,∴△ABD≌△ACD SAS .考点:全等三角形的判定.专题:证明题.分析:首先根据角平分线定义可得到∠BAD=∠CAD,再利用SAS定理可证明△ABD≌△ACD.解答:证明:∵AD平分∠BAC(已知).∴∠BAD=∠CAD(角平分线定义),在△ABD和△ACD中,,∴△ABD≌△ACD (SAS).故答案为CAD,SAS.点评:本题主要考查了全等三角形的判定,判定两个一般三角形全等的方法有四种:AAS,SAS,SSS,ASA.。

人教版八年级上册数学月考考试卷【含答案】

人教版八年级上册数学月考考试卷【含答案】

人教版八年级上册数学月考考试卷【含答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( ) A .123x x x << B .213x x x << C .231x x x << D .321x x x <<3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60°4.已知a b 3132==,,则a b 3+的值为( ) A .1 B .2 C .3 D .275.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( )A .12x x ≠B .21120x x -=C .122x x +=D .122x x ⋅=6.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .107.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .8.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°9.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°10.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.3.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是________.4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图:在△ABC 中,∠ABC ,∠ACB 的平分线交于点O ,若∠BOC =132°,则∠A 等于_____度,若∠A =60°时,∠BOC 又等于_____。

2023-2024学年甘肃省庆阳市西峰区黄官寨实验学校八年级(上)月考数学试卷(10月份)+答案解析

2023-2024学年甘肃省庆阳市西峰区黄官寨实验学校八年级(上)月考数学试卷(10月份)+答案解析

2023-2024学年甘肃省庆阳市西峰区黄官寨实验学校八年级(上)月考数学试卷(10月份)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列生活中的一些事实运用了“三角形稳定性”的是()A. B.C. D.2.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cmB.8cm,7cm,15cmC.13cm,12cm,20cmD.5cm,5cm,11cm3.已知三角形两边的长分别是4和7,则此三角形第三边的长可能是()A.12B.10C.11D.34.下列四个图形中,线段BE是的高的是()A. B.C. D.5.如图,,,,则()A.B.C.D.6.已知多边形的内角和等于外角和的三倍,则这个多边形的边数为()A.9B.8C.7D.67.如图,已知≌,则以下结论“①;②;③;④”中正确的个数是()A.1B.2C.3D.48.如图,在和中,,点A,B,E在同一条直线上,则添加以下条件,仍然不能判定≌的是()A.B.C.D.9.如图所示,一个角的三角形纸片,剪去这个角后,得到一个四边形,则的度数为()A.B.C.D.10.在下列条件中;:::2:3;;中,能确定为直角三角形的条件有()A.1个B.2个C.3个D.4个二、填空题:本题共8小题,每小题3分,共24分。

11.已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是__________.12.如图,在中,AD是BC边上的中线,BE是中AD边上的中线,若的面积是24,则的面积是______.13.如图,______.14.如图:在中,,的平分线交于点O,若,则等于______度,若时,又等于______15.如图,,,的大小关系是______.16.如图,A在B北偏西方向,C在B北偏东方向,A在C北偏西方向,则______17.如图,为了测量池塘两端点A,B间的距离,小亮先在平地上取一个可以直接到达点A和点B的点C,连接AC并延长到点D,使,连接BC并延长到点E,使,连接现测得米,则AB两点间的距离为______米.18.如图,已知,,请你添加一个适当的条件______填写一个即可,使得≌三、解答题:本题共10小题,共66分。

辽宁省大连市金州区联考2023-2024学年八年级上学期10月月考数学试题 (含解析)

辽宁省大连市金州区联考2023-2024学年八年级上学期10月月考数学试题 (含解析)

2023-2024学年八年级(上)月考试卷(十月份)八年级数学一、选择题(本题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个选项正确)1.下列长度的三条线段能组成三角形的是( )A .3,3,6B .3,4,7C .4,6,11D .5,6,92.下列图形中具有稳定性的是( )A .三角形B .四边形C .五边形D .六边形3.中,作边上的高,以下各图作法正确的是( )A .B .C .D .4.如图,在中,点D 是边上一点,点E 是边上一点,且,,,则的度数是( )A .B .C .D .5.如图,,垂足为C ,,,则的度数是( )A .B .C .D .6.用尺规作一个角等于已知角的依据是( )A .B .C .D .7.若一个多边形的内角和是它的外角和3倍,则这个多边形是( )A .六边形B .七边形C .八边形D .七边形8.如图,下列条件能判定的一组是( )A .B .ABC V 90BAC ∠>︒AB ABC V AB AC DE BC ∥40B ∠=︒80A ∠=︒AED ∠40︒50︒60︒70︒BC AE ⊥CD AB ∥50A ∠=︒BCD ∠40︒50︒60︒70︒SAS SSS AAS ASA MBC DEF V V ≌AB DE AC DF C F ==∠=∠,,,,==∠=∠AC DF BC EF A DA .B .二、填空题(本题共6小题,每小题11.如图,12.等腰三角形的周长为1313.如图,14.如图,15.一个多边形的内角和为16.如图,在中,则的度数为 °35︒40︒8ABC ADE AD =V V ≌,ABC ADE △≌△E F CE ∠=∠=,1260ABC V B ∠=MPN ∠三、解答题(本题共4小题,其中17题6分,18、19、20题各8分,共30分)17.尺规作图(不写作法,保留作图痕迹)已知,(1)作一个角等于;(2)作的平分线.18.如图,,,.求证.19.如图,C 是的中点,,.求证:.20.如图,在四边形中,,平分,平分.求证.四、解答题(本题共2小题,其中21题8分,22题10分,共18分)21.如图,,,,,垂足分别为D ,E ,,.求的长.AOB ∠AOB ∠AOB ∠52B ∠=︒8ACB A ∠=∠+︒60ACD ∠=︒AB CD P AB AD CE =A BCE ∠=∠CD BE =ABCD 90B D ∠=∠=︒AE BAD ∠CF BCD ∠BAE CFD ∠=∠90ACB ∠=︒AC BC =AD CE ⊥BE CE ⊥ 1.7cm DE =0.8cm BE =AD22.(1)如图1,的外角和的平分线交于点.用等式表示与的数量关系;(2)如图2,的平分线和的外角的平分线交于点.用等式表示与的数量关系,并证明.五、解答题(本题共3小题,23、24题各11分,25题12分,共34分)23.如图,点C 在线段上,,.(1)求证;(2)求证.24.如图,,的角平分线交于点F .(1)求证;(2)求证;(3)用等式表示线段之间的数量关系,并证明.25.如图,,F 是的中点,连接并延长交于点G .ABC V CBD ∠BCE ∠F F ∠A ∠ABC ∠ABC V ACG ∠H A ∠H ∠AB A B DCE ∠=∠=∠CE CD =ACD BEC ≌△△AD BE AB +=60A ∠=︒ABC V BD CE ,2BFC DFC ∠=∠EF DF =BE BC CD ,,AD AB AE AC AD AB AE AC ⊥⊥==,,,DE FA BC(1)用等式表示线段与的数量关系,并证明;(2)写出线段与的位置关系,并证明.BC AF AG BC参考答案1.D【分析】根据三角形的任意两边的和大于第三边,任意两边之差小于第三边,只要把三边代入,看是否满足即可.【详解】解:A 、,不能构成三角形,不合题意;B 、,不能构成三角形,不合题意;C 、,不能构成三角形,不合题意;D 、,能构成三角形,符合题意.故选:D .【点睛】此题主要考查了三角形三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.2.A【分析】三角形具有稳定性,其它多边形不具有稳定性,据此解答.【详解】解:三角形具有稳定性,四边形、五边形、六边形不具有稳定性;故选:A.【点睛】本题考查了三角形的稳定性和多边形的不稳定性,熟知三角形具有稳定性是关键.3.C【分析】根据三角形的高的定义对各个图形观察后即可解答.【详解】根据三角形的高的定义,边上的高是过点C 向作垂线段,观察各图形,A ,B ,D 都不符合三角形的高的定义,只有C 符合三角形的高的定义,故选:C .【点睛】本题考查了三角形的高的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高,熟练掌握概念是解题的关键.4.C【分析】先根据平行线的性质求出的度数,再根据三角形内角和定理求出的度数即可.【详解】解:∵∴∵∴故选:C .【点睛】本题考查的是平行线的性质及三角形内角和定理,熟练掌握平行线的性质是解题的关键.5.A336+=347+=4611+<56+>9AB AB CD ADE ∠AED ∠DE BC∥40ADE B ∠=∠=︒80A ∠=︒180180408060AED ADE A ∠=︒-∠-∠=︒-︒-︒=︒【分析】根据平行线的性质求出,再根据垂直的定义和角的和差关系列式计算.【详解】解:∵,,∴,∵,即,∴,故选:A .【点睛】本题考查了平行线的性质,熟知两直线平行,同位角相等,内错角相等,同旁内角互补是解题的关键.6.B【分析】根据作一个角等于已知角的作法和步骤解答.【详解】如图,在和中,,,故选B .【点睛】本题考查尺规作图的应用,熟练掌握用直尺和圆规作一个角等于已知角的方法和步骤是解题关键.7.C【分析】首先设此多边形是n 边形,由多边形的外角和为,即可得方程,解此方程即可求得答案.【详解】解:设此多边形是n 边形,∵多边形的外角和为,∴,解得:.∴这个多边形是八边形.故选:C .【点睛】此题考查了多边形的内角和与外角和的知识.此题难度不大,注意多边形的外角和为,n 边形的内角和等于.8.DACD ∠CD AB ∥50A ∠=︒180********ACD A ∠=︒-∠=︒-︒=︒BC AE ⊥90ACB ∠=︒1309040BCD ACD ACB ∠=∠-∠=︒-︒=︒ODC V O D C '''V OD O D OC O C DC D C =''⎧⎪=''⎨⎪=''⎩(SSS)ODC O D C ∴'''V V ≌360︒()18023360n -=⨯360︒()18023360n -=⨯8n =360︒()2180-︒gn【分析】根据三角形全等的判定方法逐一分析即可得到答案.【详解】解:A 、,不能确定全等,不符合题意;B 、,不能确定全等,不符合题意;C 、,不能确定全等,不符合题意;D 、,能确定全等,符合题意;故选:D .【点睛】本题考查了全等三角形的判定方法,判定两个三角形全等的一般方法有:、、、、,注意、不能判定两个三角形全等.9.B【分析】根据角平分线上的点到角的两边距离相等可得点P 到的距离为6,再根据垂线段最短解答.【详解】∵点P 在的平分线上,点P 到边的距离为6,∴点P 到的距离为6,∵点Q 是边上的任意一点,∴.故选:B【点睛】本题考查角平分线的性质,熟记角平分线上的点到角的两边距离相等是本题的关键.10.B【分析】先根据三角形的内角和定义得出,根据“三线合一”得出,进而求证,则,最后根据三角形的外角定理即可求解.【详解】解:∵,,∴,∵是的角平分线,,∴,,又∵∴∴∵,,∴,∴,∴,故选:B .AB DE AC DF C F ==∠=∠,,SSA ,,==∠=∠AC DF BC EF A D SSA A D B E C F ∠=∠∠=∠∠=∠,,AAA A D C F AC DF ∠=∠∠=∠=,,ASA SSS SAS AAS HL ASA SSA AAA BA ABC ∠BC BA BA 6PQ ≥18095ACD B CAB ∠=︒-∠-∠=︒,AC AE CAD EAD =∠=∠()SAS CAD EAD V V ≌95ACD AED ∠=∠=︒30CAB ∠=︒55B ∠=︒18095ACD B CAB ∠=︒-∠-∠=︒AD ABC V CE AD ⊥CAF EAF ∠=∠90AFC AFE ∠=∠=︒AF AF=()ASA CAF EAF ≌V V ,AC AE =AD AD =CAD EAD ∠=∠,AC AE =()SAS CAD EAD V V ≌95ACD AED ∠=∠=︒40BDE AED B ∠=∠-∠=︒【点睛】本题主要考查了全等三角形的判定和性质,三角形的内角和,三角形的外角定理,解题的关键是熟练掌握相关知识点并灵活运用.11.3【分析】根据全等三角形的性质解答本题即可【详解】解:∵,∴,∵,∴故答案为:3【点睛】本题考查全等三角形的性质,解题的关键是熟练掌握基本知识,属于中考基础题.12.3【分析】已知的边可能是腰,也可能是底边,应分两种情况进行讨论.【详解】解:当腰是3时,则另两边是3,7,而,不满足三边关系定理,因而应舍去.当底边是3时,另两边长是5,5,则该等腰三角形的底边为3,故答案为:3.【点睛】本题考查了等腰三角形定义和三角形的三边关系定理的应用,从边的方面考查三角形,涉及分类讨论的思想方法.13.30【分析】先由得出,再根据三角形内角和定理得出,然后由求解即可.【详解】解:∵∴∵∴∴故答案为:30.【点睛】本题考查全等三角形的性质,三角形内角和定理,熟练掌握全等三角形的性质、三角形内角和定理是解题的关键.14.(答案不唯一).【分析】根据全等三角形的判定方法即可解决问题.【详解】解:在和中,∵,ABC ADE △≌△6AB AD ==5AE =853BE AB AE =-=-=337+<ABC ADE △≌△30B D ∠=∠=︒70BAC ∠=︒CAD BAC BAD ∠=∠-∠ABC ADE△≌△30B D ∠=∠=︒80C ∠=︒180180308070BAC B C ∠=︒-∠-∠=︒-︒-︒=︒704030CAD BAC BAD ∠=∠-∠=︒-︒=︒AE DF =ACE △DBF V E F CE BF ∠=∠=,(2)如图所示,【点睛】本题考查了基本作图,作一个角等于已知角,作角平分线,掌握以上作图是解决本题的关键.18.见解析【分析】根据三角形的内角和定理和已知条件可得∠【详解】证明:∵A在和中,∴,∴,,∴.在△CFG 和△CFD 中,∴,∴,∴.(3)∵,∴.∴.【点睛】本题考查了角平分线的定义,三角形内角和,以及全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解答本题的关键.25.(1),见解析(2),见解析【分析】(1)延长至H ,使,连接.证明.得到,推出.再证明,得到,由此得到结论.(2)由得到,推出,进而得到,证得.【详解】(1)证明:延长至H ,使,连接.BFE △BFG V ,,,BE BG ABD CBD BF BF =⎧⎪∠=∠⎨⎪=⎩SAS BFE BFG V V ≌()60BFG BFE DFC ∠=∠=∠=︒EF GF =1206060CFG BFC BFG DFC ∠=∠-∠=-︒=︒=∠,,,CFG DFC CF CF BCE ACE ∠=∠⎧⎪=⎨⎪∠=∠⎩ASA CFG CFD V V ≌()GF DF =EF DF =BFE BFG CFG CFD V V V V ≌,≌BE BG CD CG ==,BE CD BG CG BC +=+=2BC AF =AG BC ⊥AF FH AF =EH ()SAS AFD HFE V V ≌ADF HEF HE AD ∠=∠=,HE AB =()SAS HEA BAC V V ≌BC AH =2BC AF =HEA BAC V V ≌HAE C ∠=∠90HAE CAG ∠+∠=︒90AGB ∠=︒AG BC ⊥AF FH AF =EH∵F 是的中点,∴.在和中,∴.∴,∴.∴.∵,∴.∵,,∴.∴.∵,∴.在和中,∴.∴.∵,∴.(2).证明:∵,DE DF EF =AFD △HFE V ,,,DF EF AFD HFE AF HF =⎧⎪∠=∠⎨⎪=⎩()SAS AFD HFE V V ≌ADF HEF HE AD ∠=∠=,//EF AD 180HEA DAE ∠∠=︒+AD AB AE AC ⊥⊥,9090DAB EAC ∠=︒∠=︒,360DAE BAC EAC DAE ∠+∠+∠+∠=︒9090DAB EAC ∠=︒∠=︒,180BAC DAE ∠+∠=︒BAC HEA ∠=∠HE AD AD AB ==,HE AB =HEA △BAC V ,,,HE AB HEA BAC AE AC =⎧⎪∠=∠⎨⎪=⎩()SAS HEA BAC V V ≌BC AH =AF FH =2BC AH AF FH AF AF AF ==+=+=AG BC ⊥HEA BAC V V ≌∴.∵,,∴.∴.【点睛】此题考查了全等三角形的判定和性质,倍长中线法正确三角形全等,正确掌握三角形全等的判定定理是解题的关键.HAE C ∠=∠180HAE EAC CAG ∠+∠+∠=︒90EAC ∠=︒90HAE CAG ∠+∠=︒90AGB C CAG HAE CAG ∠=∠+∠=∠+∠=︒。

云南省曲靖市麒麟区第四中学2024--2025学年八年级上学期10月第一次月考数学试卷(含答案)

云南省曲靖市麒麟区第四中学2024--2025学年八年级上学期10月第一次月考数学试卷(含答案)

云南省曲靖市麒麟区第四中学2024-2025学年八年级上学期10月第一次月考数学试卷八年级 数学(人教版) 试卷范围:八上11.1~12.2(全卷三个大题,共27个小题,共8页;满分100分,考试用时120分钟)注意事项:1.本卷为试题卷.答题前请在答题卡指定位置填写学校、班级、姓名等信息。

答案书写在答题卡相应位置上,答在试题卷或草稿纸上的答案无效。

2.考试结束后,请将试题卷和答题卡一并交回。

一、选择题(本大题共15小题,每个小题只有一个正确选项,每小题2分,共30分)1.下列长度的三条线段能组成三角形的是( )A.3,8,4B.5,10,6C.4,4,8D.3,7,112.下列各组图形中,两个图形属于全等图形的是( )A. B. C. D.3.直角三角形的一个锐角是,则它的另一个锐角是( )A. B. C. D.或4.下列说法正确的是( )A.三角形的外角和为 B.面积相等的两个三角形全等C.周长相等的两个三角形全等D.两条边及其一角相等的两个三角形全等5.如图,为了使自行车稳定停放,停放时常常放下它的脚架,这里所运用的几何原理是( )A.两点之间,线段最短B.三角形具有稳定性C.两点确定一条直线D.垂线段最短6.已知图中的两个三角形全等,则等于()60︒30︒60︒120︒30︒60︒360︒1∠A. B. C. D.7.如图,在中,,,则( )A. B. C. D.8.如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是( )A.SASB.ASAC.AASD.SSS9.如图,的边上的高是( )A.线段B.线段C.线段D.线段10.如图,如果,那么下列结论不正确的是( )A. B. C. D.11.小刚要将一块如图所示的三角形纸板分成面积相同的两部分,则图中他所作的线段应该是的()50︒58︒60︒72︒ABC △55B ︒∠=40C ︒∠=DAC ∠=75︒85︒95︒100︒ABC △BC AF BD BF BEABC FED △≌△BD EC =//AB EF //AC FD BD DF=AD ABC△A.高线B.中线C.角平分线D.以上都不是12.如图,已知,下列所给条件不能证明的是( )A. B. C. D.13.多边形的每个内角均为,则这个多边形是( )A.四边形B.五边形C.六边形D.八边形14.下列尺规作图的语句正确的是( )A.残长射线到点B.延长线段至点,使得C.作直线D.以为圆心,任意长为半径画弧15.如图,是的角平分线,,交于点,,交于点,若,则的度数为( )A. B. C. D.二、填空题(本大题共4小题,每小题2分,共8分)16.一个七边形的内角和度数为________.17.已知的三条边长均为整数,其中两边长分别是2和5,第三边长为奇数,则此三角形的周长为________.18.如图,,,若,则的度数为________.ABC DCB ∠=∠ABC DCB △≌△A D ∠=∠AB DC =AC DB =ACB DBC∠=∠120︒AB C AB C AC BC =3cmAB =O AD ABC △//DE AC AB E //DF AB AC F 150︒∠=2∠40︒45︒50︒60︒ABC △AB AC =BD CD =70B ︒∠=DAC ∠19.如图,先将两个全等的直角三角形、重叠在一起,再将三角形沿方向平移,、相交于点.若,,则阴影部分的面积为________.三、解答题(本大题共8小题,共62分)20.(6分)一个多边形的内角和是外角和的3倍,求这个多边形的边数.21.(6分)如图,,,求证:.22.(7分)如图,在与中,点、、、在一条直线上,,,.(1)求证::(2)若,,求线段的长.23.(7分)为了测量一栋6层楼的高度,在旗杆与楼之间选定一点,测得旗杆顶的视线与地面的夹角,测得楼顶的视线与地面的夹角,测各点到楼底的距离与旗仠的高度都等于12米,测得旗杆与楼之间的距离米.求这栋6层楼的高度.ABC DEF DEF CA 2cm AB EF G 8cm BC =3cm GE =2cm 90B D ︒∠=∠=AB AD =ABC ADC △≌△ABC △DEF △B E C F //AC DF AC DF =A D ∠=∠ABC DEF △≌△7BF =3CE =BE CD P C PC 33DPC ︒∠=A PA 57APB ︒∠=P PB CD 30BD =24.(8分)如图,是的高,、是的角平分线,且.(1)求的度数;(2)若,求的度数.25.(8分)如图,在中,,点是的中点,点在上.(1)找出图中所有全等的三角形:(2)任选一组你写出的全等三角形进行证明.26.(8分)如图,点是的平分线与的平分线的交点.(1)若,,则________;(2)探究与的数量关系,并说明理由.27.(12分)如图,与相交于点,,,,点从点出发,沿方向以的速度运动,点同时从点出发,沿方向以的速度运动,当点到达点时,、两点同时停止运动,设点的运动时间为.AD ABC △AE BF ABC △30CBF ︒∠=BAD ∠70AFB ︒∠=DAE ∠ABC △AB AC =D BC E AD D CBE ∠CAB ∠60BAC ︒∠=40D ︒∠=DBE ∠=︒C ∠D ∠AE BD C AC EC =BC DC =8cm AB =P A A B A →→2cm /s Q D D E →1cm /s P A P Q P s t(1)当点在运动时,________;(用含的代数式表示)(2)求证:;(3)当,,三点共线时,求的值.P A B →BP =t AB ED =P Q C t2点·教学评——质量跟踪练习题(一)八年级 数学(人教版) 参考答案一、选择题(本大题共15小题,每小题2分,共30分)题号123456789101112131415答案BDAABACBADBCCDC二、填空题(本大题共4小题,每小题2分,共8分)16.17.1218.19.13三、解答题(本大题共8小题,共62分)20.(6分)解:设这个多边形的边数为,则,解得:,这个多边形的边数是8....................................................................................................6分21.(6分)证明:,和都是直角三角形,在和中,,.........................................................................................6分22.(7分)(1)证明:,在和中,,;...........................................................................................4分(2),,,,,,...................................................................................................................7分23.(7分)解:由题意可得:,,,900︒20︒n (2)1803603n ︒︒-+=⨯8n =∴90B D ︒∠=∠= ABC ∴△ADC △Rt ABC ∴△Rt ADC △AB ADAC AC =⎧⎨=⎩Rt Rt (HL)ABC ADC ∴△≌△//AC DF ACB F∴∠=∠ABC △DEF △A DAC DF ACB F ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA)ABC DEF ∴△≌△ABC DEF △≌△BC EF ∴=BE CE CF CE ∴+=+BE CF ∴=7BF = 3CE =2BE CF ∴==90CDP PBA ︒∠=∠⇒57APB ︒∠= 33PAB ︒∴∠=,米,米,米,在和中,,,米,这栋6层楼高18米.........................................................................................................7分24.(8分)解:(1)平分,,,是的高,,,...........................................................................................4分(2),,,,平分,,..............................................................8分25.(8分)解:(1),,;....3分(2),点是的中点,,在和中,,,,33PAB CPD ︒∴∠=∠=30BD = 12PB =18DP BD PB ∴=-=BAP △DPC △CDP PBA PAB CPD CD PB ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)BAP DPC ∴△≌△18AB DP ∴==∴BF ABC ∠30CBF ︒∠=260ABC CBF ︒∴∠=∠=AD ABC △90ADB ︒∴∠=906030BAD ︒︒︒∴∠=-=AFB FBC C ∠=∠+∠ 70AFB ︒∠=703040C ︒︒︒∴∠=-=18080BAC ABC C ︒︒∴∠=-∠-∠=AE BAC ∠40BAE ︒∴∠=403010DAE BAE BAD ︒︒︒∴∠=∠-∠=-=ABE ACE △≌△BDE CDE △≌△ABD ACD △≌△AB AC = D BC BD CD ∴=ABD △ACD △AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩(SSS)ABD ACD ∴△≌△BDE CDE ∴∠=∠在和中,,,,在和中,,.................................................................................................8分(答案不唯一,推理正确即可得分)26.(8分)解:(1)70;..................................................................................................3分(2),理由如下:,平分,平分,,,,,,......................................................................................................................8分27.(12分)解:(1);........................................................................................3分(2)在和中,,,;.....................................................................................................................7分(2)根据题意得:,,则,,,在和中,BDE △CDE △BD CD BDE CDE DE DE =⎧⎪∠=∠⎨⎪=⎩(SAS)BDE CDE ∴△≌△BE CE ∴=ABE △ACE △AB AC AE AE BE CE =⎧⎪=⎨⎪=⎩(SSS)ABE ACE ∴△≌△2C D ∠=∠CBE CAB C ∠=∠+∠ AD CAB ∠BD CBE ∠12CBD CBF ∴∠=∠12CAD CAB ∠=∠12CBD CAD C ∴∠=∠+∠CBD D CAD C ∠+∠=∠+∠ 12CAD C D CAD C ∴∠+∠+∠=∠+∠2C D ∴∠=∠82t -ABC △EDC △AC EC ACB ECD BC DC =⎧⎪∠=∠⎨⎪=⎩(SAS)ABC EDC ∴△≌△AB ED ∴=DQ t =2AP t =8EQ t =-ABC EDC △≌△A E ∴∠=∠8cmDE AB ==ACP △ECQ △,,,当时,,解得:,当时,,,解得:,综上所述,当、、三点共线时,的值为或.......................................12分A E AC ECACP ECQ ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA)ACP ECQ ∴△≌△AP EQ ∴=∴04t ……28t t =-83t =48t <…162AP t =-1628t t ∴-=-8t =∴P C Q t 8s 8s 3。

八年级数学上册月考试卷(含答案和解释)

八年级数学上册月考试卷(含答案和解释)

八年级数学上册月考试卷(含答案和解释)掌握一定的数学基础知识和基本技能,是每一个人应当具备的文化素养之一。

查字典数学网小编为大家准备了这篇八年级数学上册月考试卷。

八年级数学上册月考试卷(含答案和解释)一、选择题:每小题2分,共12分。

1.计算(a2)6的结果正确的是()A.a7B.a8C.a10D.a122.下列图形中,是轴对称图形的是()A. B. C. D.3.计算(﹣2a2)2÷2a的结果是()A.﹣2a2B.2a2C.2a3D.﹣2a34.下列计算中正确的是()A.3a+2a=5a2B.2a2?a3=2a6C.(2a+b)(2a﹣b)=2a2﹣b2D.(2ab)2=4a2b25.如图,在△ABC中,AB=AC,∠BAC=50°,点D在AC上,作直线BD,过C作CE∥BD,若∠BCE=40°,则∠ABD的度数是()A.10°B.15°C.25°D.65°6.如图①,边长为a的大正方形中有四个边长均为b的小正方形,小华将阴影部分拼成了一个长方形(如图②),则这个长方形的面积为()A.a2﹣4b2B.(a+b)(a﹣b)C.(a+2b)(a﹣b)D.(a+b)(a﹣2b)二、填空题:每小题3分,共24分。

7.五边形的内角和为.8.计算:(x+2)( x﹣3)=.9.计算:(2a+b)2=.10.若点P(a,﹣3)与点P′(2,b)关于x轴对称,则a2+b2=.11.因式分解:2a2﹣2=.12.若2×4m=211,则m的值是.13.如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB=.14.如图,在△ABC中,AB=AC,∠BAC=48°,点D在AC上,将△ABC沿BD折叠,若点C恰好落在AB边上的C′处,则∠AC′D的度数是.三、解答题:每小题5分,共20分。

2024-2025学年初中八年级上学期第一次月考数学试题及答案(人教版)

2024-2025学年初中八年级上学期第一次月考数学试题及答案(人教版)

2024-2025八年级上册第一次月考模拟试卷一、填空题(本题满分30分,每小题3分)1. 在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )A. B. C. D. 2. 若一个等腰三角形的两边长分别为2,4,则第三边的长为( )A. 2B. 3C. 4D. 2或43. 已知一个等腰三角形有一个角为50o ,则顶角是 ( )A. 50oB. 80oC. 50o 或80oD. 不能确定 4. 若三角形的两条边的长度是4cm 和9cm ,则第三条边的长度可能是( )A. 4 cmB. 5 cmC. 9cmD. 13cm5. 一个多边形的内角和是900°,则这个多边形的边数为 ( )A. 6B. 7C. 8D. 96. 下列长度的各种线段,可以组成三角形的是( )A. 1,2,3B. 1,3,5C. 3,3,6D. 4,5,6 7. 如图,AB 与CD 相交于点E ,EA EC =,DE BE =,若使AED CEB ≌,则( )A. 应补充条件A C ∠=∠B. 应补充条件B D ∠=∠C. 不用补充D. 以上说法都不正确8. 已知△ABC 和△DEF ,下列条件中,不能保证△ABC ≌△DEF 的是( )A. AB =DE ,AC =DF ,BC =EFB. ∠A =∠D , ∠B =∠E ,AC =DFC. AB =DE ,AC =DF ,∠A =∠DD. AB =DE ,BC =EF , ∠C =∠F9. 如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若12PP =6,则△PMN 的周长为( )的A. 4B. 5C. 6D. 710. 如图,直线AB CD ∥,70A ∠=°,40C ∠=°,则E ∠的度数为( )A. 30°B. 40°C. 50°D. 60°11. 如图,在ABC 中,AD BC ⊥于点D ,48C ∠=°.则DAC ∠的度数为( )A. 52°B. 42°C. 32°D. 28°12. 如图,在ΔΔΔΔΔΔΔΔ中,AD 平分BAC ∠交BC 于点D ,30B ∠= ,70ADC ∠=,则C ∠的度数是( )A. 50B. 60C. 70D. 80二. 填空题(本题满分24分,每小题3分)13. BD 是ABC 的中线,53AB BC ABD ==,, 和BCD △的周长的差是____.14. 若一个多边形从一个顶点可以引8条对角线,则这个多边形的内角和是______.15. Rt ABC 中,∠C=90°,∠B=2∠A ,BC=3cm , AB=____cm .16. 如图,Rt ABC ∆中,∠B =90 ,AB =3cm ,AC =5cm ,将ΔΔΔΔΔΔΔΔ折叠,使点C 与点A 重合,折痕为DE ,则CE =____cm .17. 若一个n 边形的内角都相等,且内角的度数与和它相邻的外角的度数比为3:1,那么,这个多边形的边数为________.18. 如下图,在ABC 中,AB AC =,BE CD =,BD CF =,若50B ∠=°,则EDF ∠的度数是____度.三.解答题(本大题满分62分)19 如图,DF ⊥AC 于F ,BE ⊥AC 于E ,AB =CD ,DF =BE .;求证:AF =CE .20. 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD .求△ABC 各角的度数..21. 如图,点D E ,分别AB AC ,上,CD 交BE 于点O ,且AD AE =,AB AC =.求证:(1)B C ∠=∠;(2)OB OC =.22. 如图,两人从路段ΔΔΔΔ上一点C 同时出发,以相同速度分别沿两条直线行走,并同时到达D E ,两地.且DA AB ⊥,EB AB ⊥.若线段DA EB =相等,则点C 是路段ΔΔΔΔ的中点吗?为什么?23. 在ABC 中,AB AC =,AB 的垂直平分线MN 交AC 于点D ,交AB 于点E .(1)求证:ABD △是等腰三角形;(2)①若40A ∠=°,求DBC ∠的度数为 ;②若6AE =,CBD △的周长为20,求ABC 的周长.在的24. 如图,在ABC 中,AB AC =,P 是边BC 的中点,PD AB PE AC ⊥⊥,,垂足分别为D ,E .求证:PD PE =.25. 如图,∠B =∠C =90°,M 是BC 上一点,且DM 平分∠ADC ,AM 平分∠DAB ,求证:AD =CD +AB .26. 如图,∠ABC =90°,D 、E 分别在BC 、AC 上,AD ⊥DE ,且AD =DE ,点F 是AE 中点,FD 与AB 相交于点M .(1)求证:∠FMC =∠FCM ;(2)AD 与MC 垂直吗?并说明理由.的2024-2025八年级上册第一次月考模拟试卷一、填空题(本题满分30分,每小题3分)1. 在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A 、不是轴对称图形,不符合题意;B 、是轴对称图形,符合题意;C 、不是轴对称图形,不符合题意;D 、不是轴对称图形,不符合题意.故选:B .【点睛】本题考查了轴对称图形识别,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 2. 若一个等腰三角形的两边长分别为2,4,则第三边的长为( )A. 2B. 3C. 4D. 2或4【答案】C【解析】【分析】分4是腰长与底边两种情况,再根据三角形任意两边之和大于第三边讨论求解即可.【详解】①4是腰长时,三角形的三边分别为4、4、2,能组成三角形,所以,第三边4;②4是底边时,三角形的三边分别为2、2、4, 224+= ,∴不能组成三角形,综上所述,第三边为4.故选C .【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于要分情况讨论.3. 已知一个等腰三角形有一个角为50o ,则顶角是 ( )为.A50o B. 80o C. 50o或80o D. 不能确定【答案】C【解析】【分析】已知中没有明确该角为顶角还是底角,所以应分两种情况进行分析.【详解】分两种情况:若该角为底角,则顶角为180°−2×50°=80°;若该角为顶角,则顶角为50°.∴顶角是50°或80°.故选C.【点睛】此题考查等腰三角形的性质,解题关键在于分情况讨论.4. 若三角形的两条边的长度是4cm和9cm,则第三条边的长度可能是( )A. 4 cmB. 5 cmC. 9cmD. 13cm【答案】C【解析】【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边,进行解答即可.【详解】由题可得:9﹣4<第三边<9+4,所以5<第三边<13,即第三边在5 cm~13 cm之间(不包括5 cm 和13 cm),结合选项可知:9 cm符合题意.故选C.角形的两边的差一定小于第三边.5. 一个多边形的内角和是900°,则这个多边形的边数为()A. 6B. 7C. 8D. 9【答案】B【解析】【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【详解】解:设这个多边形的边数为n,则有(n-2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选B.【点睛】本题考查了多边形内角和,熟练掌握内角和公式是解题的关键.6. 下列长度的各种线段,可以组成三角形的是( )A. 1,2,3B. 1,3,5C. 3,3,6D. 4,5,6【答案】D【解析】【分析】根据三角形的三边关系逐一判断即可得答案.【详解】A .∵1+2=3,故不能组成三角形,不符合题意,B .∵1+3<5,故不能组成三角形,不符合题意,C .∵3+3=6,故不能组成三角形,不符合题意,D .∵4+5>6;5-4<6,故能组成三角形,符合题意,.故选:D .【点睛】本题考查三角形的三边关系,任意三角形的两边之和大于第三边,两边之差小于第三边,熟练掌握三角形的三边关系是解题关键.7 如图,AB 与CD 相交于点E ,EA EC =,DE BE =,若使AED CEB ≌,则( )A. 应补充条件A C ∠=∠B. 应补充条件B D ∠=∠C. 不用补充D. 以上说法都不正确【答案】C【解析】 【分析】本题要判定AED CEB ≌,已知EA EC =,DE BE =,具备了两组边对应相等,由于对顶角相等可得AED CEB ∠=∠,可根据SAS 能判定AED CEB ≌.【详解】解:在AED 与CEB 中,EA EC AED CEB DE BE = ∠=∠ =,(SAS)AED CEB ∴ ≌,∴不用补充条件即可证明AED CEB ≌,.故选:C .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8. 已知△ABC 和△DEF ,下列条件中,不能保证△ABC ≌△DEF 的是( )A. AB =DE ,AC =DF ,BC =EFB. ∠A =∠D , ∠B =∠E ,AC =DFC. AB =DE ,AC =DF ,∠A =∠DD. AB =DE ,BC =EF , ∠C =∠F【答案】D【解析】【分析】三角形全等的判定定理中,常见的不能判定三角形全等的条件为SSA ,AAA ,通过对条件的对比很容易得出结论.【详解】A 选项对应判定定理中的SSS ,故正确;B 选项对应判定定理中的AAS ,故正确;C 选项对应判定定理中的ASA ,故正确;D 选项则为SSA ,两边加对角是不能判定三角形全等的,故错误.故选D .【点睛】本题考查三角形全等判定定理,能熟记并掌握判定定理是解题关键.9. 如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 的对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若12PP =6,则△PMN 的周长为( )A. 4B. 5C. 6D. 7【答案】C【解析】【分析】根据题意易得1PM PM =,2P N PN =,然后根据三角形的周长及线段的数量关系可求解. 【详解】解:由轴对称的性质可得:OA 垂直平分1PP ,OB 垂直平分2P P ,∴1PM PM =,2P N PN =, ∵1212PMN C PM PN MN PM P N MN PP =++=++=△,12PP =6,∴6PMN C = ;故选C .【点睛】本题主要考查轴对称的性质及线段垂直平分线的性质定理,熟练掌握轴对称的性质及线段垂直平分线的性质定理是解题的关键.10. 如图,直线AB CD ∥,70A ∠=°,40C ∠=°,则E ∠的度数为( )A. 30°B. 40°C. 50°D. 60°【答案】A【解析】 【分析】此题考查了平行线的性质,三角形外角的性质,首先根据AB CD ∥得到170A ∠=∠=°,然后利用三角形外角的性质求解即可.解题的关键是熟练掌握三角形外角的性质:三角形的外角等于与它不相邻的两个内角的和.【详解】如图所示,∵AB CD ∥,70A ∠=°,∴170A ∠=∠=°,∵40C ∠=°∴1704030E C ∠=∠−∠=°−°=°.故选A .11. 如图,在ABC 中,AD BC ⊥于点D ,48C ∠=°.则DAC ∠的度数为( )A. 52°B. 42°C. 32°D. 28°【答案】B【解析】 【分析】根据垂直的定义,直角三角形的两个锐角互余,即可求解.【详解】解:∵AD BC ⊥,48C ∠=°,∴90ADC ∠=°,∵48C ∠=°,∴904842DAC ∠=°−°=°,故选:B .【点睛】本题考查了垂直的定义,直角三角形的两个锐角互余,求得90ADC ∠=°是解题的关键. 12. 如图,在ΔΔΔΔΔΔΔΔ中,AD 平分∠交BC 于点D ,30B ∠= ,70ADC ∠=,则C ∠的度数是( )A. 50B. 60C. 70D. 80【答案】C【解析】 【分析】由30B ∠= ,70ADC ∠= ,利用外角的性质求出BAD ∠,再利用AD 平分BAC ∠,求出BAC ∠,再利用三角形的内角和,即可求出C ∠的度数.【详解】∵30B ∠= ,70ADC ∠=, ∴703040BAD ADC B ∠=∠−∠=−= ,∵AD 平分BAC ∠,∴280BAC BAD ∠=∠= ,∴180180308070C B BAC ∠=−∠−∠=−−= .故选C .【点睛】本题考查了三角形的外角性质定理,角平分线的定义以及三角形的内角和定理,熟练掌握相关性质和定理是解题关键.二. 填空题(本题满分24分,每小题3分)13. BD 是ABC 的中线,53AB BC ABD ==,, 和BCD △的周长的差是____.【答案】2【解析】【分析】由中线定义,得AD CD =,根据周长定义,进行线段的和差计算求解.【详解】∵BD 是ABC 的中线,∴AD CD =,∴ABD △和BCD △的周长的差()()AB BD AD BC BD CD AB BC =++−++=−,∵53AB BC ==,, ∴ABD △和BCD △的周长的差532=−=.故答案为:2.【点睛】本题考查中线的定义;由中线得到线段相等是解题的关键.14. 若一个多边形从一个顶点可以引8条对角线,则这个多边形的内角和是______.【答案】1620°【解析】【分析】设多边形边数为n ,根据n 边形从一个顶点出发可引出(n−3)条对角线可得n−3=8,计算出n 的值,再根据多边形内角和(n−2)•180 (n ≥3)且n 为整数)可得答案.【详解】解:设多边形边数为n ,由题意得:n−3=8,n=11,内角和:180°×(11−2)=1620°.故答案为1620°.【点睛】本题主要考查了多边形的对角线,以及多边形内角和,关键是掌握n边形从一个顶点出发可引出(n−3)条对角线,多边形内角和公式(n−2)•180 (n≥3)且n为整数).中,∠C=90°,∠B=2∠A,BC=3cm,AB=____cm.15. Rt ABC【答案】6【解析】【详解】试题分析:根据直角三角形的性质即可解答.解:如图:∵Rt△ABC中,∠C=90°,∠B=2∠A∴∠A+∠B=90°∴∠A=30°,∠B=60°∴=,∵BC=3cm,∴AB=2×3=6cm.故答案为6.考点:直角三角形的性质.∆中,∠B=90 ,AB=3cm,AC=5cm,将ΔΔΔΔΔΔΔΔ折叠,使点C与点A重合,折痕为DE,16. 如图,Rt ABC则CE=____cm.【答案】258【解析】 【分析】在Rt △ABC 中,由勾股定理可得BC4= cm ,设AE =x cm ,由折叠的性质可得CE =x cm ,BE = (4)x −cm ,从而由勾股定理可得:2223(4)x x =+−,即可求解.【详解】解:∵在Rt △ABC 中,∠B =90°,AB =3cm ,AC =5cm ,∴由勾股定理可得:BC4=cm ,设AE =x cm ,则由折叠的性质可得:CE =x cm ,BE =BC -CE =(4)x −cm ,∴在Rt △ABE 中,由勾股定理可得:2223(4)x x =+−,解得:258x =(cm ). 即CE 的长为258cm . 故答案是:258. 【点睛】本题考查了折叠性质以及勾股定理的应用,熟练掌握勾股定理的内容是解题的关键. 17. 若一个n 边形的内角都相等,且内角的度数与和它相邻的外角的度数比为3:1,那么,这个多边形的边数为________.【答案】8##八【解析】【分析】本题考查的是多边形的内角和,以及多边形的外角和,解答本题的关键是熟练掌握任意多边形的外角和是360°,与边数无关. 先根据内角的度数与和它相邻的外角的度数比为3:1,求得每一个外角的度数,再根据任意多边形的外角和是360°,即可求得结果.【详解】解:设每一个外角的度数为x ,则每一个内角的度数3x ,则3180x x +=°,解得45x =°,∴每一个外角的度数为45°,∴这个多边形的边数为360458°÷°=,故答案为:8.18. 如下图,在ABC 中,AB AC =,BE CD =,BD CF =,若50B ∠=°,则EDF ∠的度数是____度. 的【答案】50【解析】【分析】本题考查了等腰三角形的性质,全等三角形的判定和性质,三角形内角和定理,由等腰三角形的性质可得B C ∠=∠,进而可证明()SAS BDE CFD ≌,得到BED CDF ∠=∠,即可得130BDE CDF BDE BED ∠+∠=∠+∠=°,最后根据平角的定义即可求解,掌握等腰三角形的性质及全等三角形的判定和性质是解题的关键.【详解】解:∵AB AC =,∴B C ∠=∠,又∵BE CD =,BD CF =,∴()SAS BDE CFD ≌,∴BED CDF ∠=∠,∵50B ∠=°,∴18050130BDE BED ∠+∠=°−°=°,∴130BDE CDF ∠+∠=°,∴()18018013050EDF BDE CDF ∠=°−∠+∠=°−°=°, 故答案为:50.三.解答题(本大题满分62分)19. 如图,DF ⊥AC 于F ,BE ⊥AC 于E ,AB =CD ,DF =BE .;求证:AF =CE .【答案】证明见解析.【解析】【分析】由HL 证明Rt △ABE ≌Rt △CDF ,得出对应边相等AE =CF ,由AE ﹣EF =CF =EF ,即可得出结论.详解】∵DF ⊥AC ,BE ⊥AC ,∴∠CFD =∠AEB =90°,在Rt △ABE 和Rt △CDF 中,{AB CD BE DF==, ∴Rt △ABE ≌Rt △CDF (HL ),∴AE =CF ,∴AE ﹣EF =CF =EF ,∴AF =CE .【点睛】本题考查了全等三角形的判定与性质.掌握全等三角形的判定方法是解题的关键.20. 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD .求△ABC 各角的度数.【答案】∠A=36°,∠ABC=∠C=72°【解析】【分析】设∠A=x ,根据等腰三角形的性质和三角形的外角性质、三角形的内角和定理即可求得各个角的度数.【详解】解:设∠A=x ,∵AD=BD ,∴∠ABD=∠A=x ,∴∠BDC=∠ABD+∠A=2x ,∵BD=BC ,∴∠C=∠BDC=2x ,∵AB=AC ,∴∠ABC=∠C=2x ,∴在△ABC 中,x+2x+2x=180°,∴x=36°,2x=72°,【即∠A=36°,∠ABC=∠C=72°.【点睛】本题考查了等腰三角形的性质、三角形的外角性质、三角形内角和定理,熟练掌握等腰三角形的性质和外角性质是解答的关键.21. 如图,点D E ,分别在AB AC ,上,CD 交BE 于点O ,且AD AE =,AB AC =.求证:(1)B C ∠=∠;(2)OB OC =.【答案】(1)证明见解析(2)证明见解析【解析】【分析】本题考查三角形全等的判定与性质,熟记三角形全等的判定定理:SSS SAS ASA AAS 、、、是解决问题的关键.(1(2)根据三角形全等的判定定理找条件证明即可得证.【小问1详解】证明:在ABE 和ACD 中,AD AE A A AB AC = ∠=∠ =()SAS ABE ACD ∴≌ ,∴B C ∠=∠;【小问2详解】证明: AD AE =,AB AC =,BD CE ∴=,由(1)知,B C ∠=∠,在BOD 和COE 中,BOD COE B C DB EC ∠=∠ ∠=∠ =()AAS ≌BOD COE ∴△△,∴OB OC =.22. 如图,两人从路段ΔΔΔΔ上一点C 同时出发,以相同的速度分别沿两条直线行走,并同时到达D E ,两地.且DA AB ⊥,EB AB ⊥.若线段DA EB =相等,则点C 是路段ΔΔΔΔ的中点吗?为什么?【答案】点C 是路段ΔΔΔΔ的中点,理由见解析.【解析】【分析】本题考查了全等三角形的判定和性质,利用HL 证明Rt Rt ACD BCE ≌得到AC BC =即可求解,掌握全等三角形的判定和性质是解题的关键.【详解】解:点C 是路段ΔΔΔΔ的中点,理由如下:∵两人从点C 同时出发,以相同的速度同时到达D E ,两地,∴CD CE =,∵DA AB ⊥,EB AB ⊥,∴90A B ∠=∠=°,又∵DA EB =,∴()Rt Rt HL ACD BCE ≌, ∴AC BC =,∴点C 是路段ΔΔΔΔ的中点.23. 在ABC 中,AB AC =,AB 的垂直平分线MN 交AC 于点D ,交AB 于点E .(1)求证:ABD △是等腰三角形;(2)①若40A ∠=°,求DBC ∠的度数为 ;②若6AE =,CBD △的周长为20,求ABC 的周长.【答案】(1)见解析 (2)①;②32【解析】【分析】(1)根据线段的垂直平分线到线段两端点的距离相等即可得证;(2)①由在ABC 中,AB AC =,40A ∠=°,利用等腰三角形的性质,即可求得ABC ∠的度数,利用等边对等角求得DBA ∠的度数,则可求得DBC ∠的度数;②将ABC 的周长转化为AB AC BC ++的长即可求得.【小问1详解】解:∵AB 的垂直平分线MN 交AC 于点D ,∴DB DA =,∴ABD △是等腰三角形;【小问2详解】解:①在ABC 中,∵AB AC =,40A ∠=°, ∴180180407022AABC C −∠°−∠=∠=°==°°, 由(1)得DA DB =,40DBA A ∠=∠=︒,∴704030DBC ABC DBA ∠=∠−∠=°−°=°;故答案为:30°;②∵AB 的垂直平分线MN 交AC 于点D ,6AE =,∴212AB AE ==,∵CBD △的周长为20,∴20BD CD BC AD CD BC AC BC ++=++=+=,∴ABC 的周长122032AB AC BC =++=+=. 【点睛】此题考查了线段的垂直平分线的性质及等腰三角形的判定与性质,解题的关键是熟练掌握以上知识的应用.24. 如图,在ABC 中,AB AC =,P 是边BC 的中点,PD AB PE AC ⊥⊥,,垂足分别为D ,E .求证:PD PE =.【答案】见解析【解析】【分析】利用AAS 证明PBD PCE ≌即可.本题考查了三角形全等的判定和性质,熟练掌握三角形全等的判定是解题的关键.【详解】证明:∵PD AB PE AC ⊥⊥,,∴90PDB PEC ∠=∠=°,∵AB AC =,∴B C ∠=∠,∵P 是边BC 的中点,∴PB PC =,∵PDB PEC B C PB PC ∠=∠ ∠=∠ =,∴PBD PCE ≌,∴PD PE =.25. 如图,∠B =∠C =90°,M 是BC 上一点,且DM 平分∠ADC ,AM 平分∠DAB ,求证:AD =CD +AB .【答案】证明见解析【解析】【分析】过M作ME⊥AD于E,根据垂直定义和角平分线性质得出∠C=∠DEM=90°,∠B=∠AEM=90°,∠CDM=∠EDM,CM=EM,∠EAM=∠BAM,BM=ME,根据全等三角形性质,推导得△MCD≌△MED,根据全等得出CD=DE,同理得AE=AB,即可得出答案.【详解】如图,过M作ME⊥AD于E,∵∠B=∠C=90°,DM平分∠ADC,AM平分∠DAB,∴∠C=∠DEM=90°,∠B=∠AEM=90°,∠CDM=∠EDM,CM=EM,∠EAM=∠BAM,BM=EM,∴CDM EDMC DEMCM EM∠=∠∠=∠=,∴△MCD≌△MED(AAS),∴CD=DE,∵BAM EAMB AEMBM EM∠=∠∠=∠=∴△ABM≌△AEM(AAS),∴AE=AB,∴AD=AE+DE=CD+AB.【点睛】本题考查了角平分线、全等三角形的知识;解题的关键是熟练掌握角平分线、全等三角形的性质,从而完成求解.26. 如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.【答案】(1)见解析;(2)AD ⊥MC ,理由见解析【解析】【分析】(1)由已知可以证得△DFC ≌△AFM ,从而得到CF =MF ,最后得到∠FMC =∠FCM ; (2)由(1)可以证得DE ∥CM ,再根据AD ⊥DE 可得AD ⊥MC .【详解】解:(1)证明:∵△ADE 是等腰直角三角形,F 是AE 中点,∴DF ⊥AE ,DF =AF =EF ,又∵∠ABC =90°,∠DCF ,∠AMF 都与∠MAC 互余,∴∠DCF =∠AMF ,在△DFC 和△AFM 中,DCF AMF CFD MFA DF AF∠=∠ ∠=∠ = , ∴△DFC ≌△AFM (AAS ),∴CF =MF ,∴∠FMC =∠FCM ;(2)AD ⊥MC ,理由:由(1)知,∠MFC =90°,FD =FA =FE ,FM =FC ,∴∠FDE =∠FMC =45°,∴DE ∥CM ,∴AD ⊥MC .【点睛】本题考查全等三角形的综合运用,熟练掌握三角形全等的判定和性质、等腰三角形的性质、同角余角相等的性质、平行线的判定与性质、垂直的判定并灵活运用是解题关键.。

八年级(上)月考数学试卷(2022年10月)

八年级(上)月考数学试卷(2022年10月)

2022-2023学年度月考试卷(10月)八年级(上)数学时间:90分钟满分120分一.选择题(10题共30分)1.两根长度分别为5cm,9cm的钢条,下面为第三根的长,则可组成一个三角形框架的是()A.3cm B.4cm C.9cm D.14cm2.在下列各图的△ABC中,正确画出AC边上的高的图形是()A.B.C.D.3.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去4.一个多边形的每一个外角都等于36°,则该多边形的内角和等于()A.1440°B.1080°C.900°D.720°5.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90°B.135°C.270°D.315°3题5题6题7题6.如图,点A,E,F,D在同一直线上,若AB∥CD,AB=CD,AE=FD,则图中的全等三角形有()A.1对B.2对C.3对D.4对7.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB8.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,试着找一找这个规律,你发现的规律是()A.∠1+∠2=2∠A B.∠1+∠2=∠A C.∠A=2(∠1+∠2)D.∠1+∠2=∠A9.适合条件∠A =∠B =∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形10.如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF 的共有()A.1组B.2组C.3组D.4组题号12345678910选项二.填空题(共3小题24分)11.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=.8题10题11题12.到线段AB两个端点距离相等的点的轨迹是13题14题15题13.如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A、B、E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是.(只填一个即可)14.如图所示的方格中,∠1+∠2+∠3=度.15.如图是汽车牌照在水中的倒影,则该车牌照上的数字是.16.如图,将一张三角形纸片折叠,使得点A、点C都与点B重合,折痕分别为DE、FG,此时测得∠EBG=36°,则∠ABC=°.16题17题18题17.如图所示,在△ABC中,∠A=50°,点D在△ABC的内部,并且∠DBA=∠ABC,∠DCA=∠ACB,则∠D的度数是.18.如图所示,Rt△ABE≌Rt△ECD,点B、E、C在同一直线上,则结论:①AE=ED;②AE⊥DE;③BC=AB+CD;④AB∥DC中成立的是(填序号)三.解答题(共66分)19、(6分)如图所示方格纸中,每个小正方形的边长均为1,点A,点B,点C在小正方形的顶点上.(1)画出△ABC中边BC上的高AD;(2)画出△ABC中边AC上的中线BE;(3)直接写出△ABE的面积为.20.(10分)已知△ABC的周长为33cm,AD是BC边上的中线,.(1)如图,当AC=10cm时,求BD的长.(2)若AC=12cm,能否求出DC的长?为什么?21.(8分)如图,AD⊥AE,AB⊥AC,AD=AE,AB=AC.求证:△ABD≌△ACE.22.(8分)如图,在△ABC中,点D是BC的中点,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.求证:△BDE≌△CDF.23.(9分)生活中到处都存在着数学知识,只要同学们学会用数学的眼光观察生活,就会有许多意想不到的收获,如图两幅图都是由同一副三角板拼凑得到的:(1)图1中的∠ABC的度数为.(2)图2中已知AE∥BC,求∠AFD的度数.24、(9分)如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?25、(12分)如图①A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC于E,BF⊥AC于F.(1)若AB=CD,求证:GE=GF.(2)将△DEC的边EC沿AC方向移动到如图②,(1)中其余条件不变,上述结论是否成立?请说明理由.参考答案及评分标准一.选择题(10题共30分)二.填空题(共3小题24分)11、120°12、线段AB的垂直平分线13、AD=AC或∠D=∠C或∠ABD=∠ABC 14、13515、2167816、10817、76°18、①②③④三.解答题(共66分)19、(6分)如图所示方格纸中,每个小正方形的边长均为1,点A ,点B ,点C 在小正方形的顶点上.(1)画出△ABC 中边BC 上的高AD ;.....2分(2)画出△ABC 中边AC 上的中线BE ;.....4分(3)直接写出△ABE 的面积为4.........6分20、(10分)已知△ABC 的周长为33cm ,AD 是BC 边上的中线,.(1)如图,当AC =10cm 时,求BD 的长.(2)若AC =12cm ,能否求出DC 的长?为什么?解:(1)∵AC=10∴AB=1023⨯=15∴BC=33-10-15=8cm 又∵AD 是BC 边上的中线∴4BC 21BD ==cm .....5分(2)∵AC=12∴AB=1223⨯=18∴BC=33-12-18=3cm ∵3+12<18此时三条线段不能构成三角形故不能求出DC 的长。

人教版八年级上册数学《月考》试卷含答案

人教版八年级上册数学《月考》试卷含答案

人教版八年级上册数学《月考》试卷含答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是( )A .3B .13C .13-D .3-2.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .13.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .||4a >B .0c b ->C .0ac >D .0a c +>4.已知a b 3132==,,则a b 3+的值为( ) A .1 B .2 C .3 D .275.将下列多项式因式分解,结果中不含有因式(a+1)的是( )A .a 2-1B .a 2+aC .a 2+a-2D .(a+2)2-2(a+2)+16.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE ⊥AB 于 E ,PF ⊥AC 于 F ,M 为 EF 中点,则 AM 的最小值为( )A .1B .1.3C .1.2D .1.58.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB ∶S四边形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正确结论的个数是()A.1个B.2个C.3个D.4个10.如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A.31π+B.32C.2342π+D.231π+二、填空题(本大题共6小题,每小题3分,共18分)1273________.2.如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则a的取值范围是__________.3.分解因式6xy2-9x2y-y3 = _____________.4.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于________.5.如图,∠1+∠2+∠3+∠4=______度.6.如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为________.三、解答题(本大题共6小题,共72分)1.解分式方程 (1)21324x x x -+-=0 (2)13222x x x-+=--2.(1)已知x 35y 352x 2-5xy +2y 2的值. (2)先化简,再求值:222222x y x y x xy y x xy x y ⎛⎫--÷ ⎪-+--⎝⎭,其中x =221,y =223.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.4.小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.5.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.6.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、B4、B5、C6、A7、C8、C9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2、a ≤2.3、-y(3x -y)24、8.5、2806、7三、解答题(本大题共6小题,共72分)1、(1)x=﹣1;(2)x=23.2、(1)42,(2)13-3、(1)12,32-;(2)略.4、(1)家与图书馆之间路程为4000m ,小玲步行速度为100m/s ;(2)自变量x 的范围为0≤x ≤403;(3)两人相遇时间为第8分钟.5、(1)略;(2)四边形ACEF 是菱形,理由略.6、(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级数学上册10月月考试卷附答案
一、选择题(共7小题;共42分)
1. 下列各组数分别表示三条线段的长度,不能组成三角形的是
A. ,,
B. ,,
C. ,,
D. ,,
2. 下列说法中错误的是
A. 三角形三条角平分线都在三角形的内部
B. 三角形三条中线都在三角形的内部
C. 三角形三条高都在三角形的内部
D. 三角形三条高至少有一条在三角形的内部
3. 如图,的角平分线,相交于点,,则
A. B. C. D.
4. 下列图形中有稳定性的是
A. 平行四边形
B. 正方形
C. 长方形
D. 直角三角形
5. 三角形的三条高线的交点在三角形的一个顶点上,则此三角形是
A. 直角三角形
B. 锐角三角形
C. 钝角三角形
D. 等腰三角形
6. 下列条件中,不能判定三角形全等的是
A. 三条边对应相等
B. 两边和一角对应相等
C. 两角和其中一角的对边对应相等
D. 两角和它们的夹边对应相等
7. 如图,在方格纸中,以为一边作,使之与全等,从,,
,四个点中找出符合条件的点,则点有
A. 个
B. 个
C. 个
D. 个
二、填空题(共7小题;共42分)
8. 已知一个多边形的内角和与外角和之比为,则它的边数是.
9. 是的中线,,,和的周长的差
是.
10. 如图,是的角平分线,于点,若,
,则的度数是.
11. 如图,已知,,,则.
12. 如图所示,,,的大小关系是(用“”将它们连接起
来).
13. 点,,,在同一直线上,且,.请你只添加一个边
相等或角相等的条件(不再加辅助线),使.你添加的条件是:.。

相关文档
最新文档