01血管的三维重建 公交车调度

合集下载

数学建模 历年试题及论文

数学建模 历年试题及论文

拟合、规划 图论、层次分析、整数队论、图论 微分方程、优化 非线性规划 非线性规划 随机模拟、图论 多目标优化、非线性规划 图论、组合优化 随机优化、计算机模拟 0-1规划、图论
2000 2000 B题 钢管订购和运输 缺 2000 C题 飞越北极 缺 2000 D题 空洞探测 缺 2001 A题 血管的三维重建 数据 曲线拟合、曲面重建 缺 多目标规划 2001 B题 公交车调度 缺 2001 2001 C题 基金使用计划 缺 2001 D题 公交车调度 缺 2002 A题 车灯线光源的优化设计 非线性规划 Y 2002 B题 彩票中的数学 单目标决策 Y 2002 2002 C题 车灯线光源的计算 Y 2002 D题 赛程安排 Y 2003 A题 SARS的传播 微分方程、差分方程 Y 2003 B题 露天矿生产的车辆安排 整数规划、运输问题 Y 2003 2003 C题 SARS的传播 缺 2003 D题 抢渡长江 Y 2004 A题 奥运会临时超市网点设计 数据 统计分析、数据处理、优化 缺 2004 B题 电力市场的输电阻塞管理 数据拟合、优化 缺 2004 2004 C题 饮酒驾车 缺 2004 D题 公务员招聘 缺 2005 A题 长江水质的评价和预测 数据 聚类、模糊评判、主成分分析、多目标决策 缺 2005 B题 DVD在线租赁 数据 多目标规划 缺 2005 2005 C题 雨量预报方法的评价 数据 缺 2005 D题 DVD在线租赁 数据 缺 2006 A题 出版社的资源配置 数据 线性规划、多目标规划 Y 2006 B题 艾滋病疗法的评价及疗效的预测 回归、线性规划 数据 Y 2006 2006 C题 易拉罐形状和尺寸的最优设计 缺 2006 D题 煤矿瓦斯和煤尘的监测与控制 数据 缺 2007 A题 中国人口增长预测 数据 微分、差分方程 Y 2007 B题 乘公交,看奥运 数据 图论、0-1 规划、动态规划 Y 2007 2007 C题 手机“套餐”优惠几何 数据 Y

国赛历届数学建模赛题题目与解题方法

国赛历届数学建模赛题题目与解题方法

历届数学建模题目浏览:1992--20091992年 (A) 施肥效果分析问题(北京理工大学:叶其孝)(B) 实验数据分解问题(华东理工大学:俞文此; 复旦大学:谭永基)1993年 (A) 非线性交调的频率设计问题(北京大学:谢衷洁)(B) 足球排名次问题(清华大学:蔡大用)1994年 (A) 逢山开路问题(西安电子科技大学:何大可)(B) 锁具装箱问题(复旦大学:谭永基,华东理工大学:俞文此)1995年 (A) 飞行管理问题(复旦大学:谭永基,华东理工大学:俞文此)(B) 天车与冶炼炉的作业调度问题(浙江大学:刘祥官,李吉鸾)1996年 (A) 最优捕鱼策略问题(北京师范大学:刘来福)(B) 节水洗衣机问题(重庆大学:付鹂)1997年 (A) 零件参数设计问题(清华大学:姜启源)(B) 截断切割问题(复旦大学:谭永基,华东理工大学:俞文此)1998年 (A) 投资的收益和风险问题(浙江大学:陈淑平)(B) 灾情巡视路线问题(上海海运学院:丁颂康)1999年 (A) 自动化车床管理问题(北京大学:孙山泽)(B) 钻井布局问题(郑州大学:林诒勋)1999年(C) 煤矸石堆积问题(太原理工大学:贾晓峰)(D) 钻井布局问题(郑州大学:林诒勋)2000年 (A) DNA序列分类问题(北京工业大学:孟大志)(B) 钢管订购和运输问题(武汉大学:费甫生)(C) 飞越北极问题(复旦大学:谭永基)(D) 空洞探测问题(东北电力学院:关信)2001年 (A) 血管的三维重建问题(浙江大学:汪国昭)(B) 公交车调度问题(清华大学:谭泽光)(C) 基金使用计划问题(东南大学:陈恩水)(D) 公交车调度问题(清华大学:谭泽光)2002年 (A) 车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此)(B) 彩票中的数学问题(解放军信息工程大学:韩中庚)(C) 车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此)(D) 赛程安排问题(清华大学:姜启源)2003年 (A) SARS的传播问题(组委会)(B) 露天矿生产的车辆安排问题(吉林大学:方沛辰)(C) SARS的传播问题(组委会)(D) 抢渡长江问题(华中农业大学:殷建肃)2004年 (A) 奥运会临时超市网点设计问题(北京工业大学:孟大志)(B) 电力市场的输电阻塞管理问题(浙江大学:刘康生)(C) 酒后开车问题(清华大学:姜启源)(D) 招聘公务员问题(解放军信息工程大学:韩中庚)2005年 (A) 长江水质的评价和预测问题(解放军信息工程大学:韩中庚)(B) DVD在线租赁问题(清华大学:谢金星等)(C) 雨量预报方法的评价问题(复旦大学:谭永基)(D) DVD在线租赁问题(清华大学:谢金星等)2006年 (A) 出版社的资源配置问题(北京工业大学:孟大志)(B) 艾滋病疗法的评价及疗效的预测问题(天津大学:边馥萍)(C) 易拉罐的优化设计问题(北京理工大学:叶其孝)(D) 煤矿瓦斯和煤尘的监测与控制问题(解放军信息工程大学:韩中庚)2007年 (A) 中国人口增长预测(B) 乘公交,看奥运(C) 手机“套餐”优惠几何(D) 体能测试时间安排2008年(A)数码相机定位,(B)高等教育学费标准探讨,(C)地面搜索,(D)NBA赛程的分析与评价2009年(A)制动器试验台的控制方法分析(B)眼科病床的合理安排(C)卫星和飞船的跟踪测控(D)会议筹备历年全国数学建模试题及解法归纳赛题解法93A非线性交调的频率设计拟合、规划93B足球队排名图论、层次分析、整数规划94A逢山开路图论、插值、动态规划94B锁具装箱问题图论、组合数学95A飞行管理问题非线性规划、线性规划95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化96B节水洗衣机非线性规划97A零件的参数设计非线性规划97B截断切割的最优排列随机模拟、图论98A一类投资组合问题多目标优化、非线性规划98B灾情巡视的最佳路线图论、组合优化99A自动化车床管理随机优化、计算机模拟99B钻井布局 0-1规划、图论00A DNA序列分类模式识别、Fisher判别、人工神经网络00B钢管订购和运输组合优化、运输问题01A血管三维重建曲线拟合、曲面重建赛题解法01B 公交车调度问题多目标规划02A车灯线光源的优化非线性规划02B彩票问题单目标决策03A SARS的传播微分方程、差分方程03B 露天矿生产的车辆安排整数规划、运输问题04A奥运会临时超市网点设计统计分析、数据处理、优化04B电力市场的输电阻塞管理数据拟合、优化05A长江水质的评价和预测预测评价、数据处理05B DVD在线租赁随机规划、整数规划06A出版社书号问题整数规划、数据处理、优化06B Hiv病毒问题线性规划、回归分析07A 人口问题微分方程、数据处理、优化07B 公交车问题多目标规划、动态规划、图论、0-1规划08A 照相机问题非线性方程组、优化08B 大学学费问题数据收集和处理、统计分析、回归分析赛题发展的特点:1. 对选手的计算机能力提出了更高的要求:赛题的解决依赖计算机,题目的数据较多,手工计算不能完成,如03B,某些问题需要使用计算机软件,01A。

全国大学生数学建模竞赛历年赛题

全国大学生数学建模竞赛历年赛题

全国大学生数学建模竞赛历年赛题1992:A?施肥效果分析 B?实验数据分解1993:A?非线性交调的频率设计 B?足球队排名次1994:A?逢山开路 B?锁具装箱1995:A?一个飞行管理问题 B?天车与冶炼炉的作业调度1996:A?最优捕鱼策略 B?节水洗衣机1997:A?零件参数 B?截断切割1998:A?投资的收益和风险 B?灾情巡视路线1999:A?自动化车床管理 B?钻井布局 C?煤矸石堆积 D?钻井布局2000:A?DNA序列分类 B?钢管购运 C?飞越北极 D?空洞探测2001:A?血管三维重建 B?公交车调度 C?基金使用2002:A?车灯线光源 B?彩票中数学 D?赛程安排2003:A?SARS的传播 B?露天矿生产 D?抢渡长江2004:A?奥运会临时超市网点设计 B?电力市场的输电阻塞管理C?饮酒驾车 D?公务员招聘2005:A 长江水质的评价和预测 B?DVD在线租赁C?雨量预报方法的评价 D?DVD在线租赁?2006:A出版社的资源配置 B 艾滋病疗法的评价及疗效的预测C易拉罐形状和尺寸的最优设计D 煤矿瓦斯和煤尘的监测与控制2007:A 中国人口增长预测 B 乘公交,看奥运C 手机“套餐”优惠几何D 体能测试时间安排2008:A 数码相机定位 B 高等教育学费标准探讨C 地面搜索D NBA赛程的分析与评价2009:A 制动器试验台的控制方法分析 B 眼科病床的合理安排C 卫星和飞船的跟踪测控 D会议筹备2010:A储油罐的变位识别与罐容表标定B 2010年上海世博会影响力的定量评估C输油管的布置D对学生宿舍设计方案的评价2011: A 城市表层土壤重金属污染分析B 交巡警服务平台的设置与调度C 企业退休职工养老金制度的改革D 天然肠衣搭配问题2012: A 葡萄酒的评价B 太阳能小屋的设计C 脑卒中发病环境因素分析及干预D 机器人避障问题2013: A 车道被占用对城市道路通行能力的影响B 碎纸片的拼接复原C 古塔的变形D 公共自行车服务系统2014: A 嫦娥三号软着陆轨道设计与控制策略B 创意平板折叠桌C 生猪养殖场的经营管理D 储药柜的设计2015: A ?太阳影子定位B?“互联网+”时代的出租车资源配置C? 月上柳梢头D? 众筹筑屋规划方案设计。

历年全国数学建模试题及解法归纳

历年全国数学建模试题及解法归纳

历年全国数学建模试题及解法归纳
赛题解法
93A非线性交调的频率设计拟合、规划
93B足球队排名图论、层次分析、整数规划94A逢山开路图论、插值、动态规划
94B锁具装箱问题图论、组合数学
95A飞行管理问题非线性规划、线性规划
95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化
96B节水洗衣机非线性规划
97A零件的参数设计非线性规划
97B截断切割的最优排列随机模拟、图论
98A一类投资组合问题多目标优化、非线性规划98B灾情巡视的最佳路线图论、组合优化
99A自动化车床管理随机优化、计算机模拟
99B钻井布局0-1规划、图论
00A DNA序列分类模式识别、Fisher判别、人工
神经网络
00B钢管订购和运输组合优化、运输问题
01A血管三维重建曲线拟合、曲面重建
赛题解法
01B 公交车调度问题多目标规划
02A车灯线光源的优化非线性规划
02B彩票问题单目标决策
03A SARS的传播微分方程、差分方程
03B 露天矿生产的车辆安排整数规划、运输问题
04A奥运会临时超市网点设计统计分析、数据处理、优化04B电力市场的输电阻塞管理数据拟合、优化
05A长江水质的评价和预测预测评价、数据处理
05B DVD在线租赁随机规划、整数规划
06A出版社书号问题整数规划、数据处理、优化06B Hiv病毒问题线性规划、回归分析
07A 人口问题微分方程、数据处理、优化07B 公交车问题多目标规划、动态规划、图
论、0-1规划
08A 照相机问题非线性方程组、优化
08B 大学学费问题数据收集和处理、统计分
析、回归分析。

如何做数学建模

如何做数学建模

数学建模竞赛新手教程(1)--数学建模竞赛是什么?数学建模竞赛,就是在每年秋收的时候开始的一项数学应用题比赛。

大家都做过数学应用题吧,不知道现在的教育改革了没有,如果没有大变化,大家都应该做过,比如说[树上有十只鸟,开枪打死一只,还剩几只],这样的问题就是一道数学应用题(应该是小学生的吧),正确答案应该是9只,是吧?这样的题照样是数学建模题,不过答案就不重要了,重要的是过程。

真正的数学建模高手应该这样回答这道题。

“树上有十只鸟,开枪打死一只,还剩几只?”“是无声手枪或别的无声的枪吗?”“不是。

”“枪声有多大?”“80-100分贝。

”“那就是说会震的耳朵疼?”“是。

”“在这个城市里打鸟犯不犯法?”“不犯。

”“您确定那只鸟真的被打死啦?”“确定。

”“OK,树上的鸟里有没有聋子?”“没有。

”“有没有关在笼子里的?”“没有。

”“边上还有没有其他的树,树上还有没有其他鸟?”“没有。

”“有没有残疾的或饿的飞不动的鸟?”“没有。

”“算不算怀孕肚子里的小鸟?”“不算。

”“打鸟的人眼有没有花?保证是十只?”“没有花,就十只。

”“有没有傻的不怕死的?”“都怕死。

”“会不会一枪打死两只?”“不会。

“所有的鸟都可以自由活动吗?”“完全可以。

”“如果您的回答没有骗人,打死的鸟要是挂在树上没掉下来,那么就剩一只,如果掉下来,就一只不剩。

”不是开玩笑,这就是数学建模。

从不同的角度思考一个问题,想尽所有的可能,正所谓的智者千虑,绝无一失,这,才是数学建模的高手。

然后,数学建模高手的搭挡----论文写作高手(暂称为写手吧),会把以上的思想用最好的方式表达出来。

一般的写手会直接把以上的文字放到论文里就成了。

但是专职的数学建模论文的写手不会这样做,她们会先分析这些思想,归整好条理;然后,她们会试着用图画来深入浅出的表达这些思想,或者再使用一些表格;这些都是在Word中进行,她们都是这一行的专家,相信Word什么的使用技巧,都够她们写一篇论文的了。

各种模型方法的应用案例(CUMCM)

各种模型方法的应用案例(CUMCM)

模型定性指标量化的应用案例:(1)CUMCM2003-A,C:SARS的传播问题(2)CUMCM2004-D:公务员招聘问题;(3)CUMCM2005-B:DVD租赁问题;(4)CUMCM2008-B:高教学费标准探讨问题;(5)CUMCM2008-D:NBA赛程的分析与评价问题;(6)CUMCM2009-D:会议筹备问题。

综合评价方法:线性加权综合法、非线性加权综合法、逼近理想点(topsis)法的应用案例(1)CUMCM1993-B:足球队排名问题;(2)CUMCM2001-B:公交车调度问题;(3)CUMCM2002-B:彩票中的数学问题;(4)CUMCM2004-D:公务员招聘问题;(5)CUMCM2005-A:长江水质的评价和预测问题;(6)CUMCM2005-C:雨量预报方法评价问题;(7)CUMCM2006-B:艾滋病疗法评价与预测问题;(8)CUMCM2007-C:手机“套餐”优惠几何问题;(9)CUMCM2008-B:高教学费标准探讨问题;(10)CUMCM2008-D:NBA赛程的分析与评价问题;(11)CUMCM2009-D:会议筹备问题。

动态加权与综合排序的应用案例动态加权的综合排序案例:(1)CUMCM2002-B:彩票中的数学问题;(2)CUMCM2005-A:长江水质的评价和预测问题;综合评价的排序案例:(1)CUMCM1993-B:足球队排名问题;(2)CUMCM2008-D:NBA赛程的分析与评价问题;(3)CUMCM2009-D:会议筹备问题。

数据建模的常用预测方法1插值与拟合方法:小样本内部预测;应用案例:(1)CUMCM2001-A:血管的三维重建问题;(2)CUMCM2003-A,C:SARS的传播问题;(3)CUMCM2004-C:饮酒驾车问题;(4)CUMCM2005-A:长江水质的评价与预测;(5)CUMCM2005-D:雨量预报方法的评价;(6)CUMCM2006-B:艾滋病疗法的评价与预测。

全国大学生数学建模竞赛历年试题

全国大学生数学建模竞赛历年试题

全国大学生数学建模竞赛历年试题1.1992年A题:施肥效果分析;B题:试验数据分析;2.1993年A题:非线性交调的频率设计;B题:足球队拍名次;3.1994年A题:逢山开路;B题:锁具开箱;4.1995年A题:一个飞行管理问题;B题:天车与冶炼炉的作业调度;5.1996年A题:最优捕鱼策略;B题:节水洗衣机;6.1997年A题:零件的参数设计;B题:截断切割;7.1998年A题:投资的收益和风险B题:灾情巡视路线8.1999年A题:自动化车床管理B题:钻井布局C题:煤矸石堆积D题:钻井布局9.2000年A题:DNA序列分类B题:钢管订购和运输C题:飞越北极D题:空洞探测10.2001年A题:血管的三维重建B题:公交车调度C题:基金使用计划D题:公交车调度11.2002年A题:车灯线光源的优化设计B题:彩票中的数学C题:车灯线光源的计算D题:赛程安排12.2003年A题:SARS的传播B题:露天矿生产的车辆安排C题:SARS的传播D题:抢渡长江13.2004年A题:奥运会临时超市网点设计B题:电力市场的输电阻塞管理C题:饮酒驾车D题:公务员招聘14.2005年A题:长江水质的评价和预测B题:DVD在线租赁C题:雨量预报方法的评价D题:DVD在线租赁15.2006年A题:出版社的资源配置B题:艾滋病疗法的评价及疗效的预测C题:易拉罐形状和尺寸的最优设计D题:煤矿瓦斯和煤尘的监测与控制16.2007A题:中国人口增长预测;B题:乘公交,看奥运;C题:手机“套餐”优惠几何;D题:体能测试时间安排17.2008A题数码相机定位;B题高等教育学费标准探讨;C题地面搜索;D题NBA赛程的分析与评价.18.2009A题制动器试验台的控制方法分析B题眼科病床的合理安排C题卫星和飞船的跟踪测控D题会议筹备19.2010A题储油罐的变位识别与罐容表标定B题2010年上海世博会影响力的定量评估C题输油管的布置D题对学生宿舍设计方案的评价19.2011A题城市表层土壤重金属污染分析B题交巡警服务平台的设置与调度C题企业退休职工养老金制度的改革D题天然肠衣搭配问题20.2012A题葡萄酒的评价B题太阳能小屋的设计C题脑卒中发病环境因素分析及干预D题机器人避障问题21.2013 A题车道被占用对城市道路通行能力的影响B题碎纸片的拼接复原C题古塔的变形D题公共自行车服务系统。

数学建模-多元统计模型专题(最新版)

数学建模-多元统计模型专题(最新版)
多元统计模型——数模竞赛辅导专题
河南科技大学数学与统计学院 (2010-07-23) 武新乾
一、前言
24 年前(1986 年) ,美国出现了大学生数学建模竞赛。随着改革开放的进程,数模竞赛 逐渐传入我国。1992 年,开始国内第一届大学生数学建模比赛。数模竞赛一经传入,便受 到了全国高校的普遍关注,引起了大学生的广泛兴趣。特别是近年来,虽然试题难度不断增 大,但是,参赛的学生规模空前膨胀,获奖的组队也日益增加,论文质量不断提高。 综观 18 年的竞赛试题,问题广泛,解决方案多种多样,其中基于统计分析的问题屡见 不鲜。比如:1992 年 A 题(简单记为 1992A,下同) “施肥方案对作物、蔬菜的影响” ,采 用多元二次回归、全回归、逐步回归和二次响应面回归;1993A“非线性交调的频率设计” , 采用最小二乘方法(简单记为 LS) ;1998A“资产投资收益与风险模型”和 2000A“DNA 序 列的分类” ,都采用多元分析方法;2001A“血管管道的三维重建”和“血管切片的三维重 建” ,分别采用 LS 方法和非线性拟合;2001B“公交车调度的规划数学模型” ,采用聚类分 析、 平滑方法和随机过程的有关知识; 2003A “SARS 传播的数学原理及预测与控制” 和 “SARS 传播的研究” ,均考虑了时间序列的应用;2003A“SARS 传播预测的数学模型” ,采用非线 性拟合,建立了指数模型;2004A“ MS 网点的合理布局”采用了聚类分析, “基于利润最大 化的实运商业网点分布微观经济模型”采用多元统计分析方法,另外, “临时超市网点的规 划模型研究”考虑了经验分布的应用;2004B“电力市场的输电阻塞优化管理(指导教师: 肖华勇) ”和“电力市场输电阻塞管理模型” ,均使用了多元线性回归;2005A“长江水质的 评价和预测” 、 “长江水质的评价预测模型” (二元线性回归预测) 、 “基于回归分析的长江水 质预测与控制” ,均考虑了回归分析,此外, “长江水质评价和预测的研究” 、 “水质的评价和 预测模型” ,均考虑了时间序列分析方法和多元线性回归模型;2005B“DVD 在线租赁系统 的优化设计”应用了抽样统计和随机服务模型, “DVD 在线租赁问题”和“DVD 租赁优化 方案(指导教师:孙浩) ”考虑了二项分布和随机模拟;2005B“DVD 在线租赁问题研究” 和 2005C“雨量预报方法的评价模型”考虑了均值的应用;2006B“艾滋病疗法评价及疗效 预测模型”使用了二次曲线和多元方差分析, “艾滋病疗法评价及疗效的预测模型”使用了 逐步回归方法, “艾滋病疗法的评价及疗效的预测模型”应用了假设检验和方差分析, “艾滋 病疗法的评价及疗效的预测”使用了线性拟合、二次和三次曲线拟合与非线性回归, “基于 数据统计分析的艾滋病疗效评价方法”采用了 F-检验和二次多项式回归;2007A“中国人口 区域结构向量模型”采用了倒数曲线模型拟合, “基于 Les lie 模型的中国人口预测及蒙特卡 罗仿真(指导教师:梅长林) ”应用了概率方法;2008A“数码相机定位”应用了多元线性 回归分析;2008B“高等教育学费标准探讨(华南农业大学,编号 1910) ”应用了因子分析、 主成分分析和聚类分析, “高等教育学费标准的探讨(华南农业大学,编号 1920) ”采用了 多元回归分析、数据挖掘和模拟退火算法, “关于高等教育学费标准的评价及建议(编号 cumcm0849) ”和“高校学费合理性研究(编号 cumcm0860) ”分别考虑了回归分析和曲线 拟合。 由是可知, 多元统计分析是常见的解决数模竞赛的主要工具之一, 务必给以充分的重视 和加强训练指导。

00年以来数学建模真题以及优秀论文所用到的方法

00年以来数学建模真题以及优秀论文所用到的方法

数学建模题目以及所用到的方法2000年 A题 DNA序列分类(数据分类型的题目)积分模型神经网络模型B题钢管订购和运输(最优解问题)线性规划二次规划(灵敏度分析)2001年 A题血管的三维重建方法:傅立叶变换,相关操作.三维重建连续模型;离散模型;尖端特性B题公交车调度运筹学多目标规划运行模型多目标规划2002年 A题车灯线光源的优化设计数学模型;线光源;数值模,优化设计模型;线光源;最佳长度;最小功率B 彩票中的数学彩票方案;中奖概率;心里曲线;吸引力,层次分析;合理度2003年 A题 SARS的传播微分方程;概率平均;龙格一库塔方法;曲线拟合;数学模型;预测;B题露天矿生产的车辆安排NP完全问题:组合优化,;整数规划2004年 A题奥运会临时超市网点设计拓扑结构;电路模拟:消费流量;人流;非线性脱划,经验概率分布B题电力市场的输电阻塞管理输电阻塞;单目标规划;最小最大法;理想点法;加权法2005A题: 长江水质的评价和预测(水质污染方面)归一化;水质综合评判指标函数;反应扩散方程:回归分析自净系数一次累加拟合模型时问序列法多元线性回归模型2005B题: DVD在线租赁随机服务模型;0-1整数规划;多目标规划:抽样统计;VIP机制数学模型网络流最小费用最大流2006年 A 出版社的资源配置层次分析法,量化分析,多目标决策,无量纲化,灰色预测B 艾滋病疗法的评价及疗效的预测二次曲线,多元方差分析,增量成本—效应模型2007年 A题:中国人口增长预测丁克现象,人口发展偏微分方程,人口区域结构向量模型,生存分析,计算机模拟Logistic 模型灰色预测动态模拟 Compertz 函数B 乘公交,看奥运合集求交算法,搜索方法,凸轮模型,算法复杂性,BFS算法,公交路线选择点搜索线搜索双目标优化2008 A 数码相机定位小孔成像,变换矩阵,公切线,计算机模拟B 高等教育学费的优化二八原则法,个人期望收益,加权满意度,成本分担2009 A题制动器试验台的控制方法分析制动器试验台等效转动惯量惯性模拟电惯量 PID 算法神经元模型2009B题眼科病床的合理安排合理度;C语言仿真;数据搜索;流程图;优先级;M/M/1排队模型优先值分配计算机仿真模拟卡方拟合检验2010年 A题储油罐的变位识别与罐容表标定多重积分、分段函数、切片、体积标定、随机数据检验、数字式油量计B题 2010年上海世博会影响力的定量评估Mann-Whitney检验回归拟合层次分析方法多指标综合评价模型收益分析方法影响力因子2011年 A题城市表层土壤重金属污染分析三维插值与拟合地质累积指数聚类分析偏微分方程地统计内梅尔指数因子分析扩散模型回归分析B题交巡警服务平台的设置与调度线性回归非线性规划动态规划静态规划 Dijkstra矩阵算法。

2001年全国大学生数学建模竞赛参考答案

2001年全国大学生数学建模竞赛参考答案

2001年全国大学生数学建模竞赛参考答案A 题 血管的三维重建 参考答案以每个管道内的点为球心,可作内含于管道的球,其中具有最大半径的球记为该点的最大内含球。

容易证明最大内含球和管道曲面相切,且在同一截平面内中轴线上的点为球心的最大内含球具有最大的半径,即滚动球半径。

由此可设计相应的算法。

第一,最大内含球和管道曲面相切,意味着球心和管道边界上的点最短距离为最大内含球的半径。

为此需计算边界,方法如下: 首先定义象素(x ,y )的领域:4-领域,其周围的四个象素,包括(x-1,y ),(x ,y-1),(x ,y+1)8-领域,其周围的八个象素,包括(x+1,y ),(x ,y-1),(x ,y+1),(x+1,y-1),(x-1,y+1),(x+1,y+1), 则边界点是4-领域(8-领域)的颜色值不全相同的象素点,由图象可得管道边界,由此估算最大含球的半径(若更精细得到内外两边界,则能估算最大内含球半径的大小范围)。

第二,在同一截平面内中轴线上的点为球心的最大内含球具有最大的半径。

为找到中轴线上的点,有多种方法。

方法之一是分割象素到足够小,遍历管道内所有子象素点,求各个内部子象素点的最大内含球半径。

第三,上述方法可求的中轴线上与给顶截平面的交点和在该点的半径。

若要得到更多的点,需计算两相邻截平面之间与其平行的平面和中轴线的交。

与已知截平面不同的是该平面内特征函数未知,为判断平面上某点是否为管道内的点,以其在相邻截平面上的领域点是否在管道内部为准。

综上所述,解决本问题的关键在于几何推理;计算机图象处理的边界提取技术,及算发设计。

参考算法:1、 对每个Z 平面,计算管道的边界(或内外边界)。

2、 分割象素为较小的子象素点,把Z 平面管道的子象素点作为候选点(穷举法)。

3、 计算候选点到所有边界上的最小距离,即最大内含球的半径。

4、 挑选具最大半径的候选点作为中轴线与切片的交点。

5、 为求相邻两Z 平面之间的平行平面与中轴线的交,首先挑选在该截面内有可能的管道内部点作为候选,重复3、4。

数学建模-2001年的公交车调度问题

数学建模-2001年的公交车调度问题

第三篇公交车调度方案的优化模型2001年 B题公交车调度公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。

下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料。

该条公交线路上行方向共14站,下行方向共13站,表3-1给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。

公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运行的平均速度为20公里/小时。

运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。

试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。

如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。

站名A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 站间距(公里) 1.6 0.5 1 0.73 2.04 1.26 2.29 1 1.2 0.4 1 1.03 0.53 5:00-6:00 上371 60 52 43 76 90 48 83 85 26 45 45 11 0 下0 8 9 13 20 48 45 81 32 18 24 25 85 57 6:00-7:00 上1990 376 333 256 589 594 315 622 510 176 308 307 68 0 下0 99 105 164 239 588 542 800 407 208 300 288 921 615 7:00-8:00 上3626 634 528 447 948 868 523 958 904 259 465 454 99 0 下0 205 227 272 461 1058 1097 1793 801 469 560 636 1871 1459 8:00-9:00 上2064 322 305 235 477 549 271 486 439 157 275 234 60 0 下0 106 123 169 300 634 621 971 440 245 339 408 1132 759 9:00-10:00 上1186 205 166 147 281 304 172 324 267 78 143 162 36 0 下0 81 75 120 181 407 411 551 250 136 187 233 774 483 10:00-11:00 上923 151 120 108 215 214 119 212 201 75 123 112 26 0 下0 52 55 81 136 299 280 442 178 105 153 167 532 385 11:00-12:00 上957 181 157 133 254 264 135 253 260 74 138 117 30 0 下0 54 58 84 131 321 291 420 196 119 159 153 534 340 12:00-13:00 上873 141 140 108 215 204 129 232 221 65 103 112 26 0 下0 46 49 71 111 263 256 389 164 111 134 148 488 333 13:00-14:00 上779 141 103 84 186 185 103 211 173 66 108 97 23 0 下0 39 41 70 103 221 197 297 137 85 113 116 384 263 14:00-15:00 上625 104 108 82 162 180 90 185 170 49 75 85 20 0 下0 36 39 47 78 189 176 339 139 80 97 120 383 239 15:00-16:00 上635 124 98 82 152 180 80 185 150 49 85 85 20 0 下0 36 39 57 88 209 196 339 129 80 107 110 353 22916:00-17:00 上1493 299 240 199 396 404 210 428 390 120 208 197 49 0 下0 80 85 135 194 450 441 731 335 157 255 251 800 557 17:00-18:00 上2011 379 311 230 497 479 296 586 508 140 250 259 61 0 下0 110 118 171 257 694 573 957 390 253 293 378 1228 793 18:00-19:00 上691 124 107 89 167 165 108 201 194 53 93 82 22 0 下0 45 48 80 108 237 231 390 150 89 131 125 428 336 19:00-20:00 上350 64 55 46 91 85 50 88 89 27 48 47 11 0 下0 22 23 34 63 116 108 196 83 48 64 66 204 139 20:00-21:00 上304 50 43 36 72 75 40 77 60 22 38 37 9 0 下0 16 17 24 38 80 84 143 59 34 46 47 160 117 21:00-22:00 上209 37 32 26 53 55 29 47 52 16 28 27 6 0 下0 14 14 21 33 78 63 125 62 30 40 41 128 92 22:00-23:00 上19 3 3 2 5 5 3 5 5 1 3 2 1 0 下0 3 3 5 8 18 17 27 12 7 9 9 32 21站名A0 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 站间距(公里) 1.56 1 0.44 1.2 0.97 2.29 1.3 2 0.73 1 0.5 1.62 5:00-6:00 上22 3 4 2 4 4 3 3 3 1 1 0 0 下0 2 1 1 6 7 7 5 3 4 2 3 9 6:00-7:00 上795 143 167 84 151 188 109 137 130 45 53 16 0 下0 70 40 40 184 205 195 147 93 109 75 108 271 7:00-8:00 上2328 380 427 224 420 455 272 343 331 126 138 45 0 下0 294 156 157 710 780 849 545 374 444 265 373 958 8:00-9:00 上2706 374 492 224 404 532 333 345 354 120 153 46 0 下0 266 158 149 756 827 856 529 367 428 237 376 1167 9:00-10:00 上1556 204 274 125 235 308 162 203 198 76 99 27 0 下0 157 100 80 410 511 498 336 199 276 136 219 556 10:00-11:00 上902 147 183 82 155 206 120 150 143 50 59 18 0 下0 103 59 59 246 346 320 191 147 185 96 154 438 11:00-12:00 上847 130 132 67 127 150 108 104 107 41 48 15 0 下0 94 48 48 199 238 256 175 122 143 68 128 346 12:00-13:00 上706 90 118 66 105 144 92 95 88 34 40 12 0 下0 70 40 40 174 215 205 127 103 119 65 98 261 13:00-14:00 上770 97 126 59 102 133 97 102 104 36 43 13 0 下0 75 43 43 166 210 209 136 90 127 60 115 309 14:00-15:00 上839 133 156 69 130 165 101 118 120 42 49 15 0 下0 84 48 48 219 238 246 155 112 153 78 118 346 15:00-16:00 上1110 170 189 79 169 194 141 152 166 54 64 19 0 下0 110 73 63 253 307 341 215 136 167 102 144 425 16:00-17:00 上1837 260 330 146 305 404 229 277 253 95 122 34 0 下0 175 96 106 459 617 549 401 266 304 162 269 784 17:00-18:00 上3020 474 587 248 468 649 388 432 452 157 205 56 0 下0 330 193 194 737 934 1016 606 416 494 278 448 1249 18:00-19:00 上1966 350 399 204 328 471 289 335 342 122 132 40 0 下0 223 129 150 635 787 690 505 304 423 246 320 1010 19:00-20:00 上939 130 165 88 138 187 124 143 147 48 56 17 0 下0 113 59 59 266 306 290 201 147 155 86 154 398 20:00-21:00 上640 107 126 69 112 153 87 102 94 36 43 13 0 下0 75 43 43 186 230 219 146 90 127 70 95 319 21:00-22:00 上636 110 128 56 105 144 82 95 98 34 40 12 0 下0 73 41 42 190 243 192 132 107 123 67 101 290 22:00-23:00 上294 43 51 24 46 58 35 41 42 15 17 5 0 下0 35 20 20 87 108 92 69 47 60 33 49 136公交车调度方案的优化模型*摘要:本文建立了公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益的前提下,给出了理想发车时刻表和最少车辆数。

历年高教杯全国大学生数学建模题目

历年高教杯全国大学生数学建模题目
1.6 近几年全国大学生数学建模竞赛题
A 1992 B A 1993 B A 1994 B 锁具装箱 锁具装箱 足球比赛的排名问题 逢山开路 实验数据分解 交调频率设计 农作物施肥效果分析
A 1995 B A 1996 B A 1997 B
一个飞行管理问题 天车与冶炼炉的作业调度 节水洗衣机问题 最优捕鱼问题 零件的参数设计 最优截断切割问题
长江水质的评价和预测 DVD 在线租赁 在线租赁
2006
2007
出版社的资源配置 艾滋病疗法的评价及疗效 B 的预测 A 中国人口增长预测 A B A 乘公交, 乘公交,看奥运 数码相机定位
2008 B 2009
高等教育学费标准探讨 制动器试验台的控制方法 A 分析 B 眼科病床的合理安排
A 1998 B A 1999 B A 2000 B A 2001 B
投资的收益和风险 灾情巡视路线 自动化车床管理 钻井布局 DNA 序列分类 钢管订购和运输
血管的三维重建 公交车调度
A 2002 B A 2003 B A 2004 B A 2005 B
车灯线光源的优化设计 彩票中的数学 SARS 的传播 露天矿生产的车辆安排 奥运会临时超市网点设计 电力市场的输电阻塞管理

历年全国赛数学建模题目

历年全国赛数学建模题目

目录1996年全国大学生数学建模竞赛题目 (2)A题最优捕鱼策略 (2)B题节水洗衣机 (2)1997年全国大学生数学建模竞赛题目 (3)A题零件的参数设计 (3)B题截断切割 (4)1998年全国大学生数学建模竞赛题目 (5)A题投资的收益和风险 (5)B题灾情巡视路线 (6)1999创维杯全国大学生数学建模竞赛题目 (7)A题自动化车床管理 (7)B题钻井布局 (8)C题煤矸石堆积 (9)D题钻井布局(同 B 题) (9)2000网易杯全国大学生数学建模竞赛题目 (10)A题 DNA分子排序 (10)B题钢管订购和运输 (12)C题飞越北极 (15)D题空洞探测 (15)2001年全国大学生数学建模竞赛题目 (17)A题血管的三维重建 (17)B题公交车调度 (18)C题基金使用计划 (20)D题公交车调度 (20)2002高教社杯全国大学生数学建模竞赛题目 (21)A题车灯线光源的优化设计 (21)B题彩票中的数学 (21)C题车灯线光源的计算 (23)D题赛程安排 (23)2003高教社杯全国大学生数学建模竞赛题目 (24)A题 SARS的传播 (24)B题露天矿生产的车辆安排 (28)C题 SARS的传播 (29)D题抢渡长江 (30)2004高教社杯全国大学生数学建模竞赛题目 (31)A题奥运会临时超市网点设计 (31)B题电力市场的输电阻塞管理 (35)C题饮酒驾车 (39)D题公务员招聘 (39)2005高教社杯全国大学生数学建模竞赛题目 (42)A题: 长江水质的评价和预测 (42)B题: DVD在线租赁 (43)C题雨量预报方法的评价 (44)D题: DVD在线租赁 (45)2006高教社杯全国大学生数学建模竞赛题目 (46)A题: 出版社的资源配置 (46)B题: 艾滋病疗法的评价及疗效的预测 (46)C题: 易拉罐形状和尺寸的最优设计 (47)D题: 煤矿瓦斯和煤尘的监测与控制 (48)2007高教社杯全国大学生数学建模竞赛题目 (53)A题:中国人口增长预测 (53)2008高教社杯全国大学生数学建模竞赛题目 (56)A题数码相机定位 (56)B题高等教育学费标准探讨 (57)C题地面搜索 (57)2009高教社杯全国大学生数学建模竞赛题目 (59)A题制动器试验台的控制方法分析 (59)B题眼科病床的合理安排 (60)C题卫星和飞船的跟踪测控 (61)D题会议筹备 (61)2010全国高教社杯数学建模题目 (65)A题储油罐的变位识别与罐容表标定 (65)B题 2010年上海世博会影响力的定量评估 (66)A题最优捕鱼策略为了保护人类赖以生存的自然环境,可再生资源(如渔业、林业资源)的开发必须适度.一种合理、简化的策略是,在实现可持续收获的前提下,追求最大产量或最佳效益.考虑对某种鱼(鳀鱼)的最优捕捞策略:假设这种鱼分四个年龄组,称1龄鱼,…,4龄鱼,各年龄组每条鱼的平均重量分别为 5.07,11.55,17.86,22.99(g),各年龄组鱼的自然死亡率为0.8(1/年),这种鱼为季节性集产卵繁殖,平均每条4龄鱼的产卵量为1.109× (个),3龄鱼的产卵量为这个数的一半,2龄鱼和1龄鱼不产卵,产卵和孵化期为每年的最后4个月,卵孵化并成活为1龄鱼,成活率(1龄鱼条数与产卵总量n之比)为1.22× /(1.22× +n).渔业管理部门规定,每年只允许在产卵孵化期前的8个月内进行捕捞作业.如果每年投入的捕捞能力(如渔船数﹑下网次数等)固定不变,这时单位时间捕捞量与各年龄组鱼群条数成正比,比例系数不妨称捕捞强度系数.通常使用13mm网眼的拉网,这种网只能捕3龄鱼和4龄鱼,其两个捕捞强度系数之比为0.42:1.渔业上称这种方式为固定努力量捕捞.1)建立数学模型分析如何实现可持续捕获(即每年开始捕捞时鱼场中各年龄组鱼群不变),并且在此前提下得到最高的年收获量(捕捞总重量).2)某渔业公司承包这种鱼的捕捞业务5年,合同要求5年后鱼群的生产能力不能受到太大破坏. 已知承包时各年龄组鱼群的数量分别为:122,29.7,10.1,3.29(×条),如果任用固定努力量的捕捞方式,该公司应采取怎样的策略才能使总收获量最高.(北京师范大学刘来福提供)B题节水洗衣机我国淡水资源有限,节约用水人人又责,洗衣在家庭用水中占有相当大的份额,目前洗衣机已相当普及,节约洗衣机用水十分重要.假设在放入衣服和洗涤剂后洗衣机的运行过程为:加水-漂水-脱水-加水-漂洗-脱水-…-加水-漂洗-脱水(称"加水-漂洗-脱水"为运行一轮).请为洗衣机设计一种程序(包括运行多少轮﹑每轮加水量等),使得在满足一定洗涤效果的条件下,总用水量最少.选用合理的数据进行计算,对照目前常用的洗衣机的运行情况,对你的模型和结果做出评价.A题零件的参数设计一件产品由若干零件组装而成,标志产品性能的某个参数取决于这些零件的参数。

历年全国数学建模试题及解法

历年全国数学建模试题及解法

一、历年全国数学建模试题及解法赛题解法93A 非线性交调的频率设计拟合、规划93B 足球队排名图论、层次分析、整数规划94A 逢山开路图论、插值、动态规划94B 锁具装箱问题图论、组合数学95A 飞行管理问题非线性规划、线性规划95B 天车与冶炼炉的作业调度动态规划、排队论、图论96A 最优捕鱼策略微分方程、优化96B 节水洗衣机非线性规划97A 零件的参数设计非线性规划97B 截断切割的最优排列随机模拟、图论98A 一类投资组合问题多目标优化、非线性规划98B 灾情巡视的最灾情巡视的最佳佳路线图论、组合优化99A 自动化车动化车床床管理随机优化、计随机优化、计算算机模拟99B 钻井布局0-1规划、图论00A DNA 序列分类模式识别式识别、、Fisher 判别判别、、人工神经网络00B 钢管订购和运输组合优化、组合优化、运输运输运输问题问题01A 血管三维重建曲线拟合、线拟合、曲面重建曲面重建01B 工交车调度问题多目标规划02A 车灯线光源光源的优化的优化非线性规划02B 彩票彩票问题问题问题 单目标目标决决策 03A SARS 的传播传播 微分方程、微分方程、差差分方程分方程03B 露天矿生产矿生产的车的车的车辆安辆安辆安排排 整数规划、整数规划、运输运输运输问题问题问题 04A 奥运会临时超市网点奥运会临时超市网点设计设计设计 统计分析、数计分析、数据处据处据处理、优化理、优化理、优化 04B 电力市场电力市场的的输电阻塞输电阻塞管理管理管理 数据拟合、优化拟合、优化 05A 长江长江水水质的评价和预测评价和预测 预测评价预测评价、数、数、数据处据处据处理理 05B DVD 在线租赁租赁 随机规划、整数规划随机规划、整数规划二、赛题发展的特点1.对选手对选手的计的计的计算算机能力提出了更高能力提出了更高的的要求:要求:赛题的解赛题的解赛题的解决依赖决依赖决依赖计计算机,题目的数题目的数据较据较据较多多,手工,手工计计算不能完成,如03B ,某些,某些问题问题问题需要需要需要使用使用使用计计算机软件,01A 。

优化建模lyy

优化建模lyy





19
例4 (运输问题) 设有位于不同城市的m个电视机 厂A1,A2,…,Am,其产量分别为a1,a2,…,am (台),其产品供应n个城市B1,B2,…,Bn。每个 城市的需要量分别为b1,b2,…,bn(台)。假定产 需平衡,即
ai
i 1
m
=
b
i 1
n
i
已知从Ai到Bj的运费单价为cij(元/台)(i=1,2,…, m; j=1,2,…, n)。问由每个厂到每个城市的运输量各为多少 时,即既能保证需要量,又能使总运费最少?
2
y
x
m a2 y a min i 1 xi a4 i 1 1 a3 ln 1 exp a5
2
16
例3:两杆桁架的最优设计问题。由两根空心圆杆组成对 称的两杆桁架,其顶点承受负载为2p,两支座之间的水 平距离为2L,圆杆的壁厚为B,杆的密度为ρ,弹性模量 为E,屈曲强度为 。求在桁架不被破坏的情况下使桁 架重量最轻的桁架高度h及圆杆平均直径d。
怎样建立最优化问题的数学模型
(1)决策变量和参数。 决策变量是由数学模型的解确定的未知数。参数 表示系统的控制变量,有确定性的也有随机性的。 (2)约束或限制条件。
由于现实系统的客观物质条件限制,模型必须包 括把决策变量限制在它们可行值之内的约束条件, 而这通常是用约束的数学函数形式来表示的。 (3)目标函数。
4
2005
A B A
长江水质的评价和预测 DVD 在线租赁 出版社的资源配置 艾滋病疗法的评价及疗效的预 测 中国人口增长预测 乘公交,看奥运 数码相机定位 高等教育学费标准探讨

历年全国大学生数学建模竞赛题目

历年全国大学生数学建模竞赛题目

武汉理工大学队员比赛论文mcm2003_A_王蝉娟_唐兵_隗勇mcm2003_A_万丽军_唐涛_陈正旭mcm2003_A王鹏_邓科_刘文慧mcm2003_B_王雨春_钟原_李霜icm2003_C_刘旺_董显_吴辉icm2003_C_夏立_成浩_易科mcm2004_b 厉化金_谷雨_曾祥智mcm2004_b_夏立_赵明杰_高婷全国比赛优秀论文1993年A题非线性交调的频率设计1993年B题球队排名问题1994年A题逢山开路1994年B题锁具装箱1995年A题一个飞行管理模型1995年B题天车与冶炼炉的作业调度1996年A题最优捕鱼策略1996年B题节水洗衣机1997年A题零件的参数设计1997年B题截断切割1998年A题投资的收益和风险1998年B题灾情巡视路线1999年A题自动化车床管理1999年B题钻井布局2000年A题 DNA序列分类2000年B题钢管定购和运输2001年A题血管的三维重建2001年B题公交车调度中国科大老师对美国赛题目的讲解(题目可从往届试题处下载) MCM 1985 A题(王树禾教授)MCM 1985 B题(侯定丕教授)MCM 1986 A题(常庚哲教授,丁友东老师)MCM 1986 B题(李尚志教授)MCM 1988 A题(苏淳教授)MCM 1988 B题(侯定丕教授)MCM 1989 A题(赵林城老师)MCM 1989 B题(侯定丕教授)MCM 1990 A题(王树禾教授)MCM 1990 B题(王树禾教授)MCM 1991 A题(常庚哲教授,丁友东老师)MCM 1992 B题(侯定丕教授)MCM 1993 A题(苏淳教授)MCM 1993 B题(万战勇老师)MCM 1994 B题(程继新老师)美国赛优秀论文MCM 2001 UMAP MCM 2002 UMAPMCM 2003 UMAP MCM 2004 (Quick Pass)。

全国数学建模比赛优秀论文点评

全国数学建模比赛优秀论文点评

2005年A题:长江水质的评价和预测编者按:本文用差分方程和回归分析的方法对问题作了正确、恰当的分析处理,结果合理。

具有一定的创造性。

编者按:本文构造了“s”型的变权函数,对属于不同水质类别的同种污染指标进行了动态加权;根据7个观测站的位置将干流分为8段,计算中间6段的排污量,将本段内所有污染源等效为一个段中央的连续稳定源,计算出其对该段段末观测站浓度的影响值。

以上两点具有独到想法。

全文思路正确。

表述清晰,假设可靠。

编者按:本文思路清晰,表述流畅,文章特点是:对不同水质指标用不同方法做标准化处理,再综合评价,主要污染源位置的确定和未来水质发展趋势预测等问题中均有完整的数学模型。

不足之处是,没有结合长江水质的整体评价。

编者按:本文结构完整,表述清晰。

自定义了综合污染指数,综合评价的思路有可取之处;分段考虑了主要污染源所在,对结果做了尝试性的解释,但未考虑两观测站间单位长度的污染量;用时间序列建模及处理污水量的规划问题思路清晰,但一次累加拟和模型中多项式指数的作用和含义不够明确。

值得一提的还有,最后的建议中与前面的结果相互印证。

编者按:本文思路清晰,论述疏密有致,许多细微之处稍显匠心。

构造了模糊评价指数可以很好的整合不同水质的影响因素;在未来10年的预测中,兼顾了长江流量与污水总量两者的共同影响(文中是对长江流量在不同置信水平的下限预测分析的)。

编者按:通过数学建模方法,本文对长江水域受污染的情况作出比较全面和量化的评价,对污染源进行了比较深入的分析,得出明确的结论,同时也对长江未来的水质情况和污水处理形势做出量化的科学预测。

特别值得推荐的是,作者对于污染源的特点和水质的不同性质进行了分类,对于控制水质与污水处理的策略具有积极的参考作用。

作为大学生能够在短时间内,在一个问题中拓出多处有创意的概念和方法,实在难能可贵。

虽然文章仍有不足,仍希望引起读者关注,以期提高中国大学生的创造性能力。

2005年B、D题:DVD在线租赁编者按:文章较好的理解了题目的意思,应用二项分布处理问题一,反映了作者对随机问题的理解和处理;以满意度最大为目标建立了0-1规划模型,利用Array Lingo软件求解得到会员的分配方案;问题三的解决是以分阶段建立双目标规划,虽没能完整解决该问题,但分析问题、解决问题的思想方法值得推荐。

美赛国赛数学建模知识

美赛国赛数学建模知识

数学建模知识——之参考资料一、数学建模竞赛中应当掌握的十类算法1.蒙特卡罗算法该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。

2.数据拟合、参数估计、插值等数据处理算法比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具。

3.线性规划、整数规划、多元规划、二次规划等规划类问题建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现。

4.图论算法这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。

5.动态规划、回溯搜索、分治算法、分支定界等计算机算法这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中。

6.最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。

7.网格算法和穷举法网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8.一些连续离散化方法很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。

9.数值分析算法如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。

10.图象处理算法赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理。

二、数学软件的主要分类有哪些?各有什么特点?数学软件从功能上分类可以分为通用数学软件包和专业数学软件包,通用数学包功能比较完备,包括各种数学、数值计算、丰富的数学函数、特殊函数、绘图函数、用户图形届面交互功能,与其他软件和语言的接口及庞大的外挂函数库机制(工具箱)。

01血管的三维重建公交车调度

01血管的三维重建公交车调度

2001年全国大学生数学建模竞赛题目A题血管的三维重建断面可用于了解生物组织、器官等的形态。

例如,将样本染色后切成厚约1m 的切片,在显微镜下观察该横断面的组织形态结构。

如果用切片机连续不断地将样本切成数十、成百的平行切片,可依次逐片观察。

根据拍照并采样得到的平行切片数字图象,运用计算机可重建组织、器官等准确的三维形态。

假设某些血管可视为一类特殊的管道,该管道的表面是由球心沿着某一曲线 (称为中轴线)的球滚动包络而成。

例如圆柱就是这样一种管道,其中轴线为直线,由半径固定的球滚动包络形成。

现有某管道的相继100张平行切片图象,记录了管道与切片的交。

图象文件名依次为0.bmp、1.bmp、…、99.bmp,格式均为BMP,宽、高均为512个象素(pixel)。

为简化起见,假设:管道中轴线与每张切片有且只有一个交点;球半径固定;切片间距以及图象象素的尺寸均为1。

取坐标系的Z轴垂直于切片,第1张切片为平面Z=0,第100张切片为平面Z=99。

Z=z切片图象中象素的坐标依它们在文件中出现的前后次序为(-256, -256,z),( -256, -255,z),…(-256,255,z),(-255, -256,z),( -255, -255,z),…(-255,255,z),(255, -256, z),( 255, -255, z),…(255, 255, z)。

试计算管道的中轴线与半径,给出具体的算法,并绘制中轴线在XY、YZ、ZX平面的投影图。

B题公交车调度公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。

下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料。

该条公交线路上行方向共14 站,下行方向共13 站,第3-4页给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2001年全国大学生数学建模竞赛题目
A题血管的三维重建
断面可用于了解生物组织、器官等的形态。

例如,将样本染色后切成厚约1m 的切片,在显微镜下观察该横断面的组织形态结构。

如果用切片机连续不断地将样本切成数十、成百的平行切片,可依次逐片观察。

根据拍照并采样得到的平行切片数字图象,运用计算机可重建组织、器官等准确的三维形态。

假设某些血管可视为一类特殊的管道,该管道的表面是由球心沿着某一曲线(称为中轴线)的球滚动包络而成。

例如圆柱就是这样一种管道,其中轴线为直线,由半径固定的球滚动包络形成。

现有某管道的相继100张平行切片图象,记录了管道与切片的交。

图象文件名依次为0.bmp、1.bmp、…、99.bmp,格式均为BMP,宽、高均为512个象素(pixel)。

为简化起见,假设:管道中轴线与每张切片有且只有一个交点;球半径固定;切片间距以及图象象素的尺寸均为1。

取坐标系的Z轴垂直于切片,第1张切片为平面Z=0,第100张切片为平面Z=99。

Z=z切片图象中象素的坐标依它们在文件中出现的前后次序为
(-256,-256,z),(-256,-255,z),…(-256,255,z),
(-255,-256,z),(-255,-255,z),…(-255,255,z),
……
(255,-256,z),(255,-255,z),…(255,255,z)。

试计算管道的中轴线与半径,给出具体的算法,并绘制中轴线在XY、YZ、ZX平面的投影图。

B题公交车调度
公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。

下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料。

该条公交线路上行方向共14站,下行方向共13站,第3-4页给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。

公交公司配给该线路同一型号的大客车,每辆标准载客100 人,据统计客车在该线路上运行的平均速度为20公里/小时。

运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过 120%,一般也不要低于50%。

试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。

如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方。

相关文档
最新文档