九年级数学解直角三角形4
湘教版数学九年级上册4.4《解直角三角形的应用》(第1课时)教学设计
湘教版数学九年级上册4.4《解直角三角形的应用》(第1课时)教学设计一. 教材分析湘教版数学九年级上册4.4《解直角三角形的应用》是本册教材中的一个重要内容。
在此之前,学生已经学习了直角三角形的性质、勾股定理等知识。
本节课主要让学生掌握解直角三角形的应用,即如何利用直角三角形的性质解决实际问题。
教材通过例题和练习题的形式,引导学生学会运用解直角三角形的方法解决生活中的问题,提高学生的数学应用能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对直角三角形的概念和性质有一定的了解。
但是,他们在解决实际问题时,往往不知道如何将数学知识运用到具体情境中。
因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高学生的数学应用能力。
三. 教学目标1.知识与技能目标:使学生掌握解直角三角形的应用方法,能够运用所学知识解决实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等过程,培养学生解决问题的能力。
3.情感、态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:解直角三角形的应用方法。
2.难点:如何将实际问题转化为直角三角形问题,并运用解直角三角形的方法解决。
五. 教学方法1.情境教学法:通过生活实例,引导学生发现问题,提出解决方案。
2.启发式教学法:教师提问,引导学生思考,激发学生的求知欲。
3.合作学习法:学生分组讨论,共同解决问题,培养团队合作精神。
六. 教学准备1.教师准备:教材、课件、黑板、直角三角板等教学工具。
2.学生准备:课本、练习本、直角三角板等学习工具。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实际问题,如测量旗杆高度、房屋面积等,引导学生发现这些问题都可以通过解直角三角形来解决。
从而激发学生的学习兴趣,引入新课。
2.呈现(10分钟)教师展示教材中的例题,引导学生观察题干,分析问题。
然后,教师通过讲解,展示解直角三角形的步骤和方法。
湘教版数学九年级上册4.3《解直角三角形》教学设计
湘教版数学九年级上册4.3《解直角三角形》教学设计一. 教材分析湘教版数学九年级上册4.3《解直角三角形》是本册教材中关于直角三角形知识的重要内容。
本节内容是在学生已经掌握了锐角三角函数和直角三角形的性质的基础上进行学习的,主要让学生了解解直角三角形的意义和作用,学会使用解直角三角形的方法,提高解决实际问题的能力。
教材通过引入直角三角形中的边长和角度的关系,引导学生利用已学的锐角三角函数知识来解决直角三角形中的问题。
教材内容由浅入深,逐步引导学生掌握解直角三角形的方法,同时注重培养学生的空间想象能力和解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对直角三角形和锐角三角函数有一定的了解。
但是,学生对解直角三角形的理解和应用能力参差不齐,部分学生可能对解直角三角形的实际应用还存在一定的困难。
因此,在教学过程中,教师需要关注学生的个体差异,针对不同层次的学生进行有针对性的教学,引导学生理解解直角三角形的意义,提高学生解决实际问题的能力。
三. 教学目标1.知识与技能:让学生掌握解直角三角形的方法,能够运用解直角三角形解决实际问题。
2.过程与方法:通过观察、分析、归纳等方法,引导学生自主探索解直角三角形的规律,提高学生的空间想象能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和勇于挑战的精神。
四. 教学重难点1.重点:让学生掌握解直角三角形的方法,能够运用解直角三角形解决实际问题。
2.难点:引导学生理解解直角三角形的实际应用,提高学生解决实际问题的能力。
五. 教学方法1.情境教学法:通过生活实例引入解直角三角形的概念,激发学生的学习兴趣。
2.引导发现法:引导学生观察、分析、归纳解直角三角形的规律,培养学生的自主学习能力。
3.合作学习法:学生进行小组讨论,培养学生的合作意识和团队精神。
4.实践操作法:让学生通过动手操作,加深对解直角三角形的理解和应用。
湘教版九年级数学上册第4章锐角三角函数4.3解直角三角形教学设计
湘教版九年级数学上册第4章锐角三角函数4.3解直角三角形教学设计一. 教材分析湘教版九年级数学上册第4章锐角三角函数4.3节主要是解直角三角形。
本节内容是在学生已经掌握了锐角三角函数的概念和性质的基础上进行学习的,通过解直角三角形,让学生进一步理解三角函数的定义和应用,培养学生的空间想象能力和解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对锐角三角函数的概念和性质有一定的了解。
但解直角三角形这一节内容涉及的知识点较多,运算较为复杂,对学生来说是一个较大的挑战。
因此,在教学过程中,需要注重引导学生理解概念,突破难点,提高学生的运算能力和解决问题的能力。
三. 教学目标1.理解解直角三角形的概念和性质;2.学会用锐角三角函数解直角三角形;3.培养学生的空间想象能力和解决问题的能力。
四. 教学重难点1.重点:解直角三角形的概念和性质,用锐角三角函数解直角三角形;2.难点:理解解直角三角形的性质,熟练运用锐角三角函数解直角三角形。
五. 教学方法1.采用问题驱动法,引导学生自主探究,合作交流;2.利用多媒体辅助教学,直观展示解直角三角形的过程;3.运用练习法,巩固所学知识,提高解题能力。
六. 教学准备1.准备相关的多媒体课件;2.准备一些典型的解直角三角形的题目;3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际生活中的直角三角形,如建筑工人测量高度、运动员测量跳远距离等,引导学生思考如何计算这些直角三角形的未知边长。
2.呈现(10分钟)讲解解直角三角形的概念和性质,引导学生理解直角三角形的三个锐角函数的定义和关系。
3.操练(15分钟)让学生独立完成一些典型的解直角三角形的题目,教师巡回指导,解答学生的疑问。
4.巩固(10分钟)通过一些练习题,让学生巩固所学知识,提高解题能力。
5.拓展(10分钟)讲解一些关于解直角三角形的拓展知识,如如何利用解直角三角形求解其他三角形的边长等。
华师版九年级数学上册第24章4 解直角三角形
“有斜求对乘正弦”的意思是在一个直角三角形中,对一
个锐角而言,如果已知斜边长,要求该锐角的对边,那么
就用斜边长乘该锐角的正弦,其余的口诀意思可类推.
知1-练
例 1 根据下列条件,解直角三角形: (1)在Rt△ABC中,∠C=90°,a=20,c=20 2; (2)在Rt△ABC中,∠C=90°,a=2 3,b=2. 解题秘方:紧扣“直角三角形的边角关系”选择 合适的关系式求解.
第24章 解直角三角形
24.4 解直角三角形
1 课时讲解 解直角三角形
解直角三角形在实际问题中的应用
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
知识点 1 解直角三角形
知1-讲
1. 一般地,直角三角形中,由已知元素求出未知元素的过 程,叫做解直角三角形. (1)在直角三角形中,除直角外的五个元素中,已知其 中的两个元素(至少有一个是边),可求出其余的三个 未知元素(知二求三). (2) 一个直角三角形可解,则其面积可求. 但在一个解直 角三角形的题中,如无特别说明,则不包括求面积.
找未知角的某一个锐角三角函数.
知1-练
(1)在Rt△ABC中,∠C=90°,∠A=30°,b=12; 解:在Rt△ABC中,∠C=90°,∠A=30°, ∴∠B=90°-∠A=60°.
∵ tan A=ab,∴ 33=1a2, ∴ a=4 3,∴ c=2a=8 3.
知1-练
(2)在Rt△ABC中,∠C=90°,∠A=60°,c=6. 解:在Rt△ABC中,∠C=90°,∠A=60°, ∴∠B=90°-∠A=30°.
例 2 根据下列条件,解直角三角形:
知1-练
(1)在Rt△ABC中,∠C=90°,∠A=30°,b=12;
湘教版数学九年级上册4.3《解直角三角形》教学设计
湘教版数学九年级上册4.3《解直角三角形》教学设计一. 教材分析《解直角三角形》是湘教版数学九年级上册4.3的内容,这部分内容是在学生已经掌握了锐角三角函数和直角三角形的性质的基础上进行学习的。
本节课的主要内容有:了解解直角三角形的概念,学会用锐角三角函数解直角三角形,能运用解直角三角形的知识解决实际问题。
本节课的内容在数学学科中占有重要的地位,它不仅巩固了锐角三角函数的知识,而且为后续学习三角函数的图像和性质奠定了基础。
二. 学情分析九年级的学生已经具备了一定的数学基础,对锐角三角函数和直角三角形的性质有一定的了解。
但是,对于解直角三角形的概念和运用可能还不够熟练。
因此,在教学过程中,需要引导学生通过实际问题来理解和掌握解直角三角形的方法,提高他们运用数学知识解决实际问题的能力。
三. 教学目标1.了解解直角三角形的概念,掌握用锐角三角函数解直角三角形的方法。
2.能够运用解直角三角形的知识解决实际问题。
3.提高学生运用数学知识解决实际问题的能力,培养学生的逻辑思维能力。
四. 教学重难点1.重点:解直角三角形的概念,用锐角三角函数解直角三角形的方法。
2.难点:如何引导学生从实际问题中发现解直角三角形的规律,运用解直角三角形的知识解决实际问题。
五. 教学方法1.情境教学法:通过设计实际问题,引导学生理解和掌握解直角三角形的方法。
2.小组合作学习:学生在小组内讨论和分享解直角三角形的方法,培养学生的合作意识和团队精神。
3.案例教学法:通过分析具体的案例,让学生理解解直角三角形的应用。
六. 教学准备1.准备相关的实际问题,用于引导学生理解和掌握解直角三角形的方法。
2.准备解直角三角形的案例,用于分析和讲解。
3.准备黑板和粉笔,用于板书。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何求解直角三角形的边长。
例如,一个直角三角形的两个锐角分别是30度和60度,求这个三角形的斜边长。
2.呈现(10分钟)呈现相关的实际问题,让学生独立思考和解决问题。
初三数学利用三角函数解直角三角形含答案
解直角三角形中考要求知识要点模块一 解直角三角形一、解直角三角形的概念根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形. 二、直角三角形的边角关系如图,直角三角形的边角关系可以从以下几个方面加以归纳: (1)三边之间的关系:222a b c += (勾股定理) (2)锐角之间的关系:90A B ∠+∠=︒(3)边角之间的关系:sin cos ,cos sin ,tan a b aA B A B A c c b=====三、解直角三角形的四种基本类型(1)已知斜边和一直角边(如斜边c ,直角边a ),由sin aA c=求出A ∠,则90B A ∠=︒-∠,b =; (2)已知斜边和一锐角(如斜边c ,锐角A ),求出90B A ∠=︒-∠,sin a c A =,cos b c A =; (3)已知一直角边和一锐角(如a 和锐角A ),求出90B A ∠=︒-∠,tan b a B =,sin ac A=; (4)已知两直角边(如a 和b ),求出c =tan aA b=,得90B A ∠=︒-∠. 具体解题时要善于选用公式及其变式,如sin a A c =可写成sin a c A =,sin a c A=等. 四、解直角三角形的方法解直角三角形的方法可概括为:“有斜(斜边)用弦(正弦,余弦),无斜用切(正切,余切),宁乘毋除,取原避中”.这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦;无斜边时,就用正切或余切;当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求得时,则用原始数据,尽量避免用中间数据. 五、解直角三角形的技巧及注意点在Rt ABC ∆中,90A B ∠+∠=︒,故sin cos(90)cos A A B =︒-=,cos sin A B =.利用这些关系式,可在解题时进行等量代换,以方便解题.cb CBA六、如何解直角三角形的非基本类型的题型对解直角三角形的非基本类型的题型,通常是已知一边长及一锐角三角函数值,可通过解方程(组)来转化为四种基本类型求解;(1)如果有些问题一时难以确定解答方式,可以依据题意画图帮助分析;(2)对有些比较复杂的问题,往往要通过作辅助线构造直角三角形,作辅助线的一般思路是:①作垂线构成直角三角形;②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边等.例题精讲【例2】 如图所示,O 的直径4AB =,点P 是AB 延长线上的一点,过P 点作O 的切线,切点为C ,连接AC .(1)若30CPA ∠=︒,那么PC 的长为 .为O 的切线,tan303=︒的大小没有变化七、直角三角形中其他重要概念(1)仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图⑴.(2)坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为h i l=,坡面与水平面的夹角记作α,叫做坡角,则tan hi lα==.坡度越大,坡面就越陡.如图⑵. (3)方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图⑶.八、解直角三角形应用题的解题步骤及应注意的问题:(1)分析题意,根据已知条件画出它的平面或截面示意图,分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;(2)找出要求解的直角三角形.有些图形虽然不是直角三角形,但可添加适当的辅助线,把它们分割成一些直角三角形和矩形(包括正方形);(3)根据已知条件,选择合适的边角关系式解直角三角形;(4)按照题目中已知数据的精确度进行近似计算,检验是否符合实际,并按题目要求的精确度取近似值,注明单位. (一)仰角与俯角图(3)北图(2)图(1)俯角仰角视线视线水平线铅垂线30,400DCB CD ∠=︒=米),测得A 的仰角为60︒,求山的高度AB .【答案】作DE AB ⊥于E ,作DF BC ⊥于F ,在Rt CDF ∆中30400DCF CD ∠=︒=,米,1sin304002002DF CD =⋅︒=⨯=(米)cos30400CF CD =⋅︒=米) 在Rt ADE ∆中,60ADE ∠=︒,设DE x =米, ∴tan 60AE x =︒⋅(米)在矩形DEBF 中,200BE DF ==米,在Rt 45ACB ACB ∆∠=︒中,,∴AB BC =, 200x +=,解得200x =,∴200AB AE BE =+=()米【巩固】如图,某电信部门计划架设一条连结B C ,两地的电缆,测量人员在山脚A 地测得B C , 两地在同一方向,且两地的仰角分别为3045︒︒,,在B 地测得C 地的仰角为60︒,已知C 地比A 地高200米,且由于电缆的重力导致下坠,实际长度是两地距离的1.2倍,求电缆的长(精确到0.1米)【解析】过点C 作CH AD ⊥于H ,过B 作BE AH ⊥于E ,BF CH ⊥于F ,由题意得604530CBF CAH BAH ∠=︒∠=︒∠=︒,,200CH m =, 设BC x =米,在Rt BFC ∆中,由cos BF CBF BC ∠=,sin CFCBF BC∠=1cos sin 2BF BC CBF x CF BC CBF =∠==∠=,,易得 FE D BCADCB AACH ∆是等腰直角三角形,所以200AH CH ==,从而12002002AE AH EH x BE FH =-=-==,,在Rt ABE ∆中,tan30BE AE =︒,由此得12002002x ⎫=-⎪⎝⎭,解得200146.4x =≈,根据题意,电缆的实际长度约为 146.4 1.2175.7⨯≈米【答案】175.7(二)坡度与坡角图所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O 的半径OC 所在的直线为对称轴的轴对称图形,A 是OD 与圆O 的交点.(1)请你帮助小王在下图中把图形补画完整;(2)由于图纸中圆O 的半径r 的值已看不清楚,根据上述信息(图纸中1:0.75i =是坡面CE 的坡度),求r 的值.【答案】(1)图形补全如右图所示:O CA(2) ∵1:0.754:3i ==∴:4:3CH EH =在Rt CHE ∆中,5CE = ∴43CH EH ==, ∴437DH DE EH =+=+= 在Rt ODH ∆中,222HO DH OD += 即()()222477r r ++=+,解得83r =.(三)方向角【例8】 如图,AC 是某市环城路的一段,AE BF CD ,,都是南北方向的街道,其与环城路AC 的交叉路口分别是A B C ,,.经测量花卉世界D 位于点A 的北偏东45︒方向、点B 的北偏东30︒方向上, 2AB km =,15DAC ∠=︒.(1)求B D ,之间的距离; (2)求C D ,之间的距离.【解析】(1)如图,由题意得,4530EAD FBD ∠=︒∠=︒,.∴ 451560EAC EAD DAC ∠=∠+∠=︒+︒=︒. ∵ AE BF CD ∥∥, ∴ 60FBC EAC ∠=∠=︒. ∴ 30DBC ∠=︒.又∵ DBC DAB ADB ∠=∠+∠, ∴ 15ADB ∠=︒.∴ DAB ADB ∠=∠. ∴ 2BD AB ==. 即B D ,之间的距离为2km .(2)过B 作BO DC ⊥,交其延长线于点O 在Rt DBO ∆中,260BD DBO =∠=︒,.∴2sin 6022cos60DO BO =⨯︒===⨯︒ 在Rt CBO ∆中,30tan30CBO CO BO ∠=︒=⋅︒, ∴CD DO CO =-==km ). 即C D ,之间的距离为km 【答案】(1)之间的距离为2km ; (2)之间的距离为km .332B D ,C D ,332和平路文化路中山路30°15°45°FEDCBA 和平路文化路中山路ABC DEF45°15°30°O【巩固】台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220km 的B 处有一台风中心,其中心最大风力为12级,每远离台风中心20km ,风力就减弱一级,该台风中心现在以15km/h 的速度沿北偏东30︒方向往C 移动,且台风中心风力不变,若城市所受风力达到四级,则称受台风影响. (1)该城市是否会受这次台风影响?请说明理由.(2)若受台风影响,那么台风影响该城市的持续时间会有多长? (3)该城市受台风影响的最大风力是几级?【答案】⑴ 过A 作AD BC ⊥于D ,∵220AB =,30B ∠=︒, ∴110AD =由题意A 距台风中心不超过(124)20160-⨯=km 时,将会受到台风影响, ∴该城市会受到台风影响.⑵ 在BD 上取点E ,DC 上取点F ,使160AE AF ==,则由题意知:台风中心到达点E 时,该城市即开始受台风影响;台风中心到达点F 时,该城市即结束影响.由勾股定理得,DE∴EF =∵该台风中心以15km/h 的速度移动, ∴=. ⑶ 当台风中心位于D 时,A 市所受这次台风影响的风力最大,其最大风力为11012 6.520-=级(四)其它【例9】 小明发现在教学楼走廊上有一拖把以15︒的倾斜角斜靠在栏杆上,严重影响了同学们的行走安全.他自觉地将拖把挪动位置,使其的倾斜角为75︒,如果拖把的总长为1.80m ,则小明拓宽了行路通道_________m .(结果保留三个有效数字,参考数据:sin150.26︒≈,cos150.97︒≈)【解析】在Rt ABO ∆中,可求得cos15 1.80.97 1.75AO AB =⋅︒=⨯≈米,在Rt CDO ∆中,可求得sin150.468DO AB =⋅︒≈米 ∴ 1.750.468 1.28AD =-=米【答案】1.28米【巩固】如图1,一架长4米的梯子AB 斜靠在与地面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为60︒.(1)求AO 与BO 的长;(2)若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行.① 如图2,设A 点下滑到C 点,B 点向右滑行到D 点,并且:2:3AC BD =,试计算梯子顶端A 沿NO 下滑多少米;② 如图3,当A 点下滑到'A 点,B 点向右滑行到'B 点时,梯子AB 的中点P 也随之运动到'P 点.若'15POP ∠=︒,试求'AA 的长.【答案】⑴ Rt AOB ∆中,90O ∠=︒,60α∠=︒∴30OAB ∠=︒,又4AB =米, ∴122OB AB ==米.sin 604OA AB =⋅==米 ⑵ 设2AC x =,3BD x =,在Rt COD ∆中,2OC x =,23OD x =+,4CD =根据勾股定理:222OC OD CD +=∴()()2222234xx ++=∴(213120x x +-=∵0x ≠∴13120x +-,∴x =2AC x == 即梯子顶端A 沿NO米 ⑶ ∵点P 和点P '分别是Rt AOB ∆的斜边AB 与Rt ''A OB ∆的斜边''A B 的中点∴PA PO =,'''P A P O = ∴PAO AOP ∠=∠,P A O A OP ''''∠=∠ ∴P A O PAO A OP AOP ''''∠-∠=∠-∠ ∴15P A O PAO POP '''∠-∠=∠=︒∵30PAO ∠=︒,∴45P A O ''∠=︒∴cos454A O A B '''=⨯︒==∴AA OA A O ''=-=米【例10】 关于三角函数有如下的公式:sin()sin cos cos sin αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=-tan tan tan()(1tan tan 0)1tan tan αβαβαβαβ++=-⋅≠-⋅利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如图1图2图3tan 45tan 60tan105tan(4560)(21tan 45tan 60︒+︒︒=︒+︒===--︒⋅︒根据上面的知识,你可以选择适当的公式解决下面实际问题:如图,直升飞机在一建筑物CD 上方A 点处测得建筑物顶端D 点的俯角α为60︒,底端C 点的俯角β为75︒,此时直升飞机与建筑物CD 的水平距离BC 为42米,求建筑物CD 的高. 【解析】过点D 作DE AB ⊥于E ,依题意在Rt ADE △中,60ADE α∠=∠=︒,tan 60tan 60AE ED BC =⋅︒=⋅︒=.在Rt ACB △中,75tan75ACB AB BC β∠=∠=︒=⋅︒, ∵tan 45tan 30tan 75tan(4530)21tan 45tan 30︒+︒︒=︒+︒==-︒⨯︒∴42(284AB =⨯+=+∴8484CD BE AB AE ==-=+(米)【答案】建筑物的高为84米.课堂检测1. (2011•遵义)某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长6AB cm =,45ABC ∠=︒,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D 处,使30ADC ∠=︒(如图所示) (1)求调整后楼梯AD 的长; βαDCBAE βαDCBAACB∠=.【解析】过点C作CD PB∥,则6045ACD BCD∠=︒∠=︒,所以6045105ACB∠=︒+︒=︒【答案】105°课后作业水坡CD 的坡度为2,坝高CF 为2m ,在坝顶C 处测得杆顶A 的仰角为30︒,D 、E 之间是宽为2m 的人行道,试问:在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B 为圆心.以AB 的长为半径的圆形区域为危险区域).【解析】过点C 作CH AB ⊥于点H ,得矩形HBFC 连接DF∵21CF DF =,2CF =(m) ∴1DF =(m)∴2CF HB ==(m),15HC BF ==(m) 在Rt AHC ∆中,tan3015tan30AH HC =⋅︒=⨯︒=,∵210.66(m)AB AH HB =+=≈ 12(m)BE BD ED =-=F E人行道DCB AFE人行道30︒H DCBA∴,AB BE∴不需将此人行道封上.【答案】不需将此人行横道封上。
九年级数学上册23-2解直角三角形及其应用第4课时坡度问题及一次函数k的几何意义课件新版沪科版
解:如图,过点 A 作 AE⊥BC 于点 E,过点 D 作 DF⊥BC 于点 F.
在 Rt△ABE 中,sin∠ABE=AAEB, ∴AE=ABsin∠ABE=6sin74°≈5.77.
cos∠ABE=BAEB, ∴BE=ABcos∠ABE=6cos74°≈1.65.
∵AH∥BC,∴DF=AE≈5.77.
解:过点作CF⊥AD于点F,得
CF=BE,EF=BC,∠A=α,∠D=β.
∵ BE=5.8 m BE 1 , CF 1 ,
BC
AE 1.6 DF 2.5 i=1:1.6
∴ AE=9.28 m ,DF=14.5 m. A α E F
∴ AD=AE+EF+DF=9.28+9.8+14.5≈33.6 m.
(2) 坝底AD与斜坡AB的长度 (精确到0.1m).
6
B
C
i=1:3 A
E
i=1:2.5 23 α FD
解:分别过点B、C作BE⊥AD,CF⊥AD,垂足分别
为点E、 F,由题意可知BE=CF=23m , EF=BC=6m.
在Rt△ABE中,
i BE 1,AE 3BE 323 69m.
AE 3
h 水平面
2. 坡度 (或坡比) 如图所示,坡面的铅垂高度 (h) 和水平长度 (l) 的比 叫做坡面的坡度 (或坡比),记作i, 即 i = h : l . 坡度通常写成 1∶m的形式,如i=1∶6.
3. 坡度与坡角的关系
i h tan
l
即坡度等于坡角的正切值.
坡面
i= h : l
h
α
l 水平面
在 Rt△BDF 中,tan∠DBF=DBFF,
∴BF=tan∠DFDBF≈ta5n.5757°≈4.04.
人教版数学九年级下册《 解直角三角形》PPT课件
∴ AB的长为
巩固练习
在Rt△ABC中,∠C=90°,sinA = 0.8 ,BC=8,则
AC的值为( B )
A.4
B.6
C.8
D.10
如图,在菱形ABCD中,AE⊥BC于点E,EC=4,
sin B 4 ,则菱形的周长是 ( C )
5
A.10
B.20
C.40
D.28
链接中考
如图,在△ABC中,BC=12,tan A 3 ,B=30°;求
已知一边及一锐角解直角三角形
例2 如图,在 Rt△ABC 中,∠C = 90°,∠B = 35°, b = 20,解这个直角三角形 (结果保留小数点后一位).
解:∠A 90 ∠B=90 35 =55 .
tan B b ,
a
c
a b 20 28.6.
tan B tan 35
B
35° a
sin B b,c b 20 34.9.
探究新知
A
在Rt△ABC中,
一角
(1)根据∠A= 60°,你能求出这个三角形
的其他元素吗?
不能
两角
C
B (2)根据∠A=60°,∠B=30°, 你能求出这个
你发现了
三角形的其他元素吗?
不能
一角
什么? (3)根据∠A= 60°,斜边AB=4,你能求出这个三角形的其 一边
他元素吗?
∠B
AC BC
两边
(4)根据 BC 2 3,AC= 2 , 你能求出这个三角形的
AC和AB的长.
4
解:如图作CH⊥AB于H.
在Rt△BCH中,∵BC=12,∠B=30°,
H
∴CH 1 BC 6 ,BH BC2 CH 2 6 3 ,
第28章 第4课 解直角三角形.课件人教版数学九年级下册
c2 90°
返回目录
解直角三角形的概念 一般地,直角三角形中,除直角外,共有五个元素,即三条边和 两个锐角.由直角三角形中的已知元素,求出其余未知元素的过程,
45°
20
返回目录
如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=12,解 这个直角三角形.
返回目录
返回目录
返回目录
返回目录
已知两边解直角三角形
返回目录
返回目录
在直角三角形中,除直角外,有五个边角元素,已知“一边一锐 角”或“两边”可以解这个直角三角形.如无特别说明,我们规定 ∠A,∠B,∠C的对边分别为a,b,c.
返回目录
30°
返回目录
C
返回目录
返回目录
作垂线构造直角三角形.
返回目录
思维过关 5.如图,在Rt△ABC中,∠C=90°,BC=82 m,∠B=35°,解这个直角 三角形.(参考数据:sin 35°≈0.57,cos 35°≈0.82)
2019-2019学年九年级数学下册第1章直角三角形的边角关系4解直角三角形课件北师大版
第一章 直角三角形的边角关系
4 解直角三角形
学习新知
检测反馈
在日常生活中,我们常常遇到与 直角三角形有关的问题,知道直 角三角形的边可以求出角,知道
角也可以求出相应的边.如图所
示,在Rt△ABC中共有几个元素? 我们如何利用已知元素求出其他 的元素呢?
学习新知
已知两条边解直角三角形
只知道角度是无法求出直角三角形的边长的.
问题2 只给出一条边长这一个条件,可以解直角三角形吗?
只给出一条边长,不能解直角三角形.
解直角三角形需要满足的条件: 在直角三角形的6个元素中,直角是已知元素,如果再知道一 条边和第三个元素,那么这个三角形的所有元素就都可以确定
下来.
1.如图所示的是教学用直角三角板,边
方法1:已知两条边的长度,可以先利用勾股定理 求出第三边,然后利用锐角三角函数求出其中一个 锐角,再根据直角三角形两锐角互余求出另外一个
锐角.
方法2:已知两条边的长度,可以先利用锐角三角函 数求出其中一个锐角,然后根据直角三角形中两锐 角互余求出另外一个锐角,再利用锐角三角函数求
出第三条边.
已知一条边和一个角解直角三角形
解析:根据图形得出点B到AO的距离是指BO的长,根据 锐角三角函数定义得出BO=ABsin 36°,即可判断A,B错误; 过A作AD⊥OC于D,则AD的长是点A到OC的距离,根据锐 角三角函数定义得出AD=AOsin 36°,AO=AB·sin 54°,所以 AD=sin 36°·sin 54°,即可判断C正确,D错误.故选C.
例2 在Rt△ABC中,∠C=90°,∠A,∠B,∠C所 对的边分别为a,b,c,且b=30,∠B=25°.求这个三 角形的其他元素(边长精确到1).
2025年广西九年级中考数学一轮复习小专题过关课件:专题11+解直角三角形实际应用之四大模型
测量
方案
AC=BD=0.8 m,点A,B与F在同一条水平直线上,A,B之间的距
离可以直接测得,且点G,F,A,B,C,D都在同一竖直平面内,点
C,D,E在同一条直线上,点E在GF上(其中:CE⊥GF,
GF⊥AF,AC⊥AF,BD⊥AF),测量示意图如图所示;
测量项目
第一次
第二次
平均值
测量
∠GCE的度数
式结构,造型独特别致,远可眺太子山露骨风月,近可收临夏市城建全貌,巍巍峨峨,
傲立苍穹.某校数学兴趣小组在学习了“解直角三角形”之后,开展了测量乾元塔
高度AB的实践活动.A为乾元塔的顶端,AB⊥BC,点C,D在点B的正东方向,在C点
用高度为1.6米的测角仪(即CE=1.6米)测得A点仰角为37°,向西平移14.5米至点D,
电塔筒AH垂直于地面,测角仪CD,EF在AH两侧,CD=EF=1.6 直线上),在D处测得筒尖顶点A的仰角为45°,在F处测得
筒尖顶点A的仰角为53°.求风电塔筒AH的高度.(参考数据:sin
tan
4
53°≈ )
3
4
53°≈ ,cos
5
3
53°≈ ,
分别解两个直角三角形,其中公共边BC是解题的关键
原型
【等量关系】BC为公共边
【等量关系】如图①,BF+FC+CE=BE;
如图②,BC+CE=BE;
变式
如图③,AB=GE,AG=BE,BC+CE=AG,DG+AB=DE
【针对训练】
9.(2024·湖北)某数学兴趣小组在校园内开展综合与实践活动,记录如下:
在Rt△CEG中,∠GCE=39°,∴EG=CE·tan 39°≈0.81(x+0.9)m,∴x=0.81(x+0.9),
湘教版数学九年级上册4.4《解直角三角形的应用》(第2课时)教学设计
湘教版数学九年级上册4.4《解直角三角形的应用》(第2课时)教学设计一. 教材分析湘教版数学九年级上册4.4《解直角三角形的应用》(第2课时)的教学内容主要包括解直角三角形的应用、锐角三角函数的概念和应用。
本节课是在学生已经掌握了直角三角形的相关知识的基础上进行教学的,目的是让学生能够运用所学的知识解决实际问题,提高学生的数学应用能力。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于直角三角形的相关知识也有了一定的了解。
但是,学生在解决实际问题时,往往会因为对概念理解不深、思路不清晰而导致解题困难。
因此,在教学过程中,教师需要引导学生深入理解概念,培养学生的解题思路。
三. 教学目标1.知识与技能:使学生掌握解直角三角形的应用,理解锐角三角函数的概念和应用。
2.过程与方法:培养学生运用所学的知识解决实际问题的能力,提高学生的数学应用能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探索的精神。
四. 教学重难点1.教学重点:解直角三角形的应用,锐角三角函数的概念和应用。
2.教学难点:如何引导学生运用所学的知识解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索,培养学生的解题思路;通过分析实际案例,使学生理解所学知识的应用价值;通过小组合作学习,提高学生的团队合作意识和交流能力。
六. 教学准备1.教师准备:熟悉教材内容,了解学生学情,设计好教学问题和案例。
2.学生准备:掌握直角三角形的相关知识,预习本节课的内容。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾直角三角形的相关知识,为新课的学习做好铺垫。
2.呈现(15分钟)教师展示案例,让学生观察和分析案例中的直角三角形,引导学生发现实际问题中的数学规律。
3.操练(20分钟)教师设置问题,引导学生运用所学的知识解决实际问题。
学生在解决问题的过程中,教师给予指导和点拨,帮助学生理清解题思路。
九上数学解直角三角形知识点
九上数学解直角三角形知识点
九年级数学解直角三角形知识点主要包括:
1. 锐角三角函数:在直角三角形中,锐角的正弦、余弦和正切值可以通过三角函数的定义直接计算。
例如,在直角三角形ABC中,如果∠C=90°,那么sinA=BC/AB,cosA=AC/AB,tanA=BC/AC。
2. 余角三角函数关系:当两个角互为余角时,它们的三角函数值之间存在一定的关系。
例如,如果∠A+∠B=90°,那么sinA=cosB,cosA=sinB,tanA=cotB,cotA=tanB。
3. 同角三角函数关系:三角函数之间还存在着一些恒等式,例如
sin2A+cos2A=1,tanA·cotA=1。
4. 函数的增减性:在锐角的条件下,正弦和正切函数随着角度的增大而增大,而余弦和余切函数随着角度的增大而减小。
5. 特殊角的三角函数值:对于一些特殊角度(如0°、30°、45°、60°和90°),其三角函数值是已知的。
这些值需要熟练记忆。
6. 解直角三角形:在直角三角形中,已知一些边的长度或者角度,可以通过三角函数来求解其他未知的边或角度。
以上是九年级数学解直角三角形的主要知识点。
在学习时,除了理解每个知识点的含义和计算方法外,还需要通过大量的练习来加深理解和提高解题能力。
九年级数学解直角三角形4
/post-3747-207835ee07c74b6196ed2c8ede39ce68-1.shtml 三分快三怎么玩法介绍 [单选]甲从某车行购买了一部宝马车,在行驶过程中,发现()A.如果车行明知该车刹车系统存在隐患,甲可要求惩罚性赔偿金B.不管车行是否知道刹车系统存在隐患,甲可要求惩罚性赔偿金C.不管甲是否受到严重健康损 要求惩罚性赔偿金D.甲未受到严重健康损害,甲不可要求惩罚性赔偿金 [单选]风心病最常见的联合瓣膜病组合为A.二尖瓣狭窄合并关闭不全B.三尖瓣狭窄合并关闭不全C.主动脉瓣狭窄合并关闭不全D.二尖瓣狭窄合并主动脉瓣关闭不全E.二尖瓣狭窄合并主动脉瓣狭窄 [单选,A1型题]“想象”这种心理活动属于()。A.情感过程B.意志过程C.意识过程D.个性特征E.认识过程 [判断题]质量文化主要由三个层次构成,其中制度文化层就是指通过各种规章制度来约束员工行为和组织行为。()A.正确B.错误 [单选]()是人类认识客观事物的最原始、最基本的方法,也是涉烟情报分析的最基本方法。A、比较法B、分析与综合法C、推理法D、数据整合方法 [单选]呼出气体带有刺激性蒜味多见于()A.支气管扩张B.肺脓肿C.尿毒症D.酮症酸中毒E.有机磷农药中毒 [单选]下述中,关于像素和体素的不准确的概念是哪项()A.CT图像的基本组成单元称为体素B.像素大小与图像的分辨率高低成反比C.体素是一个三维概念D.体素是被按矩阵排列分隔的基本成像单元E.像素实际上是体素在成像时的表现 [填空题]浮选操作制度包括()和()。 [单选,A1型题]《医疗机构从业人员行为规范》的执行和实施情况,应列入()A.医疗机构校验管理和医务人员年度考核B.定期考核和医德考评C.医疗机构等级评审D.医务人员职称晋升、评先评优的重要依据E.以上都对 [单选]抵御对化脓性细菌感染的非特异性免疫细胞是()A.单核细胞B.巨噬细胞C.中性粒细胞D.TCRγδ+细胞E.肥大细胞 [单选]"产后汗多变痉,因气血亏损,肉理不密,风邪所乘",并提出用小续命汤治疗的是()A.《金匮要略》B.《诸病源候论》C.《傅青主女科》D.《妇人大全良方》E.《景岳全书》 [单选]工程量清单的用途是为()使用。A.工程结算B.招标人参考C.投标人报价D.编制施工方案 [单选]ISO105-C10:2006耐洗色牢度测试规定的洗涤程序有()A.4种B.5种C.10种D.15种 [问答题,简答题]简述中央银行经理国库的优越性。 [填空题]颜料的着色力是指某种颜料与另一种颜料在油料中混合时,所能呈现它本身的()的能力。 [多选]适应是()心理现象A.感受性发生了变化的B.刺激物持续作用引起的C.刺激作用停止后出现的D.两种刺激同时作用时引起的 [单选,A2型题,A1/A2型题]致溶血现象的抗血细胞抗体检测主要用于何种类型超敏反应的检测()。A.Ⅰ型B.Ⅱ型C.Ⅲ型D.Ⅳ型E.Ⅴ型 [单选]初孕妇,妊娠40周,既往产检无异常,今日B超提示羊水指数5cm,与1周前相比明显减少,此时的处理方法应选用()A.OCTB.NSTC.尿雌三醇测定D.立即终止妊娠E.B超行生物物理评分 [单选]下列颅骨凹陷性骨折中,不宜采取手术治疗的是()A.合并脑损伤或大面积骨折片陷入颅腔,引起颅内压增高者B.骨折片压迫重要部位引起神经功能障碍者C.非功能部位的大面积凹陷性骨折,凹陷深度超过1cm者D.位于大静脉窦处的凹陷性骨折,尚未引起颅内压增高者E.开放性颅骨骨折 [单选]以产品品种作为成本核算对象,归集和分配生产成本,计算产品成本的方法是A.分批法B.品种法C.逐步结转分步法D.平行结转分步法 [填空题]涂料是有机高分子材料的混合物,通常由()、油料、()、()及助剂等组成。 [单选,A1型题]先进行动态显像获得局部灌注和血池影像,间隔一定的时间后再进行静态显像,这种联合显像的方法称为()。A.延迟显像B.多相显像C.介入显像D.负荷显像E.阳性显像 [单选]紫肿型阻塞性肺气肿的特点是()A.湿啰音稀少B.桶状胸明显C.心影狭长D.动态肺顺应性正常E.多发生肺心病伴心衰 [单选,A1型题]关于乳腺癌,下列不正确的是()A.锁骨下淋巴结转移属远处转移B.原位癌患者可以不行腋窝淋巴结清扫C.雌、孕激素受体阳性的病例内分泌治疗效果好D.乳腺癌保乳术后应接受放疗E.Paget病恶性程度较低 [单选]书刊印前制作中,主要的图像输入方式是()。A.键盘输入、扫描输入和数字化文件直接输入B.扫描输入、数字化文件直接输入和视频捕获卡输入C.数字化绘图仪绘制、扫描输入和数字化文件直接输入D.键盘输入、扫描输入和视频捕获卡输入 [填空题]我国电网的频率为(),直流电的频率为()。 [单选]碱洗塔水洗段的主要作用是()。A、洗涤裂解气中二氧化碳B、洗涤裂解气中的硫化氢C、洗涤裂解气中的苯D、涤裂解气中夹带的碱液 [单选]上消化道大出血最常见的病因是()A.胃十二指肠溃疡B.门静脉高压症C.应激性溃疡D.胆道出血E.胃癌 [单选]乳腺增生病多发于()A.少年女性B.中年妇女C.未育妇女D.老年妇女E.青壮年男性 [单选]油罐进油前应提前()h投运采暖管线预热。A、3B、2C、1D、0.5 [单选]某企业计划2012年度甲产品的市场售价为40元,单位变动成本为20元,固定成本为150000元,则下列说法不正确的是()。A.该企业销售8000件产品时是盈利的B.该企业销售额的保本点销售额为30万元C.销售数量超过7500件时,销售量增加时,成本会相应增加,利润也会相应增加D.该企业 盈亏临界点如果提高25%,则企业的抗风险能力会下降 [单选,A1型题]医疗机构从业人员分为几个类别()A.3个B.4个C.5个D.6个E.7个 [单选]绝大部分碳酸盐岩形成于下列哪种环境?()A.滨海;B.干旱的高纬度地区;C.温暖的海洋;D.河流 [填空题]催化液态烃的主要成分有乙烷()、()、丁烷、丁烯、戊烷等。 [单选]患儿男,8个月,6个月时出现表情呆滞、烦躁、智力发育明显落后,血清苯丙氨酸60mg/L,诊断为苯丙酮尿症。对于该患儿的饮食护理,理想的糖类、蛋白质、脂肪的比例为()A.20∶30∶50B.30∶20∶50C.40∶15∶35D.60∶15∶25E.70∶10∶30 [填空题]划线分()划线和()划线两种。 [单选]有关元数据加工说法不正确的是()。A.元数据加工是在内容结构化加工过程中进行的B.可使用工具软件从图书内容提取出来,一般以XML格式存储在内容结构化文件中C.是对图书内容进行内容结构的拆分、标引和各种元数据加工的工作D.是描述数据的数据 [填空题]液氨充装系数:在10℃充装液氨时,只可装容器体积的()。在0℃充装时,允许装料为容器的()。当在-10℃充装时则更少,装料不可超过容器体积的()。只有这样,才能保证在设计温度()下,容器内仍有10%的气相空间。 [名词解释]保藏 [判断题]装卸货时货舱发生大火,首先应向舱室施放二氧化碳和向舱内灌水.A.正确B.错误
人教版九年级数学下册锐角三角函数《解直角三角形及其应用(第4课时)》示范教学设计
解直角三角形及其应用(第4课时)教学目标1.正确理解方向角的概念.2.能运用解直角三角形知识解决有关方向角的问题.3.能够融会贯通地运用相关的数学知识,进一步提高运用解直角三角形知识分析解决问题的综合能力.教学重点运用解直角三角形知识解决有关方向角的问题.教学难点运用解直角三角形知识解决有关方向角的问题.教学过程知识回顾利用解直角三角形的知识解决实际问题的一般过程是:(1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);(2)根据问题中的条件,适当选用锐角三角函数等解直角三角形;(3)得到数学问题的答案;(4)得到实际问题的答案.新知探究一、探究学习【问题】方向角在测绘、地质与地球物理勘探、航空、航海及部队行进等方面应用广泛.你知道怎样利用方向角测量两地的距离吗?【师生活动】学生思考,然后找学生代表说一说解决问题的思路,教师纠正.【答案】利用方向角,根据已知条件构造直角三角形,然后通过解直角三角形就可得出所求两地的距离.【新知】一般地,方向角是指目标与参照物所在的直线和南北方向所在的直线所夹的锐角.【追问】你知道怎样表示方向角吗?【师生活动】直接找学生说出图中各点所在位置的方向角(以点O所在位置为参照点),教师纠正.【答案】如图,点A在点O的北偏东60°方向,点B在点O的南偏东45°方向(东南方向),点C在点O的南偏西80°方向,点D在点O的北偏西30°方向.南偏东45°也称为东南方向;南偏西45°也称为西南方向;北偏西45°也称为西北方向;北偏东45°也称为东北方向.【归纳】特别注意:(1)方向角通常是以南北方向线为基准,一般习惯说成“南偏东(西)”或“北偏东(西)”;(2)观测点不同,所得的方向角也不同,但各个观测点的南北方向线是互相平行的,因此,通常借助于此性质进行角度的转换.【设计意图】通过这个问题,让学生了解方向角的概念,知道方向角的表示方法.二、典例精讲【例1】如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80 n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处.这时,B处距离灯塔P有多远(结果取整数)?【分析】能确定的线段和角有:∠A=65°,P A=80 n mile,∠B=34°.要求解的是:线段PB的长度.【答案】解:如图,在Rt△APC中,PC=P A·sin 65°≈72.505(n mile).在Rt△BPC中,∠B=34°,∵sin B=PC PB,∴PB=72.505sin sin34PCB=︒≈130(n mile).因此,当海轮到达位于灯塔P的南偏东34°方向时,它距离灯塔P大约130 n mile.【设计意图】通过这个问题,检验学生对运用解直角三角形的知识解决有关方向角的实际问题的掌握情况.【例2】海中有一个小岛A,它周围8 n mile内有暗礁.渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12 n mile到达D点,这时测得小岛A在北偏东30°方向上,如果渔船不改变航线继续向东航行,有没有触礁的危险?【答案】解:如图,过A点作AE⊥BD于点E,过D点作DC∥AE,则AE是点A到BD的最短距离,且CD//AE//BF.∴∠BAE =∠ABF =60°,∠DAE =∠ADC =30°. ∴∠ABE =∠BAD =30°. ∴AD =BD =12 n mile .∴AE =AD ·sin 60°=12=n mile ).∵8,∴如果渔船不改变航线继续向东航行,没有触礁的危险.【归纳】解答关于方向角的应用题时,对于非直角三角形问题,可以通过作辅助线转化成直角三角形问题来解决.多利用正北、正南、正东、正西方向线构造直角三角形,注意所作的辅助线尽量不分割已知的特殊角.【设计意图】通过这个问题,检验学生对运用解直角三角形的知识解决有关方向角的实际问题的解题思路的掌握情况.【例3】如图,随着我市铁路建设进程的加快,现规划从A 地到B 地有一条笔直的铁路通过,但在附近的C 处有一个大型油库.现测得油库C 在A 地的北偏东60°方向上,在B地的西北方向上,B 地在A 地的正东方向上,AB 的距离为2501)m .已知在以油库C 为中心,半径为200 m 的范围内施工均会对油库的安全造成影响.问:若在此路段修建铁路,油库C 是否受到影响?请说明理由.【答案】解:如图,过点C 作CD ⊥AB 于点D .由题意,得∠CAD =30°,∠CBD =45°. 在Rt △ADC 中,tan ∠CAD =CDAD,即tan 30°=CDAD,∴AD . 在Rt △BDC 中,tan ∠CBD =CDBD,即tan 45°=CDBD,∴BD =CD . ∵AD +BD =AB ,+CD =2501)m . ∴CD =250 m . ∵250 m >200 m ,∴在此路段修建铁路,油库C 不会受到影响.【设计意图】通过这个问题,进一步检验学生对运用解直角三角形的知识解决有方向角的实际问题的掌握情况.【例4】知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C 表示)开展社会实践活动,车到达A 地后,发现C 地恰好在A 地的正北方向,且距离A 地13 km ,导航显示车辆应沿北偏东60°方向行驶至B 地,再沿北偏西37°方向行驶一段距离才能到达C 地,求B ,C 两地的距离.434sin 53cos53tan 53553参考数据:,,⎛⎫︒≈︒≈︒≈ ⎪⎝⎭【答案】解:如图,作BD ⊥AC 于点D ,则∠BAD =60°,∠DBC =53°.设AD =x km ,则在Rt △ABD 中,BD =AD ·tan ∠BAD (km ).在Rt △BCD 中,CD =BD ·tan ∠DBC ×43(km ).由AC =AD +CD ,得x =13,解得x =3.所以()3cos 5∠BD BC DBC ==(20=-km .即B ,C 两地的距离约为(20-km .【设计意图】通过这个问题,进一步检验学生对运用解直角三角形的知识解决有方向角的实际问题的掌握情况.课堂小结板书设计一、方向角的概念 二、方向角的表示三、运用解直角三角形解关于方向角的应用题课后作业完成教材第79页习题28.2第10题.。
北师大版九年级数学下册第一章4解直角三角形
∴∠A=60°.故选D.
3.图1-4-2是教学用的直角三角板,边AC=30 cm,∠C=90°,tan∠BAC= 3 ,则 3
边BC的长为 ( )
A.30 3 cm
B.20 3 cm
易错点 考虑问题不全面,导致漏解 例 在△ABC中,AB=4,AC= 13,∠B=60°,求BC的长.
错解 如图1-4-4所示,过点A作AD⊥BC于点D. 在Rt△ABD中,∠B=60°,AB=4,
∴AD=ABsin B=4sin 60°=4× 3 =2 3, 2
BD=ABcos B=4cos 60°=4× 1 =2.
因为sin A= BC = 3 ,所以∠A=60°. AB 2
所以∠B=90°-∠A=90°-60°=30°.
1.如图1-4-4,△ABC在边长为1个单位长度的方格纸中,它的顶点在小正方
形的顶点上,如果△ABC的面积为10,且sin A= 5,那么点C的位置可以在 5
()
图1-4-4
A.点C1处 C.点C3处
c 10
题型二 已知直角三角形的一边和一锐角解直角三角形 例2 如图1-4-2,在Rt△ABC中,∠C=90°,∠A=50°,a=6,解这个直角三角形. (边长精确到0.1)
图1-4-2 分析 先根据“直角三角形的两锐角互余”求出∠B,然后分别利用∠A的
正切值与正弦值求出b、c. 解析 在Rt△ABC中,∠C=90°,∠A=50°,
图1-4-2 C.10 3 cm
D.5 3 cm
答案 C ∵tan∠BAC= BC ,∴BC=AC·tan∠BAC=30× 3 =10 3 (cm),故选
初中数学《解直角三角形》单元教学设计以及思维导图4
(4)能够运用三角函数解直角三角形,并解决与直角三角形有关的实际问题。 过程与方法:(1)经历探索直角三角形中边角之间关系的过程;经历探索 30º,45º,60º角的三角函数值的过程。
(2)体会数、形之间的联系,逐步学习利用数形结合思想分析问题和解决问题。 情感态度与价值观:(1)发展学生观察、分析、发现问题的能力;(2)培养学生独立思考及互相合作的习惯。
(2 课时)
专题二:用计算器求锐角三角函数
(2 课时)
专题三: 解直角三角形及其应用
(8 课时)
„„„„
其中,专题三中测量物体的高度作为研究性学 2 课时
专题学习目标
(1)理解正切、正弦、余弦的意义并能举例进行说明; (2)能够运用 tanA ,sinA ,cosA 表示直角三角形中两边的比; (3)能根据直角三角形中的边角关系,进行简单的计算。
62
25
∴BC= .
6
25 ∴cosB= BC 6 25 5 ,
AB 65 65 13 6
sinA= BC 5 AB 13
可以得出同例 1 一样的结论. ∵∠A+∠B=90°,
∴sinA:cosB=cos(90-A),即 sinA=cos(90°-A); cosA=sinB=sin(90°-A),即 cosA=sin(90°-A).
12
如图,在 Rt△ABC 中,∠C=90°,cosA= ,AC=10,AB 等于多少?sinB 呢?cosB、sinA 呢?你还能得出类似例 1 的
13
结论吗?请用一般式表达.
分析:这是正弦、余弦定义的进一步应用,同时进一步渗透 sin(90°-A)=cosA,cos
(90°-A)=sinA.
12
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。