第15讲-函数的最值与值域

第15讲-函数的最值与值域
第15讲-函数的最值与值域

主 题 函数的最值与值域

教学内容

1. 掌握常见的函数的值域(最大值最小值)的求解方法。

2. 能够利用单调性,基本不等式求值域(最大值最小值)。

223y x x =++ 在x R ∈ 上的值域?在[2,1]x ∈- 上的值域?

例1. 求下列二次函数2

231,[1,0]y x x x =-+∈-的最大值或最小值.

试一试:求下列二次函数223,[0,3]y x x x =-++∈的最大值或最小值.

1. 当22x -≤≤时,求函数2

23y x x =--的最大值和最小值.

2. 已知函数2()23f x x x =-+在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围为________.

3. 设函数32)(2++-=x x x f ,若)(x f 在]1,[m x ∈上的最小值为1,求实数m 的值 。

4. 已知函数2557(),(,][,)322

x f x x x -=

∈-∞+∞-,求函数的值域。

5. 求函数22()4422f x x ax a a =-+-+在[0, 2]上的最值

1 m

本节课主要知识点:二次函数求值域的方法,分子分母是一次式的函数求值域的方法。

【巩固练习】

1. 设函数()()2203f x x x a x =-++≤≤的最大值为m ,最小值为n ,其中0,a a R ≠∈.求m n 、的值(用a 表示);

2. 求函数2(),[2,1)[0,)1

x f x x x -=∈--+∞+的值域;

【预习思考】

问题:已知二次函数62

--=x x y

①求0=y 时x 的值.

高中函数值域的12种求法

高中函数值域的12种求法 一.观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x)的值域。 点拨:根据算术平方根的性质,先求出√(2-3x)的值域。解:由算术平方根的性质,知√(2-3x)≥0, 故3+√(2-3x)≥3。 ∴函数的知域为. 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。 本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二.反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例2求函数y=(x+1)/(x+2)的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。

点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。 练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y-1或y1}) 三.配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域 例3:求函数y=√(-x2+x+2)的值域。 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2] 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。 练习:求函数y=2x-5+√15-4x的值域.(答案:值域为 {y∣y≤3}) 四.判别式法 若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。

函数的值域和最值教案

函数的值域和最值教案 【教学目标】1.让学生了解求函数值域(最值)常用的方法; 2.让学生了解各种方法的适用题型,并能灵活运用各种方法解函数的值域. 【教学重点】直接法、利用函数单调性求值域(最值)、数形结合法 【教学难点】判别式法和数形结合方法的使用 【例题设置】例1(强调定义域的重要性),其它例题主要指出各种方法适用的题型及 注意点. 【教学过程】 第一课时 〖例1〗已知函数3()2log f x x =+(19x ≤≤),求函数22()[()]()g x f x f x =+的最值. 错解:令3log [0,2]t x =∈,则 22222233()[()]()(2log )(2log )(2)22(3)3g x f x f x x x t t t =+=+++=+++=+- ∴当0t =时,min ()6g x =;当2t =时,max 2()()|22t g x g x ===. 错因分析:当2t =时,9x =,2(9)[(9)](81)g f f =+无意义.产生错误的原因主要是忽略了定义域这个前提条件. 正解:由2 1919 x x ≤≤??≤≤?,得()g x 的定义域为[1,3],3log [0,1]t x =∈,则 22222233()[()]()(2log )(2log )(2)22(3)3g x f x f x x x t t t =+=+++=+++=+- ∴当0t =时,min ()6g x =;当1t =时,max 2()()|13t g x g x ===. ★点评:1.求函数的值域(最值)同样得在定义域上进行; 2.运用换元法解题时,一定要注意元的取值范围,这步较容易被忽略; 3.配方法是求“二次函数类”值域的基本方法,形如2()()()F x af x bf x c =++的函数的值域问题,均可用此法解决.该法常与换元法结合使用. 〖例2〗 求下列函数的值域: ⑴ 121 21 x x y ++=+; 法一:(直接法)1212(21)11 2212121 x x x x x y +++-===-+++ 由20x >,211x +>,1 0121 x < <+,故12y <<,即原函数的值域为(1,2)

函数的最值与值域

函数的最值与值域 求函数值域的基本方法:①直接法;②分离变量法;③⊿判别式法;④换元法;⑤利用函数的单调性;⑥不等式法;⑦导数法 (高二年级学习) [)(][] 0,3,1)()8(3131)7(135)6(;21)5(;3421)4(|;2||1|)()3(;2,11,2,123)()2(;123)()1(. )(22-∈-+=+-=-+-=+-=+-=-++=---∈+-=+-=x x x x f y x x y x x y x x y x x x f x x x x f x x x f x x 值与值域小求下列函数的最大例1

二.拓展问题 (一)基于对钩函数) 1.x x x y 122++=; 2. )21(,1 122<<-++=x x x x y ; 3.)31(,632<<++=x x x x y 4. 的最小值在求),2[)0(+∞∈>+ x a x a x 5. 的最小值求44422+++ +x a x 6.P 、Q 、M 、N 四点都在椭圆2 212y x +=上,F 为椭圆在y 轴正半轴上的焦点.已知PF 与FQ 共线,MF 与FN 共线,且0PF MF ?= .求四边形PMQN 的面积的最小值和最大值.答案:1629 S ≤<

(二)基于二次函数 1.函数)43lg()(2x x x f +-=的定义域为M ,函数124)(+-=x x x g (M x ∈). (1) 求M ,并指出函数)(x f 的单调区间; (2) 求函数)(x g 的值域; (3) 当M x ∈时,若关于x 的方程)(241R b b x x ∈=-+有实数根,求b 的取值范围,并讨论实数根的个数. 2.讨论函数()21f x x x a =+-+的最小值 反馈练习:.)(.,|,1|2)(2的最小值求函数x f R a R x x a x x f ∈∈-+=

函数值域的13种求法

函数值域十三种求法 1. 直接观察法 对于一些比较简单的函数,其值域可通过观察得到。 例1. 求函数 x 1 y =的值域 解:∵0x ≠ ∴0x 1≠ 显然函数的值域是:),0()0,(+∞-∞ 例2. 求函数x 3y -=的值域 解:∵0x ≥ 3x 3,0x ≤-≤-∴ 故函数的值域是:]3,[-∞ 2. 配方法 配方法是求二次函数值域最基本的方法之一。 例3. 求函数 ]2,1[x ,5x 2x y 2-∈+-=的值域 解:将函数配方得: 4)1x (y 2+-= ∵]2,1[x -∈ 由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8] 3. 判别式法(只有定义域为整个实数集R 时才可直接用) 例4. 求函数 22 x 1x x 1y +++=的值域 解:原函数化为关于x 的一元二次方程 0x )1y (x )1y (2=-+- (1)当1y ≠时,R x ∈ 0)1y )(1y (4)1(2≥----=? 解得:23y 21≤≤ (2)当y=1时,0x =,而??????∈23,211 故函数的值域为????? ?23,21

例5. 求函数)x 2(x x y -+=的值域 解:两边平方整理得: 0y x )1y (2x 222=++-(1) ∵R x ∈ ∴ 0y 8)1y (42≥-+=? 解得:21y 21+≤≤- 但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤ 由0≥?,仅保证关于x 的方程: 0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥?求出 的范围可能比y 的实际范围大,故不能确定此函数的值域为????? ?23,21。 可以采取如下方法进一步确定原函数的值域。 ∵2x 0≤≤ 0)x 2(x x y ≥-+=∴ 21y ,0y min +==∴代入方程(1) 解得:] 2,0[22 222x 41∈-+= 即当22222x 41-+=时, 原函数的值域为:]21,0[+ 注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。 4. 反函数法 直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。 例6. 求函数6x 54 x 3++值域 解:由原函数式可得: 3y 5y 64x --= 则其反函数为:3x 5y 64y --=,其定义域为:53x ≠ 故所求函数的值域为:33(,)(,)55 -∞?+∞

函数之复合函数之求最值值域

- 3 - 函数之 复合函数之 求最值、值域 1.函数y =(log x )2 -log x 2 +5 在 2≤x ≤4时的值域为 . 2.函数y=)x log 1(log 2221+的定义域为 ,值域为 . 3.求函数y =5 2x +2x 5 1+4(x ≥-32)值域. 4.函数的值域为 A. B. C. D. 5.求下列函数的定义域与值域.(1)y =2 3 1 -x ; (2)y =4x +2x+1 +1. 6.已知-1≤x ≤2,求函数f(x)=3+2·3x+1 -9x 的最大值和最小值 7.设 ,求函数 的最大值和最小值. 8.已知函数 ( 且 ) (1)求 的最小值; (2)若 ,求 的取值范围. 9. 已知9x -10·3x +9≤0,求函数y=( 41)x-1-4·(2 1)x +2的最大值和最小值 10.函数221(01)x x y a a a a =+->≠且在区间[11]-,上有最大值14,则a 的值是_______. 11.若函数0322≤--x x ,求函数x x y 4222 ?-=+的最大值和最小值。 12.已知[]3,2x ∈-,求11 ()142 x x f x = -+的最小值与最大值。 13.若函数3234+?-=x x y 的值域为[]1,7,试确定x 的取值范围。 本类题的特征是:__________________________________________________________________________________ _________________________________________________________________________________________________ 本类题的做法是:__________________________________________________________________________________ _________________________________________________________________________________________________ 答案 1. 2.( 22,1)∪[-1,-22],[0,+∞] 3.解析:设t =x 5 1 ,∵x ≥-32,∴t ≥-2,则y =t 2+2t +4=(t +1)2+3. 当t =-1时,y min =3. 4 14 1()() 2log 31x f x =+()0,+∞)0,+∞??()1,+∞)1,+∞??84 25 ≤≤y

函数的值域与最值

函数的值域与最值 一、基础知识回顾 1. 已知{}{} 12|,log |2+====x y y B x y x A ,则() ∞+= ?,1B A 2.下列函数的值域为()+∞,0的有 4 个 (1)1212+-=x x y (2)21 -=x y (3)x y ?? ? ??=21(4)x y 2log 2=(5)x x y sin 1sin +=(6)x y tan = 3.求函数212++-=x x y )(值域为?? ? ???230, 11222++-+=x x x x y )(的值域为?? ? ???135-, 4.已知:)0)(3sin()(>+ =w wx x f π 在]2,0[上恰有一个最大值1和最小值-1,则w 的取值范围是?? ? ???12 13127π π, 5.已知:x,y 为实数,022 2 =-+x y x ,则2 2 2x y s +=的值域为 [0,4] 6.关于x 的方程02 7 2cos 21cos 4=-+- m x x 有实数解,则m 的取值范围是 [0,8] 7.已知函数f(x)=sinx,g(x)=cosx,直线x=m 与f(x),g(x)的图象分别交于 M ,N 两点,则MN 长度的最大值为2 8.函数x y 2 1log =的定义域为[a,b],值域为[0,2],则b-a 的最小值是 4 3 9.若函数()10,4log ≠>?? ? ??-+ =a a x a x y a 且的值域为R ,则a 的范围是()(]4110,,Y 10.在△ABC 中,若2B=A+C,则y=cosA+cosC 的值域为?? ? ??121, 二.例题精讲 例1.求下列函数的值域 2sin 11+= x y )( 2sin 1sin )2(+-=x x y )80sin()20sin()3(ο ο+++=x x y ?? ????131, [-2,0] [] 33-, )32lg()4(2--=x x y x y sin lg 2)5(= 3sin 2sin )6(2--=x x y R (0,1] {0} )1)(cos 1(sin )7(++=x x y [)()3,11,01 2 2)8(2?∈-+-= x x x x y 且 ?? ????+22230, (][)+∞-∞-,22,Y

高中函数定义域和值域的求法总结(十一种)

高中函数定义域和值域的求法总结 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1 求函数8 |3x |15 x 2x y 2-+--= 的定义域。 解:要使函数有意义,则必须满足 ?? ?≠-+≥--②① 8|3x |015x 2x 2 由①解得 3x -≤或5x ≥。 ③ 由②解得 5x ≠或11x -≠ ④ ③和④求交集得3x -≤且11x -≠或x>5。 故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且。 例2 求函数2 x 161 x sin y -+=的定义域。 解:要使函数有意义,则必须满足 ? ??>-≥②①0x 160 x sin 2 由①解得Z k k 2x k 2∈π+π≤≤π, ③ 由②解得4x 4<<- ④ 由③和④求公共部分,得 π≤<π-≤<-x 0x 4或 故函数的定义域为]0(]4(ππ--,, 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知)x (f 的定义域,求)]x (g [f 的定义域。 (2)其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。 例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。 解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而 3x 3≤≤-,故函数的定义域是}3x 3|x {≤≤-。 (2)已知)]x (g [f 的定义域,求f(x)的定义域。 其解法是:已知)]x (g [f 的定义域是[a ,b ],求f(x)定义域的方法是:由b x a ≤≤,求 g(x)的值域,即所求f(x)的定义域。 例4 已知)1x 2(f +的定义域为[1,2],求f(x)的定义域。 解:因为51x 234x 222x 1≤+≤≤≤≤≤,,。 即函数f(x)的定义域是}5x 3|x {≤≤。 三、逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为R ,求参数的范围问题通常是转化为恒成立问题来解决。 例5 已知函数8m m x 6m x y 2++-=的定义域为R 求实数m 的取值范围。 分析:函数的定义域为R ,表明0m 8mx 6mx 2≥++-,使一切x ∈R 都成立,由2x 项

求三角函数值域及最值的常用方法+练习题

求三角函数值域及最值的常用方法 (一)一次函数型 或利用:=+ =x b x a y cos sin )sin(22?+?+x b a 化为一个角的同名三角函数形式,利用三角函数的有界性或单调性求解; (2)2sin(3)512 y x π =-- +,x x y cos sin = (3)函数x x y cos 3sin +=在区间[0,]2 π 上的最小值为 1 . (4)函数tan( )2 y x π =- (4 4 x π π - ≤≤ 且0)x ≠的值域是 (,1][1,)-∞-?+∞ (二)二次函数型 利用二倍角公式,化为一个角的同名三角函数形式的一元二次式,利用配方法、 换元及图像法求解。 (2)函数)(2cos 2 1 cos )(R x x x x f ∈- =的最大值等于43. (3).当2 0π <

(三)借助直线的斜率的关系,用数形结合求解 型如d x c b x a x f ++= cos sin )(型。此类型最值问题可考虑如下几种解法: ①转化为c x b x a =+cos sin 再利用辅助角公式求其最值; ②利用万能公式求解; ③采用数形结合法(转化为斜率问题)求最值。 例1:求函数sin cos 2 x y x = -的值域。 解法1:数形结合法:求原函数的值域等价于求单位圆上的点P(cosx , sinx )与定点Q(2, 0)所确定的直线的斜率的范围。作出如图得图象,当过Q 点的直线与单位圆相切时得斜率便是函数sin cos 2 x y x = -得最值,由几何知识,易求得过Q 的两切线得斜率分别为3 3 -、 33。结合图形可知,此函数的值域是33 [,]33 - 。 解法2:将函数sin cos 2x y x =-变形为cos sin 2y x x y -=,∴22s i n ()1y x y φ+= +由2 |2||sin()|11y x y φ+= ≤+22(2)1y y ?≤+,解得:3333 y - ≤≤,故值域是33 [,]33- 解法3:利用万能公式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x =-得到2 213t y t =--则有2 320yt t y ++=知:当0t =,则0y =,满足条件;当0t ≠,由2 4120y =-≥△,3333 y ?-≤≤,故所求函数的值域是33[,]33-。 解法4:利用重要不等式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x = -得到2 213t y t =--当0t =时,则0y =,满足条件;当0t ≠时, 22 113(3) y t t t t = =---+,如果t > 0,则2223113233(3)y t t t t ==-≥-=---+, x Q P y O

函数的最值与值域知识梳理

函数的最值与值域 【考纲要求】 1. 会求一些简单函数的定义域和值域; 2. 理解函数的单调性、最大(小)值及其几何意义; 3. 会运用函数图象理解和研究函数的性质. 4. 在某些实际问题中,会建立不等式求参数的取值范围,以及求最大值和最小值. 【知识网络】 【考点梳理】 考点一、函数最值的定义 1.最大值:如果对于函数()f x 定义域D 内的任意一个自变量x ,存在0x D ∈,使得0()()f x f x ≤成立,则称0()f x 是函数()f x 的最大值. 注意:下面定义错在哪里?应怎样订正. 如果对于函数()f x 定义域D 内的任意一个自变量x ,都有()f x M ≤,则称M 是函数()f x 的最大值. 2.最小值的定义同学们自己给出. 考点二、函数最值的常用求法 1.可化为二次函数的函数,要特别注意自变量的取值范围. 2.判别式法:主要适用于可化为关于x 的二次方程,由0?≥(要注意二次项系数为0的情况)求出函数的最值,要检验这个最值在定义域内是否有相应的x 的值. 3.换元法:很多含根式的函数的最值的求法经常用到换元法来求.常用的换元有———三角代换,整体代换. 4.不等式法:利用均值不等式求最值. 5.利用函数的性质求函数的最值 6.含绝对值的函数或分段函数的最值的求法 7.利用导数求函数的最值。 要点诠释: (1)求最值的基本程序:求定义域、求导数、求导数的零点、列表、根据表比较函数值大小给出最值; (2)一些能转化为最值问题的问题: ()f x A >在区间D 上恒成立?函数min ()()f x A x D >∈ 函数的最值与值域 函数的值域 函数的最大值 函数的最小值

高中数学求函数值域的类题型和种方法

高中数学求函数值域的类 题型和种方法 Last updated on the afternoon of January 3, 2021

求函数值域的 7类题型和16种方法 一、函数值域基本知识 1.定义:在函数()y f x =中,与自变量x 的值对应的因变量y 的值叫做函数值,函数值的集合叫做函数的值域(或函数值的集合)。 2.确定函数的值域的原则 ①当函数()y f x =用表格给出时,函数的值域是指表格中实数y 的集合; ②当函数()y f x =用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数()y f x =用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数()y f x =由实际问题给出时,函数的值域由问题的实际意义确定。 二、常见函数的值域,这是求其他复杂函数值域的基础。 函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域。 一般地,常见函数的值域: 1.一次函数()0y kx b k =+≠的值域为R. 2.二次函数()2 0y ax bx c a =++≠,当0a >时的值域为24,4ac b a ?? -+∞?? ?? ,当0a <时的值域为24,4ac b a ?? --∞ ???., 3.反比例函数()0k y k x = ≠的值域为{}0y R y ∈≠. 4.指数函数()01x y a a a =>≠且的值域为{}0y y >. 5.对数函数()log 01a y x a a =>≠且的值域为R.

6.正,余弦函数的值域为[]1,1-,正,余切函数的值域为R. 三、求解函数值域的7种题型 题型一:一次函数()0y ax b a =+≠的值域(最值) 1、一次函数:()0y ax b a =+≠当其定义域为R ,其值域为R ; 2、一次函数()0y ax b a =+≠在区间[],m n 上的最值,只需分别求出()(),f m f n ,并比较它们的大小即可。若区间的形式为(],n -∞或[),m +∞等时,需结合函数图像来确定函数的值域。 题型二:二次函数)0()(2≠++=a c bx ax x f 的值域(最值) 1、二次函数)0()(2≠++=a c bx ax x f ,当其定义域为R 时,其值域为 ()()22 4 044 04ac b y a a ac b y a a ?-≥>???-?≤时,()2b f a -是函数的最小值,最大值为(),()f m f n 中 较大者;当0a <时,()2b f a -是函数的最大值,最大值为 (),()f m f n 中较小者。 (2)若[],2b m n a - ?,只需比较(),()f m f n 的大小即可决定函数的最大(小)值。 特别提醒: ①若给定区间不是闭区间,则可能得不到最大(小)值; ②若给定的区间形式是[)(]()(),,,,,,,a b a b +∞-∞+∞-∞等时,要结合图像来确函数的值域; ③当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论。 例1:已知()22f x x --的定义域为[)3,-+∞,则()f x 的定义域为(],1-∞。 例2:已知()211f x x -=+,且()3,4x ∈-,则()f x 的值域为()1,17。 题型三:一次分式函数的值域 1、反比例函数)0(≠= k x k y 的定义域为{}0x x ≠,值域为{}0y y ≠ 2、形如:cx d y ax b +=+的值域:

高考求函数值域及最值得方法及例题_训练题

函数专题之值域与最值问题 一.观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域. 例1:求函数) + =的值域. y- 3x 3 2( 点拨:根据算术平方根的性质,先求出) -的值域. 3 2(x 解:由算术平方根的性质,知) 2(x -≥3。∴函数的值域为) 3 -≥0,故3+) 2(x 3 ,3[+∞ . 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。本题通过直接观察算 术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二.反函数法:当函数的反函数存在时,则其反函数的定义域就是原函数的值域. 例2:求函数y=(x+1)/(x+2)的值域. 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数, 故函数y的值域为{y∣y≠1,y∈R}。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。 这种方法体现逆向思维的思想,是数学解题的重要方法之一。 练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y>1})三.配方法:当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域. 例3:求函数y=√(-x2+x+2)的值域. 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。 此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2] 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。 配方法是数学的一种重要的思想方法。 练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3}) 四.判别式法:若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。 例4:求函数y=(2x2-2x+3)/(x2-x+1)的值域. 点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。

高中函数值域的12种解法(含练习题)

高中函数值域的12种求法 一、观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x) 的值域。 点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。 解:由算术平方根的性质,知√(2-3x)≥0, 故3+√(2-3x)≥3。 ∴函数的知域为[3,+∞]。 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二、反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例2求函数y=(x+1)/(x+2)的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。

练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y >1}) 三、配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域。 例3:求函数y=√(-x2+x+2)的值域。 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4], ∴0≤√(-x2+x+2)≤3/2,函数的值域是[0,3/2]。 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。 练习:求函数y=2x-5+√(15-4x)的值域。(答案:值域为{y∣y≤3}) 四、判别式法 若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。 例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。 点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。 解:将上式化为(y-2)x2-(y-2)x+(y-3)=0(*) 当y≠2时,由Δ=(y-2)2-4(y-2)(y-3)≥0,解得:2<x≤10/3 当y=2时,方程(*)无解。∴函数的值域为2<y≤10/3。 点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可

高中数学求值域的10种方法

求函数值域的十种方法 一.直接法(观察法):对于一些比较简单的函数,其值域可通过观察得到。 例1.求函数1y = 的值域。 【解析】0≥11≥,∴函数1y =的值域为[1,)+∞。 【练习】 1.求下列函数的值域: ①32(11)y x x =+-≤≤; ②x x f -+=42)(; ③1 += x x y ; ○ 4()112 --=x y ,{}2,1,0,1-∈x 。 【参考答案】①[1,5]-;②[2,)+∞;③(,1)(1,)-∞+∞U ;○4{1,0,3}-。 二.配方法:适用于二次函数及能通过换元法等转化为二次函数的题型。形如 2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。 例2.求函数242y x x =-++([1,1]x ∈-)的值域。 【解析】2242(2)6y x x x =-++=--+。 ∵11x -≤≤,∴321x -≤-≤-,∴21(2)9x ≤-≤,∴23(2)65x -≤--+≤,∴35y -≤≤。 ∴函数242y x x =-++([1,1]x ∈-)的值域为[3,5]-。 例3.求函数][)4,0(422∈+--=x x x y 的值域。 【解析】本题中含有二次函数可利用配方法求解,为便于计算不妨设: )0)((4)(2≥+-=x f x x x f 配方得:][)4,0(4)2()(2∈+--=x x x f 利用二次函数的相关知识得 ][4,0)(∈x f ,从而得出:]0,2y ?∈?。 说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制,本题为: 0)(≥x f 。 例4.若,42=+y x 0,0>>y x ,试求y x lg lg +的最大值。

人教版数学高一-学案2 函数值域和最值(一)

学案2 函数值域和最值(一) 一、课前准备: 【自主梳理】 1、在函数y =f (x )中,与自变量x 的值对应的值,叫做 ,函数值的集合叫做 2、确定函数的值域的原则: (1)当函数用y =f (x )表格给出时,函数的值域是指表格中实数y 的集合。 (2)当函数y =f (x )用图象给出给出时,函数的值域是指图象在轴上的投影所覆盖的实数y 的值. (3)当函数y =f (x )用解析式给出时,函数的值域是由函数的 和 确定. (4)当函数由实际问题给出时,函数的由问题的 确定. 3、基本初等函数的值域。 (1) b kx y += )0(≠k 的值域为 (2) y =a 2 x +bx +c ()0≠a 的值域为 (3) (0)k y k x =≠的值域为 (4) y = x a )1,0(≠>a a 的值域为 (5) x y a log =)1,0(≠>a a 的值域为 (6) x y x y x y tan ,cos ,sin ===的值域分别为 4、求值域的方法: 配方法 换元法 分离常数法 单调性 数形结合法 判别式法 (不等式 法 求导法后续讲) 5、函数的最值: 设函数)(x f y =的定义域为I ,如果存在实数M 满足: (1)对于任意实数I x ∈,都有 M x f ≥)( (2)存在I x ∈0, 使得 0()f x M =,那么我们称实数M 是函数的 值. 设函数)(x f y =的定义域为I ,如果存在实数M 满足: (1)对于任意实数I x ∈,都有 M x f ≤)( (2)存在 I x ∈0, 使得 0()f x M =,那么我们称实数是M 函数的 值. 【自我检测】 1、函数x y 1= ()32<<-x 的值域为_________ . 2、函数[]3,2,2-∈=x x y 的值域为_________. 3、已知函数{0,log 0,23)(>≤=x x x x x f ,则=))9 1((f f _________.

人教版必修一求函数值域的几种常见方法

人教版必修一求函数值域的几种常见方法 1.直接法:利用常见函数的值域来求 一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠= k x k y 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R , 当a>0时,值域为{a b ac y y 4)4(|2-≥};当a<0时,值域为{a b a c y y 4)4(|2 -≤}. 例1.求下列函数的值域 ① y=3x+2(-1≤x ≤1) ②x x f -+=42)( ③1 += x x y ④x x y 1 + = 解:①∵-1≤x ≤1,∴-3≤3x ≤3, ∴-1≤3x+2≤5,即-1≤y ≤5,∴值域是[-1,5] ②∵),0[4+∞∈-x ∴),2[)(+∞∈x f 即函数x x f -+=42)(的值域是 { y| y ≥2} ③1 111 111 +- =+-+= +=x x x x x y ∵ 01 1≠+x ∴1≠y 即函数的值域是 { y| y ∈R 且y ≠1}(此法亦称分离常数法) ④当x>0,∴x x y 1+ ==2)1(2 +- x x 2≥, 当x<0时,)1(x x y -+ --==-2)1(2 --- -x x 2-≤ ∴值域是 ]2,(--∞[2,+∞).(此法也称为配方法) 函数x x y 1+ =的图像为: 2.二次函数比区间上的值域(最值): 例2 求下列函数的最大值、最小值与值域: ①142+-=x x y ; ②]4,3[,142∈+-=x x x y ;③]1,0[,142∈+-=x x x y ; ④]5,0[,142∈+-=x x x y ; 4 3 21 -1-2-3 -4 -6 -4 -2 2 4 6 y=x o -2 -112 f x () = x+ 1x

高中数学-三角函数图像及性质与值域及最值

高中数学总复习-三角函数 第5课 三角函数的图像和性质(一) 【考点导读】 1. 能画出正弦函数,余弦函数,正切函数的图像,借助图像理解正弦函数,余弦 函数在[0,2 ],正切函数在(一,一)上的性质; 2 2 2. 了解函数y Asin( x )的实际意义,能画出y A si n( x )的图像; 3. 了解函数的周期性,体会三角函数是描述周期变化现象的重要函数模型. 【基础练习】 动的最小正周期T _____L_;初相 —- 2. 三角方程2sin(_ - x)=1的解集为 4. 要得到函数y sinx 的图象,只需将函数 y cos x ______ - ____ 个单位. 【范例解析】 例 1.已知函数 f (x) 2sin x(sin x cosx). (I) 用五点法画出函数在区间 ——上的图象,长度 为一个周期; 2’ 2 (H)说明f(x) 2s in x(si nx cosx)的图像可由y si nx 的图像经过怎样变换而 1. 已知简谐运动 f(x) 2sin (3X )( 2)的图象经过点(0,1),则该简谐运 3.函数 y Asin( x )( 0, 尹R)的部分图象如图所示,则函数表达为 y 4si n( x ) 8 4 的图象向右平移

分析:化为Asin( x )形式.得到?

列表,取点,描图: x 335 88888 y11逅1 1 V21 故函数y f(x)在区间[-,2]上的图象是: (U)解法一:把y sinx图像上所有点向右平移—个单位,得到y sin(x ) 4 4 1 的图像,再把y sin(x -)的图像上所有点的横坐标缩短为原来的丄(纵坐标不 4 2 变),得到y si n(2x —)的图像,然后把y sin(2x —)的图像上所有点纵坐标 4 4 伸长到原来的倍(横坐标不变),得到y 2 sin(2x -)的图像,再将 4 y . 2 sin(2x )的图像上所有点向上平移1个单位,即得到 4 y 1 - 2 sin(2x -)的图像. 1 解法二:把y sinx图像上所有点的横坐标缩短为原来的-(纵坐标不变),得 2 到y sin 2x的图像,再把y sin 2x图像上所有点向右平移—个单位,得到 8 解:(I)由f(x)2sin2x 2sin xcosx 1 cos2x sin 2x 2(sin 2x cos — 4 cos2xs in ) 4 2sin(2x 4 ).

高中一年级数学_指数函数_函数的值域与最值(教(学)案)

授课类型 T-指数函数 C-函数的值域与最值 T-指数函数 教学目的 1、掌握指数函数的概念和指数运算的性质 2、掌握指数函数的图像和性质,并能够根据指数函数的性质解决一些变形的指数函数的问题;利用指数函数建议数学模型解决实际问题。 3、掌握函数值域与最值的解法 教学内容 1.一张白纸对折一次得两层,对折两次得4层,对折3次得8层,问若对折x 次所得层数为y ,则y 与x 的函数表达式是:2x y =. 2.一根1米长的绳子从中间剪一次剩下 12米,再从中间剪一次剩下1 4 米,若这条绳子剪x 次剩下y 米,则y 与x 的函数表达式是:12x y ?? = ??? . 问题:这两个函数有何特点? 同步讲解 一、指数函数的概念 一般地,函数x y a =()01a a >≠且叫做指数函数,其中x 是自变量,函数的定义域是R . 注意:为何规定0a >,且1a ≠? 你知道么?

图象 性质 ①定义域:R ②值域:(0,+∞) ③过点(0,1),即x =0时y =1 ④在R 上是增函数,当x <0时,0<y <1; 当x >0时,y >1 ④在R 上是减函数,当x <0时,y >1; 当x >0时,0<y <1 利用指数函数的性质,比较下列各组中两个数的大小. (1)3 2和 1.7 2; (2)23 0.6 - 和34 0.6 - . 【分析与解答】(1)因为指数2x y =函数在(),-∞+∞上是增函数,又3 1.7>,所以3 1.72 2>. (2)因为指数函数0.6x y =在(),-∞+∞上是减函数,又2334 ->-,所以23 3 40.60.6-->. 求下列函数的定义域与值域。 (1)1 4 2 x y -= (2)23x y -?? = ? ?? (3)1 42 1x x y +=++ 【分析与解答】根据指数函数的定义域为R ,逐个分析。 【解】(1)由404x x -≠?≠ 所以定义域为}{ ,4x x R x ∈≠且 1 41 0214 x x -≠∴≠-Q 所以值域为{} 0,1y y y >≠ (2)定义域为R 。 2331322x x x y --≥?????? ∴==≥= ? ? ??? ?? ?? Q 故值域为{} 1y y ≥

第15讲-函数的最值与值域

主 题 函数的最值与值域 教学内容 1. 掌握常见的函数的值域(最大值最小值)的求解方法。 2. 能够利用单调性,基本不等式求值域(最大值最小值)。 求 223y x x =++ 在x R ∈ 上的值域?在[2,1]x ∈- 上的值域? 例1. 求下列二次函数2 231,[1,0]y x x x =-+∈-的最大值或最小值. 试一试:求下列二次函数223,[0,3]y x x x =-++∈的最大值或最小值.

1. 当22x -≤≤时,求函数2 23y x x =--的最大值和最小值. 2. 已知函数2()23f x x x =-+在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围为________. 3. 设函数32)(2++-=x x x f ,若)(x f 在]1,[m x ∈上的最小值为1,求实数m 的值 。 4. 已知函数2557(),(,][,)322 x f x x x -= ∈-∞+∞-,求函数的值域。 5. 求函数22()4422f x x ax a a =-+-+在[0, 2]上的最值 1 m

本节课主要知识点:二次函数求值域的方法,分子分母是一次式的函数求值域的方法。 【巩固练习】 1. 设函数()()2203f x x x a x =-++≤≤的最大值为m ,最小值为n ,其中0,a a R ≠∈.求m n 、的值(用a 表示); 2. 求函数2(),[2,1)[0,)1 x f x x x -=∈--+∞+的值域; 【预习思考】 问题:已知二次函数62 --=x x y ①求0=y 时x 的值.

相关文档
最新文档