第二章 几何元素间的相对关系

合集下载

几何元素间的相对关系——相交问题.

几何元素间的相对关系——相交问题.
c 为一条正垂线,只要求得
d
交线上的一个点便可作出
交线的投影。
e
a
n
作图

c ① 求交线
d
●m
b
f
可如通何过判正别面?投影
直观地进行判别。
② 判别可见性
从正面能影投否点影能不判上!用别可重?看出,
在交线左侧,平面ABC 在上,其水平投影可见。

b
e m f ●
a
e
b
●m
a
f
空间及投影分析
●n●1 h ● 2 c
要讨论的问题:
① 求两平面的交线 方法:⑴ 确定两平面的两个共有点。 ⑵ 确定一个共有点及交线的方向。
② 判别两平面之间的相互遮挡关系, 即: 判别可见 性。并判别可见性。
平面ABC与DEF都
⑴ a
b e

m(n)
f 为正垂面,它们的正面投 影都积聚成直线。交线必
n

e
N点的水平投影n
a
c 位于Δdef的外面,说
明点N位于ΔDEF所确
f
b
m●
定的平面内,但不位
于ΔDEF这个图形内。
e
所以ΔABC和
a

k ●n
ΔDEF的交线应为MK。
d
c 互交
3.求一般位置直线和一般位置平面的交点
方法:辅助平面法
求解过程:
E
R
N
1.作辅助平面R
C
K
B
2.求出交线MN
M A
3.求交线与EF的交点,即为所求 交点K
⑴ 平面为特殊位置
b
n
空间及投影分析 平面ABC是一铅垂面,

精品制图课件- - 几何元素间的相对位置关系

精品制图课件- - 几何元素间的相对位置关系

c'
l2' (k1k')'k2'
b'
a'
l1'
d'
X
O
k1
b
c a (l1)l2 l
k2
d
不相交,也不平行——交叉
《机械制图》
第1章 绪论
15
5.2.2 直线与平面、平面与平面相交
• 有一个几何元素垂直于投影面的情况
⑴.直线与平面相交
例: d'
b'
例:
相交的核
2' b' 1'
( 1)’ 2’
a'
k'
• △与 P 相交于直线 MN • MN与 EF共面于P,交于K
例:
b'
2‘≡ 3' ( ) m' k'
1'
e'
a'
f'
X
n' c'
O
b
f
m
3
k
c
• K既在EF上,又在△上, 交点K即为△与EF的交点。
B P
M
E
K
C
N
(n )
A
步骤: a 2
≡1 e PH
F
① 含已知线 EF作辅助面 P(垂直面)
② 求 P与已知面的交线 MN ③ 求MN与EF的交点 K ,即所求 ④ 利用重影点判断可见性
作面面
多解, 水平面 垂直于面 垂直于面 垂直于面 多解,
水平线
的水平线 的水平线 的正平线 过垂直于面
结论:
的正平线的 所有面
①投影面垂直线的垂线 投影面垂直线的垂面

第二章1-点线投影

第二章1-点线投影

H
绕X轴旋 转90度
例2-1:已知点的两个投影,求第三投影。
解法一:
a● ax az

a
通过作45° 线使aaz=aax
解法三:
a●
ax
a● 解法二:
a● az

az

a
a
a●
ax
a

用圆规直接量取 aaz=aax
用 圆 规 画 弧
Z
Z

a ●
ax
az
O
a
V
a

az

X
4 . 两直线垂直相交(或垂直交叉)--直角的投影特性:
(1)若直角有一边平行于投影
面,则它在该面上的投影仍为 直角;
(2)反之,若一角的投影为
直角,而且空间被投影的角 至少有一边平行于该投影面 ,则空间角必为直角。
投影特性相同
例2-9 作两直线垂直相交
b/
b
例2-10 作两直线垂直相交,条件为(a)
B2

B1


b
B3

采用多面投影。
2.2.2 点的三面投影
投影面
◆正面投影面(简称正 面或V面) ◆水平投影面(简称水 平面或H面)
V
Z
X
o
W
◆侧面投影面(简称侧 面或W面)
H
Y
投影轴
OX轴 V面与H面的交线 OY轴 H面与W面的交线 OZ轴 V面与W面的交线 三个投影面 互相垂直
空间点A在三个投影面上的投影
实长 a
b
α γ
正平线
a b a b
侧平线
β
a 实长

2023年数学必修二第二章知识点

2023年数学必修二第二章知识点

2023年数学必修二第二章知识点2023年数学必修二第二章知识点1直线与平面有几种位置关系直线与平面的关系有3种:直线在平面上,直线与平面相交,直线与平面平行。

其中直线与平面相交,又分为直线与平面斜交和直线与平面垂直两个子类。

直线在平面内——有无数个公共点;直线与平面相交——有且只有一个公共点;直线与平面平行——没有公共点。

直线与平面相交和平行统称为直线在平面外。

直线与平面垂直的判定:如果直线L与平面α内的任意一直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。

线面平行:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行。

直线与平面的夹角范围[0,90°]或者说是[0,π/2]这个范围。

当两条直线非垂直的相交的时候,形成了4个角,这4个角分成两组对顶角。

两个锐角,两个钝角。

按照规定,选择锐角的那一对对顶角作为直线和直线的夹角。

直线的方向向量m=(2,0,1),平面的法向量为n=(-1,1,2),m,n夹角为θ,cosθ=(m_n)/|m||n|,结果等于0.也就是说,l和平面法向量垂直,那么l平行于平面。

l和平面夹角就为0°提高数学成绩的技巧是什么课内重视听讲,课后及时复习接受一种新的知识,主要实在课堂上进行的,所以要重视课堂上的学习效率,找到适合自己的学习方法,上课时要跟住老师的思路,积极思考。

下课之后要及时复习,遇到不懂的地方要及时去问,在做作业的时候,先把老师课堂上讲解的内容回想一遍,还要牢牢的掌握公式及推理过程,尽量不要去翻书。

尽量自己思考,不要急于翻看答案。

还要经常性的总结和复习,把知识点结合起来,变成自己的知识体系。

多做题,养成良好的解题习惯要想学好数学,大量做题是必可避免的,熟练地掌握各种题型,这样才能有效的提高数学成绩。

刚开始做题的时候先以书上习题为主,答好基础,然后逐渐增加难度,开拓思路,练习各种类型的解题思路,对于容易出现错误的题型,应该记录下来,反复加以联系。

几何元素的相对位置

几何元素的相对位置
特殊位置直线作图
AC:侧平线
水平线
BC:正平线
正垂线
侧垂线
例:2-13
例 2-24
几何元素间的相对位置
一 属于直线的点

属于直线的点,其各投影必属于直线的各 同面投影 点的三面投影都在某一直线上,则该点属 于该直线
点的一面投影属于某直线,点不一定在该直线上
[例] 已知直线AB和M点的正面投影和水平投影,问 M点是否在直线上?
Z
解:分析:AB为侧 平线,M在直线上 ,必在直线AB的同 面投影上,并满足 定比规律。 作图: 方法一 分割线段成定比 方法二 画第三投影
a′ m′ m″
a″
b′
X O
b″
YW
b
m
a
结论:M点不在直线上 。
YH
点的两面投影属于某直线,点不一定在该直线上
二 属于平面的点和直线

属于平面内的点,必属于平面内的直线 属于平面内的直线,必属于平面内两点; 或者过属于平面内的一点且平行与平面内 一已知直线
例:求四边形的完整投影
例:求平面ABC中的一条水平线
与投影面都倾斜的平面有无数条投影面平行线
例:已知一平面ABCD,⑴判别K点是否在平 面上;⑵已知平面上一点E的水平投影 e,作出其 正面投影。
b'
a'
X
k' d' b
c'
O
aek d来自c解:⑴分析:要找K点在不在平面内,先找 过K点的直线在不在平面内。 作图:
b'
f' a'
X
k'
d'
c'
O
f
a

2021_2022年高中数学第二章点直线平面之间的位置关系1

2021_2022年高中数学第二章点直线平面之间的位置关系1

平面整体设计教学分析平面是最基本的几何概念,教科书以课桌面、黑板面、海平面等为例,对它只是加以描述而不定义.立体几何中的平面又不同于上面的例子,是上面例子的抽象和概括,它的特征是无限延展性.为了更准确地理解平面,教材重点介绍了平面的基本性质,即教科书中的三个公理,这也是本节的重点.另外,本节还应充分展现三种数学语言的转换与翻译,特别注意图形语言与符号语言的转换.三维目标1.正确理解平面的几何概念,掌握平面的基本性质.2.熟练掌握三种数学语言的转换与翻译,结合三个公理的应用会证明共点、共线、共面问题.3.通过三种语言的学习让学生感知数学语言的美,培养学生学习数学的兴趣.重点难点三种数学语言的转换与翻译,利用三个公理证明共点、共线、共面问题.课时安排1课时教学过程导入新课思路1.(情境导入)大家都看过电视剧《西游记》吧,如来佛对孙悟空说:“你一个跟头虽有十万八千里,但不会跑出我的手掌心”.结果孙悟空真没有跑出如来佛的手掌心,孙悟空可以看作是一个点,他的运动成为一条直线,大家说如来佛的手掌像什么?对,像一个平面,今天我们开始认识数学中的平面.思路2.(事例导入)观察长方体(图1),你能发现长方体的顶点、棱所在的直线,以及侧面、底面之间的关系吗?图1长方体由上、下、前、后、左、右六个面围成.有些面是平行的,有些面是相交的;有些棱所在的直线与面平行,有些棱所在的直线与面相交;每条棱所在的直线都可以看成是某个面内的直线等等.空间中的点、直线、平面之间有哪些位置关系呢?本节我们将讨论这个问题.推进新课新知探究提出问题①怎样理解平面这一最基本的几何概念;②平面的画法与表示方法;③如何描述点与直线、平面的位置关系?④直线与平面有一个公共点,直线是否在平面内?直线与平面至少有几个公共点才能判断直线在平面内?⑤根据自己的生活经验,几个点能确定一个平面?⑥如果两个不重合的平面有一个公共点,它们的位置关系如何?请画图表示;⑦描述点、直线、平面的位置关系常用几种语言?⑧自己总结三个公理的有关内容.活动:让学生先思考或讨论,然后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.对有困难的学生可提示如下:①回忆我们学过的最基本的概念(原始概念),如点、直线、集合等.②我们的桌面看起来像什么图形?表示平面和表示点、直线一样,通常用英文字母或希腊字母表示.③点在直线上和点在直线外;点在平面内和点在平面外.④确定一条直线需要几个点?⑤引导学生观察教室的门由几个点确定.⑥两个平面不可能仅有一个公共点,因为平面有无限延展性.⑦文字语言、图形语言、符号语言.⑧平面的基本性质小结.讨论结果:①平面与我们学过的点、直线、集合等概念一样都是最基本的概念(不加定义的原始概念),只能通过对它描述加以理解,可以用它定义其他概念,不能用其他概念来定义它,因为它是不加定义的.平面的基本特征是无限延展性,很像如来佛的手掌(吴承恩的立体几何一定不错).②我们的桌面看起来像平行四边形,因此平面通常画成平行四边形,有些时候我们也可以用圆或三角形等图形来表示平面,如图2.平行四边形的锐角通常画成45°,且横边长等于其邻边长的2倍.如果一个平面被另一个平面遮挡住,为了增强它的立体感,我们常把它遮挡的部分用虚线画出来,如图 3.图2 图3 平面的表示法有如下几种:(1)在一个希腊字母α、β、γ的前面加“平面”二字,如平面α、平面β、平面γ等,且字母通常写在平行四边形的一个锐角内(图4);(2)用平行四边形的四个字母表示,如平面ABCD (图5);(3)用表示平行四边形的两个相对顶点的字母来表示,如平面AC (图5).图4 图5③下面我们总结点与直线、平面的位置关系如下表: 点A 在直线a 上(或直线a 经过点A )A∈a 元素与集合间的关系点A 在直线a 外(或直线a 不经过点A )A ∉a 点A 在平面α内(或平面α经过点A ) A∈α 点A 在平面α外(或平面α不经过点A )A ∉α④直线上有一个点在平面内,直线没有全部落在平面内(图7),直线上有两个点在平面内,则直线全部落在平面内.例如用直尺紧贴着玻璃黑板,则直尺落在平面内.公理1:如果一条直线上的两个点在一个平面内,那么这条直线上所有的点都在这个平面内. 这是用文字语言描述,我们也可以用符号语言和图形语言(图6)描述.空间图形的基本元素是点、直线、平面.从运动的观点看,点动成线,线动成面,从而可以把直线、平面看成是点的集合,因此它们之间的关系除了用文字和图形表示外,还可借用集合中的符号语言来表示.规定直线用两个大写的英文字母或一个小写的英文字母表示,点用一个大写的英文字母表示,而平面则用一个小写的希腊字母表示.公理1也可以用符号语言表示:若A∈a,B∈a,且A∈α,B∈α,则a⊂α.图6 图7请同学们用符号语言和图形语言描述直线与平面相交.若A∈a,B∈a,且A∉α,B∈α,则a⊄α.如图(图7).⑤在生活中,我们常常可以看到这样的现象:三脚架可以牢固地支撑照相机或测量用的平板仪等等.上述事实和类似的经验可以归纳为下面的公理.公理2:经过不在同一直线上的三点,有且只有一个平面.如图(图8).图8公理2刻画了平面特有的性质,它是确定一个平面位置的依据之一.⑥我们用平行四边形来表示平面,那么平面是不是只有平行四边形这么个范围呢?不是,因为平面是无限延展的.直线是可以落在平面内的,因为直线是无限延伸的,如果平面是有限的,那么无限延伸的直线又怎么能在有限的平面内呢?所以平面具有无限延展的特征.现在我们根据平面的无限延展性来观察一个现象(课件演示给学生看).问:两个平面会不会只有一个公共点?不会,因为平面是无限延展的,应当有很多公共点.正因为平面是无限延展的,所以有一个公共点,必有无数个公共点.那么这无数个公共点在什么位置呢?可见,这无数个公共点在一条直线上.这说明,如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.此时,就说两平面相交,交线就是公共点的集合,这就是公理3.如图(图9),用符号语言表示为:P∈α,且P∈β⇒α∩β=l,且P∈l.图9公理3告诉我们,如果两个不重合的平面有一个公共点,那么这两个平面一定相交,且其交线一定过这个公共点.也就是说,如果两个平面有一个公共点,那么它们必定还有另外一个公共点,只要找出这两个平面的两个公共点,就找出了它们的交线.由此看出公理3不仅给出了两个平面相交的依据,还告诉我们所有交点在同一条直线上,并给出了找这条交线的方法.⑦描述点、直线、平面的位置关系常用3种语言:文字语言、图形语言、符号语言.⑧“平面的基本性质”小结:名称作用公理1 判定直线在平面内的依据公理2 确定一个平面的依据公理3 两平面相交的依据应用示例思路1例1 如图10,用符号语言表示下列图形中点、直线、平面之间的位置关系.图10活动:学生自己思考或讨论,再写出(最好用实物投影仪展示写的正确的答案).教师在学生中巡视,发现问题及时纠正,并及时评价.解:在(1)中,α∩β=l,a∩α=A,a∩β=B.在(2)中,α∩β=l,a⊂α,b⊂β,a∩l=P,b∩l=P.变式训练1.画图表示下列由集合符号给出的关系:(1)A∈α,B∉α,A∈l,B∈l;(2)a⊂α,b⊂β,a∥c,b∩c=P,α∩β=c.解:如图11.图112.根据下列条件,画出图形.(1)平面α∩平面β=l,直线AB⊂α,AB∥l,E∈AB,直线EF∩β=F,F∉l;(2)平面α∩平面β=a,△ABC的三个顶点满足条件:A∈a,B∈α,B∉a,C∈β,C∉a. 答案:如图12.图12点评:图形语言与符号语言的转换是本节的重点,主要有两种题型:(1)根据图形,先判断点、直线、平面的位置关系,然后用符号表示出来.(2)根据符号,想象出点、直线、平面的位置关系,然后用图形表示出来.例2 已知直线a和直线b相交于点A.求证:过直线a和直线b有且只有一个平面.图13证明:如图13,点A是直线a和直线b的交点,在a上取一点B,b上取一点C,根据公理2经过不在同一直线上的三点A、B、C有一个平面α,因为A、B在平面α内,根据公理1,直线a在平面α内,同理直线b在平面α内,即平面α是经过直线a和直线b的平面.又因为A、B在a上,A、C在b上,所以经过直线a和直线b的平面一定经过点A、B、C.于是根据公理2,经过不共线的三点A、B、C的平面有且只有一个,所以经过直线a和直线b的平面有且只有一个.变式训练求证:两两相交且不共点的四条直线在同一平面内.证明:如图14,直线a、b、c、d两两相交,交点分别为A、B、C、D、E、F,图14∵直线a∩直线b=A,∴直线a和直线b确定平面设为α,即a,b⊂α.∵B、C∈a,E、F∈b,∴B、C、E、F∈α.而B、F∈c,C、E∈d,∴c、d⊂α,即a、b、c、d在同一平面内.点评:在今后的学习中经常遇到证明点和直线共面问题,除公理2外,确定平面的依据还有:(1)直线与直线外一点.(2)两条相交直线.(3)两条平行直线.思路2例1 如图15,已知α∩β=EF,A∈α,C、B∈β,BC与EF相交,在图中分别画出平面ABC 与α、β的交线.图15活动:让学生先思考或讨论,然后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对作图不准确的学生提示引导考虑问题的思路.解:如图16所示,连接CB,∵C∈β,B∈β,∴直线CB⊂β.图16∵直线CB⊂平面ABC,∴β∩平面ABC=直线CB.设直线CB 与直线EF 交于D,∵α∩β=EF,∴D ∈α,D∈平面ABC.∵A∈α,A∈平面ABC ,∴α∩平面ABC=直线AD.变式训练1.如图17,AD∩平面α=B,AE∩平面α=C,请画出直线DE 与平面α的交点P ,并指出点P 与直线BC 的位置关系.图17解:AD 和AC 是相交直线,它们确定一个平面ABC ,它与平面α的交线为直线BC ,DE 平面ABC ,∴DE 与α的交点P 在直线BC 上.2.如图18,正方体ABCD —A 1B 1C 1D 1的棱长为8 cm ,M 、N 、P 分别是AB 、A 1D 1、BB 1的中点,图18(1)画出过M 、N 、P 三点的平面与平面A 1B 1C 1D 1的交线,以及与平面BB 1C 1C 的交线.(2)设过M 、N 、P 三点的平面与B 1C 1交于点Q ,求PQ 的长.解:(1)设M 、N 、P 三点确定的平面为α,则α与平面AA 1B 1B 的交线为直线MP ,设MP∩A 1B 1=R ,则RN 是α与平面A 1B 1C 1D 1的交线,设RN∩B 1C 1=Q ,连接PQ ,则PQ 是所要画的平面α与平面BB 1C 1C 的交线.如图18.(2)正方体棱长为8 cm ,B 1R=BM=4 cm ,又A 1N=4 cm ,B 1Q=31A 1N, ∴B 1Q=31×4=34(cm ).在△PB 1Q 中,B 1P=4 cm ,B 1Q=34cm ,∴PQ=10342121=+Q B P B cm. 点评:公理3给出了两个平面相交的依据,我们经常利用公理3找两平面的交点和交线. 例2 已知△ABC 三边所在直线分别与平面α交于P 、Q 、R 三点,求证:P 、Q 、R 三点共线. 解:如图19,∵A、B 、C 是不在同一直线上的三点,图19∴过A 、B 、C 有一个平面β.又∵AB∩α=P,且AB ⊂β,∴点P 既在β内又在α内.设α∩β=l,则P ∈l,同理可证:Q ∈l,R ∈l,∴P、Q 、R 三点共线.变式训练三个平面两两相交于三条直线,若这三条直线不平行,求证:这三条直线交于一点. 已知平面α、β、γ两两相交于三条直线l 1、l 2、l 3,且l 1、l 2、l 3不平行. 求证:l 1、l 2、l 3相交于一点.证明:如图20,α∩β=l 1,β∩γ=l 2,α∩γ=l 3,图20∵l 1⊂β,l 2⊂β,且l 1、l 2不平行,∴l 1与l 2必相交.设l 1∩l 2=P ,则P ∈l 1⊂α,P∈l 2⊂γ,∴P∈α∩γ=l 3.∴l 1、l 2、l 3相交于一点P.点评:共点、共线问题是本节的重点,在高考中也经常考查,其理论依据是公理3. 知能训练画一个正方体ABCD—A′B′C′D′,再画出平面ACD′与平面BDC′的交线,并且说明理由.解:如图21,图21∵F∈CD′,∴F∈平面ACD′.∵E∈AC,∴E∈平面ACD′.∵E∈BD,∴E∈平面BDC′.∵F∈DC′,∴F∈平面DC′B.∴EF为所求.拓展提升O1是正方体ABCD—A1B1C1D1的上底面的中心,过D1、B1、A作一个截面,求证:此截面与对角线A1C的交点P一定在AO1上.解:如图22,连接A1C1、AC,图22因AA1∥CC1,则AA1与CC1可确定一个平面AC1,易知截面AD1B1与平面AC1有公共点A、O1,所以截面AD1B1与平面AC1的交线为AO1.又P∈A1C,得P∈平面AC1,而P∈截面AB1D1,故P在两平面的交线上,即P∈AO1.点评:证明共点、共线问题关键是利用两平面的交点必在交线上.课堂小结1.平面是一个不加定义的原始概念,其基本特征是无限延展性.2.通过三个公理介绍了平面的基本性质,及作用.3.利用三个公理证明共面、共线、共点问题.作业课本习题2.1 A组5、6.11。

几何元素间的相对位置-平行、相交、垂直

几何元素间的相对位置-平行、相交、垂直

m
f c
n
f
n
判断平面的可见性----利用重影点原理判别
(1 ′) 2′
1
2
例:求两平面的交线并求MN并判别可见性。
⑴ a b e ● m(n) f c
d a d


n
e c
空间及投影分析 平面ABC与DEF都为正 垂面,其正面投影都积聚 成直线。交线为正垂线, 只要求得交线上的一个点 便可作出交线的投影。 作 图 ① 求交线 ② 判别可见性
线与该平面平行。
应用: (1)判别已知线面是否平行; (2) 作与已知平面平行的直线; (3) 包含已知直线作平面与另一已知直线平行。
例:过M点作直线MN平行于平面ABC。
b
c

n
Abc为平面内 a 的任一直线
a
b
m


n

c
m
试想:可作多少条这样的直线MN?
无数条!
例:过M点作直线MN平行于V面和平面ABC。
示意图
n
两平面相交,判别可见性
3 4 2 3 4( ) 1 1
(2 ) 利 用 重 影 点 判 别 可 见 性
[例题6]
试过K点作一直线平行于已知平面ΔABC,并与直线
EF相交

分析
过已知点K作平面P平行于 ABC;直线EF与平面P交于H; 连接KH,KH即为所求。
K F H E
作图 PV m 1 2 n
第三章 几何元素间的相对位置关系
§3-1 平行问题---直线与平面平行 • 两平面平行
§3-2 相交问题---直线与平面的交点 • 两平面的交线
§3-3 垂直问题-----直线与平面垂直 • 两平面垂直

相对位置

相对位置
f
O
c
①所做的辅助面为垂直面 ②辅助面所包含的直线是任选的 ③交线在两平面图形的公有区内 ④若所做的辅助面与交线平行, 交点在无穷远处,应重选辅助面
QHቤተ መጻሕፍቲ ባይዱ
要点: •利用辅助面法求交线 •利用重影点判断可见 性
18
《机械制图》 第3讲 几何元素间的相对位置
求△ABC 与DE∥FG的 交线。
4'
e' 1' 5' f' 2'
d’ a’
p’
c’
m’
n’
b
a m c f’ e’ a f e a’ g’
p
n b’ c’
d
b
g
c
7
《机械制图》 第3讲 几何元素间的相对位置
例: 判断平面(KE ╳ KF) 与(AB ╳ CD)是否平行?
c' 1' a'
b' d'
e'
k'
f'
∵KE∥BA O KF∥IB ∴(KE ╳ KF) ∥(AB ╳ CD)
《机械制图》 第3讲 几何元素间的相对位置
29
3
3.1 几何元素间的平行问题
直线与直线平行
直线与平面平行 平面与平面平行
3.1.1 直线与平面平行
定理(一般情况): 若一直线平行于平面上的某一条直线,则该直线 与平面平行。
《机械制图》 第3讲 几何元素间的相对位置
4
典型问题:过平面外一点作一直线与该平面平行。 例: ①过点K作一直线平行于面(AB
《机械制图》 第3讲 几何元素间的相对位置
13
3.2.2 直线与平面相交
如何求交点? 直线为特殊位置时的情况,利用直线的积聚性。 平面为特殊位置时的情况,利用平面的积聚性。 平面和直线都处于一般位置时的情况,利用辅助 平面法。

《机械制图》教案——第二章-2 点线面的投影

《机械制图》教案——第二章-2 点线面的投影

点、直线和平面的投影教学目的要求:1.点的投影及作图.2.各种位置直线的投影,及两直线的相对位置.3.直角三角形法求直线的实长和倾角,直角定理.4.各种位置平面的投影,平面上取点取线的作图.教学重点难点:1.各种位置直线的投影.2.各种位置平面的投影.3.平面上取点取线的作图.学时: 3§ 1点的投影1.1点的三面投影本节教学目标:点在第一分角中各种位置的投影特性和作图方法。

重点:点在两投影面体系及三投影面体系中的投影,两点的相对位置及重影点的投影。

难点:重影点的投影。

引入:点是最基本的几何元素,以此来分析点在空间中的位置关系及规律。

1.1.1三面投影的规律点的三面投影:水平投影 a → H正面投影 a´→ V侧面投影 a″→ W点的三面投影规律:a′a ⊥ oxa′a″⊥ oza aх =a″az1.1.2点的投影与坐标的关系一、三投影面体系中点的投影A a = a′ax = a″ay = 高标(Z标)A a′= a ax = a″az = 纵标(Y标)A a″= a′az = aay = 横标(X标)V、H 投影反映XV、W 投影反映ZH、W 投影反映Y1.点在三投影面体系中的投影空间点 A的位置确定后,那么它的三面投影( a、a′、 a″)投影就确定了,反之如果空间一点的三面投影确定,则空间点的位置也就确定。

2.术语及规定习惯上我们将空间点用大写的字母表示,其投影用相应的小写字母表示。

3.投影性质点的两投影的连线垂直于相应的投影轴;点的投影到投影轴的距离反映空间点到投影面的距离。

二、特殊位置点的投影1.其他分角内的点两投影面体系——四分角;三投影面体系——八分角。

2.其他情况投影面上的点的投影关系;投影轴上的点的投影关系1.2两点的相对位置和重影点1.2.1两点的相对位置根据两点相对于投影面的坐标不同,即可确定两点的相对位置。

XA<XB B点在A左方 YA>YB B点在A点后方 ZA>ZB B点在A点下方例:比较三棱锥四个顶点S、A、B、C的位置。

画法几何及机械制图 第二章 点、直线和平面的投影

画法几何及机械制图 第二章  点、直线和平面的投影

a
定比作图方法
c
b
§2-2 直线的投影
例2 已知点C在线段AB上,求点C的正面投影。
b Z
b
V
b
c a C B
X
A
O
a
X
a
a
O
a
c YW
a
c Hb
c b
YH
§2-2 直线的投影
例3. 在直线AB上取一点C, 使AC = L,求点C的两投影。
b c
a
L
b c
a
a
X
a
b
L
c
ZAB
O
b
c
ZAB
b0
L
c0
平面对 投影面的倾 角、、
二、各种位置平面的投影特性
§2-3 平面的投影
投影面垂直面: 垂直于一个、倾斜 于另两个投影面的 平面
V面—正垂面 H面—铅垂面 W面—侧垂面
特殊位 置平面
投影面平行面: 平行于一个、同时 垂直于另两个投影 面的平面
V面—正平面 H面—水平面 W面—侧平面
投影面倾斜面: 对三个投影面都倾 斜的平面
c b
X
b O c
YW
当两直线均为
b
一般位置直线时, c
若有两个同面投影 满足上述条件,则 空间两直线相交。
d
a
YH
§2-2 直线的投影
3. 交叉两直线
既不平行又不相交的两直线
b
1(2 )
d
c
a

2 Ⅰd
c
b
a1
b d
1(2 )
c
X a
O
d
c
a

第二章平面向量及其应用章末总结提升课件高一下学期数学北师大版

第二章平面向量及其应用章末总结提升课件高一下学期数学北师大版
去括号、移项、合并同类项、提取公因式等变形手段在数与向量的乘积
中同样适用,但是这里的“同类项”“公因式”是指向量,实数看作是向量的系
数.
(2)方程法:向量也可以通过列方程来解,把所求向量当作未知数,利用解方
程的方法求解,同时在运算过程中多注意观察,恰当地运用运算律,简化运
算.
变式训练 1(1)如图所示,在正方形 ABCD 中,M 是 BC 的中点,若
的侵袭.
规律方法
用向量观点解题,关键在于找到好的切入点,如果题中的速度
(既有大小,又有方向)、距离都可以用向量表达.本题可根据台风中心与城
市间的距离不超过台风侵袭的半径来建立向量不等式,再根据模长公式,求
出时间.
变式训练4一艘船以5 km/h的速度向垂直于对岸的方向行驶,该船实际航行
方向与水流方向成30°角.求水流速度与船的实际速度.
和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸
显最本质的特征,它是解决问题时常用的方法.在解决平面向量的实际问题
时,结合题目情景,可将问题抽象出一个几何图形(一般利用三角形、平行
四边形、矩形为主),可以直观形象地反映问题中的元素和量的关系,有助
于提升学生的直观想象的思维能力.
【例3】 已知向量a与b不共线,且|a|=|b|≠0,则下列结论一定正确的是( A)


所以 − =λ( − ),又 2 = ,
所以 =(1-λ)+λ=3(1-λ)+λμ =3(1-λ)a+λμb,由于 =
所以
3
1
3(1-λ)=4,λμ=4,解得
3
1
λ=4,μ=3.
3
1
a+4b,

大学机械制图 CAD 课件及其答案4几何元素间的相对关系

大学机械制图 CAD 课件及其答案4几何元素间的相对关系

1、直线与特殊位置平面相交
由于特殊位置平面的某个投影有积聚性,交点可直接求出。
判断直线的可见性
特殊位置线面相交,根据平面的积聚性投影,能直接判 别直线的可见性。
例:求直线MN与平面ABC的交点K并判别可见性。 空间及投影分析
平面ABC是一正垂面, 其V投影积聚成一条直线, 该直线与mn的交点即为K 点的V投影。
(二)相交问题
1.熟练掌握特殊位置线、面相交(其中直线或平面的投影具有积聚 性)交点的求法和作两个面的交线(其中一平面的投影具有积聚性)。
2.熟练掌握一般位置线、面相交求交点的方法;掌握一般位置面、 面相交求交线的作图方法。
3.掌握利用重影点判别投影可见性的方法。
(三)垂直问题 掌握线面垂直、面面垂直的投影特性及作图方法。
例题6 例题7 例题8 例题9
P
D A C
S
E1
a
E
(1)平面上对水平投影面的最大斜度线 EF
F A
B E
P AB平行于 H, EF垂直于 AB
(2)平面上对正面投影面的最大斜度线 CD
D B
A CP
AB平行于V, CD垂直于 AB
(3) 平面上对侧面投影面的最大斜度线 MN
N
M
P AB 平行于W, MN垂直于AB
[例题1] 求作 ABC平面上对水平面的最大斜度线BE 。
d' e' e
d b
[例题2] 求 ABC平面与水平投影面的夹角 。
BE

be
[例题3] 过正平线作平面与水平投影面成 60°。
a'
AB
b'
60°
b ab
a
b

2021级-《机械制图(一)》课程大纲(李成)-新版

2021级-《机械制图(一)》课程大纲(李成)-新版

《机械制图(一)》课程教学大纲一、课程基本信息二、课程目标(一)总体目标:主要教学目的包括学习投影法(主要是正投影法)的基本理论及其应用;培养空间形体的图示表达能力;培养绘制和阅读机械图样及其它工程图样的基本能力;培养空间几何问题的图解能力;培养空间想象能力、形象思维能力和空间分析能力;培养计算机绘图的应用能力。

同时,要求在学习过程中逐步建立产品信息概念、设计构形概念和工程规范概念,随着后续课程的学习以及实践经验的累积,逐渐培养设计与绘制生产图样的能力。

本课程内容包括画法几何学、机械制图基础,对学生的空间想象和形体分析能力提出了较高要求,最终目标是培养学生的规范制图及读图能力。

(二)课程目标:课程目标1系统地了解画法几何学的基本原理和分析思路,掌握机械制图的国家标准和作图规范等方面具体的细节和方法1.1明确课程的特征作用与学习方法,能够提取机械图样上的信息;2.2熟练掌握国家标准的选取以及作图规范的相关规定。

课程目标2:掌握点、线、面、立体的画法几何学作图思路和解题方法,懂得运用合适的分析方法进行基本几何元素作图分析和求解。

3.1熟练掌握基本几何元素的特性与作图方法,包括几何元素间的相对关系与立体的投影规律;4.2能够正确使用制图方法,对简单的几何元素进行分析。

课程目标3:能够根据要求进行简单机械零部件的作图,按照预定计划和目标规范、完整地完成基本制图工作,并持续改进制图提高作图质量。

5.1能够针对简单的工程问题进行分析,并选择合适的作图方法;6.2能够选择并使用恰当的制图方法,完成基本的制图工作。

课程目标4:掌握机械制图的读图方法,在形体分析和线面分析的思想上,准确读懂给定图样,并按照要求给出设计和制造工作技术说明。

在此基础上,开展团队合作,分工协作共同完成机械大图的制作任务。

7.1能够针对给定图样进行设计与制造工作技术说明;8.2能够正确的完成制图实验。

(H)课程目标与毕业要求、课程内容的对应关系表1:课程目标与课程内容、毕业要求的对应关系表三、教学内容第一章绪论1.教学目标(1)r解本课程的学习内容、课程特点及学习方法;(2)掌握各类投影法的基本原理。

机械制图与CAD(含习题集)( (3)

机械制图与CAD(含习题集)( (3)
共有点,故交点K的正面投影k′必在直线的积聚性投影上,可 直接得到k′。交点又在平面ACD上,可通过在平面ACD上作辅
助线的方法,作出交点K的水平投影k。由于正垂线EF在正面积 聚,可不必判断可见性。在水平投影上,直线EF有一部分被平
面ACD遮挡,交点K是直线可见部分和不可见部分的分界点。从 正面投影知,直线段FK在平面ACD的下方(也可用重影点法比 较交叉直线段FK与CD的上下位置来间接判断),因此直线段FK
水平线DⅢ平行,平面ABC上的正平线BⅠ和平面DEF上的正平线 DE平行,并且水平线和正平线相交,因此可判断平面ABC与平 面DEF平行。
第3章 几何元素间的相对位置 图3-6 两平面平行
第3章 几何元素间的相对位置
【例3-4】 如图3-7所示,已知平面ABCD和平面外一点 E的两面投影,试过点E作平面平行于平面ABCD。 分析 要保证所作平面平行于平面ABCD,必须作出一对相交直 线与已知平面ABCD平行。如图3-7(b)所示,为作图方便, 可过点E作相交直线分别与平面ABCD上的CD和AD平行。
第3章 几何元素间的相对位置 图3-1 直线平行于平面
第3章 几何元素间的相对位置 图3-2 直线平行于特殊平面
第3章 几何元素间的相对位置
【例3-1】 如图3-3(a)所示,试判断直线DE是否 平行于平面ABC。
解 欲判别直线与平面是否平行,就应判断是否在平面上 可否作一条与该直线平行的直线。如图3-3(b)所示,作图 步骤如下:
的水平投影不可见部分应用虚线画出。直线段KE的水平投影可 见,应用粗实线画出。
第3章 几何元素间的相对位置
解 如图3-9(b)所示,其作图步骤如下: (1)根据交点K的共有性,在直线的积聚性投影上直接找 到交点的正面投影k′;

点线面的投影

点线面的投影

第二章点、直线、平面的投影§2.1 投影法工程式样,工程技术等问题,一般都采用工程图样来表示.工程图样根据使用要求和使用场合的不同,获得的方法也不同.在绘制工程图样时,通常采用投影法.所谓投影法,就是用投影的方法获得图样.在日常生活中,人们常见到,当物体受到光线照射时,在物体背光一面的地上或墙上就会投下该物体的影子,这就是投影.这样的影子只能反映该物体的轮廓形状,不能反映物体内外各部分的具体形状,在工程上没有实用价值.经过人们长期研究,对日常生活中的投影加以提炼,对物体内外各部分的所有空间几何元素(点、线、面) 用各种不同的线型加以具体化,从而形成工程上实用的、完整的投影法.投影法一般分为两类:中心投影法和平行投影法.一中心投影法如图 2.1 所示,投影线都自投影中心S出发,将空图2.1 中心投影法间△ABC投射到投影面P上,所得△abc就是ABC的投影.这种投影线都从投影中心出发的投影法,称为中心投影法.所得的投影称为中心投影.中心投影法主要用于绘制建筑物或产品的富有逼真感的立体图,也称透视图.二平行投影法若将投影中心S移到无穷远处,则所有的投影线就互相平行,这种投影线互相平行的投影法称为平行投影法,见图 2.2,所得投影称为平行投影.(a) 正投影法(b) 斜投影法图2.2 平行投影法平行投影法中,若投影线垂直于投影面,称为正投影法,所得投影称为正投影.投影线也可以倾斜于投影面,称为斜投影法,所得投影称为斜投影。

正投影法主要用于绘制机械图样.斜投影法主要用于绘制有立体感的图形.三正投影法的主要特性点在任何情况下的投影都是点.为了充分反映正投影法的投影特性,我们对直线和平面的投影进行阐述.直线和平面与投影面之间的位置关系只有三种:平行、垂直、倾斜.若直线和平面就在投影面上,则可归入平行即可.在这三种情况下.直线和平面的投影见表 2.1.表2.1 正投影法下直线和平面的投影特性位置关系与投影面∥与投影面⊥与投影面∠类别直观图投影图直观图投影图直观图投影图直线平面投影特性实形性积聚性类似性从表 2.1 中可见,当直线和平面与投影面平行时,则投影反映实形(长),这种投影直观,便于度量.当直线和平面与投影面垂直时,则投影反映积聚,这种投影简单,便于作图.当直线和平面与投影面倾斜时,则投影反映类似形状,这种投影便于检查错误.实形性、积聚性、类似性满足了工程上经济、实用的原则,正因为这种优越性,所以,国家标准规定所有机械图样一律采用正投影法绘制.§2.2 三视图的形成及其投影规律上一节已阐述了绘制机械图样所采用的投影方法。

第2章 正投影的基本知识

第2章 正投影的基本知识
第2章 正投影的基本知识
2.1 2.2 2.3 2.4 2.5 投影法和三视图的形成 点的投影 直线的投影 平面的投影 几何元素间的相对位置
2.1 投影法和三视图的形成
2.1.1 投影法的基本知识
1.投影法 用光线照射物体,便会在墙面产生物体的影子。人们从这一现象得 到启示,经过科学抽象,概括出用物体在平面上的投影表示其物体形状 的投影方法,如图2-1所示。这种现象叫做投影。常用的投影法分为中 心投影法和平行投影法两大类。 中心投影法(如图2-2所示)绘制的投影图具有较强直观性,立体感 好,但不能反映物体表面的真实形状和大小,故工程上只用于土建工程 及大型设备的辅助图样。
上一页 下一页 返回
2.1 投影法和三视图的形成
2.三视图之间的对应关系 (1) 度量对应关系。物体有长、宽、高三个方向的尺寸,取X轴方向为 长度尺寸,Y轴方向为宽度尺寸,Z轴方向为高度尺寸。 实际绘图时,一般采用无轴系统,如图2-6 (c)所示。需要时,也 可采用有轴系统。无论采用哪一种系统,绘图时必须保证三视图间的投 影规律。三等规律—主、附视图长对正,主、左视图高平齐,附、左视 图宽相等。 (2)方位对应关系。物体有上、下、左、右、前、后六个方位。 主视图反映物体的上、下和左、右方位; 俯视图反映物体的前、后和左、右方位; 左视图反映物体的上、下和前、后方位。
上一页
返回
2.3 直线的投影
2.3.1 各种位置直线及其投影特征
1.直线的投影 直线的投影仍为直线,特殊情况积聚为一点。如图2-16所示,直 线AB在水平面H上的投影为直线ab;直线CD平行于投影线,投影cd积 聚为一点。 2.直线投影的确定 直线的投影可由直线上任意两点的投影来确定。如已知直线AB上A 和B两点的三面投影,如图2-17 (a),则用直线连接A, B在同一投影 面上的投影,即得到直线AB的三面投影,如图2-17(b)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.5.1 平行问题
一、直线与平面相互平行
几何条件 若平面外的一条直线与平面内的一条直线平行,则该 直线与该平面平行。 有关线、面平行的作图问题有:判别已知线面是否平行;作直线 与已知平面平行;包含已知直线作平面与另一已知直线平行。
若一直线平行于属于定平面内的一直线,则该直线与平面平 行。
[例题1] 试判断直线AB是否平行于定平面
b
O
1(2)
k
c
a
n
特殊位置直线与平面相交
求铅垂线EF与一般位置平面ABC的交点并判别其可见性。
k' 1' (2')
2 k1
[例题9] 求直线MN与平面ABC的交点K并判别可见性。
b'
a'
X a
(m')n' e' k' 1' 2'
m 1 (2)
k e
b
n
c' O
c
二、一般位置平面与特殊位置平面相交
结果
判断平面的可见性
b′
m′
k′
l′
c′ f′
n′
a′
a
m
b
f
k
l
c n
求交线并判断可见性 1′
d′
m′ b′
k′ 2′
a′ e′
d 1(2)
a
m
k
e
b
c′ f′
c f
求交线并判断可见性
c′
1′ d′( g′)
e′( f′)
a′
2′ k′ l′ b′
a
g 1 (2)
f
k
c
l
d
e
b
三、直线与一般位置平面相交
c
a
k
k a
c
n
[例题13] 试过定点K作特殊位置平面的法线。
h
h
h
h
(a)
h
(b)
h
(c)
[例题14] 平面由两平行线AB、CD给定,试判断直线MN是否 垂直于该平面。
e
f
e f
二、平面与平面垂直
两平面垂直的几何条件:若一直线垂直于一定平面,则包含 这条直线的所有平面都垂直于该平面。
给题 a
一、直线与平面相互垂直 二、平面与平面相互垂直 三、直线与直线相互垂直
一、直线与平面垂直
直线与平面垂直,则直线垂直于平面上的任意 直线(相交或不相交)。反之,直线垂直平面 上的任意两相交直线,则直线垂直该平面。
直线与平面垂直的几何条件:若一直线垂直于一平面,则必垂 直于属于该平面的一切直线。
定理1 若一直线垂直于一平面,则直线的水平投影必垂直于属
b′
QV e′
2′
a′
1′
k′
d′
ad k
2
1
b
e
二、直线与直线垂直
例:求C点到直线AB的距离。
a c
b
b c
a
分析:求C点到直线AB的距离实际上就是过C点作线段垂直相 交于AB,然后求出线段的实长。
[例题19] 试过定点A作直线与已知直线EF正交。
分析
过已知点A作平面垂直于已知直线EF,并交于点K,连接AK,
(1)平面上对水平投影面的最大斜度线
(2)平面上对正立投影面的最大斜度线
(3)平面上对侧立投影面的最大斜度线
P
D A C
S
E1
a
E
(1)平面上对水平投影面的最大斜度线 EF
F A
B E
P
AB平行于 H, EF垂直于 AB
(2)平面上对正立投影面的最大斜度线 CD
D B
A CP
AB平行于V, CD垂直于 AB
A
D
反之,两平面相互垂直,则由属于第一个平面的任意一点向 第二个平面作的垂线必属于第一个平面。
两平面垂直
两平面不垂直
绘制相互垂直平面的两种方法:
1、使平面Q经过垂直于平面P的直线AB; 2、使平面Q垂直于平面P上的直线CD;
[例题15] 平面由BDF给定,试过定点K作已知平面的垂面。
h
c
以正垂面为辅助平面求线面交点 示意图 以铅垂面为辅助平面求线面交点 示意图 判别可见性 示意图
以正垂面为辅助平面求线面交点
QV
1 k 2
步骤: 1.过EF作正 垂平面Q。
2.求Q平面与 ΔABC的交线
ⅠⅡ。
3.求交线
ⅠⅡ与EF的交
2
点K。
k 1
示意图
以正垂面为辅助平面求线面交点 示意图
A
M
(3)平面上对侧立投影面的最大斜度线 MN
N
M
P
AB 平行于W, MN垂直于AB
[例题1] 求作 ABC平面上对水平面的最大斜度线BE。
d' e' e
d b
[例题2] 求 ABC平面与水平投影面的夹角 。
BE

be
b
[例题3] 已知直线EF为某平面对H面的最大斜度线,试作出该平面。
a
直线与平面相交只有一个交点
A K B
直线与平面相交只有一个交点,它是直线与平面的共有点。
两平面的交线是直线
M
K
L
F
N
两平面的交线是一条直线,这条直线为两平面所共有
一、特殊位置线面相交
直线与特殊位置平面相交 判断直线的可见性 特殊位置直线与一般位置平面相交
直线与特殊位置平面相交
b n
a
k
g f
f g
结论:直线AB不平行于定平面
[例题2] 试过点K作水平线AB平行于CDE平面
f
b
a
a
b f
[例题3] 过点C作平面平行于已知直线AB。
a'
d'
c'
b'
e'
x
a
o d
b
c
e
二、平面与平面相互平行
几何条件 若一个平面内的相交二直线与另一个平面内的相交 二直线对应平行,则此两平面平行。这是两平面平行的作图依 据。 两平面平行的作图问题有:判别两已知平面是否相互平行;过 一点作一平面与已知平面平行;已知两平面平行,完成其中一 平面的所缺投影。
f
1
( 2 )
4
k
3
e
2
k(3) 4 1
e
利 用 重 影 点 判 别 可 见 性
示意图
直线EF与平面ABC相交,判别可见性示意图
1 (2)





点。








3 (4)
四、两一般位置平面相交
求两平面交线的问题可以看作是求两个共有点的问 题, 因而可利用求一般位置线面交点的方法找出交线 上的两个点,将其连线即为两平面的交线。 两一般位置平面相交求交线 示意图 判别可见性 例题6
E
D F
B A
C
若属于一平面的相交两直线对应平行于属于另一平面 的相交两直线,则此两平面平行
因为:AB∥A1B1,BC∥B1C1, 所以:平面ABC和平面A1B1C1相平行
[例题4] 过K点作一平面,使其与平面ABC平行
解:只要过K点作两条相交直线分别平行于△ABC的两条边, 则这两条相交直线所确定的平面就是所求平面
求两平面的交线
k 1 m
m k
1
PV n 2
e
2 e
两一般位置
l
平面相交,
QV 求交线步骤:
1.用求直线 与平面交点 的方法,作 出两平面的 两个共有点K、 E。
l
2.连接两个
共有点,画
出交线KE。
示意图
n
两一般位置平面相交求交线的方法 示意图
B M
K A L
F N
C 利用求一般位置线面交点的方法找出交线上的两个点,将其 连线即为两平面的交线。
m
c
n a
kb
m
c
由于特殊位置平面的某个投影有积聚性,交点可直接求出。
判断直线的可见性
b n
a
k
m
c
n a
kb
m c
特殊位置线面相交,根据平面的积聚性投影,能直接判别直 线的可见性。
[例题8] 求直线MN与平面ABC的交点K并判别可见性。
m'
c'
1' k' b'
2'
a' n'
X m
2.熟练掌握一般位置线、面相交求交点的方法;掌握一般位置面、面 相交求交线的作图方法。
3.掌握利用重影点判别投影可见性的方法。
(三)垂直问题
掌握线面垂直、面面垂直的投影特性及作图方法。
(四)点、线、面综合题
1.熟练掌握点、线、面的基本作图方法; 2.能对一般画法几何综合题进行空间分析,了解综合题的一般解题 步骤和方法。
§2.5 直线与平面、平面与平面的相对位置
基本要求 2.5.1 平行问题 2.5.2 相交问题 2.5.3 垂直问题 2.5.4 平面上的最大斜度线
基本要求
(一)平行问题
1.熟悉线、面平行,面、面平行的几何条件; 2.熟练掌握线、面平行,面、面平行的投影特性及作图方法。
(二)相交问题
1.熟练掌握特殊位置线、面相交(其中直线或平面的投影具有积聚性 )交点的求法和作两个面的交线(其中一平面的投影具有积聚性)。
K F
H E
作图
PV
1 m
2
n
h
h n2
相关文档
最新文档