2015年数学一模卷
2015年河南省六市联考高考一模数学试卷(理科)【解析版】
![2015年河南省六市联考高考一模数学试卷(理科)【解析版】](https://img.taocdn.com/s3/m/964b171583c4bb4cf6ecd109.png)
2015年河南省六市联考高考数学一模试卷(理科)一.选择题:1.(5分)已知集合A={x|x2>1},B={x|log2x>0},则A∩B=()A.{x|x<﹣1}B.{x|>0}C.{x|x>1}D.{x|x<﹣1或x >1}2.(5分)如果复数(其中i为虚数单位,b为实数)的实部和虚部互为相反数,那么b等于()A.﹣6B.C.D.23.(5分)在等差数列{a n}中,首项a1=0,公差d≠0,若a k=a1+a2+a3+…+a7,则k=()A.22B.23C.24D.254.(5分)函数y=的图象可能是()A.B.C.D.5.(5分)某程序框图如图所示,该程序运行后输出的x值是()A.3B.4C.6D.86.(5分)函数y=cos(ωx+φ)(ω>0,0<φ<π)为奇函数,该函数的部分图象如图所表示,A、B分别为最高点与最低点,并且两点间的距离为,则该函数的一条对称轴为()A.B.C.x=1D.x=27.(5分)已知正数x,y满足,则z=4﹣x•()y的最小值为()A.1B.C.D.8.(5分)若α∈(,π),3cos2α=sin(﹣α),则sin2α的值为()A.B.﹣C.D.﹣9.(5分)一个几何体的三视图如图所示,则这个几何体的体积是()A.1B.2C.3D.410.(5分)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若,a=2,,则b的值为()A.B.C.D.11.(5分)设双曲线﹣=1(a>0,b>0)的右焦点为F,过点F作与x 轴垂直的直线l交两渐近线于A,B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若=λ+μ(λ,μ∈R),λ•μ=,则双曲线的离心率为()A.B.C.D.12.(5分)若直角坐标平面内A、B两点满足:①点A、B都在函数f(x)的图象上;②点A、B关于原点对称,则点对(A,B)是函数f(x)的一个“姊妹点对”.点对(A,B)与(B,A)可看作是同一个“姊妹点对”,已知函数f(x)=,则f(x)的“姊妹点对”有()A.0个B.1个C.2个D.3个二.填空题:13.(5分)已知a=(sin t+cos t)dt,则的展开式中的常数项为.14.(5分)已知三棱锥P﹣ABC的所有棱长都等于1,则三棱锥P﹣ABC的内切球的表面积.15.(5分)已知点A(0,2),抛物线C1:y2=ax(a>0)的焦点为F,射线F A 与抛物线C相交于点M,与其准线相交于点N,若|FM|:|MN|=1:,则a 的值等于.16.(5分)已知f(x)=,g(x)=(k∈N*),对任意的c>1,存在实数a,b满足0<a<b<c,使得f(c)=f(a)=g(b),则k的最大值为.三、解答题:17.(12分)已知{a n}是一个公差大于0的等差数列,且满足a3a5=45,a2+a6=14.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足:+1(n∈N*),求数列{b n}的前n项和.18.(12分)在某校运动会中,甲、乙、丙三支足球队进行单循环赛(即每两队比赛一场)共赛三场,每场比赛胜者得3分,负者得0分,没有平局.在每一场比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为;(1)求甲队获第一名且丙队获第二名的概率;(2)设在该次比赛中,甲队得分为ξ,求ξ的分布列和数学期望.19.(12分)如图,已知长方形ABCD中,AB=2,AD=1,M为DC的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM.(1)求证:AD⊥BM;(2)若点E是线段DB上的一动点,问点E在何位置时,二面角E﹣AM﹣D的余弦值为.20.(12分)已知椭圆C的焦点在x轴上,左右焦点分别为F1、F2,离心率e=,P为椭圆上任意一点,△PF1F2的周长为6.(Ⅰ)求椭圆C的标准方程;(Ⅱ)过点S(4,0)且斜率不为0的直线l与椭圆C交于Q,R两点,点Q关于x轴的对称点为Q1,过点Q1与R的直线交x轴于T点,试问△TRQ的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.21.(12分)设函数f(x)=x2﹣(a﹣2)x﹣alnx.(1)求函数f(x)的单调区间;(2)若函数有两个零点,求满足条件的最小正整数a的值;(3)若方程f(x)=c有两个不相等的实数根x1,x2,求证:.选修4-1:几何证明选讲22.(10分)选修4﹣1:几何证明选讲如图所示,已知P A与⊙O相切,A为切点,过点P的割线交圆于B、C两点,弦CD∥AP,AD、BC相交于点E,F为CE上一点,且DE2=EF•EC.(1)求证:CE•EB=EF•EP;(2)若CE:BE=3:2,DE=3,EF=2,求P A的长.选修4-4:坐标系与参数方程23.平面直角坐标系中,直线l的参数方程是(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为ρ2cos2θ+ρ2sin2θ﹣2ρsinθ﹣3=0.(1)求直线l的极坐标方程;(2)若直线l与曲线C相交于A、B两点,求|AB|.选修4-5:不等式选讲24.设不等式﹣2<|x﹣1|﹣|x+2|<0的解集为M,a、b∈M,(1)证明:|a+b|<;(2)比较|1﹣4ab|与2|a﹣b|的大小,并说明理由.2015年河南省六市联考高考数学一模试卷(理科)参考答案与试题解析一.选择题:1.(5分)已知集合A={x|x2>1},B={x|log2x>0},则A∩B=()A.{x|x<﹣1}B.{x|>0}C.{x|x>1}D.{x|x<﹣1或x >1}【解答】解:集合A={x|x2>1}={x|x>1或x<﹣1},B={x|log2x>0=log21}={x|x>1},A∩B={x|x>1},故选:C.2.(5分)如果复数(其中i为虚数单位,b为实数)的实部和虚部互为相反数,那么b等于()A.﹣6B.C.D.2【解答】解:由题意,==∵复数(其中i为虚数单位,b为实数)的实部和虚部互为相反数∴∴b=,故选:C.3.(5分)在等差数列{a n}中,首项a1=0,公差d≠0,若a k=a1+a2+a3+…+a7,则k=()A.22B.23C.24D.25【解答】解:∵数列{a n}为等差数列且首项a1=0,公差d≠0,又∵a k=(k﹣1)d=a1+a2+a3+…+a7=7a4=21d故k=22故选:A.4.(5分)函数y=的图象可能是()A.B.C.D.【解答】解:函数y=的定义域为(﹣∞,0)∪(0,+∞)关于原点对称.当x>0时,,当x<0时,,此时函数图象与当x>0时函数的图象关于原点对称.故选:B.5.(5分)某程序框图如图所示,该程序运行后输出的x值是()A.3B.4C.6D.8【解答】解:执行程序框图,可得k=1,s=1满足条件s<100,s=4,k=2;满足条件s<100,s=22,k=3;满足条件s<100,s=103,k=4;不满足条件s<100,退出循环,x=8,输出x的值为8.故选:D.6.(5分)函数y=cos(ωx+φ)(ω>0,0<φ<π)为奇函数,该函数的部分图象如图所表示,A、B分别为最高点与最低点,并且两点间的距离为,则该函数的一条对称轴为()A.B.C.x=1D.x=2【解答】解:函数y=cos(ωx+φ)(ω>0,0<φ<π)为奇函数,所以φ=,该函数的部分图象如图所表示,A、B分别为最高点与最低点,并且两点间的距离为,所以,所以T=4,ω=,所以函数的表达式为:y=﹣sin,显然x=1是它的一条对称轴方程.故选:C.7.(5分)已知正数x,y满足,则z=4﹣x•()y的最小值为()A.1B.C.D.【解答】解:=2﹣2x•2﹣y=2﹣2x﹣y,设m=﹣2x﹣y,要使z最小,则只需求m的最小值即可.作出不等式组对应的平面区域如图:由m=﹣2x﹣y得y=﹣2x﹣m,平移直线y=﹣2x﹣m,由平移可知当直线y=﹣2x﹣m,经过点B时,直线y=﹣2x﹣m的截距最大,此时m最小.由,解得,即B(1,2),此时m=﹣2﹣2=﹣4,∴的最小值为,故选:C.8.(5分)若α∈(,π),3cos2α=sin(﹣α),则sin2α的值为()A.B.﹣C.D.﹣【解答】解:3cos2α=sin(﹣α),可得3cos2α=(cosα﹣sinα),3(cos2α﹣sin2α)=(cosα﹣sinα),∵α∈(,π),∴sinα﹣cosα≠0,上式化为:sinα+cosα=,两边平方可得1+sin2α=.∴sin2α=.故选:D.9.(5分)一个几何体的三视图如图所示,则这个几何体的体积是()A.1B.2C.3D.4【解答】解:根据几何体的三视图,得;该几何体是如图所示的四棱锥P﹣ABCD,且底面为直角梯形ABCD,高为2;∴该四棱锥的体积为V四棱锥=××(2+4)×2×2=4.故选:D.10.(5分)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若,a=2,,则b的值为()A.B.C.D.=,【解答】解:∵在锐角△ABC中,sin A=,S△ABC∴bc sin A=bc=,∴bc=3,①又a=2,A是锐角,∴cos A==,∴由余弦定理得:a2=b2+c2﹣2bc cos A,即(b+c)2=a2+2bc(1+cos A)=4+6(1+)=12,∴b+c=2②由①②得:,解得b=c=.故选:A.11.(5分)设双曲线﹣=1(a>0,b>0)的右焦点为F,过点F作与x 轴垂直的直线l交两渐近线于A,B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若=λ+μ(λ,μ∈R),λ•μ=,则双曲线的离心率为()A.B.C.D.【解答】解:双曲线的渐近线为:y=±x,设焦点F(c,0),则A(c,),B(c,﹣),P(c,),∵,∴(c,)=((λ+μ)c,(λ﹣μ)),∴λ+μ=1,λ﹣μ=,解得λ=,μ=,又由λμ=得=,解得=,∴e==故选:A.12.(5分)若直角坐标平面内A、B两点满足:①点A、B都在函数f(x)的图象上;②点A、B关于原点对称,则点对(A,B)是函数f(x)的一个“姊妹点对”.点对(A,B)与(B,A)可看作是同一个“姊妹点对”,已知函数f(x)=,则f(x)的“姊妹点对”有()A.0个B.1个C.2个D.3个【解答】解:设点A(x,y)(x<0)在f(x)的图象上,则点B(﹣x,﹣y)也在f(x)的图象上;故;故x2+2x+=0,令g(x)=x2+2x+=x2+2x+(1﹣x)e x,g′(x)=2x+2﹣xe x,故可知g(x)在(﹣∞,0)上先减后增,且g(﹣2)=>0,g(﹣1)=﹣1<0,g(0)=1;且g(x)在(﹣∞,0)上连续,故x2+2x+=0在(﹣∞,0)上有两个解,故f(x)的“姊妹点对”有2个;故选:C.二.填空题:13.(5分)已知a=(sin t+cos t)dt,则的展开式中的常数项为﹣.【解答】解:∵a=∫π0(sin t+cos t)dt=2∴=∵的二项展开式的通项为=令6﹣2r=0解得r=3∴展开式中的常数项为故答案为14.(5分)已知三棱锥P﹣ABC的所有棱长都等于1,则三棱锥P﹣ABC的内切球的表面积.【解答】解:∵三棱锥P﹣ABC的所有棱长都等于1,∴底面外接圆的半径为,∴三棱锥P﹣ABC的高为=,∵三棱锥P﹣ABC的外接球与内切球的半径的比为3:1,∴三棱锥P﹣ABC的内切球的半径为,∴三棱锥P﹣ABC的内切球的表面积为4π×=.故答案为:.15.(5分)已知点A(0,2),抛物线C1:y2=ax(a>0)的焦点为F,射线F A 与抛物线C相交于点M,与其准线相交于点N,若|FM|:|MN|=1:,则a 的值等于4.【解答】解:依题意F点的坐标为(,0),设M在准线上的射影为K,由抛物线的定义知|MF|=|MK|,∴|KM|:|MN|=1:,则|KN|:|KM|=2:1,k FN==﹣,k FN=﹣=﹣2∴=2,求得a=4,故答案为:4.16.(5分)已知f(x)=,g(x)=(k∈N*),对任意的c>1,存在实数a,b满足0<a<b<c,使得f(c)=f(a)=g(b),则k的最大值为3.【解答】解:当k=1时,作函数f(x)=,与g(x)=(k∈N+)的图象如下,k=1,对∀c>1,存在实数a,b满足0<a<b<c,使得f(c)=f(a)=g(b)成立,正确;当k=2时,作函数f(x)=,与g(x)=(k∈N+)的图象如下,k=2,对∀c>1,存在实数a,b满足0<a<b<c,使得f(c)=f(a)=g(b)成立,正确;当k=3时,作函数f(x)=,与g(x)=(k∈N+)的图象如下,k=3时,对∀c>1,存在实数a,b满足0<a<b<c,使得f(c)=f(a)=g(b)成立,正确,k=4时,作函数f(x)=,与g(x)=(k∈N+)的图象如下,k=4,不正确,故答案为:3.三、解答题:17.(12分)已知{a n}是一个公差大于0的等差数列,且满足a3a5=45,a2+a6=14.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足:+1(n∈N*),求数列{b n}的前n项和.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,则依题设d>0.由a2+a6=14,可得a4=7.由a3a5=45,得(7﹣d)(7+d)=45,可得d=2.∴a1=7﹣3d=1.可得a n=2n﹣1.(Ⅱ)设c n=,则c1+c2+…+c n=a n+1,即c1+c2+…+c n=2n,可得c1=2,且c1+c2+…+c n+c n+1=2(n+1).∴c n+1=2,可知c n=2(n∈N*).∴b n=2n+1,∴数列{b n}是首项为4,公比为2的等比数列.∴前n项和S n==2n+2﹣4.18.(12分)在某校运动会中,甲、乙、丙三支足球队进行单循环赛(即每两队比赛一场)共赛三场,每场比赛胜者得3分,负者得0分,没有平局.在每一场比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为;(1)求甲队获第一名且丙队获第二名的概率;(2)设在该次比赛中,甲队得分为ξ,求ξ的分布列和数学期望.【解答】解:(1)设甲队获第一且丙队获第二为事件A,则P(A)==(2)ξ可能的取值为0,3,6;则甲两场皆输:P(ξ=0)=(1﹣)(1﹣)=甲两场只胜一场:P(ξ=3)=×(1﹣)+×(1﹣)=甲两场皆胜:P(ξ=6)==∴ξ的分布列为Eξ=0×+3×+6×=19.(12分)如图,已知长方形ABCD中,AB=2,AD=1,M为DC的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM.(1)求证:AD⊥BM;(2)若点E是线段DB上的一动点,问点E在何位置时,二面角E﹣AM﹣D的余弦值为.【解答】(1)证明:∵长方形ABCD中,AB=2,AD=1,M为DC的中点,∴AM=BM=,∴BM⊥AM,∵平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,BM⊂平面ABCM∴BM⊥平面ADM∵AD⊂平面ADM∴AD⊥BM;(2)建立如图所示的直角坐标系,设,则平面AMD的一个法向量,=(,,),设平面AME的一个法向量为,取y=1,得x=0,y=1,z=,所以=(0,1,),因为求得,所以E为BD的中点.20.(12分)已知椭圆C的焦点在x轴上,左右焦点分别为F1、F2,离心率e=,P为椭圆上任意一点,△PF1F2的周长为6.(Ⅰ)求椭圆C的标准方程;(Ⅱ)过点S(4,0)且斜率不为0的直线l与椭圆C交于Q,R两点,点Q关于x轴的对称点为Q1,过点Q1与R的直线交x轴于T点,试问△TRQ的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.【解答】解:(Ⅰ)设椭圆的方程为+=1,a>b>0;∵e==①,|PF1|+|PF2|+|F1F2|=2a+2c=6②,a2﹣b2=c2③;解得a=2,b=,∴椭圆C的方程为;…4分(Ⅱ)设直线l的方程为x=my+4,与椭圆的方程联立,得,消去x,得(3m2+4)y2+24my+36=0,∴△=(24m)2﹣4×36(3m2+4)=144(m2﹣4)>0,即m2>4;…6分设Q(x1,y1),R(x2,y2),则Q1(x1,﹣y1),由根与系数的关系,得;直线RQ1的斜率为k==,且Q1(x1,y1),∴直线RQ1的方程为y+y1=(x﹣x1);令y=0,得x===,将①②代人上式得x=1;…9分又S=|ST|•|y1﹣y2|=△TRQ=18×=18×=18×≤,当3=,即m2=时取得“=”;∴△TRQ的面积存在最大值,最大值是.…12分.21.(12分)设函数f(x)=x2﹣(a﹣2)x﹣alnx.(1)求函数f(x)的单调区间;(2)若函数有两个零点,求满足条件的最小正整数a的值;(3)若方程f(x)=c有两个不相等的实数根x1,x2,求证:.【解答】解:(1)x∈(0,+∞).==.当a≤0时,f′(x)>0,函数f(x)在(0,+∞0上单调递增,即f(x)的单调递增区间为(0,+∞).当a>0时,由f′(x)>0得;由f′(x)<0,解得.所以函数f(x)的单调递增区间为,单调递减区间为.(2)由(1)可得,若函数f(x)有两个零点,则a>0,且f(x)的最小值,即.∵a>0,∴.令h(a)=a+﹣4,可知h(a)在(0,+∞)上为增函数,且h(2)=﹣2,h(3)==,所以存在零点h(a0)=0,a0∈(2,3),当a>a0时,h(a)>0;当0<a<a0时,h(a)<0.所以满足条件的最小正整数a=3.又当a=3时,f(3)=3(2﹣ln3)>0,f(1)=0,∴a=3时,f(x)由两个零点.综上所述,满足条件的最小正整数a的值为3.(3)∵x1,x2是方程f(x)=c得两个不等实数根,由(1)可知:a>0.不妨设0<x1<x2.则,.两式相减得+alnx2=0,化为a=.∵,当时,f′(x)<0,当时,f′(x)>0.故只要证明即可,即证明x1+x2>,即证明,设,令g(t)=lnt﹣,则=.∵1>t>0,∴g′(t)>0.∴g(t)在(0,1)上是增函数,又在t=1处连续且g(1)=0,∴当t∈(0,1)时,g(t)<0总成立.故命题得证.选修4-1:几何证明选讲22.(10分)选修4﹣1:几何证明选讲如图所示,已知P A与⊙O相切,A为切点,过点P的割线交圆于B、C两点,弦CD∥AP,AD、BC相交于点E,F为CE上一点,且DE2=EF•EC.(1)求证:CE•EB=EF•EP;(2)若CE:BE=3:2,DE=3,EF=2,求P A的长.【解答】(I)证明:∵DE2=EF•EC,∠DEF公用,∴△DEF∽△CED,∴∠EDF=∠C.又∵弦CD∥AP,∴∠P=∠C,∴∠EDF=∠P,∠DEF=∠PEA∴△EDF∽△EP A.∴,∴EA•ED=EF•EP.又∵EA•ED=CE•EB,∴CE•EB=EF•EP;(II)∵DE2=EF•EC,DE=3,EF=2.∴32=2EC,∴.∵CE:BE=3:2,∴BE=3.由(I)可知:CE•EB=EF•EP,∴,解得EP=,∴BP=EP﹣EB=.∵P A是⊙O的切线,∴P A2=PB•PC,∴,解得.选修4-4:坐标系与参数方程23.平面直角坐标系中,直线l的参数方程是(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为ρ2cos2θ+ρ2sin2θ﹣2ρsinθ﹣3=0.(1)求直线l的极坐标方程;(2)若直线l与曲线C相交于A、B两点,求|AB|.【解答】解:(1)直线l的参数方程是(t为参数),化为普通方程得:y =x∴在平面直角坐标系中,直线l经过坐标原点,倾斜角是,因此,直线l的极坐标方程是θ=,(ρ∈R);…(5分)(2)把θ=代入曲线C的极坐标方程ρ2cos2θ+ρ2sin2θ﹣2ρsinθ﹣3=0,得ρ2﹣ρ﹣3=0∴由一元二次方程根与系数的关系,得ρ1+ρ2=,ρ1ρ2=﹣3,∴|AB|=|ρ1﹣ρ2|==.…(10分)选修4-5:不等式选讲24.设不等式﹣2<|x﹣1|﹣|x+2|<0的解集为M,a、b∈M,(1)证明:|a+b|<;(2)比较|1﹣4ab|与2|a﹣b|的大小,并说明理由.【解答】解:(1)记f(x)=|x﹣1|﹣|x+2|=,由﹣2<﹣2x﹣1<0解得﹣<x<,则M=(﹣,).…(3分)∵a、b∈M,∴,所以|a+b|≤|a|+|b|<×+×=.…(6分)(2)由(1)得a2<,b2<.因为|1﹣4ab|2﹣4|a﹣b|2=(1﹣8ab+16a2b2)﹣4(a2﹣2ab+b2)=(4a2﹣1)(4b2﹣1)>0,…(9分)所以|1﹣4ab|2>4|a﹣b|2,故|1﹣4ab|>2|a﹣b|.…(10分)。
2015年一模名校联考数学试题及答案
![2015年一模名校联考数学试题及答案](https://img.taocdn.com/s3/m/cf7aa5e6856a561252d36f69.png)
第6题 P B AOx2015中考一模名校联考数学试题时间:120分钟 满分150分2015、2、12一、 选择题(每小题3分,共24分.)1的值等于( )A .一2 C . D 2、下列运算中,结果正确的是 ( ) A .a 6÷a 3=a 2B .(2ab 2)2=2a 2b 4C . a ·a 2=a 3D .(a+b)2=a 2+b 23、一组数据按从小到大排列为2,4,8,x ,10,14.若这组数据的中位数为9,则这组数据4、的是 ( )A .∠CDB =∠CBA B .∠CBD =∠AC .BC ·AB =BD ·AC D . BC 2=CD ·AC5、若圆的半径是5,圆心的坐标是(0,0),点P 的坐标是(-4,3),则点P 与⊙O 的位置关系是 ( )A .点P 在⊙O 外B .点P 在⊙O 内C .点P 在⊙O 上D .点P 在⊙O 外或⊙O 上6、如图, AB 是⊙O 的直径, CD 是弦, 且CD ⊥AB, 若BC=4, AC=2, 则sin ∠ABD 的值为A.15( )7、如图,直线1y kx b =+过点(0,2)且与直线2y mx =交于点(1,)P m --,则关于x 的不等式组2mx kx b mx >+>-的解集为 ( ) A .x<-1 B .-2<x<0 C .-2<x<-1 D .x<-28、如图,PA 、PB 是⊙O 的两条切线,A 、B 为切点,直线OP 交⊙O 于C 、D ,交AB 于E ,AF 为⊙O 的直径,有下列结论: ( ) ①∠ABP =∠AOP ;; ③AC 平分∠PAB ; ④2BE 2=PE ·BF ,其中结论正确的有A .1个B .2个C .3个D .4个二、填空题(每小题3分,共30分)第7题 A 第4题 第8题9、截至2013年12月31日,余额宝规模已达到1853亿元,这个数据用科学记数法可表示为元. 10、函数x y 23+=中自变量x 的取值范围是 . 11、分解因式:2282b a -=_______.12、设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任意取出一只是二等品的概率是 .13、圆锥的母线长为6cm ,底面圆半径为4cm ,则这个圆锥的侧面积为___________cm 2. 14、已知关于x 的一元二次方程(k +1)x 2+2x -1=0有两个实数根,则k 的取值范围是 。
2015大连一模 辽宁省大连市2015年高三第一次模拟考试数学(理)试题 Word版含答案
![2015大连一模 辽宁省大连市2015年高三第一次模拟考试数学(理)试题 Word版含答案](https://img.taocdn.com/s3/m/7969cfe6856a561252d36f58.png)
2015年一模测试数 学(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,其中第II 卷第22题~第24题为选考题,其它题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.第I 卷一.选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) (1)已知集合{11}A x x =-≤≤,2{20}B x x x =-≤,则AB = ( )(A ) [1,0]- (B ) [1,0]- (C ) [0,1] (D ) (,1][2,)-∞+∞ (2)设复数1z i =+(i 是虚数单位),则22z z+=( ) (A )1i + (B )1i - (C )1i -- (D )1i -+(3)已知1,a b ==,且()a a b ⊥-,则向量a 与向量b 的夹角为( )(A )6π (B )4π (C ) 3π (D )23π(4)已知ABC ∆中,内角A ,B ,C 的对边分别为,,a b c ,若222a b c bc =+-,4bc =,则ABC∆的面积为( )(A )12(B )1 (C (D )2(5)已知{}2,0,1,3,4a ∈-,{}1,2b ∈,则函数 2()(2)f x a x b =-+为增函数的概率是( ) (A )25 (B )35 (C )12 (D )310(6)阅读如图所示的程序框图,运行相应的程序. 若输出的S 为1112,则判断框中填写的内容可以是( ) (A )6n = (B )6n < (C )6n ≤ (D )8n ≤(7)如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的体积为( )(A )323 (B )64 (C (D ) 643(8)已知直线1)y x =-与抛物线:C x y 42=交于B A ,两点,点),1(m M -,若0=⋅,则=m ( )(A(B)2(C )21 (D )0(9)对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为M 函数,① 对任意的[0,1]x ∈,恒有()0f x ≥;② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立,则下列函数不是M 函数的是( )(A )2()f x x = (B ) ()21x f x =- (C )2()ln(1)f x x =+ (D )2()1f x x =+(10)在平面直角坐标系中,若(,)P x y 满足44021005220x y x y x y -+≤⎧⎪+-≤⎨⎪-+≥⎩,则当xy 取得最大值时,点P的坐标是( )(A )(4,2) (B )(2,2) (C )(2,6) (D )5(,5)2(11) 已知双曲线22221(0,0)x y a b a b-=>>与函数0)y x =≥的图象交于点P ,若函数y =P 处的切线过双曲线左焦点(1,0)F -,则双曲线的离心率是( )(A )(B )(C(D )32(12)若对,[0,)x y ∀∈+∞,不等式2242x y x y ax ee +---≤++恒成立,则实数a 的最大值是( ) (A )14 (B )1 (C )2 (D )12第II 卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二.填空题:(本大题共4小题,每小题5分,共20分,把答案填在答卷纸的相应位置上)(13)函数1sin 2y x x =([0,]2x π∈)的单调递增区间是__________.(14)612x x ⎛⎫- ⎪⎝⎭的展开式中常数项为 .(15) 已知定义在R 上的偶函数()f x 在[0,)+∞单调递增,且(1)0f = ,则不等式(2)0f x -≥的解集是 .(16)同底的两个正三棱锥内接于同一个球.已知两个正三棱锥的底面边长为a ,球的半径为R .设两个正三棱锥的侧面与底面所成的角分别为α、β,则t an()αβ+的值是 .三.解答题:(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) (17)(本小题满分12分)已知数列{}n a 中,11a =,其前n 项的和为n S ,且满足2221n n n S a S =-(2)n ≥. (Ⅰ) 求证:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列;(Ⅱ) 证明:当2n ≥时,1231113 (232)n S S S S n ++++<.(18)(本小题满分12分)如图,在四棱锥P -ABCD 中,底面ABCD 是菱形,∠DAB=60,PD ⊥平面ABCD ,PD =AD =1,点,E F 分别为为AB 和PD 中点.(Ⅰ)求证:直线AF //平面PEC ;(Ⅱ)求PC 与平面PAB 所成角的正弦值.(19)(本小题满分12分)某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮训练,每人投10次,投中的次数统计如下表:(Ⅱ) 若把上表数据作为学生投篮命中率,规定两个班级的1号和2号同学分别代表自己的班级参加比赛,每人投篮一次,将甲、乙两个班两名同学投中的次数之和分别记作X 和Y ,试求X 和Y 的分布列和数学期望.(20) (本小题满分12分)已知椭圆C :22221(0)x y a b a b +=>>的上顶点为(0,1).(Ⅰ) 求椭圆C 的方程;(Ⅱ)证明:过椭圆1C :22221(0)x y m n m n +=>>上一点00(,)Q x y 的切线方程为00221x x y ym n+=; (Ⅲ)以圆2216x y +=上一点P 向椭圆C 引两条切线,切点分别为,A B ,当直线AB 分别与x 轴、y 轴交于M 、N 两点时,求MN 的最小值.(21)(本小题满分12分)若定义在R 上的函数()f x 满足222(1)()2(0)2x f f x e x f x -'=⋅+-, 21()((1)24x g x f x a x a =-+-+,(Ⅰ)求函数()f x 解析式; (Ⅱ)求函数()g x 单调区间;(Ⅲ)若x 、y 、m 满足||||-≤-x m y m ,则称x 比y 更接近m .当2a ≥且1x ≥时,试比较e x和1x e a -+哪个更接近ln x ,并说明理由。
2015年初中一模数学试卷
![2015年初中一模数学试卷](https://img.taocdn.com/s3/m/5e3881d781c758f5f71f672e.png)
2015年初中一模数学试卷注意:1. 本试卷共6页,满分为150分,考试时间为120分钟.2. 答题前,考生务必将本人的姓名、考试号填写在答题纸相应的位置上.3. 考生答题必须用0.5毫米黑色墨水签字笔,写在答题纸指定位置处,答在试卷、草稿纸等其他位置上一律无效.一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)1.-3的相反数是(▲)1A.-3 B.3 C.-31D.32.刻画一组数据波动大小的统计量是( ▲ ).A.平均数 B.方差 C.众数 D.中位数3.下列图形中,既是轴对称图形,又是中心对称图形的是(▲ )A. B. C. D. 4.如图是由两块长方体叠成的几何体,其主视图是(▲)(第4题图)A .B .C .D .5.下列运算正确的是( ▲ )A .236x x x ⋅=B .3223()()1a a -÷-=C .1122-=D .552332=+ 6.设P 是函数2y x=在第一象限的图像上的任意一点,点P 关于原点的对称点为P ',过P 作PA 平行于y 轴,过P '作P A '平行于x 轴,PA 与P A '交于A 点,则PAP '△的面积( ▲ )A .随P 点的变化而变化B .等于1C .等于2D .等于4二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上.)7. 9的算术平方根是 ▲ .8. H 7N 9型流感病毒变异后的直径为0.00000013米,将这个数写成科学记数法是 ▲ 米.9. 因式分解:4a 2-16= ▲ .10.若一个多边形的内角和是900,则这个多边形的边数为 ▲ .11.把一块矩形直尺与一块直角三角板如图放置,若140∠=°, 则2∠的度数为 ▲ .12.五位女生的体重(单位:kg )分别为38、42、35、45、40,则这五位女生体重的方差为 ▲ kg 2.13. 阳阳的身高是1.6m ,他在阳光下的影长是1.2m ,在同一时刻测得某棵树的影长为3.6m ,则这棵树的高度为 ▲ m . 14.已知圆锥的侧面积为π8cm 2,侧面展开图的圆心角为60°. 则AOPP 'xy(第6题图)(第12题图)B O Axy该圆锥的母线长为 ▲ cm.15.按一定规律排列的一列数依次为:111,,315351,63,…,按此规律排列下去,这列数中的第7个数是 ▲ .16.如图,在平面直角坐标系中,O 为坐标原点,⊙O 的半径为5,点B 的坐标为(3,0),点A 为⊙O 上一动点,当∠OAB 取最大 值时,点A 的坐标为 ▲ .三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本题满分12分)(121()2-+(-1)0-2sin45°;(2)解方程:2220x x --=.18.(本题满分8分)先化简532)224m m m m -+-÷--(,然后在0<2m-1<6的范围内选取一个合适的整数作为m 的值代入求值.19.(本题满分8分)在一个不透明的袋中装有3 个完全相同的小球,上面分别标号为1、2、3,从中随机摸出两个小球,并用球上的数字组成一个两位数. (1)求组成的两位数是奇数的概率;(2)小明和小华做游戏,规则是:若组成的两位数是4的倍数,小明得3分,否则小华得3分,你认为该游戏公平吗?说明理由;若不公平,请修改游戏规则,使游戏公平.20.(本题满分8分)某校全体学生积极参加校团委组织的“献爱心捐款”活动,为了解捐款情况,随机抽取了部分学生并对他们的捐款情况作了统计,绘制了两幅不完整的 统计图(统计图中每组含最小值..., 不含最大值...). 请依据图中信息解答下列问题: (1)求随机抽取的学生人数.捐款人数扇形统计图捐款人数分布统计图(2)填空:(直接填答案)①“20元~25元”部分对应的 圆心角度数为__▲____.②捐款的中位数落在__▲____(填金额范围) .(3)若该校共有学生3500人,请估算全校捐款不少于20元的人数.21.(本题满分10分)如图,△ABC 中,AB=AC ,∠BAC=40°,将△ABC 绕点A 按逆时针方向旋转100°.得到△ADE ,连接BD 、CE ,两线交于点F .(1)求证:△ABD ≌△ACE ; (2)求证:四边形ABFE 是菱形.22. (本题满分10分)如图,学校打算用材料围建一个面积为18平方米的矩形ABCD 的生物园,用来饲养小兔,其中矩形ABCD 的一边AB 靠墙,墙长为8米,设AD 的长为y 米, CD 的长为x 米.(1)求y 与x 之间的函数表达式;(2)若围成矩形ABCD 的生物园的三边材料总长不超过18米,材料AD 和DC 的长都是整米数,求出满足条件的所有围建方案.(第22题图)生物园FEABD40°100° (第21题图)23.(本题满分10分)某数学兴趣小组的同学在一次数学活动中,为了测量某建筑物AB 的高,他们来到与建筑物AB 在同一平地且相距12米的建筑物CD 上的C 处观察,测得某建筑物顶部A 的仰角为30°、底部B 的俯角为45°.求建筑物AB 的高(精确到1米).(可供选用的数据:2≈1.4,3≈1.7).24. (本题满分10分) 如图,在Rt △ABC 中,∠C=90°,∠BAC 的角平分线AD 交BC 边于D .以AB 上某一点O 为圆心作⊙O ,使⊙O 经过点A 和点D. (1)判断直线BC 与⊙O 的位置关系,并说明理由; (2)若AC=3,∠B=30°.①求⊙O 的半径;②设⊙O 与AB 边的另一个交点为E ,求线段BD 、BE 与劣弧DE 所围成的阴影部分的图形面积.(结果保留根号和π)45°30°BDCA(第23题图)(第24题图)25. (本题满分12分)如图, 在四边形ABCD 中,AD ∥BC ,∠D=90°,BC=50,AD=36,CD=27. 点E 从C 出发以每秒5个单位长度的速度向B 运动,点F 从A 出发,以每秒4个单位长度的速度向D 运动.两点同时出发,当其中一个动点到达终点时,另一个动点也随之停止运动.过点F 作FG ⊥BC,垂足为G ,连结AC 交FG 于P ,连结EP . (1)点E 、F 中,哪个点最先到达终点?(2)求△PEC 的面积S 与运动时间t 的函数表达式,并写出自变量t 的取值范围. 当t 为何值时,S 的值最大;(3)当△CEP 为锐角三角形时,求运动时间t 的取值范围.26.(本题满分14分)如图,抛物线与y 轴相交于点A (0,2),与x 轴相交于B(4,0)、C (12,0)两点.直线l 经过A 、B 两点. (1)分别求出直线l 和抛物线相应的函数表达式;(2)平行于y 轴的直线x =2交抛物线于点P ,交直线l 于点D.① 直线x =t (0≤t ≤4)与直线l 相交于点E ,与抛物线相交于点F.若EF :DP=3:4, 求t 的值;② 将抛物线沿y 轴上下平移,所得的抛物线与y 轴交于点A ′,与直线x =2交于点P ′.当P ′O 平分∠A ′P ′P 时,求平移后的抛物线相应的函数表达式.(第25题图)GPF BDAC E。
2015年广州一模数学(理科)试题及参考答案
![2015年广州一模数学(理科)试题及参考答案](https://img.taocdn.com/s3/m/97358eda28ea81c758f578c5.png)
图17432109878侧视图正视图试卷类型:A2015年广州市普通高中毕业班综合测试(一)数学(理科)()()22221211236n n n n ++++++=()*n ∈N . 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知全集{}1,2,3,4,5U =, 集合{}3,4,5M =, {}1,2,5N =, 则集合{}1,2可以表示为 A .MN B .()U M N ð C .()U MN ð D .()()U U M N 痧 2.已知向量()3,4a =,若5λ=a ,则实数λ的值为A .15 B .1 C .15± D .1± 3. 若某市8所中学参加中学生合唱比赛的得分用茎叶图表示(如图1),其中茎为十位数,叶为个位数,则这组数据的中位数和平均数分别是 A. 91, 91.5 B. 91, 92 C. 91.5, 91.5 D. 91.5, 924. 直线10x ay ++=与圆()2214x y +-=的位置关系是A. 相交B. 相切C. 相离D. 不能确定5. 若直线3y x =上存在点(),x y 满足约束条件40,280,,x y x y x m ++>⎧⎪-+≥⎨⎪≤⎩则实数m 的取值范围是A. ()1,-+∞B. [)1,-+∞C. (),1-∞-D. (],1-∞-6. 已知某锥体的正视图和侧视图如图2,其体积为,则该锥体的俯视图可以是图A. B. D. 7. 已知a 为实数,则1a ≥是关于x 的绝对值不等式1x x a +-≤有解的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 8. 已知i 是虚数单位,C 是全体复数构成的集合,若映射:f C →R 满足: 对任意12,z z C ∈,以及任意λ∈R , 都有()()()()()121211f z z f z f z λλλλ+-=+-, 则称映射f 具有性质P . 给出如下映射:① 1:f C →R , ()1f z x y =-, z x y =+i (,x y ∈R ); ② 2:f C →R , ()22f z x y =-, z x y =+i (,x y ∈R ); ③ 3:f C →R , ()32f z x y =+, z x y =+i (,x y ∈R );其中, 具有性质P 的映射的序号为 A. ① ② B. ① ③ C. ② ③ D. ① ② ③二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9. 已知tan 2α=,则tan 2α的值为 .10. 已知e 为自然对数的底数,若曲线y x =e x在点()1,e 处的切线斜率为 .11. 已知随机变量X 服从正态分布()2,1N . 若()130.6826P X ≤≤=,则()3P X > 等于 .12. 已知幂函数()223(mm f x xm --+=∈Z )为偶函数,且在区间()0,+∞上是单调增函数,则()2f 的值为 .13.已知,n k ∈N *,且k n ≤,k C k n n =C 11k n --,则可推出C 12n +C 23n +C 3n k ++C k n n ++C (n n n =C 01n -+C 11n -++C 11k n --++C 11)n n --12n n -=⋅, 由此,可推出C 122n +C 223n +C 32n k ++C 2k n n ++C n n = .(二)选做题(14~15题,考生只能从中选做一题) 14. (坐标系与参数方程选做题)在直角坐标系xOy 中,曲线1C 和2C 的参数方程分别为cos sin ,(cos sin x y θθθθθ=+⎧⎨=-⎩为参数)和2,(x t t y t=-⎧⎨=⎩为参数).以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,则曲线1C 与2C 的交点的极坐标...为 .图3图4OF ED C B A 图5FE PODB A15. (几何证明选讲选做题)如图3,BC 是圆O 的一条弦,延长BC 至点E , 使得22BC CE ==,过E 作圆O 的切线,A 为 切点,BAC ∠的平分线AD 交BC 于点D ,则DE 的长为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()()sin 0,06f x A x A πωω⎛⎫=+>> ⎪⎝⎭的图象在y 轴右侧的第一个最高点和第一个最低点的坐标分别为()02x ,和022x ,π⎛⎫+- ⎪⎝⎭. (1)求函数()f x 的解析式; (2)求0sin 4x π⎛⎫+⎪⎝⎭的值.17. (本小题满分12分)袋子中装有大小相同的白球和红球共7个,从袋子中任取2个球都是白球的概率为17,每个球被取到的机会均等. 现从袋子中每次取1个球,如果取出的是白球则不再放回,设在取得红球之前已取出的白球个数为X . (1)求袋子中白球的个数; (2)求X 的分布列和数学期望.18. (本小题满分14分)如图4,在边长为4的菱形ABCD 中,60DAB ︒∠=,点E ,F 分别是边CD ,CB 的 中点,ACEF O =,沿EF 将△CEF 翻折到△PEF ,连接PA,PB,PD ,得到如图5的五棱锥PABFED -,且PB =(1)求证:BD ⊥平面POA ;(2)求二面角--B AP O 的正切值.19. (本小题满分14分)已知数列{}n a 的各项均为正数,其前n 项和为n S ,且满足111,1n a a +==,n ∈N *.(1)求2a 的值;(2)求数列{}n a 的通项公式;(3)是否存在正整数k , 使k a , 21k S -, 4k a 成等比数列? 若存在, 求k 的值; 若不存在, 请说明理由.20. (本小题满分14分)已知椭圆1C 的中心在坐标原点,两焦点分别为双曲线222:12x C y -=的顶点,直线0=x 与椭圆1C 交于A ,B 两点,且点A 的坐标为(1),点P 是椭圆1C 上异于点A ,B 的任意一点,点Q 满足0AQ AP ⋅=,0BQ BP ⋅=,且A ,B ,Q 三点不共线.(1) 求椭圆1C 的方程; (2) 求点Q 的轨迹方程;(3) 求ABQ ∆面积的最大值及此时点Q 的坐标.21. (本小题满分14分) 已知函数()()2ln 12a f x x x x =++-()0a ≥. (1)若()0f x >对()0,x ∈+∞都成立,求a 的取值范围;(2)已知e 为自然对数的底数,证明:∀n ∈N *22212111n n n n ⎛⎫⎛⎫⎛⎫<++⋅⋅⋅+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭e <.2015年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题. 9. 43-10. 2e 11. 0.1587 12. 16 13. ()212n n n -+⋅14. 4π⎫⎪⎭15. 说明: 第14题答案可以是2,4k k ππ⎫+∈⎪⎭Z . 三、解答题:本大题共6小题,满分80分.16.(本小题满分12分)(本小题主要考查三角函数的图象与性质、三角两角和公式等等知识,考查化归与转化的数学思想方法,以及运算求解能力)(1)解:由题意可得2,A =, …………………………1分00222T x x ππ⎛⎫=+-= ⎪⎝⎭, …………………………3分 ∴.T π= …………………………4分 由,2πωπ=得2=ω, …………………………5分∴()2sin 26f x x π⎛⎫=+⎪⎝⎭. …………………………6分(2)解: ∵ 点()0,2x 是函数()2sin 26f x x π⎛⎫=+ ⎪⎝⎭在y 轴右侧的第一个最高点, ∴ 0262x ππ+=. …………………………7分∴ 06x π=. …………………………8分 ∴0sin 4x π⎛⎫+⎪⎝⎭sin 64ππ⎛⎫=+ ⎪⎝⎭…………………………9分 sincoscossin6464ππππ=+ …………………………10分12222=⨯+ …………………………11分4=. …………………………12分 17.(本小题满分12分)(本小题主要考查古典概型、解方程、随机变量的分布列与均值(数学期望)等知识,考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识)(1)解:设袋子中有n (n ∈N *)个白球,依题意得,22717n C C =,………………………1分即()1127672n n -=⨯, 化简得,260n n --=, …………………………2分解得,3n =或2n =-(舍去). …………………………3分 ∴袋子中有3个白球. …………………………4分 (2)解:由(1)得,袋子中有4个红球,3个白球. …………………………5分X 的可能取值为0,1,2,3, …………………………6分()407P X ==, ()3421767P X ==⨯=, ()3244276535P X ==⨯⨯=,()321413765435P X ==⨯⨯⨯=. ………………10分∴X 的分布列为:…………………………11分GH F EPODBA∴4241301237735355EX =⨯+⨯+⨯+⨯=. …………………………12分 18.(本小题满分14分)(本小题主要考查空间线面关系、二面角、空间向量及坐标运算等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) (1)证明:∵点E ,F 分别是边CD ,CB 的中点,∴BD ∥EF . …………………………1分 ∵菱形ABCD 的对角线互相垂直,∴BD AC ⊥. ∴EF AC ⊥. ∴EF AO ⊥,EF PO ⊥. …………………………2分 ∵AO ⊂平面POA ,PO ⊂平面POA ,AO PO O =, ∴EF ⊥平面POA . …………………………3分∴BD ⊥平面POA . …………………………4分 (2)解法1:设AO BD H =,连接BO , ∵60DAB ︒∠=, ∴△ABD 为等边三角形.∴4BD =,2BH =,HA =HO PO ==……5分 在R t △BHO中,BO在△PBO 中,22210+==BO PO PB ,∴PO BO ⊥. …………………………6分 ∵PO EF ⊥,EF BO O =,EF ⊂平面BFED ,BO ⊂平面BFED , ∴PO ⊥平面BFED . …………………………7分 过H 作⊥HG AP ,垂足为G ,连接BG ,由(1)知⊥BH 平面POA ,且⊂AP 平面POA , ∴⊥BH AP .∵=HG BH H ,⊂HG 平面BHG ,⊂BH 平面BHG ,∴⊥AP 平面BHG . …………………………8分 ∵⊂BG 平面BHG ,∴⊥AP BG . …………………………9分 ∴∠BGH 为二面角--B AP O 的平面角. …………………………10分 在Rt △POA中,AP在Rt △POA 和Rt △HGA 中,90,︒∠=∠=∠=∠POA HGA PAO HAG , ∴Rt △POA ~Rt △HGA . …………………………11分 ∴=PO PAHG HA.∴⋅===PO HA HG PA …………………………12分A在Rt △BHG中,tan ∠===BH BGH HG . ……………………13分 ∴二面角--B AP O…………………………14分 解法2:设AOBD H =,连接BO ,∵60DAB ︒∠=, ∴△ABD 为等边三角形.∴4BD =,2BH =,HA =HO PO ==………………………5分 在R t △BHO中,BO在△PBO 中,22210+==BO PO PB ,∴PO BO ⊥. …………………………6分 ∵PO EF ⊥,EF BO O =,EF ⊂平面BFED ,BO ⊂平面BFED , ∴PO ⊥平面BFED . …………………………7分 以O 为原点,OF 所在直线为x 轴,AO 所在直线为y 轴,OP 所在直线为z 轴, 建立空间直角坐标系-O xyz ,则()0,-A,()2,B,(P,()0,H .…………8分∴(=AP,()=AB . 设平面PAB 的法向量为=n (),,x y z ,由⊥n AP ,⊥n AB ,得0,20.⎧+=⎪⎨+=⎪⎩x 令1=y ,得3=-z,=x ∴平面PAB 的一个法向量为=n ()3-. 由(1)知平面PAO 的一个法向量为()2,0,0=-BH , ……………………11分 设二面角--B AP O 的平面角为θ, 则cos θ=cos ,n BH⋅=n BH nBH==………………………12分∴sin 13θ==sin tan cos 3θθθ==.………………………13分∴二面角--B AP O 的正切值为3…………………………14分 19.(本小题满分14分)(本小题主要考查等差数列、数列的前n 项和等知识,考查化归与转化的数学思想方法,以及运算求解能力和创新意识)(1)解:∵111,1n a a +==,∴2113a ===. …………………………1分(2)解法1:由11n a +=,得11n n S S +-=, …………………………2分故)211n S +=. …………………………3分∵0n a >,∴0n S >.1=. …………………………4分∴数列1=,公差为1的等差数列.()11n n =+-=. …………………………5分 ∴2n S n =. …………………………6分当2n ≥时,()221121n n n a S S n n n -=-=--=-, …………………………8分又11a =适合上式,∴21n a n =-. …………………………9分解法2:由11n a +=,得()2114n n a S +-=, …………………………2分 当2n ≥时,()2114n n a S --=, …………………………3分 ∴()()()22111144n n n n n a a S S a +----=-=. …………………………4分∴2211220n n n n a a a a ++---=.∴()()1120n n n n a a a a +++--=. …………………………5分 ∵ 0n a >,∴12n n a a +-=. …………………………6分 ∴数列{}n a 从第2项开始是以23a =为首项,公差为2的等差数列.……………7分 ∴()()322212n a n n n =+-=-≥. …………………………8分 ∵11a =适合上式,∴21n a n =-. …………………………9分 解法3:由已知及(1)得11a =,23a =,猜想21n a n =-. …………………………2分 下面用数学归纳法证明.① 当1n =,2时,由已知11211a ==⨯-,23a ==221⨯-,猜想成立. ………3分 ② 假设n k =()2k ≥时,猜想成立,即21k a k =-, …………………………4分由已知11k a +=,得()2114k k a S +-=, 故()2114k k a S --=.∴()()()22111144k k k k k a a S S a +----=-=. …………………………5分∴22211220k k k k a a a a ++---=.∴()()1120k kk k a a aa +++--=. …………………………6分∵10,0k k a a +>>,∴120k k a a +--=. …………………………7分 ∴()12212211k k a a k k +=+=-+=+-. …………………………8分 故当1n k =+时,猜想也成立.由①②知,猜想成立,即21n a n =-. …………………………9分 (3)解:由(2)知21n a n =-, ()21212n n n S n +-==.假设存在正整数k , 使k a , 21k S -, 4k a 成等比数列,则2214k k k S a a -=⋅. …………………………10分即()()()4212181k k k -=-⋅-. …………………………11分 ∵ k 为正整数, ∴ 210k -≠. ∴ ()32181k k -=-.∴ 328126181k k k k -+-=-.化简得 32460k k k --=. …………………………12分 ∵ 0k ≠,∴ 24610k k --=.解得6384k ±==, 与k 为正整数矛盾. ……………………13分 ∴ 不存在正整数k , 使k a , 21k S -, 4k a 成等比数列. …………………………14分20.(本小题满分14分)(本小题主要考查椭圆的方程、双曲线的方程、直线与圆锥曲线的位置关系等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力)(1)解法1: ∵ 双曲线222:12x C y -=的顶点为1(0)F ,20)F , …………1分∴ 椭圆1C 两焦点分别为1(0)F ,20)F .设椭圆1C 方程为12222=+by a x ()0a b >>,∵ 椭圆1C 过点A (1),∴ 1224a AF AF =+=,得2a =. ………………………2分∴ 2222b a =-=. ………………………3分∴ 椭圆1C 的方程为 22142x y +=. ………………………4分解法2: ∵ 双曲线222:12x C y -=的顶点为1(0)F ,20)F , ……………………1分∴ 椭圆1C 两焦点分别为1(0)F ,20)F .设椭圆1C 方程为12222=+by a x ()0a b >>,∵ 椭圆1C 过点A (1), ∴22211a b +=. ① ………………………2分 . ∵ 222a b =+, ② ………………………3分 由①②解得24a =, 22b =.∴ 椭圆1C 的方程为 22142x y +=. ………………………4分 (2)解法1:设点),(y x Q ,点),(11y x P ,由A (1)及椭圆1C 关于原点对称可得B 1)-,∴(1)AQ x y =-,11(1)AP x y =-,(1)BQ x y =+,11(1)BP x y =+.由 0AQ AP ⋅=, 得 11((1)(1)0x x y y +--=, ……………………5分即 11((1)(1)x x y y =---. ①同理, 由0BQ BP ⋅=, 得 11((1)(1)x x y y =-++. ② ……………6分①⨯②得 222211(2)(2)(1)(1)x x y y --=--. ③ ………………………7分由于点P 在椭圆1C 上, 则2211142x y +=,得221142x y =-, 代入③式得 2222112(1)(2)(1)(1)y x y y ---=--.当2110y -≠时,有2225x y +=,当2110y -=,则点(1)P -或P ,此时点Q 对应的坐标分别为或(1)- ,其坐标也满足方程2225x y +=. ………………………8分当点P 与点A 重合时,即点P (1),由②得 3y -,解方程组2225,3,x y y ⎧+=⎪⎨=-⎪⎩ 得点Q的坐标为)1-或2⎫-⎪⎪⎝⎭. 同理, 当点P 与点B 重合时,可得点Q的坐标为()或22⎛⎫- ⎪ ⎪⎝⎭.∴点Q 的轨迹方程为 2225x y +=,除去四个点)1-,22⎛⎫- ⎪ ⎪⎝⎭, (), 22⎛⎫- ⎪ ⎪⎝⎭. ………………………9分 解法2:设点),(y x Q ,点),(11y x P ,由A (1)及椭圆1C 关于原点对称可得B 1)-, ∵0AQ AP ⋅=,0BQ BP ⋅=, ∴AQ AP ⊥,BQ BP ⊥.1=-(1x ≠,① ……………………5分1=-(1x ≠. ② ……………………6分①⨯② 得 12222111122y y x x --⨯=--. (*) ………………………7分 ∵ 点P 在椭圆1C 上, ∴ 2211142x y +=,得221122x y =-, 代入(*)式得2212211112122x y x x --⨯=--,即2211122y x --⨯=-, 化简得 2225x y +=.若点(1)P -或P , 此时点Q对应的坐标分别为或(1)- ,其坐标也满足方程2225x y +=. ………………………8分当点P 与点A 重合时,即点P (1),由②得3y -,解方程组2225,3,x y y ⎧+=⎪⎨=-⎪⎩ 得点Q的坐标为)1-或2⎫-⎪⎪⎝⎭.同理, 当点P 与点B 重合时,可得点Q的坐标为()或2⎛⎫⎪⎪⎝⎭. ∴点Q 的轨迹方程为 2225x y +=,除去四个点)1-,22⎛⎫- ⎪ ⎪⎝⎭, (),22⎛⎫- ⎪ ⎪⎝⎭. ………………………9分 (3) 解法1:点Q (),x y 到直线:AB 0x =.△ABQ的面积为S =10分x ==………………………11分而222(2)42y x x =⨯⨯≤+(当且仅当2x =∴S =≤=2=. ……12分当且仅当2x =, 等号成立.由22225,x x y ⎧=⎪⎨⎪+=⎩解得,22,x y ⎧=⎪⎨⎪=⎩或22.x y ⎧=-⎪⎨⎪=-⎩………………………13分 ∴△ABQ的面积最大值为2, 此时,点Q的坐标为2⎫⎪⎪⎝⎭或2⎛⎫- ⎪ ⎪⎝⎭.…14分 解法2:由于AB =,故当点Q 到直线AB 的距离最大时,△ABQ 的面积最大. (1)0分 设与直线AB 平行的直线为0x m +=,由220,25,x m x y ⎧++=⎪⎨+=⎪⎩消去x ,得225250y c ++-=, 由()223220250m m ∆=--=,解得m =. ………………………11分若2m =,则2y =-,2x =-;若2m =-,则2y =,2x =.…12分 故当点Q的坐标为22⎛⎫ ⎪ ⎪⎝⎭或22⎛⎫-- ⎪ ⎪⎝⎭时,△ABQ 的面积最大,其值为122S AB ==. ………………………14分 21.(本小题满分14分)(本小题主要考查函数的导数、不等式等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力、抽象概括能力与创新意识) (1)解:∵()()2ln 12a f x x x x =++-,其定义域为()1,-+∞, ∴()()11111x ax a f x ax x x+-'=+-=++. …………………………1分 ① 当0a =时,()1xf x x'=-+,当x ∈()0,+∞时,()0f x '<, 则()f x 在区间()0,+∞上单调递减,此时,()()00f x f <=,不符合题意. …2分 ② 当01a <<时,令()0f x '=,得10x =,210ax a-=>, 当x ∈10a ,a -⎛⎫ ⎪⎝⎭时,()0f x '<,则()f x 在区间10a ,a -⎛⎫⎪⎝⎭上单调递减,此时,()()00f x f <=,不符合题意. …………………………3分③ 当1a =时,()21x f x x'=+,当x ∈()0,+∞时,()0f x '>,则()f x 在区间()0,+∞上单调递增,此时,()()00f x f >=,符合题意. ……4分 ④ 当1a >时,令()0f x '=,得10x =,210ax a-=<,当x ∈()0,+∞时,()0f x '>, 则()f x 在区间()0,+∞上单调递增,此时,()()00f x f >=,符合题意. ……5分 综上所述,a 的取值范围为[)1,+∞. …………………………6分 (2)证明:由(1)可知,当0a =时,()0f x <对()0,x ∈+∞都成立,即()ln 1x x +<对()0,x ∈+∞都成立. …………………………7分∴2222221212ln 1ln 1ln 1n nn n n n nn⎛⎫⎛⎫⎛⎫++++++<+++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.………………8分 即ln 2222121211112n n n n n n n n ⎡⎤++++⎛⎫⎛⎫⎛⎫+++<= ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 由于n ∈N *,则111111222221n n n +=+≤+=⨯. …………………………9分 ∴ln 222121111n n n n ⎡⎤⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. ∴ 22212111n n n n ⎛⎫⎛⎫⎛⎫+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭e <. …………………………10分 由(1)可知,当1a =时,()0f x >对()0,x ∈+∞都成立, 即()21ln 12x x x -<+对()0,x ∈+∞都成立. …………………………11分 ∴2222224442221211212ln 1ln 1ln 12n n n n nn n nn n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++-+++<++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.…………………………12分即()()()2422212111126ln 11122n n n n n n n n n n n ++⎡⎤⎢⎥+⎡⎤⎛⎫⎛⎫⎛⎫-<+++⎢⎥ ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎢⎥⎢⎥⎣⎦. 得323222643112ln 11112n n n n n n n n +--⎡⎤⎛⎫⎛⎫⎛⎫<+++ ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦由于n ∈N *,则()()32232333363316431611212122n n n n n n n n n n n+-+-+--=≥=. …………………………13分∴12<ln 22212111n n n n ⎡⎤⎛⎫⎛⎫⎛⎫+++ ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.∴22212111n n n n ⎛⎫⎛⎫⎛⎫<+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭. …………………………14分 22212111n n n n ⎛⎫⎛⎫⎛⎫<+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭e <.。
数学_2015年甘肃省高考数学一模试卷(理科)(含答案)
![数学_2015年甘肃省高考数学一模试卷(理科)(含答案)](https://img.taocdn.com/s3/m/ae97301b876fb84ae45c3b3567ec102de2bddfbe.png)
2015年甘肃省高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合A={x|x2−2x−3>0},集合B=Z,则(∁R A)∩B=()A {−3, −2, −1, 0, 1}B {−1, 0, 1, 2, 3}C {0, 1, 2}D {−2, −1, 0}2. 设i是虚数单位,复数Z=1+1−i1+i为()A 1+iB 1−iC C、−1+iD −1−i3. 设a=12∫211xdx,b=13∫311xdx,c=15∫511xdx,则下列关系式成立的是()A a<b<cB b<a<cC a<c<bD c<a<b4. 函数y=f(x)的图象向右平移π6个单位后与函数y=cos(2x−π2)的图象重合,则y=f(x)的解析式为()A y=cos(2x−π2) B y=cos(2x+π6) C y=sin(2x+π3) D y=sin(2x−π6)5. 数字“2015”中,各位数字相加和为8,称该数为“如意四位数”,则用数字0,1,2,3,4,5组成的无重复数字且大于2015的“如意四位数”有()个.A 21B 22C 23D 246. 某几何体的三视图如图所示,则该几何体的体积是()A (√32+2)π B (√33+4)π C (√36+2)π D (√33+2)ππ7. 阅读如图所示的程序框图,若输入的n=10,则该算法的功能是()A 计算数列{2n−1}的前11项和B 计算数列{2n−1}的前10项和C 计算数列{2n−1}的前11项和D 计算数列{2n−1}的前10项和8. 若x ,y 满足约束条件{2x +2y ≥1x ≥y 2x −y ≤1 ,且向量a →=(3, 2),b →=(x, y),则a →⋅b →的取值范围( )A [54, 5] B [72, 5] C [54, 4] D [72, 4]9. 已知面积为S 的凸四边形中,四条边长分别记为a 1,a 2,a 3,a 4,点P 为四边形内任意一点,且点P 到四边的距离分别记为ℎ1,ℎ2,ℎ3,ℎ4,若a 11=a 22=a 33=a 44=k ,则ℎ1+2ℎ2+3ℎ3+4ℎ4=2S k类比以上性质,体积为y 的三棱锥的每个面的面积分别记为S l ,S 2,S 3,S 4,此三棱锥内任一点Q 到每个面的距离分别为H 1,H 2,H 3,H 4,若S 11=S 22=S 33=S 44=K ,则H 1+2H 2+3H 3+4H 4=( ) A 4VKB 3VKC 2VKD VK10. 已知△ABC 的三边长a ,b ,c 成等差数列,且a 2+b 2+c 2=84,则实数b 的取值范围是( )A [2√5, 2√7]B (2√5, 2√7]C [2√6, 2√7]D (2√6, 2√7] 11. 在平面直角坐标系xOy 中,以椭圆x 2a2+y 2b 2=1(a >b >0)上的一点A 为圆心的圆与x 轴相切于椭圆的一个焦点,与y 轴相交于B ,C 两点,若△ABC 是锐角三角形,则该椭圆的离心率的取值范围是( ) A (√6−√22, √5−12) B (√6−√22, 1) C (√5−12, 1) D (0, √5−12) 12. 已知函数f(x)=xcosπx λ,存在f(x)的零点x 0,(x 0≠0),满足[f′(x 0)]2<π2(λ2−x 02),则λ的取值范围是( ) A (−√3, 0)∪(0, √3,) B (−√33, 0)∪(0, √33) C (−∞, −√3)∪(√3, +∞) D (−∞, −√33)∪(√33, +∞)二、填空题:本大题共4小题,每小题5分.13. 在(2x −√x 3)8的展开式中,常数项等于________(用数字作答)14. 直三棱柱ABC −A 1B 1C 1的顶点在同一个球面上,AB =3,AC =4,AA 1=2√6,∠BAC =90∘,则球的表面积________. 15. 下面给出的命题中:①m =−2”是直线(m +2)x +my +1=0与“直线(m −2)x +(m +2))y 一3=0相互垂直”的必要不充分条件;②已知函数f(a)=∫ a0sinxdx ,则f[f(π2)]=1−cos1;③已知ξ服从正态分布N(0, σ2),且P(−2≤ξ≤0)=0,4,则P(ξ>2)=0.2;④已知⊙C 1:x 2+y 2+2x =0,⊙C 2:x 2+y 2+2y −1=0,则这两圆恰有2条公切线; ⑤线性相关系数r 越大,两个变量的线性相关性越强;反之,线性相关性越小.其中是真命题的序号有________.16. 设数列{a n }的前n 项的和为S n ,已知1S 1+1S 2+⋯+1S n=nn+1,设b n =(12)a n 若对一切n ∈N ∗均有∑∈k=1n bk (1m,m 2−6m +163),则实数m 的取值范围为________.三、解答题:本大题共5小题-共70分.解答应写出文字说明,演算步骤或证明过程. 17. 在△ABC 中,角A ,B ,C 对边分别为a ,b ,c ,若bcosA +acosB =−2ccosC . (1)求角C 的大小;(2)若a +b =6,且△ABC 的面积为2√3,求边c 的长.18. 多面体ABCDE 中,△ABC 是边长为2的正三角形,AE >1,AE ⊥平面ABC ,平面BCD ⊥平面ABC ,BD =CD ,且BD ⊥CD . (Ⅰ)若AE =2,求证:AC // 平面BDE ;(Ⅱ)若二面角A 一DE 一B 的余弦值为√55,求AE 的长.19. 某市为了治理污染,改善空气质量,市环境保护局决定每天在城区主要路段洒水防尘,为了给洒水车供水,供水部门决定最多修建3处供水站.根据过去30个月的资料显示,每月洒水量X (单位:百立方米)与气温和降雨量有关,且每月的洒水量都在20以上,其中不足40的月份有10个月,不低于40且不超过60的月份有15个月,超过60的月份有5个月.将月洒水量在以上三段的频率作为相应的概率,并假设各月的洒水量相互独立. (Ⅰ)求未来的3个月中,至多有1个月的洒水量超过60的概率;(Ⅱ)供水部门希望修建的供水站尽可能运行,但每月供水站运行的数量受月洒水量限制,有如下关系:若某供水站运行,月利润为12000元;若某供水站不运行,月亏损6000元.欲使供水站的月总利润的均值最大,应修建几处供水站?20. 已知中心在原点,焦点在x 轴上的椭圆C 的离心率为12,其中一个顶点是抛物线x 2=−4√3y 的焦点.(I)求椭圆C 的标准方程;(Ⅱ)是否存在过点P(2, 1)的直线l 与椭圆C 交于不同的两点A ,B 满足PA →⋅PB →=54,若存在,求出直线l 的方程;若不存在,请说明理由. 21. 已知函数f(x)=ax 2+ln(x +1). (1)当时a =−14时,求函数f(x)的单调区间;(2)当x ∈[0, +∞)时,函数y =f(x)的图象上的点都在{x ≥0,y −x ≤0所表示的平面区域内,求实数a 的取值范围.请从下面所给的22、23、24三题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答题第一题评分;多答按所答第一题评分.选修4-3:几何证明选讲 22. 选修4−1:几何证明选讲如图,点C 是⊙O 直径BE 的延长线上一点,AC 是⊙O 的切线,A 为切点,∠ACB 的平分线CD 与AB 相交于点D ,与AE 相交于点F , (Ⅰ)求∠ADF 的值(Ⅱ)若AB =AC ,求ACBC 的值.选修4-4:坐标系与参数方程23. 在直角坐标系xoy 中,直线l 的参数方程为{x =−35t +2y =45t (t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=asinθ. (Ⅰ)若a =2,求圆C 的直角坐标方程与直线l 的普通方程; (Ⅱ)设直线l 截圆C 的弦长等于圆C 的半径长的√3倍,求a 的值.选修4-5:不等式选讲24. 已知函数f(x)=|2x −1|+|2x +5|,且f(x)≥m 恒成立. (Ⅰ)求m 的取值范围;(Ⅱ)当m 取最大值时,解关于x 的不等式:|x −3|−2x ≤2m −8.2015年甘肃省高考数学一模试卷(理科)答案1. B2. B3. D4. C5. C6. C7. A8. A9. B 10. D 11. A 12. D 13. 112 14. 49π 15. ②④16. m <0或m ≥517. 解:(1)由题意知,bcosA +acosB =−2ccosC , 正弦定理可得sinBcosA +sinAcosB =−2sinCcosC ,sin(A +B)=−2sinCcosC , 由A ,B ,C 是三角形内角可知, sin(A +B)=sinC ≠0, ∴ cosC =−12,由0<C <π,得C =2π3.(2)∵ a +b =6,∴ a 2+b 2+2ab =36, ∵ △ABC 的面积为2√3, ∴ 12absinC =2√3,即12ab ×√32=2√3,化简得,ab =8,则a 2+b 2=20, 由余弦定理得,c 2=a 2+b 2−2abcosC =20−2×8×(−12)=28.所以c =2√7.18. (I )证明:如图所示,分别取BC ,BA ,BE 的中点M ,N ,P ,连接MN ,NP ,DP . 则MN ∥=12AC ,NP // AE ,NP =12AE =(1)∵ BD =CD ,BD ⊥CD ,M 为BC 的中点,BC=2,∴ DM ⊥BC ,DM =1,又平面BCD ⊥平面ABC . ∴ DM ⊥平面ABC , 又AE ⊥平面ABC , ∴ DM // AE ,∴ 四边形DMNP 为平行四边形,∴ DP // MN ,∴ AC // DP ,又AC ⊄平面BDE ,DP ⊂平面BDE ,∴ AC // 平面BDE . (II)设AE =a ,则E(0,√3,a),BD →=(−1, 0, 1),BE →=(−1,√3,a), 设平面BDE 的法向量为n →=(x, y, z),则{BD →⋅n →=−x +z =0BE →⋅n →=−x +√3y +az =0,取n →=(1,1−a √3,1),取平面ADE 的法向量m →=(1, 0, 0), 则|cos <m →,n →>|=|m →⋅n →||m →||n →|=1√2+(1−a)23=√55,解得a =4, 即AE =(4)19. (1)依题意可得P 1=P(20<X <40)=1030=13,P 2=P(40≤X ≤60)=1530=12,P 3=P(X >60)=530=16,由二项分布可得,在未来三个月中,至多有1个月的洒水虽超过60的概率为P =C 30(1−P 3)3+C 31(1−P 3)2⋅P 3=(56)3+3×(56)2×16=2527,至多有1个月的洒水虽超过60的概率为2527;(2)记供水部门的月总利润为Y 元,①修建一处供水站的情形,由于月洒水量总大于20,故一处供水站运行的概率为1, 对应的月利润为Y =12000,E(Y)=12000×1=12000(元);②修建两处供水站的情形,依题意当20<X <40,一处供水站运行,此时Y =12000−6000=6000,P(Y =6000)=P(20<X <40)=P 1=13,当X ≥40,两处供水站运行,此时Y =12000×2=24000,因此P(Y =24OOO)=P(X ≥40)=P 2+P 3=23,由此得Y 的分布列为则E(Y)=6000×13+24000×23=18000(元);③修建三处供水站情形,依题意可得当20<X <40时,一处供水站运行,此时Y =12000−12000=0,由此 P(Y =0)=P(40<X <80)=P 1=13,当40≤X ≤60时,两处供水站运行,此时Y =12000×2−6000=18000, 由此P(Y =18000)=P(40≤X ≤60)=P 2=12,当X >60时,三处供水站运行,此时Y =12000×3=36000, 由此P(Y =36000)=P(X >60)=P 3=16, 由此的Y 的分布列为由此E(Y)=0×13+18000×12+36000×16=15000(元), 欲使供水站的月总利润的均值最大,应修建两处供水站. 20. (I )设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),则∵ 椭圆C 的离心率为12,其中一个顶点是抛物线x 2=−4√3y 的焦点, ∴ b =√3,ca=12∵ c 2=a 2−b 2 ∴ a =2,c =1, ∴ 椭圆的标准方程为x 24+y 23=1;(II)若存在过点P(2, 1)的直线l 满足条件,则l 的斜率存在设方程为y =k(x −2)+1,代入椭圆方程,可得(3+4k 2)x 2−8k(2k −1)x +16k 2−16k −8=0设A(x 1, y 1),B(x 2, y 2),则由△=32(6k +3)>0,可得k >−12 且x 1+x 2=8k(2k−1)3+4k 2,x 1x 2=16k 2−16k−83+4k 2∵ PA →⋅PB →=54∴ (x 1−2)(x 2−2)+(y 1−1)(y 2−1)=54∴ [x 1x 2−2(x 1+x 2)+4](1+k 2)=54 ∴ [16k 2−16k−83+4k 2−2×8k(2k−1)3+4k 2+4](1+k 2)=54∴ 4k 2+43+4k 2=54 ∵ k >−12,∴ k =12∴ 存在过点P(2, 1)的直线l 与椭圆C 交于不同的两点A ,B 满足PA →⋅PB →=54,其方程为y =12x .21. 解:(1)当a =−14时,f(x)=−14x 2+ln(x +1),(x >−1),f′(x)=−12x +1x +1=−(x+2)(x−1)2(x+1),(x >−1),由f′(x)>0解得−1<x <1,由f′(x)<0,解得:x >1,∴ 函数f(x)的单调递增区间是(−1, 1),单调递减区间是(1, +∞); (2)当x ∈[0, +∞)时,函数y =f(x)的图象上的点都在{x ≥0,y −x ≤0,所表示的平面区域内,即当x ∈[0, +∞)时,不等式f(x)≤x 恒成立, 即ax 2+ln(x +1)≤x 恒成立,设g(x)=ax 2+ln(x +1)−x ,(x ≥0), 只需g(x)max ≤0即可, 由g′(x)=2ax +1x+1−1=x[2ax+(2a−1)](x+1),当a =0时,g′(x)=−x x+1,当x >0时,g′(x)<0,函数g(x)在(0, +∞)单调递减, ∴ g(x)≤g(0)=0成立, 当a >0时,由g′(x)=x[2ax+(2a−1)](x+1)=0,因x ∈[0, +∞),∴ x =12a −1,①若12a −1<0,即a >12时,在区间(0, +∞)上,g′(x)>0,函数g(x)在(0, +∞)上单调递增,函数g(x)在[0, +∞)上无最大值,此时不满足; ②若12a−1≥0,即0<a ≤12时,函数g(x)在(0, 12a−1)上单调递减,在区间(12a−1, +∞)上单调递增,同样函数g(x)在[0, +∞)上无最大值,此时也不满足;当a <0时,由g′(x)=x[2ax+(2a−1)](x+1),∵ x ∈[0, +∞),∴ 2ax +(2a −1)<0,∴ g′(x)<0,故函数g(x)在[0, +∞)单调递减, ∴ g(x)≤g(0)=0恒成立,综上:实数a 的取值范围是(−∞, 0].22. (1)∵ AC 是⊙O 的切线,∴ ∠B =∠EAC . 又∵ DC 是∠ACB 的平分线,∴ ∠ACD =∠DCB ,∴ ∠B +∠DCB =∠EAC +∠ACD ,∴ ∠ADF =∠AFD . ∵ BE 是⊙O 直径,∴ ∠BAE =90∘. ∴ ∠ADF =45∘.(2)∵ AB =AC ,∴ ∠B =∠ACB =∠EAC .由(I)得∠BAE =90∘,∴ ∠B +∠AEB =∠B +∠ACE +∠EAC =3∠B =90∘, ∴ ∠B =30∘.∵ ∠B =∠EAC ,∠ACB =∠ACB , ∴ △ACE ∽△BCA , ∴AC BC=AE AB=tan30∘=√33. 23. (1)当a =2时,ρ=asinθ转化为ρ=2sinθ 整理成直角坐标方程为:x 2+(y −1)2=1直线的参数方程{x =−35t +2y =45t (t 为参数).转化成直角坐标方程为:4x +3y −8=0 (2)圆C 的极坐标方程转化成直角坐标方程为:x 2+(y −a2)2=a 24直线l 截圆C 的弦长等于圆C 的半径长的√3倍, 所以:d =|3a2−8|5=12⋅|a|22|3a −16|=5|a|,利用平方法解得:a =32或3211.24. (1)要使f(x)≥m 恒成立,只需m ≤f(x)min .由绝对值不等式的性质,有|2x −1|+|2x +5|≥|(2x −1)+(2x +5)|=6, 即f(x)min =6,所以m ≤(6)(2)由(Ⅰ)知,m =6,所以原不等式化为|x −3|−2x ≤4,即|x −3|≤4+2x , 得−4−2x ≤x −3≤4+2x ,转化为{−4−2x ≤x −3x −3≤4+2x,化简,得{x ≥−13x ≥−7,所以原不等式的解集为{x|x ≥−13}.。
2015年山东省高考一模数学试卷(理科)【解析版】
![2015年山东省高考一模数学试卷(理科)【解析版】](https://img.taocdn.com/s3/m/e333a3e06137ee06eff91867.png)
2015年山东省高考数学一模试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)复数z=|(﹣i)i|+i5(i为虚数单位),则复数z的共轭复数为()A.2﹣i B.2+i C.4﹣i D.4+i2.(5分)若[﹣1,1]⊆{x||x2﹣tx+t|≤1},则实数t的取值范围是()A.[﹣1,0]B.[2﹣2,0]C.(﹣∞,﹣2]D.[2﹣2,2+2]3.(5分)已知M(2,m)是抛物线y2=2px(p>0)上一点,则“p≥1”是“点M到抛物线焦点的距离不少于3”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条4.(5分)若m是2和8的等比中项,则圆锥曲线x2+的离心率为()A.B.C.或D.或5.(5分)在△ABC中,若b=2,A=120°,三角形的面积S=,则三角形外接圆的半径为()A.B.2C.2D.46.(5分)某几何体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此几何体的外接球的表面积为()A.3πB.4πC.2πD.7.(5分)定义max{a,b}=,设实数x,y满足约束条件,则z=max{4x+y,3x﹣y}的取值范围是()A.[﹣8,10]B.[﹣7,10]C.[﹣6,8]D.[﹣7,8] 8.(5分)函数y=log3(x+3)﹣1(a>0,且a≠1)的图象恒过定点A,若点A 在直线mx+ny+1=0上,其中m,n均大于0,则的最小值为()A.2B.4C.8D.169.(5分)已知△ABC中,内角A、B、C所对的边分别为a,b,且a cos C+c =b,若a=1,c﹣2b=1,则角B为()A.B.C.D.10.(5分)设定义在D上的函数y=h(x)在点P(x0,h(x0))处的切线方程为l:y=g(x),当x≠x0时,若>0在D内恒成立,则称P为函数y=h(x)的“类对称点”,则f(x)=x2﹣6x+4lnx的“类对称点”的横坐标是()A.1B.C.e D.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)已知函数f(x)=|2x﹣a|+a,若不等式f(x)≤6的解集为{x|﹣2≤x ≤3},则实数a的值为.12.(5分)已知点A(2,0)抛物线C:x2=4y的焦点为F,射线F A与抛物线C相交于点M,与其准线相交于点N,则|FM|:|MN|=.13.(5分)已知函数则=.14.(5分)把座位编号为1、2、3、4、5的五张电影票全部分给甲、乙、丙、丁四个人,每人至少一张,至多两张,且分得的两张票必须是连号,那么不同的分法种数为.(用数字作答)15.(5分)已知函数f(x)=xe x,记f0(x)=f′(x),f1(x)=f′(x0),…,f n(x)=f′n﹣1(x)且x2>x1,对于下列命题:①函数f(x)存在平行于x轴的切线;②>0;③f′2012(x)=xe x+2014e x;④f(x1)+x2<f(x2)+x1.其中正确的命题序号是(写出所有满足题目条件的序号).三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=2sin x+2sin(x﹣).(1)求f(x)的单调递增区间;(2)在△ABC中,角A,B,C的对边分别为a,b,c.已知f(A)=,a=b,证明:C=3B.17.(12分)2008年中国北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮.现有8个相同的盒子,每个盒子中放一只福娃,每种福娃的数量如下表:从中随机地选取5只.(Ⅰ)求选取的5只恰好组成完整“奥运吉祥物”的概率;(Ⅱ)若完整地选取奥运会吉祥物记10分;若选出的5只中仅差一种记8分;差两种记6分;以此类推.设ξ表示所得的分数,求ξ的分布列及数学期望.18.(12分)在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:F A=CP:PB=1:2(如图1).将△AEF沿EF折起到△A1EF 的位置,使二面角A1﹣EF﹣B成直二面角,连接A1B、A1P(如图2)(1)求证:A1E⊥平面BEP(2)求直线A1E与平面A1BP所成角的大小;(3)求二面角B﹣A1P﹣F的余弦值.19.(12分)数列{a n}中,a1=1,当n≥2时,其前n项和为S n,满足S n2=a n(S n ﹣).(1)求S n的表达式;(2)设b n=,数列{b n}的前n项和为T n,不等式T n≥(m2﹣5m)对所有的n∈N*恒成立,求正整数m的最大值.20.(13分)在平面直角坐标系xOy中,椭圆G的中心为坐标原点,左焦点为F1(﹣1,0),P为椭圆G的上顶点,且∠PF1O=45°.(Ⅰ)求椭圆G的标准方程;(Ⅱ)已知直线l1:y=kx+m1与椭圆G交于A,B两点,直线l2:y=kx+m2(m1≠m2)与椭圆G交于C,D两点,且|AB|=|CD|,如图所示.(ⅰ)证明:m1+m2=0;(ⅱ)求四边形ABCD的面积S的最大值.21.(14分)已知函数f(x)=aln(x+1)﹣ax﹣x2.(Ⅰ)若x=1为函数f(x)的极值点,求a的值;(Ⅱ)讨论f(x)在定义域上的单调性;(Ⅲ)证明:对任意正整数n,ln(n+1)<2+.2015年山东省高考数学一模试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)复数z=|(﹣i)i|+i5(i为虚数单位),则复数z的共轭复数为()A.2﹣i B.2+i C.4﹣i D.4+i【解答】解:由z=|(﹣i)i|+i5=,得:.故选:A.2.(5分)若[﹣1,1]⊆{x||x2﹣tx+t|≤1},则实数t的取值范围是()A.[﹣1,0]B.[2﹣2,0]C.(﹣∞,﹣2]D.[2﹣2,2+2]【解答】解:令y=x2﹣tx+t,①若t=0,则{x||x2≤1}=[﹣1,1],成立,②若t>0,则y max=(﹣1)2﹣t(﹣1)+t=2t+1≤1,即t≤0,不成立;③若t<0,则y max=(1)2﹣t+t=1≤1,成立,y min=()2﹣t•+t≥﹣1,即t2﹣4t﹣4≤0,解得,2﹣2≤t≤2+2,则2﹣2≤t<0,综上所述,2﹣2≤t≤0.故选:B.3.(5分)已知M(2,m)是抛物线y2=2px(p>0)上一点,则“p≥1”是“点M到抛物线焦点的距离不少于3”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条【解答】解:抛物线的交点坐标为F(,0),准线方程为x=﹣,则点M到抛物线焦点的距离PF=2﹣(﹣)=2+,若p≥1,则PF=2+≥,此时点M到抛物线焦点的距离不少于3不成立,即充分性不成立,若点M到抛物线焦点的距离不少于3,即PF=2+≥3,即p≥2,则p≥1,成立,即必要性成立,故“p≥1”是“点M到抛物线焦点的距离不少于3”的必要不充分条件,故选:B.4.(5分)若m是2和8的等比中项,则圆锥曲线x2+的离心率为()A.B.C.或D.或【解答】解:依题意可知m=±=±4当m=4时,曲线为椭圆,a=2,b=1,则c=,e==当m=﹣4时,曲线为双曲线,a=1,b=2,c=则,e=故选:D.5.(5分)在△ABC中,若b=2,A=120°,三角形的面积S=,则三角形外接圆的半径为()A.B.2C.2D.4【解答】解:△ABC中,∵b=2,A=120°,三角形的面积S==bc•sin A =c•,∴c=2=b,故B=(180°﹣A)=30°.再由正弦定理可得=2R==4,∴三角形外接圆的半径R=2,故选:B.6.(5分)某几何体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此几何体的外接球的表面积为()A.3πB.4πC.2πD.【解答】解:如图所示,该几何体是正方体的内接正四棱锥.因此此几何体的外接球的直径2R=正方体的对角线,其表面积S=4πR2=3π.故选:A.7.(5分)定义max{a,b}=,设实数x,y满足约束条件,则z=max{4x+y,3x﹣y}的取值范围是()A.[﹣8,10]B.[﹣7,10]C.[﹣6,8]D.[﹣7,8]【解答】解:由约束条件作出可行域如图,由定义max{a,b}=,得z=max{4x+y,3x﹣y}=,当x+2y≥0时,化z=4x+y为y=﹣4x+z,当直线y=﹣4x+z过B(﹣2,1)时z 有最小值为4×(﹣2)+1=﹣7;当直线y=﹣4x+z过A(2,2)时z有最大值为4×2+1×2=10;当x+2y<0时,化z=3x﹣y为y=3x﹣z,当直线y=3x﹣z过B(﹣2,1)时z 有最小值为3×(﹣2)﹣1=﹣7;当直线y=﹣4x+z过C(2,﹣2)时z有最大值为4×2﹣1×(﹣2)=10.综上,z=max{4x+y,3x﹣y}的取值范围是[﹣7,10].故选:B.8.(5分)函数y=log3(x+3)﹣1(a>0,且a≠1)的图象恒过定点A,若点A 在直线mx+ny+1=0上,其中m,n均大于0,则的最小值为()A.2B.4C.8D.16【解答】解:∵y=log3(x+3)﹣1(a>0,且a≠1)的图象恒过定点A,当x+3=1时,即x=﹣2时,y=﹣1,∴A点的坐标为(﹣2,﹣1),∵点A在直线mx+ny+1=0上,∴﹣2m﹣n+1=0,即2m+n=1,∵m,n均大于0,∴=+=2+++2≥4+2=8,当且仅当m=,n=时取等号,故的最小值为8,故选:C.9.(5分)已知△ABC中,内角A、B、C所对的边分别为a,b,且a cos C+c =b,若a=1,c﹣2b=1,则角B为()A.B.C.D.【解答】解:已知等式利用正弦定理化简得:sin A cos C+sin C=sin B=sin(A+C)=sin A cos C+cos A sin C,由sin C≠0,整理得:cos A=,即A=,由余弦定理得:a2=b2+c2﹣2bc cos A,即1=b2+c2﹣bc①,与c﹣2b=1联立,解得:c=,b=1,由正弦定理=,得:sin B===,∵b<c,∴B<C,则B=.故选:B.10.(5分)设定义在D上的函数y=h(x)在点P(x0,h(x0))处的切线方程为l:y=g(x),当x≠x0时,若>0在D内恒成立,则称P为函数y=h(x)的“类对称点”,则f(x)=x2﹣6x+4lnx的“类对称点”的横坐标是()A.1B.C.e D.【解答】解:函数y=f(x)在其图象上一点P(x0,f(x0))处的切线方程为:y=g(x)=(2x0+﹣6)(x﹣x0)+x02﹣6x0+4lnx0,设m(x)=f(x)﹣g(x)=x2﹣6x+4lnx﹣(2x0+﹣6)(x﹣x0)﹣x02+6x0﹣4lnx0,则m(x0)=0.m′(x)=2x+﹣6﹣(2x0+﹣6)=2(x﹣x0)(1﹣)=(x﹣x0)(x ﹣)若x0<,m(x)在(x0,)上单调递减,∴当x∈(x0,)时,m(x)<m(x0)=0,此时<0;若x0,φ(x)在(,x0)上单调递减,∴当x∈(,x0)时,m(x)>m(x0)=0,此时<0;∴y=f(x)在(0,)∪(,+∞)上不存在“类对称点”.若x0=,(x﹣)2>0,∴m(x)在(0,+∞)上是增函数,当x>x0时,m(x)>m(x0)=0,当x<x0时,m(x)<m(x0)=0,故>0.即此时点P是y=f(x)的“类对称点”综上,y=f(x)存在“类对称点”,是一个“类对称点”的横坐标.故选:B.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)已知函数f(x)=|2x﹣a|+a,若不等式f(x)≤6的解集为{x|﹣2≤x ≤3},则实数a的值为a=1.【解答】解:由题意可得,不等式即|2x﹣a|≤6﹣a,∴a﹣6≤2x﹣a≤6﹣a,解得a﹣3≤x≤3.再由不等式的解集为{x|﹣2≤x≤3},可得a﹣3=﹣2,故a=1,故答案为a=1.12.(5分)已知点A(2,0)抛物线C:x2=4y的焦点为F,射线F A与抛物线C相交于点M,与其准线相交于点N,则|FM|:|MN|=1:.【解答】解:∵抛物线C:x2=4y的焦点为F(0,1),点A坐标为(2,0),∴抛物线的准线方程为l:y=﹣1,直线AF的斜率为k==﹣,过M作MP⊥l于P,根据抛物线物定义得|FM|=|PM|,∵Rt△MPN中,tan∠MNP=﹣k=,∴=,可得|PN|=2|PM|,得|MN|==|PM|因此可得|FM|:|MN|=|PM|:|MN|=1:.故答案为:1:.13.(5分)已知函数则=.【解答】解:=,由定积分的几何意义可知:表示上半圆x2+y2=1(y≥0)的面积,∴=.又dx==e2﹣e.∴==好.故答案为:.14.(5分)把座位编号为1、2、3、4、5的五张电影票全部分给甲、乙、丙、丁四个人,每人至少一张,至多两张,且分得的两张票必须是连号,那么不同的分法种数为96.(用数字作答)【解答】解:先将票分为符合条件的4份,由题意,4人分5张票,且每人至少一张,至多两张,则三人一张,1人2张,且分得的票必须是连号,相当于将1、2、3、4、5这五个数用3个板子隔开,分为四部分且不存在三连号.在4个空位插3个板子,共有C43=4种情况,再对应到4个人,有A44=24种情况,则共有4×24=96种情况.故答案为96.15.(5分)已知函数f(x)=xe x,记f0(x)=f′(x),f1(x)=f′(x0),…,f n(x)=f′n﹣1(x)且x2>x1,对于下列命题:①函数f(x)存在平行于x轴的切线;②>0;③f′2012(x)=xe x+2014e x;④f(x1)+x2<f(x2)+x1.其中正确的命题序号是①③(写出所有满足题目条件的序号).【解答】解:对于①,因为f′(x)=(x+1)e x,易知f′(﹣1)=0,函数f (x)存在平行于x轴的切线,故①正确;对于②,因为f′(x)=(x+1)e x,所以x∈(﹣∞,﹣1)时,函数f(x)单调递减,x∈(﹣1,+∞)时,函数f(x)单调递增,故>0不能确定,故②错;对于③,因为f1(x)=f′(x0)=xe x+2e x,f2(x)=f1′(x)=xe x+3e x,…,f n(x)=f′n﹣1(x)=xe x+(n+1)e x,所以f′2012(x)=f2013(x)=xe x+2014e x;故③正确;对于④,f(x1)+x2<f(x2)+x1等价于f(x1)﹣x1<f(x2)﹣x2,构建函数h(x)=f(x)﹣x,则h′(x)=f′(x)﹣1=(x+1)e x﹣1,易知函数h(x)在R上不单调,故④错;故答案为:①③三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=2sin x+2sin(x﹣).(1)求f(x)的单调递增区间;(2)在△ABC中,角A,B,C的对边分别为a,b,c.已知f(A)=,a=b,证明:C=3B.【解答】(1)解:函数f(x)=2sin x+2sin(x﹣)=2(sin x+sin x﹣cos x)=2(sin x﹣cos x)=2sin(x﹣),令2kπ﹣≤x﹣≤2k,k∈Z,则2kπ﹣≤x≤2kπ,则f(x)的单调递增区间是[2kπ﹣,2kπ],k∈Z.(2)证明:由f(A)=,则sin(A﹣)=,由0<A<π,则﹣<A﹣<,则A=,由=,a=b,则sin B=,由a>b,A=,B=,C=,故C=3B.17.(12分)2008年中国北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮.现有8个相同的盒子,每个盒子中放一只福娃,每种福娃的数量如下表:从中随机地选取5只.(Ⅰ)求选取的5只恰好组成完整“奥运吉祥物”的概率;(Ⅱ)若完整地选取奥运会吉祥物记10分;若选出的5只中仅差一种记8分;差两种记6分;以此类推.设ξ表示所得的分数,求ξ的分布列及数学期望.【解答】解:(Ⅰ)选取的5只恰好组成完整“奥运吉祥物”的概率P===,(Ⅱ)ξ的取值为:10,8,6,4.P(ξ=10)==,P(ξ=8)=,P(ξ=6)==,P(ξ=4)==ξ的分布列为:﹣Eξ==7.5.18.(12分)在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:F A=CP:PB=1:2(如图1).将△AEF沿EF折起到△A1EF 的位置,使二面角A1﹣EF﹣B成直二面角,连接A1B、A1P(如图2)(1)求证:A1E⊥平面BEP(2)求直线A1E与平面A1BP所成角的大小;(3)求二面角B﹣A1P﹣F的余弦值.【解答】(1)证明:不妨设正三角形ABC的边长为3.在图1中,取BE的中点D,连接DF.∵AE:EB=CF:F A=1:2,∴AF=AD=2,而∠A=60度,∴△ADF是正三角形,又AE=DE=1,∴EF⊥AD.在图2中,A1E⊥EF,BE⊥EF,∴∠A1EB为二面角A1﹣EF﹣B的平面角.由题设条件知此二面角为直二面角,∴A1E⊥BE.又BE∩EF=E,∴A1E⊥平面BEF,即A1E⊥平面BEP.(2)建立分别以EB、EF、EA为x轴、y轴、z轴的空间直角坐标系,则E(0,0,0),A(0,0,1),B(2,0,0),F(0,,0),P(1,,0),则,.设平面ABP的法向量为,由平面ABP知,,即令,得,.,,∴直线A1E与平面A1BP所成的角为60度.(3),设平面A1FP的法向量为.由平面A1FP知,令y 2=1,得,.,所以二面角B﹣A1P﹣F的余弦值是.19.(12分)数列{a n}中,a1=1,当n≥2时,其前n项和为S n,满足S n2=a n(S n ﹣).(1)求S n的表达式;(2)设b n=,数列{b n}的前n项和为T n,不等式T n≥(m2﹣5m)对所有的n∈N*恒成立,求正整数m的最大值.【解答】解:(1)∵S n2=a n(S n﹣)=.化为,∴数列是首项为==1,公差为2的等差数列.故=1+2(n﹣1)=2n﹣1,∴S n=.(2)b n===,故T n=+…+=.又∵不等式T n≥(m2﹣5m)对所有的n∈N*恒成立,∴≥(m2﹣5m),化简得:m2﹣5m﹣6≤0,解得:﹣1≤m≤6.∴正整数m的最大值为6.20.(13分)在平面直角坐标系xOy中,椭圆G的中心为坐标原点,左焦点为F1(﹣1,0),P为椭圆G的上顶点,且∠PF1O=45°.(Ⅰ)求椭圆G的标准方程;(Ⅱ)已知直线l1:y=kx+m1与椭圆G交于A,B两点,直线l2:y=kx+m2(m1≠m2)与椭圆G交于C,D两点,且|AB|=|CD|,如图所示.(ⅰ)证明:m1+m2=0;(ⅱ)求四边形ABCD的面积S的最大值.【解答】(Ⅰ)解:设椭圆G的标准方程为.因为F1(﹣1,0),∠PF1O=45°,所以b=c=1.所以,a2=b2+c2=2.…(2分)所以,椭圆G的标准方程为.…(3分)(Ⅱ)设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4).(ⅰ)证明:由消去y得:.则,…(5分)所以===.同理.…(7分)因为|AB|=|CD|,所以.因为m1≠m2,所以m1+m2=0.…(9分)(ⅱ)解:由题意得四边形ABCD是平行四边形,设两平行线AB,CD间的距离为d,则.因为m1+m2=0,所以.…(10分)所以=.(或)所以当时,四边形ABCD的面积S取得最大值为.…(12分)21.(14分)已知函数f(x)=aln(x+1)﹣ax﹣x2.(Ⅰ)若x=1为函数f(x)的极值点,求a的值;(Ⅱ)讨论f(x)在定义域上的单调性;(Ⅲ)证明:对任意正整数n,ln(n+1)<2+.【解答】解:(1)因为,令f'(1)=0,即,解得a=﹣4,经检验:此时,x∈(0,1),f'(x)>0,f(x)递增;x∈(1,+∞),f'(x)<0,f(x)递减,∴f(x)在x=1处取极大值.满足题意.(2),令f'(x)=0,得x=0,或,又f(x)的定义域为(﹣1,+∞)①当,即a≥0时,若x∈(﹣1,0),则f'(x)>0,f(x)递增;若x∈(0,+∞),则f'(x)<0,f(x)递减;②当,即﹣2<a<0时,若x∈(﹣1,,则f'(x)<0,f(x)递减;若,0),则f'(x)>0,f(x)递增;若x∈(0,+∞),则f'(x)<0,f(x)递减;③当,即a=﹣2时,f'(x)≤0,f(x)在(﹣1,+∞)内递减,④当,即a<﹣2时,若x∈(﹣1,0),则f'(x)<0,f(x)递减;若x∈(0,,则f'(x)>0,f(x)递增;若,+∞),则f'(x)<0,f(x)递减;(3)由(2)知当a=1时,f(x)在[0,+∞)上递减,∴f(x)≤f(0),即ln (x+1)≤x+x2,∵,∴,i=1,2,3,…,n,∴,∴.。
数学_2015年河南省六市联考高考数学一模试卷(理科)(含答案)
![数学_2015年河南省六市联考高考数学一模试卷(理科)(含答案)](https://img.taocdn.com/s3/m/acea501b54270722192e453610661ed9ad5155aa.png)
2015年河南省六市联考高考数学一模试卷(理科)一.选择题:1. 已知集合A ={x|x 2>1},B ={x|log 2x >0},则A ∩B =( ) A {x|x <−1} B {x|>0} C {x|x >1} D {x|x <−1或x >1}2. 如果复数2−bi 1+2i(其中i 为虚数单位,b 为实数)的实部和虚部互为相反数,那么b 等于( )A −6B 23 C −23 D 23. 在等差数列{a n }中,已知首项a 1=0,公差d ≠0,若a k =a 1+a 2+a 3+...+a 7,则k 的值为( )A 24B 23C 22D 21 4. 函数y =xln|x||x|的图象可能是( )A B C D5. 某程序框图如图所示,该程序运行后输出的x 值是( )A 3B 4C 6D 86. 函数y =cos(ωx +φ)(ω>0, 0<φ<π)为奇函数,该函数的部分图象如图所表示,A 、B 分别为最高点与最低点,并且两点间的距离为2√2,则该函数的一条对称轴为( )A x =2π B x =π2 C x =1 D x =2 7. 已知正数x ,y 满足{2x −y ≤0x −3y +5≥0,则z =4−x ⋅(12)y 的最小值为( )A 1B 14√23C 116D 1328. 若α∈(π2, π),3cos2α=sin(π4−α),则sin2α的值为( ) A 118 B −118 C 1718 D −17189. 一个几何体的三视图如图所示,则这个几何体的体积是( )A 1B 2C 3D 410. 在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sinA =2√23,a =2,S △ABC =√2,则b 的值为( ) A √3 B3√22 C 2√2 D 2√3 11. 设双曲线x 2a 2−y 2b 2=1(a >0, b >0)的右焦点为F ,过点F 作与x 轴垂直的直线l 交两渐近线于A ,B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若OP →=λOA →+μOB →(λ, μ∈R),λ⋅μ=316,则双曲线的离心率为( )A2√33 B 3√55 C 3√22 D 9812. 若直角坐标平面内A 、B 两点满足:①点A 、B 都在函数f(x)的图象上;②点A 、B 关于原点对称,则点对(A, B)是函数f(x)的一个“姊妹点对”.点对(A, B)与(B, A)可看作是同一个“姊妹点对”,已知函数f(x)={x 2+2x(x <0)x+1ex(x ≥0) ,则f(x)的“姊妹点对”有 ( )A 0个B 1个C 2个D 3个二.填空题:13. 已知a =∫(π0sint +cost)dt ,则(x −1ax )6的展开式中的常数项为________.14. 已知三棱锥P −ABC 的所有棱长都等于1,则三棱锥P −ABC 的内切球的表面积________. 15. 已知点A(0, 2),抛物线C 1:y 2=ax(a >0)的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,若|FM|:|MN|=1:√5,则a 的值等于________.16. 已知f(x)=1+lnxx−1,g(x)=kx(k ∈N ∗),对任意的c >1,存在实数a ,b 满足0<a <b <c ,使得f(c)=f(a)=g(b),则k 的最大值为________.三、解答题:17. 已知{a n }是一个公差大于0的等差数列,且满足a 3a 5=45,a 2+a 6=14. (Ⅰ)求数列{a n }的通项公式; (Ⅱ)若数列{b n }满足:b12+b 222+⋯+b n 2n=a n +1(n ∈N ∗),求数列{b n }的前n 项和.18. 在某校运动会中,甲、乙、丙三支足球队进行单循环赛(即每两队比赛一场)共赛三场,每场比赛胜者得3分,负者得0分,没有平局.在每一场比赛中,甲胜乙的概率为13,甲胜丙的概率为14,乙胜丙的概率为13;(1)求甲队获第一名且丙队获第二名的概率;(2)设在该次比赛中,甲队得分为ξ,求ξ的分布列和数学期望.19. 如图,已知长方形ABCD 中,AB =2,AD =1,M 为DC 的中点.将△ADM 沿AM 折起,使得平面ADM ⊥平面ABCM .(1)求证:AD ⊥BM ;(2)若点E 是线段DB 上的一动点,问点E 在何位置时,二面角E −AM −D 的余弦值为√55.20. 已知椭圆C 的焦点在x 轴上,左右焦点分别为F 1、F 2,离心率e =12,P 为椭圆上任意一点,△PF 1F 2的周长为6. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)过点S(4, 0)且斜率不为0的直线l 与椭圆C 交于Q ,R 两点,点Q 关于x 轴的对称点为Q 1,过点Q 1与R 的直线交x 轴于T 点,试问△TRQ 的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.21. 设函数f(x)=x 2−(a −2)x −alnx . (1)求函数f(x)的单调区间;(2)若函数有两个零点,求满足条件的最小正整数a 的值; (3)若方程f(x)=c 有两个不相等的实数根x 1,x 2,求证:f ′(x 1+x 22)>0.选修4-1:几何证明选讲22. 选修4−1:几何证明选讲如图所示,已知PA与⊙O相切,A为切点,过点P的割线交圆于B、C两点,弦CD // AP,AD、BC相交于点E,F为CE上一点,且DE2=EF⋅EC.(1)求证:CE⋅EB=EF⋅EP;(2)若CE:BE=3:2,DE=3,EF=2,求PA的长.选修4-4:坐标系与参数方程23. 平面直角坐标系中,直线l的参数方程是{x=ty=√3t(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为ρ2cos2θ+ρ2sin2θ−2ρsinθ−3=0.(1)求直线l的极坐标方程;(2)若直线l与曲线C相交于A、B两点,求|AB|.选修4-5:不等式选讲24. 设不等式−2<|x−1|−|x+2|<0的解集为M,a、b∈M,(1)证明:|13a+16b|<14;(2)比较|1−4ab|与2|a−b|的大小,并说明理由.2015年河南省六市联考高考数学一模试卷(理科)答案1. C2. C3. C4. B5. D6. C7. C8. D9. D10. A11. A12. C13. −5214. π615. 4 16. 317. (1)设等差数列{a n }的公差为d ,则依题设d >0. 由a 2+a 6=14,可得a 4=7.由a 3a 5=45,得(7−d)(7+d)=45,可得d =2. ∴ a 1=7−3d =1. 可得a n =2n −1.(2)设c n =bn2n ,则c 1+c 2+...+c n =a n +1, 即c 1+c 2+...+c n =2n ,可得c 1=2,且c 1+c 2+...+c n +c n+1=2(n +1). ∴ c n+1=2,可知c n =2(n ∈N ∗). ∴ b n =2n+1,∴ 数列{b n }是首项为4,公比为2的等比数列. ∴ 前n 项和S n =4(1−2n )1−2=2n+2−4.18. 设甲队获第一且丙队获第二为事件A ,则P(A)=13×14×(1−13)=118 ξ可能的取值为0,3,6;则甲两场皆输:P(ξ=0)=(1−13)(1−14)=12甲两场只胜一场:P(ξ=3)=13×(1−14)+14×(1−13)=512甲两场皆胜:P(ξ=6)=13×14=112 ∴ ξ的分布列为Eξ=0×12+3×512+6×112=7419. (1)证明:∵ 长方形ABCD 中,AB =2,AD =1,M 为DC 的中点,∴ AM =BM =√2, ∴ BM ⊥AM ,∵ 平面ADM ⊥平面ABCM ,平面ADM ∩平面ABCM =AM ,BM ⊂平面ABCM , ∴ BM ⊥平面ADM , ∵ AD ⊂平面ADM , ∴ AD ⊥BM ;(2)建立如图所示的直角坐标系,设DE →=λDB →,则平面AMD 的一个法向量n →=(0,1,0), ME →=(√22−√22λ, √2λ, √22−√22λ), AM →=(−√2,0,0)设平面AME 的一个法向量为m →=(x,y,z),{√2x =0,√2λy +√22(1−λ)z =0, 取y =1,得x =0,y =1,z =2λλ−1, 所以m →=(0, 1, 2λλ−1), 因为cos⟨m →,n →=m →⋅n→|m →|⋅|n|=√55求得λ=12,所以E 为BD 的中点.20. (1)设椭圆的方程为x 2a 2+y 2b 2=1,a >b >0; ∵ e =c a=12①,|PF 1|+|PF 2|+|F 1F 2|=2a +2c =6②, a 2−b 2=c 2③; 解得a =2,b =√3, ∴ 椭圆C 的方程为x 24+y 23=1;…4分(2)设直线l 的方程为x =my +4, 与椭圆的方程联立,得{x =my +4x 24+y 23=1,消去x ,得(3m 2+4)y 2+24my +36=0,∴ △=(24m)2−4×36(3m 2+4)=144(m 2−4)>0, 即m 2>4; ...6分设Q(x 1, y 1),R(x 2, y 2),则Q 1(x 1, −y 1), 由根与系数的关系,得{y 1+y 2=−24m4+3m 2y 1y 2=364+3m 2 ; 直线RQ 1的斜率为k =y 2−(−y 1)x 2−x 1=y 2+y 1x 2−x 1,且Q 1(x 1, y 1),∴ 直线RQ 1的方程为y +y 1=y 2+y1x 2−x 1(x −x 1);令y =0,得x =x 1y 2+x 2y 1y 1+y 2=(my 1+4)y 2+y 1(my 2+4)y 1+y 2=2my 1y 2+4(y 1+y 2)y 1+y 2,将①②代人上式得x =1;…9分又S △TRQ =12|ST|⋅|y 1−y 2|=32√(y 1+y 2)2−4y 1y 2=18×√m 2−43m 2+4 =18×√m 2−43(m 2−4)+16=183√m 2−4+16√2≤3√34,当3√m 2−4=√m 2−4,即m 2=283时取得“=”;∴ △TRQ 的面积存在最大值,最大值是3√34.…12分. 21. 解:(1)由题意得x ∈(0, +∞).f ′(x)=2x −(a −2)−ax=2x 2−(a−2)x−ax=(2x−a)(x+1)x.当a ≤0时,f′(x)>0,函数f(x)在(0, +∞)上单调递增,即f(x)的单调递增区间为(0, +∞); 当a >0时,由f′(x)>0得x >a2;由f′(x)<0,解得0<x <a2, 所以函数f(x)的单调递增区间为(a2,+∞),单调递减区间为(0,a2). (2)由(1)可得,若函数f(x)有两个零点, 则a >0,且f(x)的最小值f(a2)<0,即−a 2+4a −4aln a2<0.∵ a >0,∴ a +4ln a2−4>0. 令ℎ(a)=a +4ln a2−4,可知ℎ(a)在(0, +∞)上为增函数,且ℎ(2)=−2, ℎ(3)=4ln 32−1=ln 8116−1>lne −1=0,所以存在零点ℎ(a 0)=0,a 0∈(2, 3),当a >a 0时,ℎ(a)>0;当0<a <a 0时,ℎ(a)<0. 所以满足条件的最小正整数a =3.又当a =3时,f(3)=3(2−ln3)>0,f(1)=0, ∴ a =3时,f(x)有两个零点.综上所述,满足条件的最小正整数a 的值为3.(3)∵ x 1,x 2是方程f(x)=c 得两个不等实数根,由(1)可知:a >0. 不妨设0<x 1<x 2.则x 12−(a −2)x 1−alnx 1=c ,x 22−(a −2)x 2−alnx 2=c .两式相减得x 12−(a −2)x 1−alnx 1−x 22+(a −2)x 2+alnx 2=0, 化为a =x 12+2x 1−x 22−2x 2x 1+lnx 1−x 2−lnx 2.∵ f ′(a2)=0,当x ∈(0,a2)时,f′(x)<0; 当x ∈(a2,+∞)时,f′(x)>0. 故只要证明x 1+x 22>a2即可,即证明x 1+x 2>x 12+2x 1−x 22−2x 2x 1+lnx 1−x 2−lnx 2,即证明lnx 1x 2<2x 1−2x 2x 1+x 2.设t =x1x 2(0<t <1),令g(t)=lnt −2t−2t+1,则g ′(t)=1t−4(t+1)2=(t−1)2t(t+1)2.∵ 0<t <1, ∴ g′(t)>0,∴ g(t)在(0, 1)上是增函数,又在t =1处连续且g(1)=0, ∴ 当t ∈(0, 1)时,g(t)<0恒成立.故命题得证. 22. (II )∵ DE 2=EF ⋅EC ,DE =3,EF =2. ∴ 32=2EC ,∴ CE =92.∵ CE:BE =3:2,∴ BE =3.由(I)可知:CE ⋅EB =EF ⋅EP ,∴ 92×3=2EP ,解得EP =274,∴ BP =EP −EB =274−3=154.∵ PA 是⊙O 的切线,∴ PA 2=PB ⋅PC , ∴ PA 2=154×(274+92),解得PA =15√34.23. 直线l 的参数方程是{x =ty =√3t(t 为参数),化为普通方程得:y =√3x∴ 在平面直角坐标系中,直线l 经过坐标原点,倾斜角是π3, 因此,直线l 的极坐标方程是θ=π3,(ρ∈R);把θ=π3代入曲线C 的极坐标方程ρ2cos 2θ+ρ2sin 2θ−2ρsinθ−3=0,得ρ2−√3ρ−3=0 ∴ 由一元二次方程根与系数的关系,得ρ1+ρ2=√3,ρ1ρ2=−3, ∴ |AB|=|ρ1−ρ2|=√(ρ1+ρ2)2−4ρ1ρ2=√15. 24. 记f(x)=|x −1|−|x +2|={3,x ≤−2−2x −1,−2<x <1−3,x ≥1 ,由−2<−2x −1<0解得−12<x <12,则M =(−12, 12).∵ a 、b ∈M ,∴ |a|<12,|b|<12所以|13a +16b|≤13|a|+16|b|<13×12+16×12=14.由(1)得a 2<14,b 2<14.因为|1−4ab|2−4|a −b|2=(1−8ab +16a 2b 2)−4(a 2−2ab +b 2) =(4a 2−1)(4b 2−1)>0,所以|1−4ab|2>4|a −b|2,故|1−4ab|>2|a −b|.。
2015年山东省高考数学一模试卷(理科)含解析答案
![2015年山东省高考数学一模试卷(理科)含解析答案](https://img.taocdn.com/s3/m/eb1408593c1ec5da50e27028.png)
2015年山东省高考数学一模试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2015•山东一模)复数z=|(﹣i)i|+i5(i为虚数单位),则复数z的共轭复数为()A.2﹣i B.2+i C.4﹣i D.4+i【考点】:复数代数形式的乘除运算.【专题】:数系的扩充和复数.【分析】:直接利用复数模的公式求复数的模,再利用虚数单位i的运算性质化简后得z,则复数z的共轭复数可求.【解析】:解:由z=|(﹣i)i|+i5=,得:.故选:A.【点评】:本题考查复数模的求法,考查了虚数单位i的运算性质,是基础题.2.(5分)(2015•山东一模)若[﹣1,1]⊆{x||x2﹣tx+t|≤1},则实数t的取值范围是()A.[﹣1,0] B.[2﹣2,0] C.(﹣∞,﹣2] D.[2﹣2,2+2]【考点】:集合的包含关系判断及应用.【专题】:计算题;函数的性质及应用;集合.【分析】:令y=x2﹣tx+t,由题意,将集合的包含关系可化为求函数的最值的范围.【解析】:解:令y=x2﹣tx+t,①若t=0,则{x||x2≤1}=[﹣1,1],成立,②若t>0,则y max=(﹣1)2﹣t(﹣1)+t=2t+1≤1,即t≤0,不成立;③若t<0,则y max=(1)2﹣t+t=1≤1,成立,y min=()2﹣t•+t≥﹣1,即t2﹣4t﹣4≤0,解得,2﹣2≤t≤2+2,则2﹣2≤t<0,综上所述,2﹣2≤t≤0.故选B.【点评】:本题考查了集合的包含关系的应用,属于基础题.3.(5分)(2015•山东一模)已知M(2,m)是抛物线y2=2px(p>0)上一点,则“p≥1”是“点M到抛物线焦点的距离不少于3”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条【考点】:必要条件、充分条件与充要条件的判断.【专题】:简易逻辑.【分析】:根据抛物线的定义和性质,利用充分条件和必要条件的定义即可得到结论.【解析】:解:抛物线的交点坐标为F(,0),准线方程为x=﹣,则点M到抛物线焦点的距离PF=2﹣(﹣)=2+,若p≥1,则PF=2+≥,此时点M到抛物线焦点的距离不少于3不成立,即充分性不成立,若点M到抛物线焦点的距离不少于3,即PF=2+≥3,即p≥2,则p≥1,成立,即必要性成立,故“p≥1”是“点M到抛物线焦点的距离不少于3”的必要不充分条件,故选:B【点评】:本题主要考查充分条件和必要条件的判断,利用抛物线的定义和性质是解决本题的关键.4.(5分)(2015•山东一模)若m是2和8的等比中项,则圆锥曲线x2+的离心率为()A.B.C.或D.或【考点】:圆锥曲线的共同特征;等比数列的性质.【专题】:计算题.【分析】:先根据等比中项的性质求得m的值,分别看当m大于0时,曲线为椭圆,进而根据标准方程求得a和b,则c可求得,继而求得离心率.当m<0,曲线为双曲线,求得a,b和c,则离心率可得.最后综合答案即可.【解析】:解:依题意可知m=±=±4当m=4时,曲线为椭圆,a=2,b=1,则c=,e==当m=﹣4时,曲线为双曲线,a=1,b=2,c=则,e=故选D【点评】:本题主要考查了圆锥曲线的问题,考查了学生对圆锥曲线基础知识的综合运用,对基础的把握程度.5.(5分)(2015•山东一模)在△ABC中,若b=2,A=120°,三角形的面积S=,则三角形外接圆的半径为()A.B. 2 C.2D. 4【考点】:正弦定理.【专题】:解三角形.【分析】:由条件求得c=2=b,可得B的值,再由正弦定理求得三角形外接圆的半径R的值.【解析】:解:△ABC中,∵b=2,A=120°,三角形的面积S==bc•sinA=c•,∴c=2=b,故B=(180°﹣A)=30°.再由正弦定理可得=2R==4,∴三角形外接圆的半径R=2,故选:B.【点评】:本题主要考查正弦定理的应用,属于基础题.6.(5分)(2015•山东一模)某几何体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此几何体的外接球的表面积为()A.3π B.4π C.2π D.【考点】:由三视图求面积、体积.【专题】:空间位置关系与距离.【分析】:如图所示,该几何体是正方体的内接正四棱锥.因此此几何体的外接球的直径2R=正方体的对角线,利用球的表面积计算公式即可得出.【解析】:解:如图所示,该几何体是正方体的内接正四棱锥.因此此几何体的外接球的直径2R=正方体的对角线,其表面积S=4πR2=3π.故选:A.【点评】:本题考查了正方体的内接正四棱锥、球的表面积计算公式,考查了推理能力与计算能力,属于基础题.7.(5分)(2015•山东一模)定义max{a,b}=,设实数x,y满足约束条件,则z=max{4x+y,3x﹣y}的取值范围是()A.[﹣8,10] B.[﹣7,10] C.[﹣6,8] D.[﹣7,8]【考点】:简单线性规划.【专题】:分类讨论;转化思想;不等式的解法及应用.【分析】:由约束条件作出可行域,结合新定义得到目标函数的分段函数,然后化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案.【解析】:解:由约束条件作出可行域如图,由定义max{a,b}=,得z=max{4x+y,3x﹣y}=,当x+2y≥0时,化z=4x+y为y=﹣4x+z,当直线y=﹣4x+z过B(﹣2,1)时z有最小值为4×(﹣2)+1=﹣7;当直线y=﹣4x+z过A(2,2)时z有最大值为4×2+1×2=10;当x+2y<0时,化z=3x﹣y为y=3x﹣z,当直线y=3x﹣z过B(﹣2,1)时z有最小值为3×(﹣2)﹣1=﹣7;当直线y=﹣4x+z过A(2,﹣2)时z有最大值为4×2﹣1×(﹣2)=10.综上,z=max{4x+y,3x﹣y}的取值范围是[﹣7,10].故选:B.【点评】:本题是新定义题,考查了简单的线性规划,考查了数形结合及数学转化思想方法,是中档题.8.(5分)(2015•山东一模)函数y=log3(x+3)﹣1(a>0,且a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m,n均大于0,则的最小值为()A.2 B. 4 C.8 D.16【考点】:基本不等式;对数函数的图像与性质.【专题】:函数的性质及应用;不等式的解法及应用.【分析】:现根据对数函数图象和性质求出点A的坐标,再根据点在直线上,代入化简得到2m+n=1,再根据基本不等式,即可求出结果【解析】:解:∵y=log3(x+3)﹣1(a>0,且a≠1)的图象恒过定点A,当x+3=1时,即x=﹣2时,y=﹣1,∴A点的坐标为(﹣2,﹣1),∵点A在直线mx+ny+1=0上,∴﹣2m﹣n+1=0,即2m+n=1,∵m,n均大于0,∴=+=2+++2≥4+2=8,当且仅当m=,n=时取等号,故的最小值为8,故选:C【点评】:本题考查了对数函数图象和性质以及基本不等式,属于中档题9.(5分)(2015•山东一模)已知△ABC中,内角A、B、C所对的边分别为a,b,且acosC+c=b,若a=1,c﹣2b=1,则角B为()A.B.C.D.【考点】:余弦定理;正弦定理.【专题】:解三角形.【分析】:已知等式利用正弦定理化简,整理求出cosA的值,求出A的度数,利用余弦定理列出关系式,把a与sinA的值代入得到关于b与c的方程,与已知等式联立求出b与c 的值,再利用正弦定理求出sinB的值,即可确定出B的度数.【解析】:解:已知等式利用正弦定理化简得:sinAcosC+sinC=sinB=sin(A+C)=sinAcosC+cosAsinC,由sinC≠0,整理得:cosA=,即A=,由余弦定理得:a2=b2+c2﹣2bccosA,即1=b2+c2﹣bc①,与c﹣2b=1联立,解得:c=,b=1,由正弦定理=,得:sinB===,∵b<c,∴B<C,则B=.故选:B.【点评】:此题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.10.(5分)(2015•山东一模)设定义在D上的函数y=h(x)在点P(x0,h(x0))处的切线方程为l:y=g(x),当x≠x0时,若>0在D内恒成立,则称P为函数y=h(x)的“类对称点”,则f(x)=x2﹣6x+4lnx的“类对称点”的横坐标是()A.1 B.C.e D.【考点】:利用导数研究曲线上某点切线方程.【专题】:计算题;新定义;导数的概念及应用;导数的综合应用.【分析】:当a=4时,函数y=H(x)在其图象上一点P(x0,f(x0))处的切线方程为y=g (x)=(2x0+﹣6)(x﹣x0)++x02﹣6x0+4lnx0.由此能推导出y=h(x)存在“类对称点”,是一个“类对称点”的横坐标.【解析】:解:当a=4时,函数y=h(x)在其图象上一点P(x0,h(x0))处的切线方程为:y=g(x)=(2x0+﹣6)(x﹣x0)+x02﹣6x0+4lnx0,设m(x)=h(x)﹣g(x)=x2﹣6x+4lnx﹣(2x0+﹣6)(x﹣x0)﹣x02+6x0﹣4lnx0,则m(x0)=0.m′(x)=2x+﹣6﹣(2x0+﹣6)=2(x﹣x0)(1﹣)=(x﹣x0)(x﹣)若x0<,φ(x)在(x0,)上单调递减,∴当x∈(x0,)时,m(x)<m(x0)=0,此时<0;若x0,φ(x)在(,x0)上单调递减,∴当x∈(,x0)时,m(x)>m(x0)=0,此时<0;∴y=h(x)在(0,)∪(,+∞)上不存在“类对称点”.若x0=,(x﹣)2>0,∴m(x)在(0,+∞)上是增函数,当x>x0时,m(x)>m(x0)=0,当x<x0时,m(x)<m(x0)=0,故>0.即此时点P是y=f(x)的“类对称点”综上,y=h(x)存在“类对称点”,是一个“类对称点”的横坐标.故选B.【点评】:本题考查函数的单调增区间的求法,探索满足函数在一定零点下的参数的求法,探索函数是否存在“类对称点”.解题时要认真审题,注意分类讨论思想和等价转化思想的合理运用,此题是难题.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015•山东一模)已知函数f(x)=|2x﹣a|+a,若不等式f(x)≤6的解集为{x|﹣2≤x≤3},则实数a的值为a=1.【考点】:其他不等式的解法.【专题】:不等式的解法及应用.【分析】:不等式即|2x﹣a|≤6﹣a,解得a﹣3≤x≤3.再由已知不等式的解集为{x|﹣2≤x≤3},可得a﹣3=﹣2,由此求得实数a的值.【解析】:解:由题意可得,不等式即|2x﹣a|≤6﹣a,∴a﹣6≤2x﹣a≤6﹣a,解得a﹣3≤x≤3.再由不等式的解集为{x|﹣2≤x≤3},可得a﹣3=﹣2,故a=1,故答案为a=1.【点评】:本题主要考查绝对值不等式的解法,体现了等价转化的数学思想,属于基础题.12.(5分)(2015•山东一模)已知点A(2,0)抛物线C:x2=4y的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|:|MN|=1:.【考点】:抛物线的简单性质.【专题】:圆锥曲线的定义、性质与方程.【分析】:求出抛物线C的焦点F的坐标,从而得到AF的斜率k=﹣.过M作MP⊥l于P,根据抛物线物定义得|FM|=|PM|.Rt△MPN中,根据tan∠MNP=,从而得到|PN|=2|PM|,进而算出|MN|=|PM|,由此即可得到|FM|:|MN|的值.【解析】:解:∵抛物线C:x2=4y的焦点为F(0,1),点A坐标为(2,0),∴抛物线的准线方程为l:y=﹣1,直线AF的斜率为k==﹣,过M作MP⊥l于P,根据抛物线物定义得|FM|=|PM|,∵Rt△MPN中,tan∠MNP=﹣k=,∴=,可得|PN|=2|PM|,得|MN|==|PM|因此可得|FM|:|MN|=|PM|:|MN|=1:.故答案为:1:.【点评】:本题给出抛物线方程和射线FA,求线段的比值.着重考查了直线的斜率、抛物线的定义、标准方程和简单几何性质等知识,属于中档题.13.(5分)(2015•山东一模)已知函数则=.【考点】:定积分.【专题】:导数的综合应用.【分析】:=,由定积分的几何意义可知:表示上半圆x2+y2=1(y≥0)的面积,即可得出.利用微积分基本定理即可得出dx=.【解析】:解:=,由定积分的几何意义可知:表示上半圆x2+y2=1(y≥0)的面积,∴=.又dx==e2﹣e.∴==好.故答案为:.【点评】:本题考查了定积分的几何意义、微积分基本定理,属于中档题.14.(5分)(2015•山东一模)把座位编号为1、2、3、4、5的五张电影票全部分给甲、乙、丙、丁四个人,每人至少一张,至多两张,且分得的两张票必须是连号,那么不同的分法种数为96.(用数字作答)【考点】:排列、组合及简单计数问题.【专题】:概率与统计.【分析】:根据题意,先将票分为符合题意要求的4份,可以转化为将1、2、3、4、5这五个数用3个板子隔开,分为四部分且不存在三连号的问题,用插空法易得其情况数目,再将分好的4份对应到4个人,由排列知识可得其情况数目,由分步计数原理,计算可得答案.【解析】:解:先将票分为符合条件的4份,由题意,4人分5张票,且每人至少一张,至多两张,则三人一张,1人2张,且分得的票必须是连号,相当于将1、2、3、4、5这五个数用3个板子隔开,分为四部分且不存在三连号.在4个空位插3个板子,共有C43=4种情况,再对应到4个人,有A44=24种情况,则共有4×24=96种情况.故答案为96.【点评】:本题考查排列、组合的应用,注意将分票的问题转化为将1、2、3、4、5这五个数用3个板子隔开,分为四部分的问题,用插空法进行解决.15.(5分)(2015•山东一模)已知函数f(x)=xe x,记f0(x)=f′(x),f1(x)=f′(x0),…,f n(x)=f′n﹣1(x)且x2>x1,对于下列命题:①函数f(x)存在平行于x轴的切线;②>0;③f′2012(x)=xe x+2014e x;④f(x1)+x2<f(x2)+x1.其中正确的命题序号是①③(写出所有满足题目条件的序号).【考点】:导数的运算.【专题】:导数的概念及应用.【分析】:根据导数的几何意义判断①正确,根据导数和函数的单调性判断②错;根据导数的运算,得到③正确,根据导数与函数的单调性的关系判断④错【解析】:解:对于①,因为f′(x)=(x+1)e x,易知f′(﹣1)=0,函数f(x)存在平行于x轴的切线,故①正确;对于②,因为f′(x)=(x+1)e x,所以x∈(﹣∞,﹣1)时,函数f(x)单调递减,x∈(﹣1,+∞)时,函数f(x)单调递增,故>0的正负不能定,故②错;对于③,因为f1(x)=f′(x0)=xe x+2e x,f2(x)=f′(x1)=xe x+3e x,…,f n(x)=f′n﹣1(x)=xe x+(n+1)e x,所以f′2012(x)=f2013(x)=xe x+2014e x;故③正确;对于④,f(x1)+x2<f(x2)+x1等价于f(x1)﹣x1<f(x2)﹣x2,构建函数h(x)=f(x)﹣x,则h′(x)=f′(x)﹣1=(x+1)e x﹣1,易知函数h(x)在R上不单调,故④错;故答案为:①③【点评】:本题考查了导数的几何意义以及导数和函数的单调性的关系,以及导数的运算法则,属于中档题三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16.(12分)(2015•山东一模)已知函数f(x)=2sinx+2sin(x﹣).(1)求f(x)的单调递增区间;(2)在△ABC中,角A,B,C的对边分别为a,b,c.已知f(A)=,a=b,证明:C=3B.【考点】:两角和与差的正弦函数;正弦定理.【专题】:计算题;三角函数的图像与性质;解三角形.【分析】:(1)运用两角差的正弦公式,即可化简,再由正弦函数的单调增区间,即可得到;(2)由f(A)=,及0<A<π,即可得到A=,再由正弦定理,及边角关系,即可得证.【解析】:(1)解:函数f(x)=2sinx+2sin(x﹣)=2(sinx+sinx﹣cosx)=2(sinx﹣cosx)=2sin(x﹣),令2kπ﹣≤x﹣≤2k,k∈Z,则2kπ﹣≤x≤2kπ,则f(x)的单调递增区间是[2kπ﹣,2kπ],k∈Z.(2)证明:由f(A)=,则sin(A﹣)=,由0<A<π,则﹣<A﹣<,则A=,由=,a=b,则sinB=,由a>b,A=,B=,C=,故C=3B.【点评】:本题考查三角函数的化简,正弦函数的单调区间,考查正弦定理及边角关系,注意角的范围,属于中档题.17.(12分)(2015•山东一模)2008年中国北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮.现有8个相同的盒子,每个盒子中放一只福娃,每种福娃的数量如下表:福娃名称贝贝晶晶欢欢迎迎妮妮数量1 1 1 2 3从中随机地选取5只.(Ⅰ)求选取的5只恰好组成完整“奥运吉祥物”的概率;(Ⅱ)若完整地选取奥运会吉祥物记10分;若选出的5只中仅差一种记8分;差两种记6分;以此类推.设ξ表示所得的分数,求ξ的分布列及数学期望.【考点】:离散型随机变量及其分布列;离散型随机变量的期望与方差.【专题】:概率与统计.【分析】:(Ⅰ)根据排列组合知识得出P=运算求解即可.(Ⅱ)确定ξ的取值为:10,8,6,4.分别求解P(ξ=10),P(ξ=8),P(ξ=6),P(ξ=4),列出分布列即可.【解析】:解:(Ⅰ)选取的5只恰好组成完整“奥运吉祥物”的概率P===,(Ⅱ)ξ的取值为:10,8,6,4.P(ξ=10)==,P(ξ=8)=,P(ξ=6)==,P(ξ=4)==ξ的分布列为:ξ 10 8 6 4P﹣Eξ==7.5.【点评】:本题综合考查了运用排列组合知识,解决古典概率分布的求解问题,关键是确定随机变量的数值,概率的求解,难度较大,仔细分类确定个数求解概率,属于难题.18.(12分)(2015•山东一模)在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1).将△AEF沿EF折起到△A1EF的位置,使二面角A1﹣EF﹣B成直二面角,连结A1B、A1P(如图2)(1)求证:A1E⊥平面BEP(2)求直线A1E与平面A1BP所成角的大小;(3)求二面角B﹣A1P﹣F的余弦值.【考点】:与二面角有关的立体几何综合题;直线与平面垂直的判定;直线与平面所成的角.【专题】:空间角.【分析】:(1)设正三角形ABC的边长为3.在图1中,取BE的中点D,连结DF.由已知条件推导出△ADF是正三角形,从而得到EF⊥AD.在图2中,推导出∠A1EB为二面角A1﹣EF﹣B的平面角,且A1E⊥BE.由此能证明A1E⊥平面BEP.(2)建立分别以EB、EF、EA为x轴、y轴、z轴的空间直角坐标系,利用向量法能求出直线A1E与平面A1BP所成的角的大小.(3)分别求出平面A1FP的法向量和平面BA1F的法向量,利用向量法能求出二面角B﹣A1P﹣F的余弦值.【解析】:(1)证明:不妨设正三角形ABC 的边长为3.在图1中,取BE的中点D,连结DF.∵AE:EB=CF:FA=1:2,∴AF=AD=2,而∠A=60度,∴△ADF是正三角形,又AE=DE=1,∴EF⊥AD.在图2中,A1E⊥EF,BE⊥EF,∴∠A1EB为二面角A1﹣EF﹣B的平面角.由题设条件知此二面角为直二面角,∴A1E⊥BE.又BE∩EF=E,∴A1E⊥平面BEF,即A1E⊥平面BEP.(2)建立分别以EB、EF、EA为x轴、y轴、z轴的空间直角坐标系,则E(0,0,0),A(0,0,1),B(2,0,0),F(0,,0),P (1,,0),则,.设平面ABP的法向量为,由平面ABP知,,即令,得,.,,∴直线A1E与平面A1BP所成的角为60度.(3),设平面A1FP的法向量为.由平面A1FP知,令y 2=1,得,.,所以二面角B﹣A1P﹣F的余弦值是.【点评】:本题考查直线与平面垂直的证明,考查直线与平面所成的角的求法,考查二面角的余弦值的求法,解题时要认真审题,注意向量法的合理运用.19.(12分)(2015•山东一模)数列{a n}中,a1=1,当n≥2时,其前n项和为S n,满足S n2=a n (S n﹣).(1)求S n的表达式;(2)设b n=,数列{b n}的前n项和为T n,不等式T n≥(m2﹣5m)对所有的n∈N*恒成立,求正整数m的最大值.【考点】:数列的求和;数列递推式.【专题】:等差数列与等比数列.【分析】:(1)当n≥2时,a n=S n﹣S n﹣1,代入利用等差数列的通项公式即可得出;(2)利用“裂项求和”、一元二次不等式的解法即可得出.【解析】:解:(1)∵S n2=a n(S n﹣)=.化为,∴数列是首项为==1,公差为2的等差数列.故=1+2(n﹣1)=2n﹣1,∴S n=.(2)b n===,故T n=+…+=.又∵不等式T n≥(m2﹣5m)对所有的n∈N*恒成立,∴≥(m2﹣5m),化简得:m2﹣5m﹣6≤0,解得:﹣1≤m≤6.∴正整数m的最大值为6.【点评】:本题考查了递推式的应用、“裂项求和”、等差数列的通项公式、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.20.(13分)(2015•山东一模)在平面直角坐标系xOy中,椭圆G的中心为坐标原点,左焦点为F1(﹣1,0),P为椭圆G的上顶点,且∠PF1O=45°.(Ⅰ)求椭圆G的标准方程;(Ⅱ)已知直线l1:y=kx+m1与椭圆G交于A,B两点,直线l2:y=kx+m2(m1≠m2)与椭圆G交于C,D两点,且|AB|=|CD|,如图所示.(ⅰ)证明:m1+m2=0;(ⅱ)求四边形ABCD的面积S的最大值.【考点】:直线与圆锥曲线的综合问题;椭圆的标准方程.【专题】:综合题.【分析】:(Ⅰ)根据F1(﹣1,0),∠PF1O=45°,可得b=c=1,从而a2=b2+c2=2,故可得椭圆G的标准方程;(Ⅱ)设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4).(ⅰ)直线l1:y=kx+m1与椭圆G联立,利用韦达定理,可求AB,CD的长,利用|AB|=|CD|,可得结论;(ⅱ)求出两平行线AB,CD间的距离为d,则,表示出四边形ABCD的面积S,利用基本不等式,即可求得四边形ABCD的面积S取得最大值.【解析】:(Ⅰ)解:设椭圆G的标准方程为.因为F1(﹣1,0),∠PF1O=45°,所以b=c=1.所以,a2=b2+c2=2.…(2分)所以,椭圆G的标准方程为.…(3分)(Ⅱ)设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4).(ⅰ)证明:由消去y得:.则,…(5分)所以===.同理.…(7分)因为|AB|=|CD|,所以.因为m1≠m2,所以m1+m2=0.…(9分)(ⅱ)解:由题意得四边形ABCD是平行四边形,设两平行线AB,CD间的距离为d,则.因为m1+m2=0,所以.…(10分)所以=.(或)所以当时,四边形ABCD的面积S取得最大值为.…(12分)【点评】:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查弦长的计算,考查三角形的面积,同时考查利用基本不等式求最值,正确求弦长,表示出四边形的面积是解题的关键.21.(14分)(2015•山东一模)已知函数f(x)=aln(x+1)﹣ax﹣x2.(Ⅰ)若x=1为函数f(x)的极值点,求a的值;(Ⅱ)讨论f(x)在定义域上的单调性;(Ⅲ)证明:对任意正整数n,ln(n+1)<2+.【考点】:利用导数求闭区间上函数的最值;利用导数研究函数的单调性;利用导数研究函数的极值.【专题】:导数的综合应用.【分析】:(I)由,f′(1)=0,知,由此能求出a.(Ⅱ)由,令f′(x)=0,得x=0,或,又f(x)的定义域为(﹣1,+∞),讨论两个根及﹣1的大小关系,即可判定函数的单调性;(Ⅲ)当a=1时,f(x)在[0,+∞)上递减,∴f(x)≤f(0),即ln(x+1)≤x+x2,由此能够证明ln(n+1)<2+.【解析】:解:(1)因为,令f'(1)=0,即,解得a=﹣4,经检验:此时,x∈(0,1),f'(x)>0,f(x)递增;x∈(1,+∞),f'(x)<0,f(x)递减,∴f(x)在x=1处取极大值.满足题意.(2),令f'(x)=0,得x=0,或,又f(x)的定义域为(﹣1,+∞)①当,即a≥0时,若x∈(﹣1,0),则f'(x)>0,f(x)递增;若x∈(0,+∞),则f'(x)<0,f(x)递减;②当,即﹣2<a<0时,若x∈(﹣1,,则f'(x)<0,f(x)递减;若,0),则f'(x)>0,f(x)递增;若x∈(0,+∞),则f'(x)<0,f(x)递减;③当,即a=﹣2时,f'(x)≤0,f(x)在(﹣1,+∞)内递减,④当,即a<﹣2时,若x∈(﹣1,0),则f'(x)<0,f(x)递减;若x∈(0,,则f'(x)>0,f(x)递增;若,+∞),则f'(x)<0,f(x)递减;(3)由(2)知当a=1时,f(x)在[0,+∞)上递减,∴f(x)≤f(0),即ln(x+1)≤x+x2,∵,∴,i=1,2,3,…,n,∴,∴.【点评】:本题考查函数极值的意义及利用导数研究函数的单调性,证明:对任意的正整数n.解题时要认真审题,注意导数的合理运用,恰当地利用裂项求和法进行解题.。
2015届河南省郑州市九年级一模模拟数学试题及答案
![2015届河南省郑州市九年级一模模拟数学试题及答案](https://img.taocdn.com/s3/m/0e23a04cf56527d3240c844769eae009591ba258.png)
2015届河南省郑州市九年级一模模拟数学试题及答案郑州2015年九年级一模模拟测试数学试题一、选择题(每小题3分,共24分,下列各小题均有四个答案,其中只有一个是正确)1.-5的绝对值是()A。
-11B。
0C。
-5D。
52.下列四个交通标志中,轴对称图形是()3.不等式组:{x+2≥1,1-x<1}的解集在数轴上表示正确的是()4.某校有21名学生参加某比赛,预赛成绩各不同,要取前11名参加决赛,___已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的()A。
最高分B。
平均分C。
极差D。
中位数5.一个几何体的三视图如图所示,则这个几何体摆放的位置是()6.三角形两边的长是3和4,第三边的长是方程x-1/2x+3/5=0的根,则该三角形的周长为()A。
14B。
12C。
14或12D。
以上都不对7.如图,线段AB是⊙O的直径,弦CD⊥AB,∠CAB=2°,则∠AOD等于()A。
160°B。
150°C。
140°D。
120°8.如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N从A点出发沿折线AD→DC→CB以每秒3cm的速度运动,到达B时运动同时停止,设△AMN的面积为y(cm²),运动时间为x (秒),则下列图象中能大致反映y与x之间的函数关系的是()二、填空题(每小题3分,共21分)9.计算:9+(2-1)=______________10.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,BC与DE交于点M,如果∠ADF=100°,那么∠BMD为_____________度11.如图,A、B两点在双曲线y=1/S₁+1/S₂上,分别经过A、B两点向坐标轴作垂线,已知S₁S₂=4,则___________=______________12.如图,经过点B(-2,-3)的直线y=kx+b与直线y=4x+2相交于点A(-1,-2),则不等式4x+2<kx+b<0的解集为()13.剔除格式错误,删除明显有问题的段落,改写如下:三辆车按1、2、3编号,___和___两人可任意选坐一辆车,则两人同坐3号车的概率是多少?14.剔除格式错误,改写如下:在直角三角形ABC中,∠ABC=90°,AB=3,AC=5,点E在BC上,将△___沿AE折叠,使点B落在AC边上的点B′处,则BE的长为多少?15.剔除格式错误,改写如下:如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q,若PQ=AE,则AP等于多少cm。
山东省潍坊市2015届高三一模数学试题(理科、含答案)
![山东省潍坊市2015届高三一模数学试题(理科、含答案)](https://img.taocdn.com/s3/m/1dc4383eb90d6c85ec3ac6e0.png)
小记:以下试卷全是根据个人从网上下载整理而来。
颇具可靠性,专门为2015年考山东各地教师的应届生、往届生准备。
山东省潍坊市
2015届高三第一次模拟考试
数学(理)试题
本试卷共分第I 卷(选择题)和第II 卷(非选择题)两部分.共150 分.考试时间120 分钟.
第 I 卷(选择题共50 分)
注意事项:
1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每题选出答案后,用2B 铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再改涂其它答案标号。
一、选择题:本大题共10小题,每小题5分,共50分。
1.集合等于
2.设复数z1·z2在复平面内的对应点关于虚轴对称,若的虚部为
3.如果双曲线的一条渐近线与直线平行,则双曲线的离心率为。
2015届高考数学一模试卷.1
![2015届高考数学一模试卷.1](https://img.taocdn.com/s3/m/05c82476caaedd3383c4d366.png)
2015届高考数学一模试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项,直接涂在答题卡上.1.已知集合M={x∈R|x2﹣x=0},N={x|x=2n+1,n∈Z},则M∩N为( )A.{0} B.{0,1} C.{1} D.∅2.双曲线x2﹣my2=1的实轴长是虚轴长的2倍,则m=( )A.4 B.2 C.D.3.设变量x、y满足约束条件,则目标函数z=2x+y的最小值为( )A.2 B.3 C.4 D.94.从5名学生中选出4名分别参加数学、物理、化学、英语竞赛,其中学生甲不参加物理、化学竞赛,则不同的参赛方案种数为( ) A.24 B.48 C.72 D.120 5.已知二次函数f(x)=ax2+bx,则“f(2)≥0”是“函数f(x)在(1,+∞)上为增函数”的( ) A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.一个棱长为2的正方体沿其棱的中点截去部分后所得几何体的三视图如图示,则该几何体的体积为( )A.7 B.C.D.7.向量=(2,0),=(x,y),若与﹣的夹角等于,则||的最大值为( )A.4 B.2C.2 D.8.一个人骑车以6米/秒的速度匀速追赶停在交通信号灯前的汽车,当他离汽车25米时,交通信号灯由红变绿,汽车开始做变速直线行驶(汽车与人的前进方向相同),若汽车在时刻t的速度v(t)=t米/秒,那么此人( )A.可在7秒内追上汽车B.不能追上汽车,但其间最近距离为16米C.不能追上汽车,但其间最近距离为14米D.不能追上汽车,但其间最近距离为7米二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡指定位置.9.已知复数z满足(1+i)z=1﹣i,则复数z=__________.10.执行如图所示的程序框图,若输入n的值为8,则输出的s的值为__________.11.如图所示,四个相同的直角三角形与中间的小正方形拼成的一个边长为2的大正方形,若直角三角形中较小的锐角,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内概率是__________.12.如图所示,⊙O的割线PAB交⊙O于A、B两点,割线PCD经过圆心O,已知PA=6,AB=,PO=12,则⊙O的半径是__________.13.已知直线l过点P(3,2),且与x轴、y轴的正半轴分别交于A、B两点,O为坐标原点,则△OAB面积的最小值为__________,此时,直线l的方程为__________.14.已知函数y=f(x)是R上的偶函数,对∀x∈R,都有f(x+4)=f(x)+f(2)成立.当x1,x2∈[0,2],且x1≠x2时,都有,给出下列命题:(1)f(2)=0;(2)直线x=﹣4是函数y=f(x)图象的一条对称轴;(3)函数y=f(x)在[﹣4,4]上有四个零点;(4)f=f(1).其中所有正确命题的序号为__________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.已知函数.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)在△ABC中,三个内角A,B,C的对边分别为a,b,c,已知f(A)=,且△ABC外接圆的半径为,求a的值.16.为了解今年某校2015届高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.(1)求该校报考飞行员的总人数;(2)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设X表示体重超过60公斤的学生人数,求X的分布列和数学期望.17.在如图所示的多面体中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,且AC=BC=BD=2AE=2,M是AB的中点.(Ⅰ)求证:CM⊥EM;(Ⅱ)求平面EMC与平面BCD所成的锐二面角的余弦值;(Ⅲ)在棱DC上是否存在一点N,使得直线MN与平面EMC所成的角为60°.若存在,指出点N的位置;若不存在,请说明理由.18.已知f(x)=﹣+x﹣ln(1+x),其中a>0.(Ⅰ)若函数f(x)在点(3,f(3))处切线斜率为0,求a的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)若f(x)在[0,+∞)上的最大值是0,求a的取值范围.19.动点P(x,y)到定点F(1,0)的距离与它到定直线l:x=4的距离之比为.(Ⅰ)求动点P的轨迹C的方程;(Ⅱ)已知定点A(﹣2,0),B(2,0),动点Q(4,t)在直线l上,作直线AQ与轨迹C的另一个交点为M,作直线BQ与轨迹C的另一个交点为N,证明:M,N,F三点共线.20.下表给出一个“等差数阵”:4 7 ( ) ( ) ( ) …a1j…7 12 ( ) ( ) ( ) …a2j…( ) ( ) ( ) ( ) ( ) …a3j…( ) ( ) ( ) ( ) ( ) …a4j………………………a i1a i2a i3a i4a i5…a ij………………………其中每行、每列都是等差数列,a ij表示位于第i行第j列的数.(Ⅰ)写出a45的值;(Ⅱ)写出a ij的计算公式;(Ⅲ)证明:正整数N在该等差数阵中的充要条件是2N+1可以分解成两个不是1的正整数之积.解答:解:依题意可知该几何体的直观图如图示,其体积为正方体的体积去掉两个三棱锥的体积.即:,故选D.8.分析:根据题意汽车在时刻t的速度为v(t)=t米/秒,求出加速度a,以汽车停止位置为参照,人所走过的位移为﹣25+6t,汽车在时间t内的位移为s=t2,设相对位移为ym,从而得到y=﹣25+6t﹣t2=﹣(t﹣6)2﹣7,即可求解.解答:解:∵汽车在时刻t的速度为v(t)=t米/秒,∴a==1,由此判断为匀加速运动,以汽车停止位置为参照,人所走过的位移为﹣25+6t;汽车在时间t内的位移为s=t2;故设相对位移为ym,则y=﹣25+6t﹣t2=﹣(t﹣6)2﹣7;故不能追上汽车,且当t=6时,其间最近距离为7米.故选:D.11.解答:解:观察这个图可知:大正方形的边长为2,总面积为4,而阴影区域的边长为﹣1,面积为4﹣2;故飞镖落在阴影区域的概率.故答案为:1﹣.12.如图所示,⊙O的割线PAB交⊙O于A、B两点,割线PCD经过圆心O,已知PA=6,AB=,PO=12,则⊙O的半径是8.解答:解:已知:⊙O的割线PAB交⊙O于A、B两点,割线PCD经过圆心O,根据割线定理:PA•PB=PC•PD设⊙O的半径为R,把PA=6,AB=,PO=12,代入割线定理得:6(6+)=(12﹣R)(12+R)求得:R=813.解答:解:由题意设直线l的方程为+=1,其中a和b为正数,∵直线l过点P(3,2),∴+=1,∴1=+≥2=2,∴ab≥24,当且仅当=即a=6且b=4时取等号,∴△OAB面积S=≥12,即最小值为12,此时直线方程为+=1,化为一般式可得2x+3y﹣12=0;14.解答:解:∵对任意x∈R,都有f(x+4)=f(x)+f(2)成立当x=﹣2,可得f(﹣2)=0,又∵函数y=f(x)是R上的偶函数∴f(﹣2)=f(2)=0,又由当x1,x2∈[0,2]且x1≠x2时,都有,∴函数在区间[0,2]单调递减故函数f(x)的简图如下图所示:由图可知:①正确,②正确,③错误,④正确故答案:①②④.15.解:(Ⅰ)∵…==…由Z)得,Z)∴f(x)的单调递增区间是Z)…(Ⅱ)∵,0<A<π,,于是,∴…∵△ABC外接圆的半径为,由正弦定理,得,…16.解答:解:(1)设报考飞行员的人数为n,前三小组的频率分别为p1,p2,p3,则由条件可得:解得p1=0.125,p2=0.25,p3=0.375…又因为,故n=48…(2)由(1)可得,一个报考学生体重超过60公斤的概率为…所以x服从二项分布,∴随机变量x的分布列为:x 0 1 2 3p 则…(或:)(I)证明:∵AC=BC,M是AB的中点∴CM⊥AB.又EA⊥平面ABC,CM⊥EA.∵EA∩AB=A∴CM⊥平面AEM∴CM⊥EM…(Ⅱ)以M为原点,分别以MB,MC为x,y轴,如图建立坐标系M﹣xyz,则设平面EMC的一个法向量,则取所以设平面DBC的一个法向量,则取x1=1,y1=1,z1=0,所以所以平面EMC与平面BCD所成的锐二面角的余弦值.…(Ⅲ)在棱DC上存在一点N,设N(x,y,z)且,0≤λ≤1,,若直线MN与平面EMC所成的角为60°,则解得:,所以符合条件的点N存在,为棱DC的中点.…解:(Ⅰ)由题意得f′(x)=,x∈(﹣1,+∞),由f′(3)=0⇒a=.(Ⅱ)令f′(x)=0⇒x1=0,x2=﹣1,①当0<a<1时,x1<x2,f(x)与f′(x)的变化情况如下表x (﹣1,0)0 (0,﹣1)﹣1 (﹣1,+∞)f′(x)﹣0 + 0 ﹣f(x)↘f(0)↗f(﹣1)↘∴f(x)的单调递增区间是(0,﹣1),f(x)的单调递减区间是(﹣1,0)和(﹣1,+∞);②当a=1时,f(x)的单调递减区间是(﹣1,+∞);③当a>1时,﹣1<x2<0f(x)与f′(x)的变化情况如下表x (﹣1,﹣1)﹣1 (﹣1,0) 0 (0,+∞)f′(x)﹣0 + 0 ﹣f(x)↘f(﹣1)↗f(0)↘∴f(x)的单调递增区间是(﹣1,0),f(x)的单调递减区间是(﹣1,﹣1)和(0,+∞).综上,当0<a<1时,f(x)的单调递增区间是(0,﹣1).f(x)的单调递减区间是(﹣1,0),(﹣1,+∞),当a>1,f(x)的单调递增区间是(﹣1,0).f(x)的单调递减区间是(﹣1,﹣1),(0,+∞).当a=1时,f(x)的单调递减区间为(﹣1,+∞).…(Ⅲ)由(Ⅱ)可知当0<a<1时,f(x)在(0,+∞)的最大值是f(﹣1),但f(﹣1)>f(0)=0,所以0<a<1不合题意,当a≥1时,f(x)在(0,+∞)上单调递减,由f(x)≤f(0)可得f(x)在[0,+∞)上的最大值为f(0)=0,符合题意,∴f(x)在[0,+∞)上的最大值为0时,a的取值范围是a≥1.解:(Ⅰ)由题意动点P(x,y)到定点F(1,0)的距离与它到定直线l:x=4的距离之比为,得,…化简并整理,得.(Ⅱ)当t=0时,点M与B重合,点N与A重合,M,N,F三点共线.…当t≠0时根据题意:由消元得:整理得:(t2+27)x2+4t2x+4t2﹣108=0 该方程有一根为x=﹣2,另一根为x M,根据韦达定理,由消元得:3x2+t2(x﹣2)2﹣12=0整理得:(t2+3)x2﹣4t2x+4t2﹣12=0该方程有一根为x=2,另一根为x N,根据韦达定理,当x M=x N时,由得:t2=9,x M=x N=1,M,N,F三点共线;当x M≠x N时,,;k MF=K NF,M,N,F三点共线.综上,命题恒成立.…解:(I)a45=49.(II)该等差数阵的第一行是首项为4,公差为3的等差数列:a1j=4+3(j ﹣1),第二行是首项为7,公差为5的等差数列:a2j=7+5(j﹣1),第i行是首项为4+3(i﹣1),公差为2i+1的等差数列,因此a ij=4+3(i﹣1)+(2i+1)(j﹣1),=2ij+i+j=i(2j+1)+j.(III)必要性:若N在该等差数阵中,则存在正整数i,j使得N=i(2j+1)+j,从而2N+1=2i(2j+1)+2j+1=(2i+1)(2j+1),即正整数2N+1可以分解成两个不是1的正整数之积.充分性:若2N+1可以分解成两个不是1的正整数之积,由于2N+1是奇数,则它必为两个不是1的奇数之积,即存在正整数k,l,使得2N+1=(2k+1)(2l+1),从而N=k(2l+1)+l=a kl,可见N在该等差数阵中.综上所述,正整数N在该等差数阵中的充要条件是2N+1可以分解成两个不是1的正整数之积.。
2015各区北京中考数学一模及答案
![2015各区北京中考数学一模及答案](https://img.taocdn.com/s3/m/5207d93d3968011ca3009143.png)
北京市西城区2015年初三一模试卷数 学 2015. 4考生须知1.本试卷共6页,共五道大题,29道小题,满分120分。
考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的. 1.13的相反数是A.13 B.13- C.3 D.3-2.据市烟花办相关负责人介绍,2015年除夕零时至正月十五24时,全市共销售烟花爆竹约196 000箱,同比下降了32%.将196 000用科学记数法表示应为A.51.9610⨯B.41.9610⨯C.419.610⨯D. 60.19610⨯ 3.下列运算正确的是A. 336a b ab+=B.32a a a -= C.()326a a = D.632a a a ÷=4.如图是一个几何体的直观图,则其主视图是5.甲、乙、丙、丁四名选手参加100米决赛,赛场共设1,2,3,4四条跑道,选手以随机 抽签的方式决定各自的跑道.若甲首先抽签,则甲抽到1号跑道的概率是A. 1B.12 C. 13 D.146.下列图形中,既是轴对称图形又是中心对称图形的是7.如图,线段AB 是⊙O 的直径,弦CD 丄AB ,如果∠BOC =70°, 那么∠BAD 等于A. 20°B. 30°C. 35°D.70°8.在平面直角坐标系xOy 中,第一象限内的点P 在反比例函数的图象上,如果点P 的纵坐 标是3,OP=5,那么该函数的表达式为A. 12y x=B. 12y x =-C. 15y x= D. 15y x =-9.为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图.这组数据的众数和中位数分别是 A. 6,4 B. 6,6 C. 4,4D. 4,610.如图,过半径为6的⊙O 上一点A 作⊙O 的切线l ,P 为⊙O 上的一个动点,作PH ⊥l 于点H ,连接P A .如果P A =x ,AH=y , 那么下列图象中,能大致表示y 与x 的函数关系的是二、填空题(本题共18分,每小题3分) 11.如果分式15x -有意义,那么x 的取值范围是 .12.半径为4cm ,圆心角为60°的扇形的面积为 cm 2.13.分解因式:2123m -= .14.如图,△ABC 中,AB =AC ,点D ,E 在BC 边上,当 时, △ABD ≌△ACE .(添加一个适当的条件即可)15.如图是跷跷板的示意图,立柱OC 与地面垂直,以O为横板AB 的中点..,AB 绕点O 上下转动,横板AB 的B 端最大高度h 是否会随横板长度的变化而变化 呢?一位同学做了如下研究:他先设AB=2 m ,OC=0.5 m ,通过计算得到此时的h 1,再将横板AB换成横板A ′B ′,O 为横板A ′B ′的中点,且A ′B ′=3m ,此时B ′点的最大高度为h 2,由此得 到h 1与h 2的大小关系是:h 1 h 2(填“>”、“=”或“<”).可进一步得出,h 随横板的长度的变化而 (填“不变”或“改变”).16.如图,数轴上,点A 的初始位置表示的数为1,现点A 做如下移动:第1次点A 向左移动3个单位长度至点1A ,第2次从点1A 向右移动6个单位长度至点2A ,第3次从点2A 向左移动9个单位长度至点3A ,…,按照这种移动方式进行下去,点4A 表示的数是 ,如果点n A 与原点的距离不小于20,那么n 的最小值是 .三、解答题(本题共30分,每小题5分)17()011π2008()6tan302--+-︒.18.如图,∠C =∠E ,∠EAC =∠DAB ,AB=AD .求证:BC=DE .19.解不等式组 ()2035148.x x x -≤⎧⎪⎨+>-⎪⎩,20.先化简,再求值:223312111a a a a a a a ++÷-++++,其中2a =.21.从北京到某市可乘坐普通列车或高铁.已知高铁的行驶路程是400千米,普通列车的行驶路程是520千米.如果高铁的平均速度是普通列车平均速度的2.5倍,且乘坐高铁比 乘坐普通列车少用3小时.求高铁的平均速度是多少千米/时. 22.已知关于x 的一元二次方程0)2()1(22=+---m m x m x . (1)求证:此方程总有两个不相等的实数根; (2)若2x =-是此方程的一个根,求实数m 的值.四、解答题(本题共20分,每小题5分)23.如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点F , E 为四边形ABCD 外一点,且∠ADE =∠BAD ,AE ⊥AC . (1)求证:四边形ABDE 是平行四边形;(2)如果DA 平分∠BDE ,AB=5,AD=6,求AC 的长.24.在北京,乘坐地铁是市民出行时经常采用的一种交通方式.据调查,新票价改革政策的实施给北京市轨道交通客流带来很大变化.根据2015年1月公布的调价后市民当时乘坐地铁的相关调查数据,制作了以下统计表以及统计图.根据以上信息解答下列问题:(1)补全扇形图;(2)题目所给出的线路中,调价后客流量下降百分比最高的线路是,调价后里程x(千米)在范围内的客流量下降最明显.对于表中客流量不降反增而且增长率最高的线路,如果继续按此变化率增长,预计2016年1月这条线路的日均客流量将达到万人次;(精确到0.1)(3)小王同学上学时,需要乘坐地铁15.9公里到达学校,每天上下学共乘坐两次.问调价后小王每周(按5天计算)乘坐地铁的费用比调价前多支出元.(不考虑使用市政一卡通刷卡优惠,调价前每次乘坐地铁票价为2元)25.如图,AB为⊙O的直径,M为⊙O外一点,连接MA与⊙O交于点C,连接MB并延长交⊙O于点D,经过点M的直线l与MA所在直线关于直线MD对称.作BE⊥l于点E,连接AD,DE.(1)依题意补全图形;(2)在不添加新的线段的条件下,写出图中与∠BED相等的角,并加以证明.26.阅读下面的材料:小敏在数学课外小组活动中遇到这样一个问题:如果α,β都为锐角,且1tan 2α=,1tan 3β=,求αβ+的度数. 小敏是这样解决问题的:如图1,把α,β放在正方形网格中,使得ABD α∠=, CBE β∠=,且BA ,BC 在直线BD 的两侧,连接AC ,可证得△ABC 是等腰直角三角形,因此可求得αβ+=∠ABC = °.请参考小敏思考问题的方法解决问题:如果α,β都为锐角,当tan 4α=,3tan 5β=时,在图2的正方形网格中,利用已作出的锐角α,画出∠MON=αβ-,由此可得αβ-=______°.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.已知二次函数21y x bx c =++的图象1C 经过(1,0)-,(0,3)-两点.(1)求1C 对应的函数表达式;(2)将1C 先向左平移1个单位,再向上平移4个单位, 得到抛物线2C ,将2C 对应的函数表达式记为 22y x mx n =++,求2C 对应的函数表达式; (3)设323y x =+,在(2)的条件下,如果在 2-≤x ≤a 内存在..某一个x 的值,使得2y ≤3y 成立,利用函数图象直接写出a 的取值范围.28. △ABC 中,AB=AC .取BC 边的中点D ,作DE ⊥AC 于点E ,取DE 的中点F ,连接BE ,AF 交于点H .(1)如图1,如果90BAC ∠=︒,那么AHB ∠= ︒,AFBE= ; (2)如图2,如果60BAC ∠=︒,猜想AHB ∠的度数和AFBE的值,并证明你的结论; (3)如果BAC α∠=,那么AF= .(用含α的表达式表示)29.给出如下规定:两个图形G 1和G 2,点P 为G 1上任一点,点Q 为G 2上任一点,如果线段PQ 的长度存在最小值,就称该最小值为两个图形G 1和G 2之间的距离. 在平面直角坐标系xOy 中,O 为坐标原点.(1)点A 的坐标为(1,0)A ,则点(2,3)B 和射线OA 之间的距离为________,点(2,3)C - 和射线OA 之间的距离为________;(2)如果直线y =x 和双曲线ky x=,那么k = ;(可在图1中进 行研究)(3)点E 的坐标为(1,3),将射线OE 绕原点O 逆时针旋转60︒,得到射线OF ,在坐标平面内所有和射线OE ,OF 之间的距离相等的点所组成的图形记为图形M . ① 请在图2中画出图形M ,并描述图形M 的组成部分;(若涉及平面中某个区域时可以用阴影表示) ② 将射线OE ,OF 组成的图形记为图形W ,抛物线22-=x y 与图形M 的 公共部分记为图形N ,请直接写出图形W 和图形N 之间的距离.北京市西城区2015年初三一模试卷数学试卷参考答案及评分标准 2015. 4一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共30分,每小题5分)17. =3.18 ∴ △ABC ≌△ADE .………………………………………………………… 4分 ∴ BC = DE .…………………………………………………………………… 5分 19.2≥.…………………………………………………5分20 =11a a -+.……………………………………………………………………4分 当2=a 时,原式=311212=+-.………………………………………………………5分 21.解:设普通列车的平均速度为x 千米/时.…………………………………………… 1分 则高铁的平均速度是2.5x 千米/时.依题意,得40052032.5x x+=.…………………………………………………… 2分 解得 120=x .……………………………………………………………………3分 经检验,120=x 是原方程的解,且符合题意.……………………………… 4分 所以 30052=x ..答:高铁的平均速度是300千米/时.………………………………………………… 5分22.(1)证明: []22(1)4(2)m m m ∆=--++ 284m =+.………………1分∵ 28m ≥0,∴ 284m +>0.………………………………………………………………2分∴ 方程总有两个不相等的实数根. ……………………………………… 3分(2)解:∵ 2x =-是此方程的一个根,∴ 2(2)2(2)(1)(2)0m m m --⨯---+=.整理得 220m m -=.解得 10m =,22m =.……………………………………………………… 5分四、解答题(本题共20分,每小题5分)23.(1)证明:∵ ADE BAD ∠=∠,∴ AB ∥ED .……………………………………… 1分 ∵ BD 垂直平分AC ,垂足为F , ∴ BD AC ⊥,AF=FC .又∵ AE AC ⊥,∴ 90EAC DFC ∠=∠=︒.∴AE ∥BD .∴ 四边形ABDE 是平行四边形.…………………………………………2分(2)解:如图2,连接BE 交AD 于点O . ∵ DA 平分∠BDE ,∴ ∠ADE=∠1.又∵ ADE BAD ∠=∠, ∴ ∠1=∠BAD .∴ AB= BD .………………………………3分 ∴ABDE 是菱形. ∵ AB=5,AD=6,∴ BD=AB=5,AD BE ⊥,132OA AD ==.在Rt △OAB 中,4OB =.∵ 1122ABDSAD OB BD AF =⋅=⋅, ∴ 645AF ⨯=.解得 4.8AF =. …………………………4分 ∵ BD 垂直平分AC ,∴ 29.6AC AF ==.……………………5分 注:其他解法相应给分. 24.解:(1)补全扇形图如图3所示.…………………1分 (2)2号线,52<x ≤72 ,22.2.(各1分)………………………………………… 4分 (3)30.……………………………………… 5分 25.解:(1)依题意,补全图形如图4.……………… 1分 (2)BAD ∠.…………………………………… 2分 证明:如图5,连接BC ,CD .∵ 直线l 与直线MA 关于直线MD 对称, ∴ 12∠=∠.………………………3分 ∵ AB 为⊙O 的直径,∴ 90ACB ∠=︒,即BC MA ⊥. 又∵ BE l ⊥,∵ cos 1MC MB =⋅∠,cos 2ME MB =⋅∠,∴MC=ME.又∵C,E两点分别在直线MA与直线l可得C,E两点关于直线MD对称.∴3BED∠=∠.…………………4分又∵3BAD∠=∠,∴BAD BED∠=∠.………………5分26.解:45.…………………………………………………1分画图见图6.………………………………………3分45.…………………………………………………5分五、解答题(本题共22分,第23题7分,第24题7分,第2527.解:(1)∵二次函数21y x bx c=++的图象1C经过(1,0)-,∴抛物线1C的函数表达式为3221--=xxy.(2)∵22123=(1)4y x x x=----,∴抛物线1C的顶点为(1,4)-.……4分∴平移后抛物线2C的顶点为(0,0),它对应的函数表达式为22y x=.…5分(3)a≥1-(见图7).………………………………………………………………7分28.解:(1)90,12.………………………………………………………………………2分(2)结论:90AHB∠=︒,AFBE=.证明:如图8,连接AD.∵AB=AC,∠BAC=60°,∴△ABC是等边三角形.∵D为BC的中点,∴AD⊥BC.∴∠1+∠2=90°.又∵DE⊥AC,∴∠DEC=90°.∴∠2+∠C=90°.∴∠1=∠C=60°.设AB=BC=k(0k>),则124kCE CD==,DE=.∵F为DE的中点,∴ 128DF DE ==,22AD AB ==.∴AD BC =,DF CE = ∴ =BC AD CE DF .…………………………………………………………3分 又∵ ∠1=∠C ,∴ △ADF ∽△BCE .………………………………………………… 4分∴AF AD BE BC ==5分 ∠3=∠4. 又∵ ∠4+∠5=90°,∠5=∠6, ∴ ∠3+∠6=90°.∴ 90AHB ∠=︒.………………………………………………………6分(3)1tan 9022α︒-().………………………………………………………………7分 注:写1cos 2sin αα+或其他答案相应给分.29.解:(1)3(每空各1分)…………………………………………………… 2分(2)-1.…………………………………………………………………………… 4分(3)①如图9,过点O 分别作射线OE 、OF 的垂线OG 、OH ,则图形M 为:y 轴正半轴,∠GOH 的边及其内部的所有点(图中的阴影部分). (7)分说明:(画图2分,描述1分)(图形M 也可描述为:y 轴正半轴,直线x y 33=下方与直线x y 33-=下方重叠的部分(含边界)) ②34.…………………………………………………………………………8分海 淀 区 九 年 级 第 二 学 期 期 中 练 习数 学2015.5下面各题均有四个选项,其中只有一个..是符合题意的. 1.2015年北京市实施能源清洁化战略,全市燃煤总量减少到15 000万吨左右,将15 000用科学记数法表示应为A . 50.1510⨯B .41.510⨯C .51.510⨯D .31510⨯ 2.右图是某几何体的三视图,该几何体是A. 三棱柱B. 三棱锥C. 长方体D.正方体 3.如图,数轴上两点A ,B 表示的数互为相反数,则点B 表示的数为2A0BA .-1B .1C .-2D .24.某游戏的规则为:选手蒙眼在一张如图所示的正方形黑白格子纸(九个小正方形面积相等)上描一个点,若所描的点落在黑色区域,获得笔记本一个;若落在白色区域,获得钢笔一支.选手获得笔记本的概率为A .12 B .45 C .49D .595.如图,直线a 与直线b 平行,将三角板的直角顶点放在直线a 上,若∠1=40°,则∠2等于A . 40°B .50°C .60°D .140°ba 216.如图,已知∠AOB .小明按如下步骤作图:(1)以点O 为圆心,适当长为半径画弧,交OA 于D ,交OB 于点E . (2)分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧在∠AOB 的内部相交于点C . (3)画射线OC .根据上述作图步骤,下列结论正确的是A .射线OC 是AOB ∠的平分线 B .线段DE 平分线段OC C .点O 和点C 关于直线DE 对称D .OE =CE7.某次比赛中,15名选手的成绩如图所示,则 这15名选手成绩的众数和中位数分别是 A .98,95 B .98,98 C .95,98 D .95,958. 甲骑车到乙家研讨数学问题,中途因等候红灯停止了一分钟,之后又骑行了1.2千米到达了乙家.若甲骑行的速度始终不变,从出发开始计时,剩余的路程S (单位:千米)与时间t (单位:分钟)的函数关系的图象如图所示,则图中a 等于A .1.2B .2C .2.4D .69.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E .若60B ∠=︒,AC =3,则CD 的长为A . 6B .23C .3D .363S /千米t /分钟OE DCBOABA CEOD10.小明在书上看到了一个实验:如右图,一个盛了水的圆柱形容器内,有一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相同的别的物体,记录实验时间t 以及容器内水面的高度h ,并画出表示h 与t 的函数关系的大致图象.如左下图所示.小明选择的物体可能是二、填空题(本题共18分,每小题3分) 11.分解因式:32a ab -=____________.12.写出一个函数y kx =(0k ≠),使它的图象与反比例函数1y x=的图象有公共点,这个函数的解析式为___________.13.某学习小组设计了一个摸球试验,在袋中装有黑,白两种颜色的球,这些球的形状大小质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋中摸出一个球,记下颜色,再把它放回,不断重复.下表是由试验得到的一组统计数据:从这个袋中随机摸出一个球,是白球的概率约为 .(结果精确到0.1)14.如图,点C 为线段AB 上一点,将线段CB 绕点C 旋转,得到线段CD ,若DA AB ⊥,1AD =,17BD =,则BC 的长为__________. 15. 在研究了平行四边形的相关内容后,老师提出这样一个问题:摸球的次数n 100 200 300 400 500 600 摸到白球的次数m 58118189237302359摸到白球的频率nm 0.58 0.59 0.63 0.593 0.604 0.598C BDA ABC D“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD =BC ”,小红说“添加AB =DC ” .你同意 的观点, 理由是 .16.若三角形的某一边长等于其外接圆半径,则将此三角形称为等径三角形,该边所对的角称为等径角.已知△ABC 是等径三角形,则等径角的度数为 . 三、解答题(本题共30分,每小题5分) 17.计算:2022cos60(3.14π)--+--.18.解不等式组:345214.33x x x x +>-⎧⎪⎨-⎪⎩,≥19.已知43x y =,求代数式22(2)()()2x y x y x y y ---+-的值.20.如图,点A ,B ,C ,D 在同一条直线上,AB=FC ,∠A =∠F ,∠EBC =∠FCB . 求证: BE=CD .21.已知关于x 的方程220 (0)kx x k k--=≠. (1)求证:方程总有两个不相等的实数根; (2)若方程的两个实数根都是整数,求整数k 的值.22.列方程或方程组解应用题:为了响应学校提出的“节能减排,低碳生活”的倡议,班会课上小李建议每位同学都践行“双面打印,节约用纸”.他举了一个实际例子:打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求例子中的A4厚型纸每页的质量.(墨的质量忽略不计)四、解答题(本题共20分,每小题5分)23.如图,在□ABCD 中,∠BAD 的平分线交CD 于点E ,交BC 的延长线于点F ,连接BE ,∠F =45°. (1)求证:四边形ABCD 是矩形; (2)若AB =14,DE =8,求sin ∠AEB 的值.24.根据某研究中心公布的近几年中国互联网络发展状况统计报告的部分相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)直接写出扇形统计图中m 的值;(2)从2011年到2014年,中国网民人数每年增长的人数近似相等,估算2015年中国网民的人数约为 亿;(3)据某市统计数据显示,2014年末全市常住人口为476.6万人,其中网民数约为210万人.若2014年该市的网民学历结构与2014年的中国网民学历结构基本相同,请你估算2014年末该市网民学历是大专的约有 万人.FBCAEDC作⊙O与边AB相切于点E,交BC于点F,CE为⊙O的直径.(1)求证:OD⊥CE;(2)若DF=1,DC=3,求AE的长.26.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC中,DE∥BC分别交AB于D,交AC于E.已知CD⊥BE,CD=3,BE=5,求BC+DE的值.小明发现,过点E作EF∥DC,交BC延长线于点F,构造△BEF,经过推理和计算能够使问题得到解决(如图2).图1 图2 图3请回答:BC+DE的值为_______.参考小明思考问题的方法,解决问题:如图3,已知□ABCD和矩形ABEF,AC与DF交于点G,AC=BF=DF,求∠AGF的度数.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.在平面直角坐标系xOy 中,抛物线2212y x x =-+与y 轴交于点A ,顶点为点B ,点C 与点A 关于抛物线的对称轴对称.(1)求直线BC 的解析式;(2)点D 在抛物线上,且点D 的横坐标为4.将抛物线在点A ,D 之间的部分(包含点A ,D )记为图象G ,若图象G 向下平移t (0t >)个单位后与直线BC 只有一个公共点,求t 的取值范围.28.在菱形ABCD 中,120ADC ∠=︒,点E 是对角线AC 上一点,连接DE ,50DEC ∠=︒,将线段BC 绕点B 逆时针旋转50︒并延长得到射线BF ,交ED 的延长线于点G . (1)依题意补全图形;EDC BAEDCBA备用图(2)求证:EG BC =;(3)用等式表示线段AE ,EG ,BG 之间的数量关系:_____________________________.29.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若,1,1≥b a b b a ⎧'=⎨-<⎩,则称点Q 为点P 的限变点.例如:点()2,3的限变点的坐标是()2,3,点()2,5-的限变点的坐标是()2,5--.(1)①点)的限变点的坐标是___________;②在点()2,1A --,()1,2B -中有一个点是函数2y x=图象上某一个点的限变点, 这个点是_______________;(2)若点P 在函数3(2,2)y x x k k =-+->-≤≤的图象上,其限变点Q 的纵坐标b '的取值范围是52≤≤b '-,求k 的取值范围;(3)若点P 在关于x 的二次函数222y x tx t t =-++的图象上,其限变点Q 的纵坐标b '的取值范围是≥b m '或b n '<,其中m n >.令s m n =-,求s 关于t 的函数解析式及s 的取值范围.海淀区九年级第二学期期中练习数学试卷答案及评分参考2015.5一、 选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共30分,每小题5分) 17. (本小题满分5分) 解:原式=112142-⨯+ ………………………………………………………4分 14=+. ………………………………………………………………5分18. (本小题满分5分) 解: 345214.33x x x x +>-⎧⎪⎨-⎪⎩,≥ ② ①由不等式①得 3x <. ……………………………………………………2分由不等式②得 2≥x -. ……………………………………………………4分 ∴不等式组的解集为23≤x -<. ……………………………………………………5分19. (本小题满分5分)解: 22(2)()()2x y x y x y y ---+-2222244()2x xy y x y y =-+---………………………………………………2分 243xy y =-+ ……………………………………………………………………3分()43y x y =--.…………………………………………………………………4分∵43x y =,∴原式= 0. ………………………………………………………………………5分20. (本小题满分5分) 证明:∠EBC =∠FCB ,ABE FCD ∴∠=∠. …………………………………………………………1分在△ABE 与△FCD 中, ,,,A F AB FC ABE FCD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴∆ABE ≌∆FCD .………………………………………………………………4分 ∴BE=CD . ………………………………………………………………………5分21. (本小题满分5分) (1)证明:0k ≠,∴220 kx x k--=是关于x 的一元二次方程.22(1)4()k k∆=--- ……………………………………………………1分90=>.∴方程总有两个不相等的实数根. ………………………………………2分(2)解:由求根公式,得x =. ∴1221,x x k k==-. …………………………………………………………4分方程的两个实数根都是整数,且k 是整数,∴ 1k =-或1k =.…………………………………………………………5分22. (本小题满分5分)解: 设例子中的A4厚型纸每页的质量为x 克.………………………………………1分由题意,得40016020.8x x =⨯-. ………………………………………………2分 解得 4x =. ………………………………………………………3分 经检验, 4x =为原方程的解,且符合题意. ………………………………4分 答:例子中的A4厚型纸每页的质量为4克. …………………………………5分 四、解答题(本题共20分,每小题5分) 23. (本小题满分5分) (1)证明:四边形ABCD 是平行四边形,∴AD //BC . ∴∠DAF=∠F .∠F =45°,∴∠DAE=45°.………………………………………1分 AF 是∠BAD 的平分线,45EAB DAE ∴∠=∠=. 90DAB ∴∠=.又四边形ABCD 是平行四边形,∴四边形ABCD 是矩形. …………………………2分(2)解:过点B 作BH AE ⊥于点H ,如图.四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∠DCB =∠D =90°.AB =14,DE =8, ∴ CE=6.在Rt △ADE 中,∠DAE=45°, ∴∠DEA =∠DAE=45°. ∴ AD=DE =8. ∴ BC =8.在Rt △BCE 中,由勾股定理得10BE ==. ……………………………………………3分 在Rt △AHB 中,∠HAB=45°,∴sin 4572BH AB =⋅= . …………………………………………4分在Rt △BHE 中,∠BHE=90°,∴sin ∠AEB=10BH BE =. ……………………………………………5分 24. (本小题满分5分)(1)36. ……………………………………………………………………………1分(2)6.700.01±. ……………………………………………………………………3分 (3)21. ……………………………………………………………………………5分25. (本小题满分5分)(1)证明:⊙O与边AB相切于点E,且CE为⊙O的直径.∴CE⊥AB.AB=AC,AD⊥BC,BD DC∴=.………………………………1分又OE=OC,∴OD∥EB.∴OD⊥CE.………………………………2分(2)解:连接EF.CE为⊙O的直径,且点F在⊙O上,∴∠EFC=90°.CE⊥AB,∴∠BEC=90°.∴+BEF FEC FEC ECF∠=∠+∠∠=90°.∴BEF ECF∠=∠.∴tan tanBEF ECF∠=∠.∴BF EFEF FC=.又DF=1,BD=DC=3,∴BF=2,FC=4.∴EF=.………………………………………………… 3分∵∠EFC=90°,∴∠BFE=90°.由勾股定理,得BE==……………………4分EF∥AD,∴21 BE BFEA FD==.∴AE=……………………………………………………5分26. (本小题满分5分)解:BC+DE.……………………………………………………2分解决问题:连接AE,CE,如图.∵四边形ABCD是平行四边形,∴AB // DC .∵四边形ABEF 是矩形, ∴AB // FE ,BF =AE . ∴DC // FE .∴四边形DCEF 是平行四边形. ………………………………………………3分 ∴ CE // DF . ∵AC =BF =DF , ∴AC =AE =CE .∴△ACE 是等边三角形. …………………………………………………………4分 ∴∠ACE =60°. ∵CE ∥DF ,∴∠AGF =∠ACE =60°. …………………………………………………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27. (本小题满分7分)解:(1)∵抛物线2212y x x =-+与y 轴交于点A ,∴点A 的坐标为(0,2). …………………………………………1分 ∵2211(232)212y x x x -+==+-,∴抛物线的对称轴为直线1x =,顶点B 的坐标为(1,32). …………2分又∵点C 与点A 关于抛物线的对称轴对称,∴点C 的坐标为(2,2),且点C 在抛物线上.设直线BC 的解析式为y kx b =+.∵直线BC 经过点B (1,32)和点C (2,2),∴322 2.,k b k b ⎧+=⎪⎨⎪+=⎩ 解得121.k b ⎧=⎪⎨⎪=⎩, ∴直线BC 的解析式为 112y x =+.…………………………3分(2) ∵抛物线2212y x x =-+中,当4x =时,6y =,∴点D 的坐标为(4,6). ………………4分∵直线112y x =+中,当0x =时,1y =,xy O –5–4–3–2–112345–7–6–5–4–3–2–11234567FE DABC当4x =时,3y =,∴如图,点E 的坐标为(0,1),点F 的坐标为(4,3).设点A 平移后的对应点为点'A ,点D 平移后的对应点为点'D . 当图象G 向下平移至点'A 与点E 重合时, 点'D 在直线BC 上方, 此时t =1;…………………………………………………………5分当图象G 向下平移至点'D 与点F 重合时,点'A 在直线BC 下方,此时t =3.……………………………………………………………………………………6分 结合图象可知,符合题意的t 的取值范围是13t <≤.……………………………7分28. (本小题满分7分)(1)补全图形,如图1所示.…………………………………………………………1分GFEDCBA图1图2(2)方法一:证明:连接BE ,如图2. ∵四边形ABCD 是菱形, ∴AD ∥BC . 120ADC ∠=︒, 60DCB ∴∠=︒.AC 是菱形ABCD 的对角线,∴1302DCA DCB ∠=∠=︒. ……………………………………………………………2分180100EDC DEC DCA ∴∠=︒-∠-∠=︒.由菱形的对称性可知, 50BEC DEC ∠=∠=︒,100EBC EDC ∠=∠=︒.……………………………………………………………………3分 100GEB DEC BEC ∴∠=∠+∠=︒.GFEDCBAGEB CBE ∴∠=∠.50FBC ∠=︒,50EBG EBC FBC ∴∠=∠-∠=︒.…………………………………………………………4分EBG BEC ∴∠=∠.在△GEB 与△CBE 中,,,,GEB CBE BE EB EBG BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GEB ≌△CBE .EG BC ∴=. ………………………………………………………………………………5分 方法二:证明:连接BE ,设BG 与EC 交于点H ,如图3.∵四边形ABCD 是菱形, ∴AD ∥BC .120ADC ∠=︒,60DCB ∴∠=︒.AC 是菱形ABCD 的对角线,∴1302DCA DCB ∠=∠=︒. ………………………2分180100EDC DEC DCA ∴∠=︒-∠-∠=︒.由菱形的对称性可知,50BEC DEC ∠=∠=︒,100EBC EDC ∠=∠=︒. ……………………………………………3分50FBC ∠=︒, 图350EBG EBC FBC BEC ∴∠=∠-∠=︒=∠. ………………………………………………4分 BH EH ∴=.在△GEH 与△CBH 中,,,,GEH CBH EH BH EHG BHC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GEH ≌△CBH .EG BC ∴=. ………………………………………………………………………………5分 (3)AE BG +. …………………………………………………………………7分29.(本小题满分8分)解:(1)①; ……………………………………………………………………1分② 点B . ………………………………………………………………………2分(2)依题意,3(2)y x x =-+-≥图象上的点P 的限变点必在函数3,13,21x x y x x -+⎧=⎨--<⎩≥≤的HGFEDCBA图象上.2≤b '∴,即当1x =时,b '取最大值2.当2b '=-时,23x -=-+.5x ∴=. ………………………………………3分 当5b '=-时,53x -=-或53x -=-+.2x ∴=-或8x =. ………………………………4分 52≤≤b '-,由图象可知,k 的取值范围是58≤≤k .……………………………………………5分 (3)2222()y x tx t t x t t =-++=-+,∴顶点坐标为(,)t t .………………………………………………………………6分若1t <,b '的取值范围是≥b m '或≤b n ',与题意不符. 若1≥t ,当1≥x 时,y 的最小值为t ,即m t =;当1x <时,y 的值小于2[(1)]t t --+,即2[(1)]n t t =--+. 22(1)1s m n t t t t ∴=-=+-+=+.∴s 关于t 的函数解析式为 211)s t t =+≥ ( . ……………………………7分当t=1时,s 取最小值2.∴s 的取值范围是s ≥2. ………………………………………………………8分北京市怀柔区2015年高级中等学校招生模拟考试(一)一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.把8000用科学计数法表示是A .28010⨯B .3810⨯C .40.810⨯D .4810⨯ 2.数轴上有A ,B ,C ,D 四个点,其中绝对值相等的点是 A.点A 与点D B. 点A 与点C C. 点B 与点C D. 点B 与点D3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D 4. 小华的老师让他在无法看到袋子里小球的情形下,从袋子里模出一个小球. 袋子里各种颜色小球的数量统计如表所示.小华模到褐色小球的概率为 A .101 B .51 C .41D .215. 如图,AD 是∠EAC 的平分线,AD∥BC,∠B=30°,则∠C 为A .30°B .60°C .80°D .120°6.如图,已知⊙O 的半径为10,弦AB 长为16,则点O 到AB 的距离是 A. 3 B. 4 C. 5 D. 67.某校在“中国梦.我的梦”演讲比赛中,有11名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的A .平均数B .众数C .中位数D .方差8.如图,已知正方形ABCD 中,G 、P 分别是DC 、BC 上的点,E 、F 分别 是AP 、GP 的中点,当P 在BC 上从B 向C 移动而G 不动时, 下列结论成立的是A .线段EF 的长逐渐增大B .线段EF 的长逐渐减小颜色 红色 橙色 黄色 绿色 蓝色 紫色 褐色 数量 6433225G FE PD CBAxD CB A 123–1–2–3C .线段EF 的长不改变D .线段EF 的长不能确定 9.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3), 则不等式2x≥ax+4的解集为 A .x≥B. x≤3 C . x ≤D .x ≥310.如图1,在等边△ABC 中,点E 、D 分别是AC ,BC 边的中点,点P 为AB 边上的一个动点,连接PE ,PD ,PC ,DE .设AP =x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的A .线段PDB .线段PC C .线段PED .线段DE 二、填空题(本题共18分,每小题3分)11.函数y=1x-3中自变量x 的取值范围是_________________. 12.请写出一个过一、三象限的反比例函数的表达式_________________.13.下面有五个图形,与其它图形众不同的是第 个.①②③④⑤xy 图2OPEDCBA图114.如图,在矩形ABCD 中,=,以点B 为圆心,BC 长为半径画弧,交边AD 于点E .若AE •ED =16,则矩形ABCD 的面积为 .15.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”. 如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为__________.16.2014年5月1日开始,北京市开始实施居民用水阶梯水价.具体方案如下:户年用水量180立方米(含)内,每立方米5元;181立方米至260立方米(含)内,每立方米7元;260立方米以上,每立方米9元.阶梯水价以日历年(每年1月1日到12月31日)为周期计算.小王家2014年4月30日抄表示数550立方米,5月1日起实施阶梯水价,6月抄表时因用户家中无人未见表,8月12日抄表示数706立方米,那么小王家本期用水量为 立方米,本期用水天数104天,日均用水量为 立方米. 如果按这样每日用水量计算,小李家今后每年的水费将达到 元(一年按365天计算). 三、解答题(本题共30分,每小题5分)17.如图,点C ,D 在线段BF 上,AB DE ∥,AB DF =,A F ∠=∠.求证:BC DE =.18. 计算:011(20152014)82cos 45()2--+-︒+19.解不等式组:240,3(1) 2.x x x -<⎧⎨+≥+⎩20.已知32a b =,求代数式2243(3)9a ba b a b++-的值.21.列方程或方程组解应用题:为了培育和践行社会主义核心价值观,引导学生广泛阅读古今文学名著,传承优秀传统文化,我区某校决定为初三学生购进相同数量的名著《三国演义》和《红岩》.其中《三国演义》的单价比《红岩》的单价多28元.若学校购买《三国演义》用了1200元,购买《红岩》用了400元,求《三国演义》和《红岩》的单价各多少元.FEDCB A22.已知:关于x的一元二次方程错误!未找到引用源。
2015年静安区初三数学一模卷
![2015年静安区初三数学一模卷](https://img.taocdn.com/s3/m/102decbb284ac850ac024200.png)
0;
(D)
x2 x2 4
0.
3.将抛物线 y (x 1)2 向左平移 2 个单位,所得抛物线的表达式为
(A) y ( x 1)2 ; (C) y (x 1)2 2 ;
(B) y ( x 3)2 ; (D) y (x 1)2 2 .
4.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是
已知:如图,D 是△ABC 的边 AB 上一点,DE∥BC,交边 AC 于点 E,延长 DE 到点 F,使得
EF=DE,联结 BF,交边 AC 于点 G,联结 CF. (1)求证: AE EG ; AC CG
( 2) 如 果 CF 2 FG FB , 求 证 :
A
D
E
F
G
第3页共9页
B
C
于点 C,其纵坐标为 m,请用 m 的代数式表示平移后
函数图像顶点 M 的坐标;
5
(3)在第(2)小题的条件下,如果点 P 的坐标
4
3
为(2,3),CM 平分∠PCO,求 m 的值.
2
1
-3 -2 -1 O 1 2 3 4 x -1 -2 -3
( 第 24 题 图)
25.(本题满分 14 分,其中第(1)、(2)小题各 4 分,第(3)小题 6 分) 如图,在矩形 ABCD 中,P 是边 AD 上的一动点,联结 BP、CP,过点 B 作射线交线段 CP 的
BC CG 而 EF=DE,∴ CE DE .…………………………………………………………(1 分)
BC CG ∴ CG CE BC DE .……………………………………………………………(1 分)
24.解:(1)∵二次函数 y ax 2 bx 的图像经过点(1,-3)和点(-1,5), 3 a b ,
2015年初三一模数学试卷及答案
![2015年初三一模数学试卷及答案](https://img.taocdn.com/s3/m/44bee66e1611cc7931b765ce0508763231127491.png)
2015年高级中等学校招生模拟考试(一)数 学 试 卷 2015.5考生须知 1.本试卷共6页,共五道大题,页,共五道大题,2929道小题,满分120分.考试时间120分钟。
分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束,请将本试卷、答题卡一并交回。
考试结束,请将本试卷、答题卡一并交回。
一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的.是符合题意的. 1.把8000用科学计数法表示是A .28010´ B .3810´ C .40.810´ D .4810´ 2.数轴上有A ,B ,C ,D 四个点,其中绝对值相等的点是四个点,其中绝对值相等的点是 A.A.点点A 与点D B. 点A 与点C C. 点B 与点CD. 点B 与点D 3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D 4. 小华的老师让他在无法看到袋子里小球的情形下,从袋子里模出一个小球从袋子里模出一个小球. . 袋子里各种颜色小球的数量统计如表所示所示..小华模到褐色小球的概率为小华模到褐色小球的概率为 A .101 B .51C .41D .21 5. 如图,如图,AD AD 是∠EAC 的平分线,AD∥BC,∠B=30°,的平分线,AD∥BC,∠B=30°,则∠C 为A .30°.30°B B .60°.60°C C .80°.80°D D .120°.120°6.如图,已知⊙O 的半径为1010,弦,弦AB 长为1616,则点,则点O 到AB 的距离是的距离是 A. 3 B. 4 C. 5 D. 67.某校在“中国梦.我的梦”演讲比赛中,有11名学生参加决赛,他们决赛的最终成绩各不相同.其颜色颜色 红色红色 橙色橙色 黄色黄色 绿色绿色 蓝色蓝色 紫色紫色 褐色褐色 数量数量 6433225xD CB A 123–1–2–3O中的一名学生想要知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的绩的A .平均数.平均数B .众数.众数C .中位数.中位数D .方差.方差 8.如图,已知正方形ABCD 中,中,G G 、P 分别是DC DC、、BC 上的点,上的点,E E 、F 分别分别 是AP AP、、GP 的中点,当P 在BC 上从B 向C 移动而G 不动时,不动时, 下列结论成立的是下列结论成立的是A .线段.线段EF 的长逐渐增大的长逐渐增大B B .线段EF 的长逐渐减小的长逐渐减小C .线段.线段EF 的长不改变的长不改变D D .线段EF 的长不能确定的长不能确定 9.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),), 则不等式2x≥ax+4的解集为的解集为 A .x≥B. x≤3x≤3C . x ≤D .x ≥3≥310.如图1,在等边△ABC 中,点E 、D 分别是AC ,BC 边的中点,点P 为AB 边上的一个动点,连接PE ,PD ,PC ,DE .设AP =x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的中的A .线段PDB .线段PC C .线段PED .线段DE 二、填空题(本题共18分,每小题3分) 1111.函数.函数y=1x-3中自变量x 的取值范围是的取值范围是___________________________________________________.. 1212.请写出一个过一、三象限的反比例函数的表达式.请写出一个过一、三象限的反比例函数的表达式.请写出一个过一、三象限的反比例函数的表达式___________________________________________________.. 1313.下面有五个图形,与其它图形众不同的是第.下面有五个图形,与其它图形众不同的是第.下面有五个图形,与其它图形众不同的是第 个.GFEPDCBA①②③④ ⑤xy图2OPEDCBA图11414..如图,在矩形ABCD 中,=,以点B 为圆心,BC 长为半径画弧,交边AD 于点E .若AE •ED =16=16,,则矩形ABCD 的面积为的面积为. 15.当三角形中一个内角α是另一个内角β的一半时,的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”. 如果一个“半角三角形”的“半角”为20°,那么这个,那么这个“半角三角形”的最大内角的度数为__________.16.2014年5月1日开始,北京市开始实施居民用水阶梯水价.具体方案如下:户年用水量180立方米立方米(含)(含)(含)内,内,内,每立方米每立方米5元;181立方米至260立方米(含)内,每立方米7元;260立方米以上,每立方米9元.阶梯水价以日历年(每年1月1日到12月31日)为周期计算. 小王家2014年4月30日抄表示数550立方米,立方米,55月1日起实施阶梯水价,日起实施阶梯水价,66月抄表时因用户家中无人未见表,家中无人未见表,88月12日抄表示数706立方米,那么小王家本期用水量为立方米,那么小王家本期用水量为 立方米,本期用水天数104天,日均用水量为日均用水量为 立方米立方米. . 如果按这样每日用水量计算,如果按这样每日用水量计算,小李家今小李家今后每年的水费将达到后每年的水费将达到 元(一年按365天计算)天计算). . 三、解答题(本题共30分,每小题5分)1717.如图,点.如图,点C ,D 在线段BF 上,AB DE ∥,AB DF =,A F Ð=Ð.求证:BC DE =.18. 计算:011(20152014)82cos 45()2--+-°+1919.解不等式组:.解不等式组:240,3(1) 2.x x x -<ìí+³+î2020.已知.已知32a b =,求代数式2243(3)9a ba b a b ++-的值的值. .21.列方程或方程组解应用题:为了培育和践行社会主义核心价值观,引导学生广泛阅读古今文学名著,传承优秀传统文化传承优秀传统文化,,我区某校决定为初三学生购进相同数量的名著《三国演义》和《红岩》其中《三国演义》的单价比《红岩》的单价多比《红岩》的单价多282828元元.若学校购买《三国演义》用了若学校购买《三国演义》用了120012001200元,购买《红岩》用了元,购买《红岩》用了元,购买《红岩》用了400400400元,求《三元,求《三国演义》和《红岩》的单价各多少元国演义》和《红岩》的单价各多少元. .FEDCB A2222.已知.已知.已知::关于x 的一元二次方程2(41)330kx k x k -+++=(k 是整数).(1)求证:方程有两个不相等的实数根;方程有两个不相等的实数根; (2)若方程的两个实数根都是整数,求k 的值. 四、解答题(本题共20分,每小题5分)23. 如图,如图,BD 是△ABC 的角平分线,点E ,F 分别在BC ,AB 上,且DE ∥AB ,BE =AF . (1)求证:四边形ADEF 是平行四边形;是平行四边形;(2)若∠ABC =60°,BD =4=4,求平行四边形,求平行四边形ADEF 的面积.的面积.24.某公司有5个股东,每个股东的利润相同,有100名工人,每名工人的工资相同.2015年第一个季度工人的工资总额与公司个季度工人的工资总额与公司 的股东总利润情况见右表:的股东总利润情况见右表: 该公司老板根据表中数据,该公司老板根据表中数据,作出了图作出了图1,并声称股东利润和工人工资同步增长,并声称股东利润和工人工资同步增长,公司和工人做到了公司和工人做到了“有福同享”.针对老板的说法,解决下列问题:针对老板的说法,解决下列问题: (1)这三个月工人个人的月收入分别是)这三个月工人个人的月收入分别是 万元;万元;(2)在图2中,已经做出这三个月每个股东利润统计图,请你补出这三个月工人个人月收入的统计图;图; (3)通过完成第(1),(2)问和对图2的观察,你如何看待老板的说法?(用一两句话概括)的观察,你如何看待老板的说法?(用一两句话概括)月份月份 工人工资总额(万元)工人工资总额(万元) 股东总利润(万元)股东总利润(万元) 1 28 14 2 30 16 33218股东利润工人工资40302010月份(万元)总额1234O 图11231234股东月份(万元)个人收入O 图225. 如图,如图,AB AB 是⊙是⊙O O 的直径,的直径,C C 是弧AB 的中点,的中点,D D 是⊙是⊙O O 的 切线CN 上一点,上一点,BD BD 交AC 于点E ,且BA= BD . (1)求证:∠)求证:∠ACD=45ACD=45ACD=45°;°;°; (2)若OB=2OB=2,求,求DC 的长.的长.2626.阅读下面材料:.阅读下面材料:.阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图1,在△,在△ABC ABC 中,中,∠A ∠A=2=2=2∠B,∠B,∠B,CD CD 平分∠A 平分∠ACB CB CB,,AD=2.2AD=2.2,,AC=3.6求BC 的长的长. .小聪思考:因为CD 平分∠A 平分∠ACB CB CB,所以可在,所以可在BC 边上取点E ,使EC=AC EC=AC,连接,连接DE. 这样很容易得到△DEC ≌△DAC ,经过推理能使问题得到解决(如图2). 请回答:(1)△)△BDE BDE 是__________________三角形三角形三角形. .(2)BC 的长为的长为__________. __________. 参考小聪思考问题的方法,解决问题:参考小聪思考问题的方法,解决问题:如图3,已知△,已知△ABC ABC 中,中,AB=AC, AB=AC, ∠A ∠A=20=20=20°,°,°, BD 平分∠平分∠ABC,BD=ABC,BD=2.3,BC=2.求AD 的长的长. . 五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)2727.在平面直角坐标系.在平面直角坐标系xOy 中,二次函数y=y=((a-1a-1))x 2+2x+1与x 轴有交点,轴有交点,a a 为正整数为正整数. . (1)求a 的值的值. . (2)将二次函数y=y=((a-1a-1))x 2+2x+1的图象向右平移m 个单位,个单位,向下平移m 2+1个单位,当个单位,当 -2 -2≤x ≤1时,二次函数有最小值时,二次函数有最小值-3-3-3,, 求实数m 的值的值. .A B C D图1 ED C B A图2 ABC D图3 NED CBA Oyx11O27题图题图2828..在等边△在等边△ABC ABC 外侧作直线AP ,点B 关于直线AP 的对称点为D ,连接BD,CD BD,CD,,其中CD 交直线AP 于点E .(1)依题意补全图1; (2)若∠)若∠PAB=30PAB=30PAB=30°,求∠°,求∠°,求∠ACE ACE 的度数;的度数;(3)如图2,若6060°°<∠PAB <120<120°,判断由线段°,判断由线段AB,CE,ED 可以构成一个含有多少度角的三角形,并证明形,并证明. .29. 对某种几何图形给出如下定义:对某种几何图形给出如下定义:符合一定条件的动点所形成的图形,叫做符合这个条件的点的轨迹的轨迹..例如例如,,平面内到定点的距离等于定长的点的轨迹平面内到定点的距离等于定长的点的轨迹,,是以定点为圆心是以定点为圆心,,定长为半径的圆定长为半径的圆. . (1)如图1,在△,在△ABC ABC 中,中,AB=AC AB=AC AB=AC,∠,∠,∠BAC=9BAC=9BAC=90°,0°,0°,A(0A(0A(0,,2)2),,B 是x 轴上一动点,当点B 在x 轴上运动时,点C 在坐标系中运动,点C 运动形成的轨迹是直线DE DE,且,且DE DE⊥⊥x 轴于点G. G. 则直线DE 的表达式是的表达式是 . .(2)当△)当△ABC ABC 是等边三角形时,在(是等边三角形时,在(11)的条件下,动点C 形成的轨迹也是一条直线形成的轨迹也是一条直线. . .①当点B 运动到如图2的位置时,的位置时,AC AC AC∥∥x 轴,则C 点的坐标是点的坐标是 . .②在备用图中画出动点C 形成直线的示意图,并求出这条直线的表达式形成直线的示意图,并求出这条直线的表达式. .③设②中这条直线分别与x,y 轴交于E,F 两点,当点C 在线段EF 上运动时,点H 在线段OF 上运动,(不与O 、F 重合),且CH=CE,CH=CE,则则CE 的取值范围是的取值范围是 . .xy AOxyA O图1AB CP AB CP图2 图2xy A C BO图1xy GDE CBAO数学试卷答案及评分参考一、选择题(本题共30分,每小题3分) 题 号12345 6 7 8 9 10 答 案 BC B B ADCCAC二、填空题(本题共18分,每小题3分)题号题号 1111 12121313 14 15 1616答案答案x ≠3k ›0即可即可不唯一不唯一60120o156,1.5,4047.5三、解答题(本题共30分,每小题5分) 17.(本小题满分5分)分) 证明:∵ AB ∥DE∴ ∠B = ∠EDF ; 在△ABC 和△和△F F DE 中A F AB DF B EDF Ð=Ðìï=íïÐ=Ðî…………………………3分∴△ABC ≌△FDE (ASA)(ASA),…………………,…………………4分 ∴BC=DE. …………………………………5分18.18.解:原式解:原式解:原式=1+=1+22-2222´+……………………………………4分=1+22-2+2 =3+2…………………………………………………………5分 19. 解①得:x<2,…………………………………………………………2分 解②得:解②得:x x ≥1-2,……………………………………………………4分 所以不等式组的解集为:1-2≤x<2. ……………………………5分2020..解:2243(3)9a ba b a b ++-43(3)(3)(3)a b a b a b a b +=++- 433a ba b+=-……………………………………………3分∵32a b =,∴23a b =. ………………………………………………4分 ∴原式=662aa a=--.……………………………………5分21.解:设《红岩》的单价为x 元,则《三国演义》的单价为(x+28)元. ……………1分.由题意,得120040028x x=+……………………………………3分. 解得x=14.x=14.……………………………………4分. 经检验,经检验,x=14x=14x=14是原方程的解,且符合题意是原方程的解,且符合题意是原方程的解,且符合题意. . ∴x+28=42.答:《红岩》的单价为14元,《三国演义》的单价为42元. ……………………5分.2222..(1)证明:△2(41)4(33)k k k =+-+ 2(21)k =-·………………………………………1分.∵2(41)330kx k x k -+++=是一元二次方程,∴k ≠0, ∵k 是整数是整数∴12k ¹即210k -¹. ∴△2(21)0k =->∴方程有两个不相等的实数根∴方程有两个不相等的实数根..………………………………………2分(2)解方程得:2(41)(21)2k k x k+±-=……………………………………3分.∴3x =或11x k=+………………………………………4分∵k 是整数,方程的根都是整数,∴k =1或-1…………………………………5分.四、解答题(本题共20分,每小题5分)23. (1)证明:∵BD 是△ABC 的角平分线,的角平分线, ∴∠ABD =∠DBE ,∵DE ∥AB , ∴∠ABD =∠BDE , ∴∠DBE =∠BDE ,∴,∴BE=DE; BE=DE; ∵BE =AF ,∴AF=DE;∴四边形ADEF 是平行四边形是平行四边形. .………………………………………2分(2)解:过点D 作DG ⊥AB 于点G ,过点E 作EH ⊥BD 于点H , ∵∠ABC =60°,BD 是∠ABC 的平分线,的平分线, ∴∠ABD =∠EBD =30°,=30°,∴DG =BD =×4=24=2,………………………………………,………………………………………3分∵BE =DE ,∴BH =DH =2=2,, ∴BE ==433,∴DE =433,………………………………………4分 ∴四边形ADEF 的面积为:DE •DG =833.………………………………………5分24. 解:(1)0,28,0.3,0.32. ……………………………3分(2)补图如右图:………………………………4分 (3)答案不唯一)答案不唯一..…………………………………5分25. (1)证明:∵)证明:∵C C 是弧AB 的中点,∴弧AC=AC=弧弧BC,∴AC=BC. ∵AB 是⊙是⊙O O 的直径,的直径, ∴∠∴∠ACB=90ACB=90ACB=90°°,∴∠∴∠BAC=BAC=BAC=∠∠CBA=45CBA=45°°, 连接OC, ∵OC=OA, ∴∠∴∠AC0=45AC0=45AC0=45°°. ∵CN 是⊙是⊙O O 切线,∴∠切线,∴∠OCD=90OCD=90OCD=90°°,∴∠∴∠ACD=45ACD=45ACD=45°°.………………………………2分. (2) 解:作BH BH⊥⊥DC 于H 点,…………………………3分. ∵∠∵∠ACD=45ACD=45ACD=45°°,∴∠∴∠DCB=135DCB=135DCB=135°°, ∴∠∴∠BCH=45BCH=45BCH=45°°, ∵OB=2OB=2,∴,∴,∴BA= BD=4,AC= BC=BA= BD=4,AC= BC=22. ∵BC=22,∴BH= CH=2, 设DC=x,DC=x,在在Rt Rt△△DBH 中,中,利用勾股定理:2222)24x ++=(,………4分解得:解得:x=x=223-±(舍负的),∴,∴x=x=223-+, ∴DC 的长为:223-+……………………………5分.2626.解:.解:(1)△)△BDE BDE 是等腰三角形………………………1分 (2)BC 的长为5.8.5.8.………………………………………………………………2分. ∵△∵△ABC ABC 中,中,AB=AC, AB=AC, ∠A ∠A=20=20=20°,°,°, ∴∠A ∴∠ABC=BC=BC=∠∠C= 80°,∵°,∵°,∵BD BD 平分∠平分∠B. B. ∴∠∴∠1=1=1=∠∠2= 40°,∠°,∠°,∠BDC= 60BDC= 60°,°,.在BA 边上取点E ,使BE=BC=2BE=BC=2,连接,连接DE DE,,. ………………………3分 则△DEB ≌△DBC ,∴∠,∴∠BED=BED=BED=∠∠C= 80°,°,°, ∴∠∴∠4=604=604=60°,∴∠°,∴∠°,∴∠3=603=603=60°,°,°,在DA 边上取点F ,使DF=DB DF=DB,连接,连接FE FE,…………………………,…………………………4分 则△BDE ≌△FDE ,∴∠,∴∠5=5=5=∠∠1= 40°,°,°,BE=EF=2, BE=EF=2, ∵∠A ∵∠A=20=20=20°,∴∠°,∴∠°,∴∠6=206=206=20°,∴°,∴°,∴AF=EF=2, AF=EF=2, ∵BD=DF=2.3, ∴AD = BD+BC=4.3.…………………………5分.654321F EDC BAHOABCDEN 1231234个人收入(万)月份工人股东O图2五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.27.解:解:(1)∵二次函数y=y=((a-1a-1))x 2+2x+1与x 轴有交点,轴有交点,令y=0y=0,则(,则(,则(a-1a-1a-1))x 2+2x+1=0+2x+1=0,, ∴=4-4(a-1)0D ³,解得a ≤2.2. …………………………………1分.∵a 为正整数为正整数..∴a=1、2 又∵又∵y=y=y=((a-1a-1))x 2+2x+1是二次函数,∴是二次函数,∴a-1a-1a-1≠≠0,∴,∴a a ≠1,∴a 的值为2.2.………………………………………2分 (2)∵a=2,∴二次函数表达式为y=x 2+2x+1+2x+1,,将二次函数y=x 2+2x+1化成顶点式y=y=((x+1x+1))2二次函数图象向右平移m 个单位,向下平移m 2+1个单位个单位后的表达式为y=y=((x+1-m x+1-m))2-(m 2+1+1)). 此时函数的顶点坐标为(此时函数的顶点坐标为(m-1, -m m-1, -m 2-1-1)).…………………………………4分当m-1m-1<<-2,即m <-1时,时, x=-2时,二次函数有最小值时,二次函数有最小值-3-3-3,, ∴-3=(-1-m -1-m))2-(m 2+1+1)),解得32m =-且符合题目要求且符合题目要求.. ………………………………5分当 -2≤m-1m-1≤≤1,1,即即-1-1≤≤m ≤2,2,时,当时,当时,当 x= m-1时,二次函数有最小值时,二次函数有最小值-m -m 2-1=-3-1=-3,, 解得2m =±.∵-2m =不符合不符合-1-1-1≤≤m ≤2的条件,舍去的条件,舍去.. ∴2m =.……………………………………6分当m-1m-1>>1,即m >2时,当时,当 x=1时,二次函数有最小值时,二次函数有最小值-3-3-3,,∴-3=(2-m 2-m))2-(m 2+1+1)),解得32m =,不符合m >2的条件舍去的条件舍去..综上所述,m 的值为32-或2 ……………………………………7分 2828.解:.解:(1)补全图形,如图1所示所示. .……………………………1分 (2)连接AD AD,如图,如图2.2.∵点∵点D 与点B 关于直线AP 对称,∴对称,∴AD=AB AD=AB AD=AB,∠,∠DAP =∠BAP =30°. ∵AB=AC, ∠BAC =60°. ∴AD=AC, ∠DAC =120°.∴2∠ACE+60°+60°=180°∴∠ACE =30°……………………………3分PEDCBA 图1PEDCBA图2(3)线段AB,CE,ED 可以构成一个含有60°角的三角形°角的三角形..…………………………… 4分证明:连接AD ,EB ,如图3.∵点D 与点B 关于直线AP 对称,对称, ∴AD=AB AD=AB,,DE=BE DE=BE,, 可证得∠EDA = ∠E BA .∵AB=AC,AB=AD.AB=AC,AB=AD. ∴AD=AC, ∴∠ADE = ∠ACE. ∴∠ABE = ∠ACE.ACE.设设AC AC,,BE 交于点F, 又∵∠AFB = ∠CFE.CFE.∴∠∴∠∴∠B B AC =∠BEC=60°. ∴线段AB,CE,ED 可以构成一个含有60°角的三角形°角的三角形..………7分29. 解:(1)x=2.x=2.…………………………1分. (2)①)①C C 点坐标为点坐标为: :43,23()…………………………3分.②由①②由①C C 点坐标为点坐标为: :43,23()再求得其它一个点C 的坐标,如(3,1),或(,或(00,-2-2)等)等)等代入表达式y=kx+b y=kx+b,解得,解得b=-23k ìïí=ïî. ∴直线的表达式是32y x =-.………………………5分.动点C 运动形成直线如图所示运动形成直线如图所示..……………6分.③423393EC £<.…………………………8分.图3FP CBADExy FAEO。
2015西城一模 北京市西城区2015届高三一模考试数学(理)试题及答案
![2015西城一模 北京市西城区2015届高三一模考试数学(理)试题及答案](https://img.taocdn.com/s3/m/4571663c5a8102d276a22f23.png)
北京市西城区2015年高三一模试卷数 学(理科)2015西城一模2015.4第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合0,1{}A =,集合{|}B x x a =>,若A B =∅,则实数a 的取值范围是( )(A )1a ≤(B )1a ≥(C )0a ≥(D )0a ≤3. 在极坐标系中,曲线2cos ρ=θ是( )(A )过极点的直线 (B )半径为2的圆 (C )关于极点对称的图形 (D )关于极轴对称的图形4.执行如图所示的程序框图,若输入的x 的值为3, 则输出的n 的值为( ) (A )4 (B )5 (C )6 (D )72.复数z 满足i 3i z ⋅=-,则在复平面内,复数z 对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限(D )第四象限8. 已知抛物线214y x =和21516y x =-+所围成的封闭曲线如图所示,给定点(0,)A a ,若在此封闭曲线上恰三对不同的点,满足每一对点关于点A 对称,则实数a 的取值范围是( )5.若函数()f x 的定义域为R ,则“x ∀∈R ,(1)()f x f x +>”是“函数()f x 为增函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 6. 一个几何体的三视图如图所示,则该几何体的体积的是( ) (A )476(B )233(C )152(D )77. 已知6枝玫瑰与3枝康乃馨的价格之和大于24元,而4枝玫瑰与4枝康乃馨的价格之和小于20元,那么2枝玫瑰和3枝康乃馨的价格的比较结果是( ) (A )2枝玫瑰的价格高 (B )3枝康乃馨的价格高 (C )价格相同 (D )不确定(A )(1,3) (B )(2,4) (C )3(,3)2(D )5(,4)2侧(左)视图正(主)视图俯视图第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 已知平面向量,a b 满足(1,1)=-a ,()()+⊥-a b a b ,那么|b |= ____.10.已知双曲线C :22221(0,0)x y a b a b-=>>的一个焦点是抛物线28y x =的焦点,且双曲线C 的离心率为2,那么双曲线C 的方程为____. 11.在∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若π3A =,cos B =2b =,则a =____. 12.若数列{}n a 满足12a =-,且对于任意的*,m n ∈N ,都有m n m n a a a +=⋅,则3a =___;数列{}n a 前10项的和10S =____.13. 某种产品的加工需要A ,B ,C ,D ,E 五道工艺,其中A 必须在D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有____种. (用数字作答)14. 如图,四面体ABCD 的一条棱长为x ,其余棱长均为1, 记四面体ABCD 的体积为()F x ,则函数()F x 的单 调增区间是____;最大值为____.BADC三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)设函数π()4cos sin()3f x x x =-x ∈R . (Ⅰ)当π[0,]2x ∈时,求函数()f x 的值域;(Ⅱ)已知函数()y f x =的图象与直线1=y 有交点,求相邻两个交点间的最短距离.16.(本小题满分13分)2014年12月28日开始,北京市公共电汽车和地铁按照里程分段计价. 具体如下表.(不考虑公交卡折扣情况)已知在北京地铁四号线上,任意一站到陶然亭站的票价不超过5元,现从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中随机选出120人,他们乘坐地铁的票价统计如图所示.(Ⅰ)如果从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中任选1人,试估计此人乘坐地铁的票价小于5元的概率;(Ⅱ)从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中随机选2人,记X 为这2人乘乘公共电汽车 方案 10公里(含)内2元; 10公里以上部分,每增加1元可乘坐5公里(含).乘坐地铁方案(不含机场线) 6公里(含)内3元; 6公里至12公里(含)4元; 12公里至22公里(含)5元; 22公里至32公里(含)6元;32公里以上部分,每增加1元可乘坐20公里(含).O票价(元)345坐地铁的票价和,根据统计图,并以频率作为概率,求X 的分布列和数学期望;(Ⅲ)小李乘坐地铁从A 地到陶然亭的票价是5元,返程时,小李乘坐某路公共电汽车所花交通费也是5元,假设小李往返过程中乘坐地铁和公共电汽车的路程均为s 公里,试写出s 的取值范围.(只需写出结论)17.(本小题满分14分)如图,在五面体ABCDEF 中,四边形ABCD 是边长为4的正方形,//EF AD , 平面ADEF ⊥平面ABCD ,且2BC EF =, AE AF =,点G 是EF 的中点.(Ⅰ)证明:AG⊥平面ABCD ;(Ⅱ)若直线BF 与平面ACE 所成角的正弦值为9,求AG 的长;(Ⅲ)判断线段AC 上是否存在一点M ,使MG //平面ABF ?若存在,求出AM MC的值;若不存在,说明理由.18.(本小题满分13分)设*n ∈N ,函数ln ()n x f x x =,函数e ()xn g x x=,(0,)x ∈+∞.(Ⅰ)当1n =时,写出函数()1y f x =-零点个数,并说明理由;(Ⅱ)若曲线()y f x =与曲线()y g x =分别位于直线1l y =:的两侧,求n 的所有可能取值.19.(本小题满分14分)设1F ,2F 分别为椭圆)0(1:2222>>=+b a by a x E 的左、右焦点,点)23,1(P 在椭圆E 上,且点P 和1F 关于点)43,0(C 对称.(Ⅰ)求椭圆E 的方程;(Ⅱ)过右焦点2F 的直线l 与椭圆相交于A ,B 两点,过点P 且平行于AB 的直线与椭圆交于另一点Q ,问是否存在直线l ,使得四边形PABQ 的对角线互相平分?若存在,求出l 的方程;若不FCADBG E存在,说明理由.20.(本小题满分13分)已知点列111222:(,),(,),,(,)k k k T P x y P x y P x y (*k ∈N ,2k ≥)满足1(1,1)P ,且111,i i ii x x y y --=+⎧⎨=⎩与11,1i i ii x x y y --=⎧⎨=+⎩(2,3,,i k =) 中有且仅有一个成立.(Ⅰ)写出满足4k =且4(3,2)P 的所有点列;(Ⅱ) 证明:对于任意给定的k (*k ∈N ,2k ≥),不存在点列T ,使得112k kki i i i x y ==+=∑∑;(Ⅲ)当21k n =-且21(,)n P n n -(*,2n n ∈N ≥)时,求11k ki i i i x y ==⨯∑∑的最大值.北京市西城区2015年高三一模试卷参考答案及评分标准高三数学(理科) 2015.4一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.C 3.D 4.B 5.B 6.A 7.A 8.D 二、填空题:本大题共6小题,每小题5分,共30分.9 10.2213y x -=11 12.8- 68213.2414. (或写成) 18注:第12,14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为3)cos 23sin 21(cos 4)(+-=x x x x f ……………… 1分 3cos 32cos sin 22+-=x x xx x 2cos 32sin -= ……………… 3分=π2sin(2)3x -, ……………… 5分因为 π02x ≤≤, 所以ππ2π2333x --≤≤, ……………… 6分所以 sin(π2)123x --≤,即()2f x ≤, 其中当5π12x =时,)(x f 取到最大值2;当0=x 时,)(x f 取到最小值3-, 所以函数()f x 的值域为]2,3[-. ……………… 9分(Ⅱ)依题意,得π2sin(2)13x -=,π1sin(2)32x -=, ……………… 10分 所以ππ22π36x k -=+ 或 π5π22π36x k -=+, ……………… 12分 所以ππ4x k =+或 7ππ12x k =+()k ∈Z , 所以函数()y f x =的图象与直线1=y 的两个相邻交点间的最短距离为π3. …… 13分16.(本小题满分13分)(Ⅰ)解:记事件A 为“此人乘坐地铁的票价小于5元”, ………………1分由统计图可知,得120人中票价为3元、4元、5元的人数分别为60,40,20(人).所以票价小于5元的有6040100+=(人). ………………2分 故120人中票价小于5元的频率是10051206=. 所以估计此人乘坐地铁的票价小于5元的概率5()=6P A . ………………4分 (Ⅱ)解:X 的所有可能取值为6,7,8,9,10. ……………… 5分根据统计图,可知120人中地铁票价为3元、4元、5元的频率分别为60120,40120, 20120,即12,13,16, ……………… 6分以频率作为概率,知乘客地铁票价为3元、4元、5元的概率分别为12,13,16.所以 111(6)224P X ==⨯=,11111(7)23323P X ==⨯+⨯=,1111115(8)26623318P X ==⨯+⨯+⨯=,11111(9)36639P X ==⨯+⨯=,111(10)6636P X ==⨯=,……………… 8分所以随机变量X 的分布列为:……………… 9分所以1151122()67891043189363E X =⨯+⨯+⨯+⨯+⨯=. ……………… 10分(Ⅲ)解:(20,22]s ∈. ………………13分17.(本小题满分14分)(Ⅰ)证明:因为AE AF =,点G 是EF 的中点,所以 AG EF ⊥. ……………1分 又因为 //EF AD ,所以 AG AD ⊥. ……………2分因为平面ADEF ⊥平面ABCD ,平面ADEF 平面ABCD AD =,AG ⊂平面ADEF ,所以 AG ⊥平面ABCD . ……………4分 (Ⅱ)解:因为AG ⊥平面ABCD ,AB AD ⊥,所以,,AG AD AB 两两垂直. 以A 为原 点,以AB ,AD ,AG 分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系, ……5分则(0,0,0)A ,(4,0,0)B ,(4,4,0)C , 设(0)AG t t =>,则(0,1,)E t ,(0,1,)F t -, 所以(4,1,)BF t =--,(4,4,0)AC =,(0,1,)AE t =. 设平面ACE 的法向量为(,,)n x y z =, 由 0AC n ⋅=,0AE n ⋅=,得440,0,x y y tz +=+=⎧⎨⎩令 1z =, 得(,,1)n t t =-.……………7分因为BF 与平面ACE 9所以 6cos ,9||||BF n BF n BF n ⋅<>==⋅,……………8分即=, 解得21t =或2172t =.所以1AG =或2. ……………9分(Ⅲ)解:假设线段AC 上存在一点M ,使得MG //平面ABF ,设AM ACλ=,则 AM AC λ=,由 (4,4,0)AC =,得(4,4,0)AM λλ=, ……………10分 设 (0)AG t t =>,则(0,0,)AG t =,所以 (4,4,)MG AG AM t λλ=-=--. ……………11分 设平面ABF 的法向量为111(,,)x y z m =, 因为 (0,1,)AF t -=,(4,0,0)AB =, 由 0AF m ⋅=,0AB m ⋅=,得1110,40,y tz x -+==⎧⎨⎩令 11z =, 得(0,,1)t m =, ……………12分 因为 MG //平面ABF ,所以 0MG m =⋅,即04t t λ+=-,解得 14λ=. 所以14AM AC =,此时13AM MC =, 所以当13AM MC =时, MG //平面ABF . ……………14分18.(本小题满分13分)(Ⅰ)证明:结论:函数()1y f x =-不存在零点. ……………1分 当1n =时,ln ()x f x x =,求导得21ln ()xf x x-'=, ……………2分 令()0f x '=,解得e x =. ……………3分 当x 变化时,()f x '与()f x 的变化如下表所示:所以函数()f x 在(0,e)上单调递增,在(e,)+∞上单调递减,则当e x =时,函数()f x 有最大值1(e)e f =. ……………4分 所以函数()1y f x =-的最大值为1(e)110ef -=-<,所以函数()1y f x =-不存在零点. ……………5分 (Ⅱ)解:由函数ln ()n x f x x =求导,得 11ln ()n n xf x x+-'=, 令()0f x '=,解得1e nx =. 当x 变化时,()f x '与()f x 的变化如下表所示:……………7分 所以函数()f x 在1(0,e )n 上单调递增,在1(e ,)n+∞上单调递减, 则当1e nx =时,函数()f x 有最大值11(e )enf n =; ……………8分 由函数e ()x n g x x =,(0,)x ∈+∞求导,得 1e ()()x n x n g x x +-'=, ……………9分令 ()0g x '=,解得x n =. 当x 变化时,()g x '与()g x 的变化如下表所示:所以函数()g x 在(0,)n 上单调递减,在(,)n +∞上单调递增,则当x n =时,函数()g x 有最小值e ()()ng n n=. ……………11分因为*n ∀∈N ,函数()f x 有最大值11(e )1enf n =<, 所以曲线ln n xy x =在直线1l y =:的下方,而曲线e x n y x=在直线1l y =:的上方,所以e ()1nn>, ……………12分解得e n <.所以n 的取值集合为{1,2}. ……………13分19.(本小题满分14分)(Ⅰ)解:由点)23,1(P 和1F 关于点)43,0(C 对称,得1(1,0)F -, ……………… 1分所以椭圆E 的焦点为)0,1(1-F ,)0,1(2F , ……………… 2分 由椭圆定义,得 122||||4a PF PF =+=.所以 2a =,b == ……………… 4分故椭圆E 的方程为13422=+y x . ……………… 5分 (II )解:结论:存在直线l ,使得四边形PABQ 的对角线互相平分. ……………… 6分 理由如下:由题可知直线l ,直线PQ 的斜率存在,设直线l 的方程为)1(-=x k y ,直线PQ 的方程为3(1)2y k x -=-. …………… 7分 由 221,43(1),x y y k x ⎧+=⎪⎨⎪=-⎩消去y , 得2222(34)84120k x k x k +-+-=, ……………… 8分由题意,可知0∆> ,设11(,)A x y ,22(,)B x y ,则2221438kk x x +=+,212241234k x x k -=+, ……………… 9分 由221,433(1),2x y y k x ⎧+=⎪⎪⎨⎪-=-⎪⎩消去y , 得2222(34)(812)41230k x k k x k k +--+--=, 由0∆>,可知12k ≠-,设),(33y x Q ,又)23,1(P ,则223431281k k k x +-=+,2234331241k k k x +--=⋅. ……………… 10分若四边形PABQ 的对角线互相平分,则PB 与AQ 的中点重合, 所以212231+=+x x x ,即3211x x x -=-, ……………… 11分 故2212123()4(1)x x x x x +-=-. ……………… 12分所以 2222222284124123()4(1)343434k k k k k k k----⋅=-+++. 解得 34k =. 所以直线l 为3430x y --=时, 四边形PABQ 的对角线互相平分. ……… 14分 (注:利用四边形PABQ 为平行四边形,则有||||PQ AB =,也可解决问题)20.(本小题满分13分)(Ⅰ)解:符合条件的点列为1234(1,1),(1,2),(2,2),(3,2)T P P P P :;或1234(1,1),(2,1),(2,2),(3,2)T P P P P :;或1234(1,1),(2,1),(3,1),(3,2)T P P P P :.……… 3分 (Ⅱ)证明:由已知,得111i i i i x y x y --+=++,所以数列{}i i x y +是公差为1的等差数列.由112x y +=,得1i i x y i +=+(1,2,,i k =). ……………… 3分故11kki i i i x y ==+∑∑1()ki i i x y ==+∑23(1)k =++++1(3)2k k =+. ……………… 5分 若存在点列T ,使得112k kki i i i x y ==+=∑∑,则1(3)22k k k +=,即1(3)2k k k ++=. 因为整数k 和3k +总是一个为奇数,一个为偶数,且2k ≥, 而整数12k +中不含有大于1的奇因子,所以对于任意正整数k (2)k ≥,任意点列均不能满足112kkk i i i i x y ==+=∑∑. ………… 8分(Ⅲ)解:由(Ⅱ)可知,1(1,2,,21)i i y i x i n =+-=-,所以1221122111()(232)kki i n n i i x y x x x x x n x --==⨯=+++-+-++-∑∑12211221()[(232)()]n n x x x n x x x --=++++++-+++,令1221n t x x x -=+++,则11[(1)(21)]kki i i i x y t n n t ==⨯=+--∑∑. ……………… 10分考察关于t 的二次函数()[(1)(21)]f t t n n t =+--. (1)当n 为奇数时,可得1(1)(21)2n n +-是正整数,可构造数列{}i x :1111,2,,(1),,(1),(1)1,,222n n n n n ++++项,对应数列{}i y :1,1,,1,2,,,,n n n 项.(由此构造的点列符合已知条件)而且此时,1221(1)11112(1)(1)(1)222n n x x x n n n n --+++=++++++++++个112(1)(1)2n n n =+++++-1(1)(21)2n n =+-,所以当1(1)(21)2t n n =+-时, 11k ki i i i x y ==⨯∑∑有最大值221(1)(21)4n n +-.……………12分(2)当n 为偶数时,1(1)(21)2n n +-不是正整数,而是离其最近的正整数,可构造数列{}i x :(221,2,,,,,(1),,(1),2,,22222nn n n n n n n ++++1)项项,对应数列{}i y :221,1,,1,2,,1,1,2,,,,22222nn n n n n nn ++++(+1)项项,(由此构造的点列符合已知条件)而且此时,1221(1)2212(1)(1)2222n n nn n nn x x x n --+++=+++++++++++个个12(1)(1)2222n n n n n =++++⨯++⨯-11(1)(21)22n n =+--,所以当11(1)(21)22t n n =+--时, 11k ki i i i x y ==⨯∑∑有最大值2211(1)(21)44n n +--.……………… 13分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
37° B ①
45° D
l C (第 35 题)
37° B
α ②
45° D
第 7 页 共 8 页
36. (8 分)已知 A 市出租车原收费标准如下:不超过 3 km 的路程按起步价 10 元收费,超过 3 km 以外的路程按 2.4 元/km 收费.为了减少出租车空车返回的损失,现 A 市决定实施返空费方案, 设出租车行驶的路程为 x km,具体方案如下:当 0<x≤20 时,按原收费标准收费;当 x>20 时,在原收费标准基础上,再加收 0.01x 元/km.例如,当出租车行驶了 50 km 时,收费总额为: 2.4×(50-3)+10+(0.01×50)×(50-20)=137.8(元) . (1)A 市实施返空费方案后,当 x>20 时,求收费总额 y(元)与 x(km)的函数关系式; (2)自 4 月 1 日起,南京市实施的返空费方案是:不超过 20 km 的路程,与 A 市的原收费标准 相同; 超过 20 km 以外的路程, 按原单价 2.4 元/km 的 1.5 倍收费. 若行驶路程 x 超过 20 km, 分别按两市返空费方案计算,当收费总额相同时,求 x 的值.
A D
O B (第 24 题) C
25. (7 分)现有一组数:-1, 2,0,3,求下列事件的概率: (1)从中随机选择一个数,恰好选中无理数; (2)从中随机选择两个不同的数,均比 0 大.
第 3 页 共 8 页
27. (8 分)为了解某校初二学生每周上网的时间,两位学生进行了抽样调查.小丽调查了初二电脑 爱好者中 40 名学生每周上网的时间;小杰从全校 400 名初二学生中随机抽取了 40 名学生,调查 了每周上网的时间.小丽与小杰整理各自样本数据,如下表所示.
A O 18º (第 34 题) B
35. (8 分)在某两个时刻,太阳光线与地面的夹角分别为 37°和 45°,树 AB 长 6 m. (1)如图①,若树与地面 l 的夹角为 90°,则两次影长的和 CD= (参考数据:sin37° ≈0.60,cos37° ≈0.80,tan37° ≈0.75. ) m; (2)如图②,若树与地面 l 的夹角为 α,求两次影长的和 CD(用含 α 的式子表示) .
y D A B E (第 8 题) C ①
O ② ③ ④
x
(第 11 题)
第 1 页 共 8 页
9.若一个反比例函数的图象经过点(2,3) ,则该反比例函数图象也经过点(-3, 10.若圆锥的高为 2,底面半径为 1,则这个圆锥的侧面积为
2 2 2 2
) .
. . .
11.如图为函数:y=x -1,y=x +6x+8,y=x -6x+8,y=x -12x+35 在同一平面直角坐标系 中的图象,其中最有可能是 y=x2-6x+8 的图象的序号是
y
,
) ;
400 A
100 O
B
C 4 D x
(第 29 题)
30. (8 分)如图 ①,一条笔直的公路上有 A、B、C 三地,B、C 两地相距 150 千米,甲汽车从 B 地乙汽车从 C 地同时出发,沿公路匀速相向而行,分别驶往 C、B 两地.甲、乙两车到 A 地的 距离 y1、y2(千米)与行驶时间 x(时)的关系如图 ② 所示.
32. (8 分)二次函数 y=2x2+bx+c 的图象经过点(2,1) , (0,1) . (1)求该二次函数的表达式及函数图象的顶点坐标和对称轴; (2)若点 P (3 a , y1 ) ,Q (4 a , y2 )在抛物线上,试判断 y1 与 y2 的大小. (写出判断的理由)
2 2
33. (10 分)如图,四边形 ABCD 是菱形,对角线 BD 上有一点 O,以 O 为圆心,OD 长为半径的圆 记作⊙O. (1)当⊙O 经过点 A 时,用尺规作出⊙O;此时,点 C 在⊙O 上吗?为什么? (2)当⊙O 与 AB 相切于点 A 时, ①求证:BC 与⊙O 相切; ②若 OB=1,⊙O 的面积= .
17.2015 年南京 3 月份某周 7 天的最低气温分别是 -1℃,2℃, 3℃,2℃ ,0℃, -1℃,2℃.则
1 k 与 y 2 x 的图象没有交点,则 k 的取值范围为 x
18.圆锥的底面直径是 6,母线长为 5,则圆锥侧面展开图的圆心角是
19.如图, AB 为 ⊙O 的直径, CD 为 ⊙O 的弦,∠ACD 25 ,则∠BAD 的度数为
C. -2
D.2
C B O A (第 5 题) B C
A E
D
(第 6 题)
⌒的长度为 6.如图,半径为 1 的⊙O 与正五边形 ABCDE 相切于点 A、C,则劣弧 AC 3 4 3 2 A. π B. π C. π D. π 5 5 4 3 二、填空题 7.若李老师六个月的手机上网流量(单位:M)分别为 526,600,874,480,620,500,则李老师 这六个月平均每个月的手机上网流量为 M. . 8. 如果按图中虚线对折可以做成一个上底面为无盖的盒子, 那么该盒子的下底面的字母是
D
C
A
B (第 33 题)
第 6 页 共 8 页
34. (8 分)如图,跷跷板 AB 的一端 B 碰到地面时,AB 与地面的夹角为 18°,且 OA=OB=3m. (1)求此时另一端 A 离地面的距离(精确到 0.1 m) ; (2)跷动 AB,使端点 A 碰到地面,请画出点 A 运动的路线(写出画法,并保留画图痕迹) ,并求出 点 A 运动路线的长. (参考数据:sin18° ≈0.31,cos18° ≈0.95,tan18° ≈0.32)
D F 4 B E (第 13 题) C B
A
8
D 5 10 C (第 15 题)
(第 14 题)
15.如图为一个半径为 4 m 的圆形广场,其中放有六个宽为 1 m 的长方形临时摊位,这些摊位均有 两个顶点在广场边上,另两个顶点紧靠相邻摊位的顶点,则每个长方形摊位的长为 16.使式子 1+ 1 x 有意义的 x 的取值范围是 这 7 天最低气温的众数是 12.反比例函数 y ℃,中位数是 . ℃. . 度. ° . m.
第 2 页 共 8 页
三、解答题 5+3x>18, 22. (6 分)解不等式组x x-2 并写出不等式组的整数解. ≤4- . 2 3
23. (6 分)化简
a 2a 3a 2 a2 a2 a 4
24. (7 分)如图,在四边形 ABCD 中,AC、BD 交于点 O,AO=CO,BO=DO,∠ABC=∠DCB. (1)求证:四边形 ABCD 是矩形; (2)要使四边形 ABCD 是正方形,请直接写出 AC、BD 还需要满足的条件.
28. (8 分)如图所示,某工人师傅要在一个面积为 15m2 的矩形钢板上裁剪下两个相邻的正方形钢 板当工作台的桌面,且要使大正方形的边长比小正方形的边长大 1m.求裁剪后剩下的阴影部分 的面积.
第 4 页 共 8 页
29. (8 分)小红驾车从甲地到乙地.设她出发第 x h 时距离乙地 y km,图中的折线表示她在整个驾 车过程中 y 与 x 之间的函数关系. (1)①已知小丽驾车中途休息了 1 小时,则 B 点的坐标为( ②求线段 AB 所表示的 y 与 x 之间的函数关系式; (2)从图像上看,线段 AB 比线段 CD“陡” ,请说明它表示的实际意义.
37. (10 分)已知二次函数 y=a(x-m)2-a(x-m)(a、m 为常数,且 a≠0)的图象与 x 轴交于 A、B 两点(点 A 在点 B 的左侧) ,与 y 轴交于点 C,其顶点为 D. (1)求点 A、B 的坐标; (2)过点 D 作 x 轴的垂线,垂足为 E.若△CBO 与△DAE 相似(O 为坐标原点) ,试讨论 m 与 a 的关系; (3)在同一平面直角坐标系中,若该二次函数的图象与二次函数 y=-a(x-m)2+a(x-m)的图 象组合成一个新的图形,则这个新图形的对称轴为 .
y(千米)
B
图①
C
甲
乙
根据图象进行以下探究: (2)求图 ② 中 M 点的坐标,并解释该点的实际意义.
x(时) 图②
(1)请在图 ① 中标出 A 地的位置,并作简要的文字说明; (3)在图 ② 中补全甲车的函数图象,求 y1 与 x 的函数关系式.
第 5 页 共 8 页
31. (7 分) 【他山之石】微博上,有这样一段内容: “如果人一生的时间用 A4 纸上 900 个大小一样 的格子来表示,那么 30 年的光阴占其中的 360 个格子.我们要将每个格子认真度过,且行且珍惜. ” 按这个说法,人的一生有多少年?请写出必要的计算过程; 【回看自我】今天距离中考约 1000 个小时.在这段时间里,我们的学习生活约 200 个小 时,休息睡眠约 300 个小时,其余时间约为 500 小时.请绘制一个适当的统计图表示这些数据.
时间段 (小时/周) 小丽抽样 人数 小杰抽样 人数
0~1 1~2 2~3 3~4
6 10 16 8
22 10 6 2
(每组可含最低值,不含最高值)
(1)你认为哪位同学抽取的样本不合理?请说明理由. (2)根据合理抽取的样本,把上图中的频数分布直方图补画完整; (3)专家建议每周上网 2 小时以上(含 2 小时)的同学应适当减少上网的时间,估计该校全体初二学 生中有多少名同学应适当减少上网的时间?
2
12.若关于 x 的方程 x -2 5x+4=0 的一个根为 x1= 5+1,则另一个根 x2= 若∠C=70°,则∠EDF= 则△MBC 的周长为
A
13.如图,在△ABC 中,AB=AC,点 D、F 分别在 AB、AC 上,DF 垂直平分 AB,E 是 BC 的中点, °. . 14.在四边形 ABCD 中,AD∥BC,AB 与 CD 不平行,根据图中数据,若 BA、CD 延长后交于 M,