1.立体几何中的组合体问题

合集下载

关于球与多面体的组合体解题方法探讨

关于球与多面体的组合体解题方法探讨

关于球与多面体的组合体解题方法探讨球与多面体的组合体是三维几何中的一个重要概念,解题方法也有多种。

在此简要探讨一下关于球与多面体组合体的解题方法。

首先,对于球与多面体的组合体,我们可以将问题进行分解,分开考虑球和多面体的特性和性质,然后再综合起来考虑问题。

下面我们结合具体例题进行探讨。

例题1:一个正方体的棱长为2,一个半径为1的球被正方体完全包围住,且完全在正方体内,求球与正方体相交的面积。

解题思路:首先我们可以知道正方体的一个面上的对角线等于正方体的棱长,所以正方体的对角线长度为2√2由题目可知,球在正方体内,球的半径为1,则球心到正方体一些顶点的距离不会超过1,所以球心到正方体一些面的距离也不会超过1我们可以考虑球心到正方体各个面的距离,不难发现,球心到一个面的距离不超过1,球心到相对的面的距离不超过√2,球心到相对的对角面的距离不超过2综上所述,可以得到以下结论:1)若球心在正方体内部,则球与每一面都有交点;2)若球心在正方体边界上,即球心到一面的距离为1,则球与其对边的面无交点;3)若球心在正方体的角点上,即球心到对角面的距离为2,则球与对角面无交点。

在本题中,球心到正方体各个面的距离都不会超过1,所以球与每一面都有交点。

球与正方体的每一面的交线是一个圆,球与三个相邻的面的交线上的圆心在正方体的三个对角线的交点上,球与相对的两个面的交线上的圆心在每个对角面的对角线的交点上。

由于正方体是对称的,所以球与三个相邻的面的交线上的圆互相等价,同理,球与相对的两个面的交线上的圆互相等价。

因此,求球与正方体相交的面积,只需计算球与一个面的交线上的一个圆的面积即可。

球与面的交线上的圆的半径可以通过勾股定理得到,即球心到正方体其中一个面的距离。

在本题中,球心到正方体的一个面的距离为1,所以球与该面的交线上的圆的半径为1-1=0。

因此,球与该面的交线上的圆的面积为0。

综上所述,球与正方体相交的面积为0。

通过以上分析我们可以看出,在解这类球与多面体的组合体题目时,关键是找到球与多面体各个面的交线的性质和关系来进行求解。

微专题7 立体几何中的“三球”问题 归纳 课件

微专题7 立体几何中的“三球”问题  归纳 课件

PA∩AB=A,PA⊂平面 PAB,AB⊂平面 PAB,所以 BC⊥
平面 PAB.又 PB⊂平面 PAB,所以 BC⊥PB,所以△PAC,
△PBC 都是以 PC 为斜边的直角三角形.如图,取 PC 的中点 O,连接
OA,OB,则 OA=OB=OP=OC,即点 O 为三棱锥 P-ABC 外接球的球
心.因为在 Rt△PAC 中,PA=3,AC=2,所以 PC= 32+22= 13,所
【答案】80π
3 已知菱形ABCD的边长为2,且∠DAB=60°,沿BD把△ABD折 起,得到三棱锥A′-BCD,且二面角A′-BD-C的平面角为120°,则 三棱锥A′-BCD外接球的表面积为________.
【解析】如图,取BD的中点H,连接A′H,CH.因为ABCD为菱形, 所以A′H⊥BD,CH⊥BD,故∠A′HC为二面角A′-BD-C的平面角, 即∠A′HC=120°.由题意,得△A′BD,△BCD为正三角形,则外接 球的球心位于过△A′BD,△BCD的中心且和它们所在面垂直的直线上, 故分别取△A′BD,△BCD的重心为G1,G2,过点G1,G2分别作两个平 面的垂线交于点O,则点O为三棱锥外接球的球心.由题意,得球心到
面 ABC,又因为 OH∥AD,所以 AD⊥平面 ABC.因为
AB⊂平面 ABC,所以 AD⊥AB.在 Rt△ABD 中,AD=
BD2-AB2=2.在 Rt△ABC 中,AB=2BC=2,所以 AC= AB2-BC2= 3,
所以
S△ABC=12AC·BC=
23,故
VD-ABC=13AD·S△ABC=
【答案】C
3 已知在直三棱柱 ABC-A1B1C1 中,AB=AA1=2,BC= 3AC, 则当该三棱柱的体积最大时,其外接球的体积为( C )

《立体几何》微专题4 空间中常见的组合体

《立体几何》微专题4   空间中常见的组合体

四、典型例题 例 1 如图所示,平行四边形 ABCD 中,AB=2BD=2,且 AB⊥BD.将其沿 BD 折成直二面 角,所得的四面体 A-BCD 的外接球表面积为( )
A
B
D
B
D
C
A1
B1
D1
B1
D1
C1
类型 1
A
B
D
D
C
B
A1
B1
D1
M
B1
D1
C1
特征: 三棱锥中交于同一顶点的三条棱两两垂直. 类型 2
A
B
D
D
C
B
A1
B1
D1
B1
D1
C1
特征: 三棱锥的四个面都为直角三角形. 类型 3
2
A
B
D
B
D
C
A1
B1
D1
M
B1
D1
C1
特征: 三棱锥中的对棱相等. 类型 4
用以及利用重要截面“降维”处理,以供参考.
二、知识梳理
1.判断下列说法是否正确,正确的打“√”,错的打“×”.
(1)在空间中,到定点的距离等于定长的所有点的集合叫球面.( √ )
(2)用一个平面去截球面,所得图形均为圆面.( × )
(3)球的小圆的圆心与球心的连线垂直于这个小圆所在平面.( √ )
(4)经过球面上不同的两点只能作一个大圆.( × )
④若直棱柱的所有顶点都在同一个球面上,则该球的球心 O 是直棱柱的两个底面外接圆圆
心的连线的中点.半径的求解往往通过抓含球心的截面,将空间问题平面化,从而得解.
【多面体的内切球问题】
方法提炼:
1.利用等体积法求内切球半径;2.抓含球心与切点的截面.

高考复习28-组合体的“切”“接”综合问题高考试题解读与变式

高考复习28-组合体的“切”“接”综合问题高考试题解读与变式

高考复习28 :组合体的“切”“接”综合问题知识储备汇总1.知识储备汇总: 1.1球的性质球被平面截得的图形是圆,球心与截面圆圆心的连线与截面圆垂直,球的半径R ,截面圆的半径r ,球心到截面圆的距离为d ,则222d r R +=.1.2长方体性质:长方体的一条对角线的平方等于一个顶点上三条棱长的平方和. 1.3几个与球有关的切、接常用结论 (1)正方体的棱长为a ,球的半径为R , ①正方体的外接球,则23R a =; ②正方体的内切球,则2R a =; ③球与正方体的各棱相切,则22R a =.(2)长方体的同一顶点的三条棱长分别为,,a b c ,外接球的半径为R ,则2222R a b c =++. (3)正四面体的外接球与内切球的半径之比为3∶1.1.4与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.球与旋转体的组合,通常作它们的轴截面进行解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图. 1.5.解决与球有关的切、接问题的方法:(1)一般要过球心及多面体中的特殊点或过线作截面将空间问题转化为平面问题,从而寻找几何体各素之间的关系.(2)若球面上四点,,,P A B C 中,,PA PB PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.1.6.求解球与多面体的组合问题时,其关键是确定球心的位置,可以根据空间几何体的对称性判断球心的位置,然后通过作出辅助线或辅助平面确定球的半径和多面体中各个几何元素的关系,达到求解解题需要的几何量的目的.题型与相关高考题解读1.棱柱的外接球问题 1.1考题展示与解读例1 长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 ________.【命题意图探究】本题主要考查长方体的对角线性质、球的表面积公式,是容易题.【解题能力要求】空间想象能力、运算求解能力【方法技巧归纳】对球内接直棱柱问题,利用球心到棱柱底面所在的截面圆的距离就是棱柱高的一半,棱柱底面所在的截面圆的半径利用正弦定理计算,再利用球的截面性质即可求出球的半径,再利用球的表面积或体积公式计算球的表面积或体积.1.2【典型考题变式】【变式1:改编条件】若一个正三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为()A. 163πB.193πC.1912πD.43π【变式2:改编结论】底面边长为1,侧棱长为263的正三棱柱的各顶点均在同一个球面上,则该球的体积为()A. 32π3B. 4πC. 2πD.4π3【变式3:改编问法】已知某几何体的外接球的半径为,其三视图如图所示,图中均为正方形,则该几何体的体积为()A. 16B.C.D. 82.球与圆柱或圆锥的切接问题2.1考题展示与解读例2已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为________.A.πB.3π4C.π2D.π4【命题意图探究】本题主要考查球内接圆柱的体积问题,是基础题.【解题能力要求】空间想象能力、运算求解能力【方法技巧归纳】对球内接圆柱问题,利用球的截面性质沟通球的半径与圆柱底面半径高之间的关系.2.2【典型考题变式】【变式1:改编条件】已知圆柱的高为2,它的两个底面的圆周在直径为4的同一个球的球面上,则该圆柱的体积是( )A. πB. 34πC.2πD. 6π【变式2:改编结论】已知圆锥的底面半径为4,高为8,则该圆锥的外接球的表面积为()A. 10πB. 64πC. 100πD. 500 3π【变式3:改编问法】某几何体的三视图如图所示,其正视图和侧视图都是边长为23的正三角形,该几何体的外接球的表面积为()A. 9πB. 16πC. 24πD. 36π3.棱锥的外接球问题3.1考题展示与解读例3已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为________.【命题意图探究】本题主要考查球内接棱柱问题及球的表面积,是中档题.【解题能力要求】空间想象能力、逻辑推理能力、运算求解能力【方法技巧归纳】球内接棱锥问题,若有同一顶点上三条垂直的棱,可将三棱锥补成球内接长方体,利用长方体的对角线的平方等于同于同一顶点三棱长的平方和、长方体的对角线等于球的直径沟通球与棱锥量之间的关系.3.2【典型考题变式】【变式1:改编条件】某多面体的三视图如图所示,每一小格单位长度为l,则该多面体的外接球的表面积是A. 27πB.π C. 9π D.π 【变式2:改编结论】在正三棱锥中,,,则该三棱锥外接球的直径为( )A. 7B. 8C. 9D. 10【变式3:改编问法】已知四棱锥E-ABCD 的都在球心为,半径为的球面上,四边形ABC D 为矩形,,且,则四棱锥E-ABCD 的体积的最大值为( )A.324B. 372,C. 38D. 348 4.多面体内切球问题 4.1考题展示与解读例4在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π(C )6π (D )323π【命题意图探究】本题主要考查直棱柱内的球的最大体积问题,是中档题. 【解题能力要求】空间想象能力、运算求解能力【方法技巧归纳】立体几何最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解. 4.2【典型考题变式】【变式1:改编条件】在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bie nao ).已知在鳖臑中,平面,,则该鳖臑的外接球与内切球的表面积之和为_______.【变式2:改编结论】在正方体1111ABCD A B C D -中,若1D AC ∆内切圆的半径为263,则该正方体内切球的表面积为 ( )A. 2πB. 8πC. 12πD. 16π【变式3:改编问法】已知一个直三棱柱,其底面是正三角形,一个体积为43π的球体与棱柱的所有面均相切,那么这个三棱柱的表面积是A. 243B. 183C. 123D. 3典例高考试题演练1.若正四棱锥P ABCD -内接于球O ,且底面ABCD 过球心O ,设正四棱锥P ABCD -的高为1,则球O的体积为( ) A.43π B. 23π C. 4π D. 22π 2.如图为某几何体的三视图,则该几何体的外接球的表面积为( )A .B .27πC .27πD .3.网络用语“车珠子”,通常是指将一块原料木头通过加工打磨,变成球状珠子的过程,某同学有一圆锥状的木块,想把它“车成珠子”,经测量,该圆锥状木块的底面直径为12cm ,体积为96πcm 3,假设条件理想,他能成功,则该珠子的体积最大值是( ) A .36πcm 3 B .12πcm 3C .9πcm 3D .72πcm 34.半径为2的球O 中有一内接正四棱柱(底面是正方形,侧棱垂直底面),当该正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差是( ) A .16()B .16() C .8(2)D .8(2)5.已知一个四棱锥三视图如图所示,若此四棱锥的五个顶点在某个球面上,则该球的表面积为( )A. 48πB. 52πC.1723π D. 1963π6.将半径为4的半圆围成一个圆锥,则该圆锥的内切球的表面积为( ) A.83π B. 163π C. 43π D. 43 7.若一个正四面体的表面积为1S ,其内切球的表面积为2S ,则12S S =( )A.6π B. 2π C. 16πD. 63π8.已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为( ) A.823π B. 833π C. 863π D. 1623π 9.某三棱锥的三视图如图所示,其中俯视图是一个等腰直角三角形,则该三棱锥的外接球的表面积为( )A.B.C.D.556π10.已知三棱锥的四个顶点都在同一个球面上,底面满足,若该三棱锥体积最大值为3,则其外接球的表面积为( ) A.B.C.D .11.三棱锥A BCD -的一条长为a ,其余棱长均为1,当三棱锥A BCD -的体积最大时,它的外接球的表面积为( ) A.53π B. 54π C. 56π D. 58π 12.如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切,记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则的值是13.已知三棱锥的三条棱所在的直线两两垂直且长度分别为3,2,1,顶点都在球的表面上,则球的表面积为__________.14.已知四棱锥 P ﹣ABCD 的底面ABCD 是正方形,侧棱PA 与底面垂直,且PA=AB ,若该四棱锥的侧面积为16 __.15.已知正六棱柱的顶点都在同一个球面上,且该六棱柱的体积为2,当球的体积最小时,正六棱柱底面边长为_________.。

人教A版高中数学必修二 《基本立体图形》立体几何初步(第二课时旋转体及简单组合体的结构特征)

人教A版高中数学必修二 《基本立体图形》立体几何初步(第二课时旋转体及简单组合体的结构特征)

[解析] ①以直角三角形的一条直角边为轴旋转一周才可以得到圆锥,故错误;②以 直角梯形垂直于底边的一腰为轴旋转一周可得到圆台,故错误;③它们的底面为圆 面,故正确;④正确;作球的一个截面,在截面的圆周上任意取四点,则这四点就 在球面上,故⑤错误;球面上任意三点一定不共线,故⑥错误.
[答案] ③④
课前 • 自主探究 课堂 • 互动探究 课后 • 素养培优 课时 • 跟踪训练
[教材提炼] 知识点一 圆柱的结构特征 预习教材,思考问题 圆柱是由几个平面围成的吗?若不是,它又是怎么构成的呢?
[提示] 圆柱的面不都是平的,如侧面就是曲的.它是以矩形的一条边为旋转轴, 其余三条边旋转一周形成的面围成的旋转体.
2.已知 AB 是直角梯形 ABCD 中与底边垂直的一腰,如图.分别 以 AB、BC、CD、DA 为轴旋转,试说明所得几何体的结构特征.
解析:(1)以 AB 为轴旋转所得旋转体是圆台.如图①所示. (2)以 BC 边为轴旋转所得的旋转体是一组合体:下部为圆柱,上部为圆锥.如图② 所示. (3)以 CD 边为轴旋转所得的旋转体为一组合体:上部为圆锥,下部为圆台,再挖去 一个小圆锥.如图③所示.
若本例中蚂蚁围绕圆柱转两圈,如图,则它爬行的最短距离是多少?
解析:可把圆柱展开两次,如图,则 AB′即为所求. ∵AB=2,BB′=2×2π×1=4π, ∴AB′= AB2+BB′2= 4+16π2=2 1+4π2. 故蚂蚁爬行的最短距离为 2 1+4π2.
一般地,沿多面体或旋转体的表面最短距离(路程)问题,用侧面展开解决.
答案:C
3.如图所示的组合体,其结构特征是 ( ) A.两个圆锥 B.两个圆柱 C.一个棱锥和一个棱柱 D.一个圆锥和一个圆柱
解析:题图所示的几何体是由一个圆锥和一个圆柱构成的组合体.

人教版高中数学必修第二册第三单元《立体几何初步》测试题(答案解析)(1)

人教版高中数学必修第二册第三单元《立体几何初步》测试题(答案解析)(1)

一、选择题1.在下列四个正方体中,能得出直线AB 与CD 所成角为90︒的是( )A .B .C .D .2.球面上有,,,A B C D 四个点,若,,AB AC AD 两两垂直,且4AB AC AD ===,则该球的表面积为( )A .803πB .32πC .42πD .48π3.如图,在长方体1111ABCD A B C D -中,13,2,4AA AB AD ===,点M 是棱AD 的中点,点N 在棱1AA 上,且满足12AN NA =,P 是侧面四边形11ADD A 内的一动点(含边界),若1//C P 平面CMN ,则线段1C P 长度的取值范围是( )A .17]B .[2,3]C .6,22]D .[17,5] 4.如图,在棱长为1的正方体1111ABCD A B C D -中,点E ,F 分别是棱BC ,1CC 的中点,P 是侧面11BCC B 内一点,若1//A P 平面AEF ,则线段1A P 长度的取值范围是( )A .[2,3]B .5,22⎡⎤⎢⎥⎣⎦C .325,42⎡⎤⎢⎥⎣⎦D .51,2⎡⎤⎢⎥⎣⎦ 5.如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2aC .2aD .22a 6.如图,在长方体1111ABCD A B C D -中,若,,,E F G H 分别是棱111111,,,A B BB CC C D 的中点,则必有( )A .1//BD GHB .//BD EFC .平面//EFGH 平面ABCDD .平面//EFGH 平面11A BCD7.菱形ABCD 的边长为3,60B ∠=,沿对角线AC 折成一个四面体,使得平面ACD ⊥平面ABC ,则经过这个四面体所有顶点的球的表面积为( )A .15πB .12πC .8πD .6π8.鲁班锁运用了中国古代建筑中首创的榫卯结构,相传由春秋时代各国工匠鲁班所作,是由六根内部有槽的长方形木条,按横竖立三方向各两根凹凸相对咬合一起,形成的一个内部卯榫的结构体.鲁班锁的种类各式各样,千奇百怪.其中以最常见的六根和九根的鲁班锁最为著名.下图1是经典的六根鲁班锁及六个构件的图片,下图2是其中的一个构件的三视图(图中单位:mm ),则此构件的表面积为( )A .27600mmB .28400mmC .29200mmD .210000mm 9.将表面积为36π的圆锥沿母线将其侧面展开,得到一个圆心角为23π的扇形,则该圆锥的轴截面的面积为( )A .3B .2C .3D .310.在长方体1111ABCD A B C D -中,23AB AD ==12CC =1C BD C --的大小是( )A .30ºB .45ºC .60ºD .90º 11.αβ、是两个不同的平面,m n 、是平面α及β之外的两条不同直线,给出四个论断:①m n ⊥;②αβ⊥;③n β⊥;④.m α⊥以其中三个论断作为条件,余下一个作为结论,其中正确命题的个数是( )A .1个B .2个C .3个D .4个12.已知四棱锥的各个顶点都在同一个球的球面上,且侧棱长都相等,高为4,底面是边长为32 )A .75518πB .62516πC .36πD .34π13.长方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E 为AB 的中点,3CE =,53cos 9ACE ∠=,且四边形11ABB A 为正方形,则球O 的直径为( ) A .4 B 51C .451D .4或514.垂直于同一条直线的两条直线的位置关系是( )A .平行B .相交C .异面D .A 、B 、C 均有可能二、解答题15.如图,在三棱锥V-ABC 中,VC ⊥底面ABC ,AC BC ⊥,D 是棱AB 的中点,且AC BC VC ==.(1)证明:平面VAB ⊥平面VCD ;(2)若22AC =,且棱AB 上有一点E ,使得线VD 与平面VCE 所成角的正弦值为1515,试确定点E 的位置,并求三棱锥C-VDE 的体积. 16.如图所示,在四棱锥P ABCD -中,90CAD ABC ∠=∠=,30BAC ADC ∠=∠=,PA ⊥平面ABCD ,E 为PD 中点,2AC =.(1)求证://AE 平面PBC .(2)若四面体PABC 的体积为33,求PCD 的面积. 17.如图三棱柱111ABC A B C -中,11,,60CA CB AB AA BAA ∠︒===,(1)证明1AB A C ⊥;(2)若16AC =,2ABCB ==,求三棱柱111ABC A B C -的体积S .18.如图甲,平面四边形ABCD 中,已知45A ︒∠=,90︒∠=C ,105ADC ︒∠=,2AB BD ==,现将四边形ABCD 沿BD 折起,使得平面ABD ⊥平面BDC (如图乙),设点E ,F 分别是棱AC ,AD 的中点.(1)求证:DC ⊥平面ABC ;(2)求三棱锥A BEF -的体积.19.如图,在底面半径为2、母线长为4的圆锥中内接一个高为3的圆柱,求圆柱的体积及表面积.20.在四棱锥P ABCD -中,//AD BC ,BC CD ⊥,120ABC ∠=︒,4=AD ,3BC =,=2AB ,3=CD CE ,⊥AP ED .(1)求证:DE ⊥面PEA ;(2)已知点F 为AB 中点,点P 在底面ABCD 上的射影为点Q ,直线AP 与平面ABCD 所成角的余弦值为3,当三棱锥-P QDE 的体积最大时,求异面直线PB 与QF 所成角的余弦值.21.如图,在正三棱柱111ABC A B C -(侧棱垂直于底面,且底面是正三角形)中,16AC CC ==,M 是棱1CC 的中点.(1)求证:平面1AB M ⊥平面11ABB A ;(2)求1A M 与平面1AB M 所成角的正弦值.22.如图,在直三棱柱111ABC A B C -中,1AC CC =,AC BC ⊥,D 为1BC 中点,1AC 与1A C 交于点O .(1)求证://OD 平面111A B C ;(2)求证:平面1AC B ⊥平面1A BC .23.如图,AB 是圆O 的直径,CA 垂直圆O 所在的平面,D 是圆周上一点.(1)求证:平面ADC ⊥平面CDB ;(2)若1AC =,12AD =,BD AD =,求二面角A BC D --的余弦值. 24.如图,四面体ABCD 中,点E ,F 分别为线段AC ,AD 的中点,平面EFNM ⋂平面BCD MN =,90CDA CDB ∠=∠=︒,DH AB ⊥,垂足为H .(1)求证://EF MN ;(2)求证:平面CDH ⊥平面ABC .25.如图,在四棱锥P ABCD -中,PA ⊥平面ABC ,//,90AD BC ABC ︒∠=,2AD =,23AB =,6BC =.(1)求证:平面PBD ⊥平面PAC ;(2)PA 长为何值时,直线PC 与平面PBD 所成角最大?并求此时该角的正弦值. 26.如图所示,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点,过E 点作EF PB ⊥交PB 于点F .求证:(1)//PA 平面EDB ;(2)PB ⊥平面EFD .【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据线面垂直的性质以及判定定理判断A ,平移直线结合异面直线的定义,判断BCD.【详解】对于A ,如下图所示,连接,AE GB由于,CD BE CD BG ⊥⊥,根据线面垂直判定定理得CD ⊥平面AEBG ,再由线面垂直的性质得出AB CD ⊥,则A 正确;对于B ,如下图所示,连接,BF AF因为ABF 为正三角形,//CD AF ,所以直线AB 与CD 所成角为60︒,则B 错误; 对于C ,如图所示,连接HD因为在CDH △中,45HDC ∠=︒,//AB HD ,所以直线AB 与CD 所成角为45︒,则C 错误;对于D ,如下图所示,连接GB因为//AG CD ,所以直线AB 与CD 所成角为90GAB ∠≠︒,则D 错误;故选:A【点睛】本题主要考查了求异面直线的夹角,属于中档题.2.D解析:D【分析】分析:首先求得外接球半径,然后求解其表面积即可.详解:由题意可知,该球是一个棱长为4的正方体的外接球,设球的半径为R ,由题意可得:()22222444R =++,据此可得:212R =,外接球的表面积为:2441248S R πππ==⨯=.本题选择D 选项.点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径. 3.C解析:C【分析】首先找出过点1C 且与平面CMN 平行的平面,然后可知点P 的轨迹即为该平面与侧面四边形11ADD A 的交线段,进而可以利用解三角形的知识求出线段1C P 长度的取值范围.【详解】 如图所示:,取11A D 的中点G ,取MD 的中点E ,1A G 的中点F ,1D D 的三等分点H 靠近D ,并连接起来.由题意可知1//C G CM ,//GH MN ,所以平面1//C GH 平面CMN .即当点P 在线段GH 上时,1//C P 平面CMN .在1H C G 中,2212222C G =+=2212222C H =+=22GH =, 所以1H C G 为等边三角形,取GH 的中点O ,1226C O ==故线段1C P 长度的取值范围是6,22].故选:C .【点睛】本题主要考查线面平行,面面平行的判定定理和性质定理的应用,以及解三角形,意在考查学生的逻辑推理能力和数学运算能力,属于中档题.4.C解析:C【分析】分别取111,BB B C 的中点,N M ,可得平面1//A MN 平面AEF ,从而点P 的轨迹为线段MN ,然后计算出线段1A P 的范围.【详解】分别取111,BB B C 的中点,N M ,则1//A M AE ,1A M ⊄平面AEF ,AE ⊂平面AEF ,则1//A M 平面AEF . //EF NM ,MN ⊄平面AEF ,EF ⊂平面AEF ,则//MN 平面AEF又1MN A M M ⋂=,所以平面1//A MN 平面AEF又平面1A MN ⋂面11BCC B MN =所以点P 的轨迹为线段MN当P 为线段MN 的端点M (或N )时,1A P 最长,此时1122111522P M A B A BB A ⎛⎫==+= ⎪⎝⎭当P 为线段MN 的中点时,1A P 最短,此时22111322P A N MN A ⎛⎫=-= ⎪⎝⎭所以325,42AP ⎡⎤∈⎢⎥⎣⎦, 故选:C .【点睛】本题考查利用向量法解决线面平面的探索问题,本题也可以构造面面平面得出动点的轨迹,从而求解,属于中档题.5.D解析:D【分析】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点,证明平面1//A BGE 平面1B HI , 得到1//B F 面1A BE ,则F 落在线段HI 上,求出1122HI CD ==【详解】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点,1//A B EG ,则1A BEG 四点共面,11//,//EG HI B H A E , 平面1//A BGE 平面1B HI ,又1//B F 面1A BE ,F ∴落在线段HI 上,正方体1111ABCD A B C D -中的棱长为a ,1122HI CD a ∴==, 即F 在侧面11CDD C 上的轨迹的长度是22a . 故选:D .【点睛】本题考查利用线面平行求线段长度,找到动点的运动轨迹是解题的关键,属于基础题. 6.D解析:D【分析】根据“过直线外一点有且只有一条直线与已知直线平行”来判断AB 选项的正确性,根据平行直线的性质判断C 选项的正确性,根据面面平行的判定定理判断D 选项的正确性.【详解】选项A:由中位线定理可知:1//GH D C ,因为过直线外一点有且只有一条直线与已知直线平行,所以1,BD GH 不可能互相平行,故A 选项是错误的;选项B: 由中位线定理可知:1//EF A B ,因为过直线外一点有且只有一条直线与已知直线平行,所以,BD EF 不可能互相平行,故B 选项是错误的;选项C: 由中位线定理可知:1//EF A B ,而直线1A B 与平面ABCD 相交,故直线EF 与平面ABCD 也相交,故平面EFGH 与平面ABCD 相交,故C 选项是错误的;选项D:由三角形中位线定理可知:111//,//EF A B EH A D ,EF ⊄平面11A BCD ,1A B ⊂平面11A BCD ,EH ⊄平面11A BCD ,11A D ⊂平面11A BCD ,所以有//EF 平面11A BCD ,//EH 平面11A BCD ,而EF EH E =,因此平面//EFGH 平面11A BCD .所以D 选项正确.故本选:D【点睛】本小题主要考查面面平行的判定定理,考查线线平行的性质,属于中档题.7.A解析:A【分析】首先根据已知条件找到四面体外接球的球心,再求出半径,即可得到球体的表面积.【详解】如图所示,1O ,2O 分别为ABC 和DAC △的外接圆圆心,因为菱形ABCD ,60B ∠=,所以ABC 和DAC △为等边三角形.设E 为AC 的中点,连接DE ,BE ,则DE AC ⊥,BE AC ⊥,又因为平面ACD ⊥平面ABC AC =,所以DE ⊥平面ABC .分别过1O ,2O 作垂直平面ABC 和平面ACD 的直线,则交点O 为四面体ABCD 外接球的球心.因为2233332⎛⎫==-= ⎪⎝⎭EB DE ,四边形12OO EO 为矩形, 所以123==O B DO ,1213===O E O E OO . 所以外接圆半径为()223153=22⎛⎫+⎪ ⎪⎝⎭,表面积为15π. 故选:A【点睛】 本题主要考查四面体外接球的表面积,根据题意确定外接球的球心为解题关键,属于中档题.8.B解析:B【分析】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,进而求出表面积即可.【详解】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,如下图所示,其表面积为:()210020220202100204010210202840m 0m S =⨯⨯+⨯⨯+⨯-⨯⨯+⨯⨯=.故选:B.【点睛】本题考查几何体的表面积的求法,考查三视图,考查学生的空间想象能力与计算求解能力,属于中档题.9.B解析:B【分析】如图所示,设此圆锥的底面半径为r ,高为h ,母线长为l .可得πr 2+πrl =36π,2πr =l •23π,联立解得:r ,l ,h 22l r =-即可得出该圆锥的轴截面的面积S 12=•2r •h =rh . 【详解】如图所示,设此圆锥的底面半径为r ,高为h ,母线长为l .则πr 2+πrl =36π,化为:r 2+rl =36,2πr =l •23π,可得l =3r . 解得:r =3,l =9,h 22l r =-=2.该圆锥的轴截面的面积S 12=•2r •h =rh =2=2. 故选:B.【点睛】本题考查了圆锥的表面积、弧长的计算公式,考查了推理能力与计算能力,属于中档题. 10.A解析:A【分析】取BD 中点为O ,1CC ⊥平面ABCD ,所以C 即1C 在平面ABCD 上的投影,易知CO BD ⊥,再利用线面垂直证明1BD C O ⊥,得到1COC ∠即二面角1C BD C --,再计算二面角大小即可.【详解】由题意,作出长方体1111ABCD A B C D -的图象,取BD 中点为O ,连接CE 、1C E ,因为1CC ⊥平面ABCD ,所以C 即1C 在平面ABCD 上的投影,又BD ⊂平面ABCD ,所以1CC BD ⊥, 因为23AB AD ==ABCD 是正方形,O 为BD 中点,所以CO BD ⊥,又1CO CC C =,所以BD ⊥平面1COC ,又1C O ⊂平面1COC ,所以1BD C O ⊥,1COC ∠即二面角1C BD C --, 又12CC =()()2223236CO +==所以123tan 36COC ∠==,130COC ∠=.故选:A【点睛】本题主要考查二面角的求法和线面垂直的判定定理和性质,考查学生空间想象能力,属于中档题.11.B解析:B【分析】分别以①②③④作为结论,另外三个作条件,根据线面垂直和面面垂直的判定定理依次判断真假.【详解】若m n ⊥,αβ⊥,n β⊥,则m 与α可能平行可能相交,即①②③不能推出④; 同理①②④不能推出③;若m n ⊥,n β⊥,m α⊥,两个平面的垂线互相垂直则这两个平面垂直,则αβ⊥,即①③④能够推出②;若αβ⊥,n β⊥,m α⊥,两个平面互相垂直,则这两个平面的垂线互相垂直,即m n ⊥,所以②③④能够推出①.所以一共两个命题正确.故选:B【点睛】此题考查空间直线与平面位置关系的辨析,根据选择的条件推出结论,关键在于熟练掌握空间垂直关系的判定和证明.12.B解析:B【分析】如图所示,设四棱锥P ABCD -中,球的半径为R ,底面中心为O '且球心为O ,可得OP ⊥底面ABCD .3AO '=,4PO '=,在Rt AOO ∆'中,利用勾股定理解得R ,即可得出球的表面积.【详解】如图所示,设球的半径为R ,底面中心为O '且球心为O .∵四棱锥P ABCD -中,32AB =, ∴3AO '=.∵4PO '=,∴Rt AOO ∆'中,|4|OO R '=-,222AO AO OO ''=+,∴2223(4)R R =+-,解得258R =, ∴该球的表面积为222562544816R πππ⎛⎫=⨯= ⎪⎝⎭.故选:B .【点睛】本题考查几何体的外接球问题,此类问题常常构造直角三角形利用勾股定理进行求解,属于中等题.13.C解析:C【分析】设2AB x =,则AE x =,29BC x =-,由余弦定理可得222539392393x x x =++-⨯⨯+⨯,求出x ,即可求出球O 的直径. 【详解】 根据题意,长方体内接于球O 内,则球的直径为长方体的体对角线,如图作出长方体1111ABCD A B C D -:设2AB x =,则AE x =,29BC x =-,由余弦定理可得:222539392393x x x =++-⨯+,∴1x =6,∴2AB =,22BC =,球O 的直径为4484++=;或26AB =,3BC =,球O 的直径为2424351++=.故选:C .【点睛】本题考查球的直径的计算方法,考查余弦定理,考查计算能力和分析能力,属于常考题. 14.D解析:D【分析】结合公理及正方体模型可以判断:A ,B ,C 均有可能,可以利用反证法证明结论,也可以从具体的实物模型中去寻找反例证明.【详解】解:如图,在正方体1AC 中,1A A ⊥平面ABCD ,1A AAD ,1A A BC ⊥, 又//AD BC ,∴选项A 有可能; 1A A ⊥平面ABCD ,1A A AD ,1A A AB ⊥,又AD AB A =,∴选项B 有可能;1A A ⊥平面ABCD ,1A A ⊥平面1111D C B A ,AC ⊂平面ABCD ,11A D ⊂平面1111D C B A ,1A A AC ∴⊥,111A A A D ⊥,又AC 与11A D 不在同一平面内,∴选项C 有可能.故选:D .【点睛】本题主要考查了空间中直线与直线之间的位置关系,考查空间想象能力和思维能力,属于中档题.二、解答题15.(1)证明见解析;(2)点E 位于线段AD 的中点或线段BD 22. 【分析】(1)易得CD AB ⊥,再根据VC ⊥底面ABC ,得到 VC AB ⊥,进而AB ⊥平面VCD ,再利用面面垂直的判定定理证明.(2)过点D 在平面ABC 内作DF CE ⊥于F ,DF ⊥平面VCE ,则DVF ∠就是直线VD 与平面VCE 所成的角,在Rt VFD 中,由15sin DF DVF VD ∠==,求得DF ,然后在Rt DCE 中,求出1DE =,然后由三棱锥C-VDE 的体积为13CDE V S VC =⋅⋅求解. 【详解】(1)因为AC BC =,D 是AB 的中点,所以CD AB ⊥.又VC ⊥底面ABC ,AB 平面ABC ,所以VC AB ⊥,而VC CD C ⋂=,所以AB ⊥平面VCD .又AB 平面VAB ,所以平面VAB ⊥平面VCD .(2)过点D 在平面ABC 内作DF CE ⊥于F ,则由题意知DF ⊥平面VCE .,连接VF ,于是DVF ∠就是直线VD 与平面VCE 所成的角.在Rt VFD 中,1515DF VD =. 又因为3VD =55DF =. 在Rt DCE 中,1DE =.故知点E 位于线段AD 的中点或线段BD 的中点,三棱锥C-VDE 的体积为1112221223323CDE S VC ⋅⋅=⨯⨯⨯⨯=. 【点睛】方法点睛:(1)证明平面和平面垂直的方法:①面面垂直的定义;②面面垂直的判定定理(a ⊥β,a ⊂α⇒α⊥β).(2)已知两平面垂直时,一般要用性质定理进行转化,在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.16.(1)证明见解析;(2)7【分析】(1)取CD 中点F ,连接EF ,AF ,利用面面平行的判定定理证明平面//AEF 平面PBC ,再用面面平行的性质可得//AE 平面PBC ;(2)根据体积求出PA ,过A 作AQ CD ⊥于Q ,连接PQ ,AQ ,求出PQ 和CD 后,根据三角形面积公式可求得结果.【详解】(1)取CD 中点F ,连接EF ,AF ,则//EF PC ,又120BCD AFD ∠=∠=︒,∴//BC AF ,∴平面//AEF 平面PBC ,∴//AE 平面PBC .(2)因为90CAD ABC ∠=∠=,30BAC ADC ∠=∠=,2AC =, 所以1,3BC AB == 由已知得:113323P ABC V AB BC PA -=⋅⋅⋅=,即11331323PA ⨯⨯⨯⨯=, 可得2PA =.过A 作AQ CD ⊥于Q ,连接PQ ,AQ ,∵PA ⊥平面ABCD ,∴PA AQ ⊥,PA CD ⊥,∴CD PQ ⊥,ACD △中,2AC =,90CAD ∠=,30ADC ∠=,∴4CD =,23AD =22334AC AD AQ CD ⋅⨯===, 222237PQ PA AQ =+=+=,∴11742722PCD S PQ CD =⋅=⨯⨯=△. 【点睛】 关键点点睛:掌握面面平行的判定定理和面面平行的性质是解题关键.17.(1)证明见解析;(2)3.【分析】(1)取AB 中点E ,连接11,,CE A B A E ,根据已知条件,利用等腰三角形的性质得到1A E AB ⊥,,CE AB ⊥利用线面垂直的判定定理证得AB ⊥面1,CEA 即可得到1AB A C ⊥ ;(2) 在1CEA 中可以证明1A E CE ⊥,结合1A E AB ⊥,利用线面垂直判定定理得到1A E ⊥平面ABC ,作为三棱柱的高,进而计算体积.【详解】(1)取AB 中点E ,连接11,,CE A B A E ,11,60AB AA BAA ∠︒==,1BAA ∴是等边三角形,1A E AB ∴⊥,CA CB =,,CE AB ∴⊥1,CE A E E ⋂=AB ∴⊥面1,CEA 1AB A C ∴⊥.(2)由于CAB ∆为等边三角形,3CE ∴=1123322S AB CE ⨯⨯⨯=底面积==1CEA 中,3CE =13EA =16AC =1A E CE ∴⊥,结合1A E AB ⊥,又,,AB CE E AB CE ⋂=⊂平面ABC ,1A E ∴⊥平面ABC ,13h A E ∴==3V Sh ==.【点睛】本题考查线面垂直的判定与证明,考查棱柱的体积计算,属基础题,为证明线线垂直,常常先证线面垂直,为证明线面垂直,又常常需要先证明线线垂直,这是线面垂直关系常用的证明与判定方式,要熟练掌握.18.(1)证明见解析;(2. 【分析】(1)在图甲中先证AB BD ⊥,在图乙中由面面垂直的性质定理先证AB CD ⊥,由条件可得DC BC ⊥,进而可判定DC ⊥平面AB C ;(2)利用等体积法进行转化计算即可.【详解】(1)图甲中,∵AB BD =且45A ︒∠=,45ADB ︒∴∠=, ()()180180454590ABD ADB A ︒︒︒︒︒∴∠=-∠+∠=-+=,即AB BD ⊥, 图乙中,∵平面ABD ⊥平面BDC ,且平面ABD 平面BDC BD =,∴AB ⊥平面BDC ,又CD ⊂平面BDC ,∴AB CD ⊥,又90DCB ︒∠=,∴DC BC ⊥,且AB BC B ⋂=,又AB ,BC ⊂平面AB C ,∴DC ⊥平面AB C ;(2)因为点E ,F 分别是棱AC ,AD 的中点,所以//EF DC ,且12EF DC =,所以EF ⊥平面ABC , 由(1)知,AB ⊥平面BDC ,又BC ⊂平面BDC ,所以AB BC ⊥,105ADC ︒∠=,45ADB ︒∠=,1054560CDB ADC ADB ︒︒︒∴∠=∠-∠=-=, 90906030CBD CDB ︒︒︒︒∴∠=-∠=-=,cos3022BC BD ︒∴=⋅=⨯=1sin 30212DC BD ︒=⋅=⨯=,所以12ABC S AB BC =⨯⨯△12ABE ABC S S ==△△1122EF DC ==,所以111332A BEF F ABE ABE V V EF S --==⋅⋅=⋅=△ 【点睛】方法点睛:计算三棱锥体积时,常用等体积法进行转化,具体的方法为:①换顶点,换底面;②换顶点,不换底面;③不换顶点,换底面.19.体积V ;表面积(21π+.【分析】由已知计算出圆柱的底面半径,代入圆柱表面积和体积公式,即可得到答案.【详解】解:设圆柱的底面半径为r ,高为'h ,圆锥的高h ='3h =,1'2h h ∴=,则122r =,1r ∴=. ∴圆柱的体积2V r h π'==;表面积(22221S r rh πππ=+='. 【点睛】本题考查的知识点求圆柱的表面积和体积,其中根据已知条件,求出圆柱的底面半径,是解答本题的关键.20.(1)证明见解析;(2. 【分析】(1)在直角梯形ABCD 中先求出,,CD CE BE ,然后可求得,DE AE ,从而可证明DE AE ⊥,由线面垂直判定定理证明线面垂直;(2)由(1)得面面垂直,知Q 在AE 上,PAQ ∠为直线AP 与平面ABCD 所成的角,cos AQ PAQ AP ∠==AQ x =(0x <≤-P QDE 的体积,由二次函数知识求得最大值,及此时x 的值,得Q 为AE 中点,从而有//FQ BE ,PBE ∠为异面直线PB 与QF 所成角(或补角),由余弦定理可得.【详解】(1)证明://AD BC ,BC CD ⊥,120ABC ∠=︒,4=AD ,3BC =,=2AB ,∴CD ===CD ,∴1CE =,CD =2BE =, 由余弦定理得AE ===又2DE ===,∴222DE AE AD ,∴AD DE ⊥,∵AP DE ⊥,又AP AE A =,AP AE ⊂、平面APE ,∴DE ⊥平面APE .(2)由(1)DE ⊥平面APE .DE ⊂平面ABCD ,∴平面ABCD ⊥平面PAE ,∴Q 点在AE 上,PAQ ∠为直线AP 与平面ABCD 所成的角,cos 3AQ PAQ AP ∠==,设AQ x =(0x <≤PQ =,QE x =,12(23)232QDE S x x =⨯⨯-=-△, 212(23)33P QDE QDE V PQ S x x -=⋅=--△22(3)223x =--+≤,当且仅当3x =时等号成立,则当P QDE V -最大时,3AQ =,∴Q 为AE 中点,∵F 为AB 中点,∴//FQ BC ,∴PBE ∠为异面直线PB 与QF 所成角(或补角),1,3QB QE ==,则由PQ ⊥平面ABCD 得3,7PE PB ==,又2BE =,则2227cos 2PB BE PE PBE PB BE +-∠==⋅, ∴异面直线PB 与QF 所成角的余弦值为714.【点睛】本题考查线面垂直的判定定理,考查直线与平面所成的角,异面直线所成的角,三棱锥的体积等,旨在考查学生的空间想象能力,运算求解能力,逻辑推理能力.属于中档题. 21.(1)证明见解析;(210 【分析】(1)连接1A B 交1AB 于O ,连接MO ,证明1MO AB ⊥,1MO A B ⊥,然后得到MO ⊥平面11ABB A 即可;(2)首先证明1A O ⊥平面1AB M ,然后可得1A MO ∠即为1A M 与平面1AB M 所成的角,然后利用111sin A O MO MA A ∠=算出答案即可. 【详解】(1)证明:连接1A B 交1AB 于O ,连接MO ,易得O 为1A B ,1AB 的中点∵1CC ⊥平面ABC ,AC ⊂平面ABC∴1CC AC ⊥又M 为1CC 中点,16AC CC == ∴223635AM =+=同理可得135B M =∴1MO AB ⊥连接MB ,同理可得135A M BM ==1MO A B ∴⊥又11AB A B O ⋂=,1AB ,1A B ⊂平面11ABB A∴MO ⊥平面11ABB A又MO ⊂平面1AB M∴平面1AB M ⊥平面11ABB A(2)解:易得11A O AB ⊥又由(1)平面1AB M ⊥平面1ABB A平面1AB M 平面111ABB A AB =,1AO ⊂平面11ABB A ∴1A O ⊥平面1AB M∴1A MO ∠即为1A M 与平面1AB M 所成的角在11Rt AA B △中,22111663222AB AO ==+=在1Rt AOM 中,1113210sin 35AO MO A A M ∠=== 故1A M 与平面1AB M 10【点睛】方法点睛:几何法求线面角的步骤:(1)作:作出辅助线,构成三角形;(2)证:利用线面角的定义证明作出的角即为所求角;(3)求:在直角三角形中求解即可. 22.(1)证明见解析;(2)证明见解析.(1)连接1B C ,可知点D 为1B C 的中点,利用中位线的性质可得出11//OD A B ,利用线面平行的判定定理可证得结论成立;(2)证明出四边形11AAC C 为菱形,可得出11AC AC ⊥,证明出BC ⊥平面11AAC C ,可得出1AC BC ⊥,利用线面垂直和面面垂直的判定定理可证得结论成立.【详解】(1)如下图所示,连接1B C ,在三棱柱111ABC A B C -中,11//BB CC 且11BB CC =,则四边形11BB C C 为平行四边形, D 为1BC 的中点,则D 为1B C 的中点,同理可知,点O 为1A C 的中点,11//OD A B ∴, OD ⊄平面111A B C ,11A B ⊂平面111A B C ,因此,//OD 平面111A B C ;(2)在直三棱柱111ABC A B C -中,1CC ⊥平面ABC ,11//AA CC 且11AA CC =, 所以四边形11AAC C 为平行四边形,1AC CC =,所以,平行四边形11AAC C 为菱形,则11AC AC ⊥,1CC ⊥平面ABC ,BC ⊂平面ABC ,1BC CC ∴⊥,BC AC ⊥,1AC CC C =,BC ∴⊥平面11AAC C ,1AC ⊂平面11AAC C ,1AC BC ∴⊥,1AC BC C =,1AC ∴⊥平面1A BC ,1AC ⊂平面1AC B ,因此,平面1AC B ⊥平面1A BC .【点睛】方法点睛:证明面面垂直的常用方法:(1)面面垂直的定义;(2)面面垂直的判定定理.在证明面面垂直时,可假设两个平面垂直成立,利用面面垂直的性质定理转化为线面垂直,即可找到所要证的线面垂直,然后组织论据证明即可.23.(1)证明见解析;(2)105.(1)证明,BD AC BD AD ⊥⊥后得BD ⊥平面ADC ,然后可得面面垂直;(2)连结OD ,作OE BC ⊥于E ,连结DE ,证得OED ∠为二面角A BC D --的平面角,在三角形中可得其余弦值.【详解】证明:(1)∵CA ⊥平面ADB ,BD ⊂平面ADB ,∴CA BD ⊥,.又D 是圆周上一点,AB 是圆O 的直径,DA DB ⊥,又CA ⊂平面CAD ,DA ⊂平面CAD ,ADCA A =,∴BD ⊥平面CAD ,而BD ⊂平面ACD ,∴平面ADC ⊥平面CDB ;(2)连结OD ,作OE BC ⊥于E ,连结DE ,∵CA ⊥平面ADB ,CA ⊂平面ABC ,∵平面ABC ⊥平面ADB ,∵BD AD =,∴⊥OD AB ,又∵OD ⊂平面ADB ,∵平面ABC平面ADB AB =, ∴OD ⊥平面ABC ,∵BC ⊂面ABC ,∴BC OD ⊥.又∵BC OE ⊥,OE DE E =,∴BC ⊥平面ODE ,∴BC DE ⊥,∴OED ∠为二面角A BC D --的平面角.又1AC =,12AD =,BD AD =, ∴2OD =,3OE =,30DE =,所以cos OE OED DE ∠==10所以二面角A BC D --的余弦值为105. 【点睛】方法点睛:本题考查证明面面垂直,求二面角.求二面角的方法:(1)定义法:根据定义作出二面角的平面角(并证明)然后在相应三角形中求角.(2)向量法:建立空间直角坐标系,用二面角的两个面的法向量的夹角与二面角相等或互补计算.24.(1)证明见解析;(2)证明见解析.【分析】本题考查线面平行与线面垂直的判定,难度不大.(1)利用线面平行的判定定理证得//EF 平面BCD ,进而利用线面平行的性质定理证得; (2)利用线面垂直的判定定理证得CD ⊥平面ADB ,进而证得AB ⊥平面CDH ,然后由面面垂直判定定理证得结论.【详解】证明:(1)因为点E 、F 分别为线段AC 、AD 的中点,EF ∴为ACD △的中位线,则//EF CD ,CD ⊂平面BCD ,EF ⊄平面BCD ,//EF ∴平面BCD ,又EF ⊂平面EFNM ,平面EFNM ⋂平面BCD MN =,//EF MN ∴;(2)90CDA CDB ∠=∠=︒,CD DA ∴⊥,CD DB ⊥,DA DB D ⋂=,DA ⊂平面ADB ,DB ⊂平面ADB , CD 平面ADB ,CD AB ∴⊥又DH AB ⊥,DH CD D ⋂=,DC ⊂平面DCH ,DH ⊂平面DCH ,AB ∴⊥平面CDH ,AB ⊂平面ABC ,∴平面CDH ⊥平面ABC.【点睛】要证线线平行,常常先证线面平行,综合利用线面平行的判定与性质进行证明;要证面面垂直,常常先证线面垂直,而要证线面垂直,又常常先证另一个线面垂直.25.(1)证明见解析;(2)PA =PC 与平面PBD 所成角最大,此时该角的正弦值为35. 【分析】 (1)根据已知条件,得到BD PA ⊥,再利用正切函数的性质,求得0030,BAC 60ABD ∠=∠=,得到BD AC ⊥,进而可证得平面PBD ⊥平面PAC ;(2)建立空间坐标系,得到()BD =-,()0,2,DP t =-,()2PC t =-,进而得到平面PBD 的一个法向量为1,3,n ⎛= ⎝⎭,进而可利用向量的公式求解 【详解】(1)∵PA ⊥平面,ABCD BD ⊂平面ABCD ,∴BD PA ⊥,又3tan ,tan 33AD BC ABD BAC AB AB ∠==∠==, ∴0030,BAC 60ABD ∠=∠=,∴090AEB ∠=,即BD AC ⊥(E 为AC 与BD 交点).又PA AC ,∴BD ⊥平面PAC ,又因为BD ⊂平面PBD ,所以,平面PAC ⊥平面PBD(2)如图,以AB 为x 轴,以AD 为y 轴,以AP 为z 轴,建立空间坐标系,如图, 设AP t =,则()()()()23,0,0,23,6,0,0,2,0,0,0,B C D P t ,则()23,2,0BD =-,()0,2,t DP =-,()23,6,PC t =-,设平面PBD 法向量为(),,n x y z =,则00n BD n DP ⎧⋅=⎨⋅=⎩,即232020x y y tz ⎧-+=⎪⎨-+=⎪⎩,取1x =,得平面PBD 的一个法向量为231,3,n t ⎛⎫= ⎪ ⎪⎝⎭, 所以22226333cos ,1214448451PC nPC n PC n t t t t ⋅===++++, 因为22221441445151275t t t t +++=≥,当且仅当23t =时等号成立, 所以5c 33353os ,PC n ≤=,记直线PC 与平面PBD 所成角为θ,则sin cos ,PC n θ=,故3sin 5θ≤,即23t =时,直线PC 与平面PBD 所成角最大,此时该角的正弦值为35. 【点睛】关键点睛:解题关键在于利用定义和正切函数的性质,得到BD ⊥平面PAC ,进而证明平面PAC ⊥平面PBD ;以及建立空间直角坐标系,求出法向量,进行求解直线PC 与平面PBD 所成角的最大值,难度属于中档题26.(1)证明见解析;(2)证明见解析.【分析】(1)连结AC 、BD ,交于点O ,连结OE ,通过//OE PA 即可证明;(2)通过PD BC ⊥, CD BC ⊥可证BC ⊥平面PDC ,即得DE BC ⊥,进而通过DE ⊥平面PBC 得DE PB ⊥,结合EF PB ⊥即证.【详解】证明:(1)连结AC 、BD ,交于点O ,连结OE ,底面ABCD 是正方形,∴O 是AC 中点,点E 是PC 的中点,//OE PA ∴.OE ⊂平面EDB , PA ⊄平面EDB ,∴//PA 平面EDB .(2)PD DC =,点E 是PC 的中点,DE PC ∴⊥.底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,∴PD BC ⊥, CD BC ⊥,且 PD DC D ⋂=,∴BC ⊥平面PDC ,∴DE BC ⊥,又PC BC C ⋂=,∴DE ⊥平面PBC ,∴DE PB ⊥,EF PB ⊥,EF DE E ⋂=,PB ∴⊥平面EFD .【点睛】本题考查线面平行和线面垂直的证明,属于基础题.。

高三一轮复习-立体几何常见问题(带答案)

高三一轮复习-立体几何常见问题(带答案)

个性化辅导授课教案学员姓名 : 辅导类型(1对1、小班): 年 级: 辅 导 科 目 : 学 科 教 师 : 课 题课 型 □ 预习课 □ 同步课 □ 复习课 □ 习题课 授课日期及时段年 月 日 时间段教 学 内 容 多面体与球组合问题纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段出现这类问题加以类型的总结和方法的探讨.一、球与柱体的组合体规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题. 1.1 球与正方体如图1所示,正方体1111ABCD A B C D -,设正方体的棱长为a ,,,,E F H G 为棱的中点,O 为球的球心.常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFGH 和其内切圆,则2aOJ r ==;二是与正方体各棱相切的球,截面图为正方形EFGH 和其外接圆,则22GO R a ==;三是球为正方体的外接球,截面图为长方形11ACA C 和其外接圆,则132A O R a '==.通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题.例 1 棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为( )A .22B .1C .212+D .2解:由题意可知,球为正方体的外接球.平面11AA DD 截面所得圆面的半径12,22AD R ==11EF AA DD ⊂面,∴直线EF 被球O 截得的线段为球的截面圆的直径22R =.【牛刀小试】将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为( ) A .2πB .4πC .8πD .16π【答案】B【解析】体积最大的球是其内切球,即球半径为1,所以表面积为ππ4142=⋅=S .1.2 球与长方体长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的棱长为,,,a b c 其体对角线为l .当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径222.22l a b c R ++==例 2 在长、宽、高分别为2,2,4的长方体内有一个半径为1的球,任意摆动此长方体,则球经过的空间部分的体积为( ) A.10π3B.4πC.8π3D.7π3【牛刀小试】已知正四棱柱的底边和侧棱长均为32,则该正四棱锥的外接球的表面积为 .1.3 球与正棱柱球与一般的正棱柱的组合体,常以外接形态居多.下面以正三棱柱为例,介绍本类题目的解法构造直角三角形法.设正三棱柱111ABC A B C -的高为,h 底面边长为a ,如图2所示,D 和1D 分别为上下底面的中心.根据几何体的特点,球心必落在高1DD 的中点O ,3,,,23h OD AO R AD a ===借助直角三角形AOD 的勾股定理,可求223()()23hR a =+.例3 正四棱柱1111ABCD A B C D -的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最 值,为 .【牛刀小试】直三棱柱111ABC A B C -的六个顶点都在球O 的球面上,若1AB BC ==,0120ABC ∠=,123AA =,则球O 的表面积为( )A .4πB .8πC .16πD .24π二、球与锥体的组合体规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者表面积等相关问题.2.1 球与正四面体正四面体作为一个规则的几何体,它既存在外接球,也存在内切球,并且两心合一,利用这点可顺利解决球的半径与正四面体的棱长的关系.如图4,设正四面体S ABC -的棱长为a ,内切球半径为r ,外接球的半径为R ,取AB 的中点为D ,E 为S 在底面的射影,连接,,CD SD SE 为正四面体的高.在截面三角形SDC ,作一个与边SD 和DC 相切,圆心在高SE 上的圆,即为内切球的截面.因为正四面体本身的对称性可知,外接球和内切球的球心同为O .此时,,CO OS R OE r ===,23,,33SE a CE a ==则有2222233a R r a R r CE +=-=,=,解得:66,.412R a r a ==这个解法是通过利用两心合一的思路,建立含有两个球的半径的等量关系进行求解.同时我们可以发现,球心O 为正四面体高的四等分点.如果我们牢记这些数量关系,可为解题带来极大的方便.2.2 球与三条侧棱互相垂直的三棱锥球与三条侧棱互相垂直的三棱锥组合问题,主要是体现在球为三棱锥的外接球.解决的基本方法是补形法,即把三棱锥补形成正方体或者长方体.常见两种形式:一是三棱锥的三条侧棱互相垂直并且相等,则可以补形为一个正方体,它的外接球的球心就是三棱锥的外接球的球心.如图5,三棱锥111A AB D -的外接球的球心和正方体1111ABCD A B C D -的外接球的球心重合.设1AA a =,则32R a =.二是如果三棱锥的三条侧棱互相垂直并且不相等,则可以补形为一个长方体,它的外接球的球心就是三棱锥的外接球的球心.2222244a b c l R ++==(l 为长方体的体对角线长). CB ADSOE 图4例5 在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且AM MN ⊥,若侧棱23SA =,则正三棱锥S ABC -外接球的表面积是 .【牛刀小试】一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为( )A .12πB .43πC .3πD .123π2.3 球与正棱锥球与正棱锥的组合,常见的有两类,一是球为三棱锥的外接球,此时三棱锥的各个顶点在球面上,根据截面图的特点,可以构造直角三角形进行求解.二是球为正棱锥的内切球,例如正三棱锥的内切球,球与正三棱锥四个面相切,球心到四个面的距离相等,都为球半径R .这样求球的半径可转化为球球心到三棱锥面的距离,故可采用等体积法解决,即四个小三棱锥的体积和为正三棱锥的体积.例6 在三棱锥P -ABC 中,PA =PB=PC=3,侧棱PA 与底面ABC 所成的角为60°,则该三棱锥外接球的体积为( ) A .π B.3π C. 4π D.43π【牛刀小试】已知正三棱锥P -ABC ,点P ,A ,B ,C 都在半径为3的球面上,若PA,PB,PC 两两互相垂直,则球心到截面ABC 的距离为____________.2.4 球与特殊的棱锥球与一些特殊的棱锥进行组合,一定要抓住棱锥的几何性质,可综合利用截面法、补形法等进行求解.例如,四个面都是直角三角形的三棱锥,可利用直角三角形斜边中点几何特征,巧定球心位置.如图8,三棱锥S ABC -,满足,,SA ABC AB BC ⊥⊥面取SC 的中点为O ,由直角三角形的性质可得:,OA OS OB OC ===所以O 点为三棱锥S ABC -的外接球的球心,则2SCR =. 例7 矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积是( )A.π12125 B.π9125 C.π6125 D.π3125解:由题意分析可知,四面体ABCD 的外接球的球心落在AC 的中点,此时满足,OA OD OB OC ===522AC R ∴==,343V R π=1256π=. 五、与三视图相结合的组合体问题本类问题一般首先给出三视图,然后考查其直观图的相关的组合体问题.解答的一般思路是根据三视图还CBASO原几何体,根据几何体的特征选择以上介绍的方法进行求解.例9 【河北省唐山市2014-2015学年度高三年级摸底考试】某几何体的三视图如图所示,则该几何体的外 接球的球面面积为( ) A .5πB .12πC .20πD .8π【牛刀小试】若一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为( )A.163 πB.193 πC.1912 πD.43π综合上面的五种类型,解决与球的外切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作;把一个多面体的几个顶点放在球面上即为球的内接问题.解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.发挥好空间想象力,借助于数形结合进行转化,问题即可得解.如果是一些特殊的几何体,如正方体、正四面体等可以借助结论直接求解,此时结论的记忆必须准确.问题二:立体几何中的折叠问题立体几何中的折叠问题主要包含两大问题:平面图形的折叠与几何体的表面展开。

立体几何中的组合体问题专题(有答案)

立体几何中的组合体问题专题(有答案)

立体几何中的组合体问题专题(有答案)例1.正方体与球问题:正方体的棱长为1.求球的半径:⑴若正方体的八个顶点都在球面上,⑵若球内切于正方体;⑶12条棱组成一个正方体,一充气球在正方体内,求球的最大半径.例2.正四面体与球问题:正四面体的棱长为1.求球的半径:⑴若正四面体的四个顶点都在球面上,⑵若球内切于正四面体;⑶6条棱组成一个正四面体,一充气球在正四面体内,求球的最大半径.例3.四球问题:四个球的半径都为1.⑴桌面放两两相切的3个球,这3个球上面放一个球,求这个球的最高点离桌面的距离;⑵求与上述4个球都相切的小球的半径.例4.圆锥、圆柱与球⑴底面半径为1cm高为10cm的圆柱内,可以放几个半径为0.5cm的小球?⑵圆锥底面半径为3,高为4,一个球内切于圆锥,求球的半径;⑶圆锥底面半径为3,高为4,两个半径相同的球两两相切,放在圆锥底面上,且内切于圆锥,求这两个球的半径;⑷圆锥底面半径为3,高为4,三个半径相同的球两两相切,放在圆锥底面上,且内切于圆锥,求这两个球的半径;⑸圆锥底面半径为3,内接于一个半径为4的球,求圆锥的高.例5.圆锥与正四棱柱⑴圆锥底面半径为3,高为4,正四棱柱的高为3,且内接于圆锥,求正四棱柱的底面边长;⑵圆锥底面半径为3,高为4,正四棱柱的高为x,且内接于圆锥,求正四棱柱的体积.练习一、补(补成长方体或正方体)1. 一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为A 、3πB 、4πC 、33πD 、6π2. 在正三棱锥ABC S -中,M 、N 分别是棱SC 、BC 的中点,且AM MN ⊥,若侧棱32=SA ,则正三棱锥ABC S -外接球的表面积是( ) A .π12 B .π32 C .π36 D .π483. 点P 在直径为6的球面上,过P 作两两互相垂直的三条弦(两端点均在球面上的线段),若其中一条弦长是另一条弦长的2倍,则这三条弦长之和的最大值是 A .6B .435C .2215D .210554. 一个正方体的体积是8,则这个正方体的内切球的表面积是( )A .8πB .6πC .4πD .π 5. 设正方体的棱长为233,则它的外接球的表面积为( )A .π38B .2πC .4πD .π346. 已知三棱锥S ABC -的三条侧棱两两垂直,且2,4SA SB SC ===,则该三棱锥的外接球的半径为 A .3 B .6 C .36 D .97. 已知长方体1111ABCD A B C D -的外接球的表面积为16,则该长方体的表面积的最大值为A .32B .36C .48D .648. 长方体1111ABCD A B C D -的各个顶点都在表面积为16π的球O 的球面上,其中1::2:1:3AB AD AA =,则四棱锥O ABCD -的体积为A .263 B . 63C .23D .3 9.【山东省潍坊一中2013届高三12月月考测试数学文】四棱锥P ABCD 的三视图如右图所示,四棱锥P ABCD 的五个顶点都在一个球面上,E 、F 分别是棱AB 、CD 的中点,直线EF 被球面所截得的线段长为22,则该球表面积为A .12B .24C .36D .4810. (河南省豫东、豫北十所名校2013届高三阶段性测试四)已知四面体ABCD 中,AB =AD =6,AC =4,CD =213,AB 丄平面ACD ,则四面体 ABCD 外接球的表面积为A . π36B . π88C . π92D . π12811. 正方体1111ABCD A B C D -的棱长为6,一个球与正方体的棱长都相切,则这个球的半径是____________.12. 三棱锥A -BCD 中,侧棱AB 、AC 、AD 两两垂直,ΔABC ,ΔACD , ΔADB 的面积分别为,222,则三棱锥A -BCD 的外接球的体积为. ______13. 四面体ABCD 中,共顶点A 的三条棱两两相互垂直,且其长分别为361、、,若四面体的四个顶点同在一个球面上,则这个球的表面积为 。

高中数学必修2立体几何常考题型:圆柱、圆锥、圆台、球的结构特征与简单组合体的结构特征

高中数学必修2立体几何常考题型:圆柱、圆锥、圆台、球的结构特征与简单组合体的结构特征

圆柱、圆锥、圆台、球的结构特征与简单组合体的结构特征【知识梳理】1.旋转体由简单几何体组合而成的几何体叫做简单组合体.3.简单组合体的构成形式有两种基本形式:一种是由简单几何体拼接而成的;另一种是由简单几何体截去或挖去一部分而成的.【常考题型】题型一、旋转体的结构特征【例1】给出下列说法:(1)以直角三角形的一条边所在直线为轴,其余两边旋转形成的曲面围成的几何体是圆锥;(2)以等腰三角形底边上的中线所在直线为轴,将三角形旋转形成的曲面围成的几何体是圆锥;(3)经过圆锥任意两条母线的截面是等腰三角形;(4)圆锥侧面的母线长有可能大于圆锥底面圆直径,其中正确说法的序号是________.[解析](1)不正确,因为当直角三角形绕斜边所在直线旋转得到的旋转体就不是圆锥,而是两个同底圆锥的组合体;(2)正确,以等腰三角形底边上的中线所在直线为轴,将三角形旋转形成的曲面围成的几何体是圆锥;(3)正确,如图所示,经过圆锥任意两条母线的截面是等腰三角形;(4)正确,如图所示,圆锥侧面的母线长有可能大于圆锥底面圆半径的2倍(即直径).[答案](2)(3)(4)【类题通法】1.判断简单旋转体结构特征的方法(1)明确由哪个平面图形旋转而成.(2)明确旋转轴是哪条直线.2.简单旋转体的轴截面及其应用(1)简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量.(2)在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.【对点训练】1.给出下列说法:(1)圆柱的底面是圆面;(2)经过圆柱任意两条母线的截面是一个矩形面;(3)圆台的任意两条母线的延长线可能相交,也可能不相交;(4)夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.解析:(1)正确,圆柱的底面是圆面;(2)正确,如图所示,经过圆柱任意两条母线的截面是一个矩形面;(3)不正确,圆台的母线延长相交于一点;(4)不正确,圆柱夹在两个平行于底面的截面间的几何体才是旋转体.答案:(1)(2)题型二、简单组合体【例2】观察下列几何体的结构特点,完成以下问题:(1)图①所示几何体是由哪些简单几何体构成的?试画出几何图形,可旋转该图形180°后得到几何体①;(2)图②所示几何体结构特点是什么?试画出几何图形,可旋转该图形360°得到几何体②;(3)图③所示几何体是由哪些简单几何体构成的?并说明该几何体的面数、棱数、顶点数.[解析](1)图①是由圆锥和圆台组合而成.可旋转如下图形180°得到几何体①.(2)图②是由一个圆台,从上而下挖去一个圆锥,且圆锥的顶点恰为圆台底面圆的圆心.可旋转如下图形360°得到几何体②.(3)图③是由一个四棱锥与一个四棱柱组合而成,且四棱锥的底面与四棱柱底面相同.共有9个面,9个顶点,16条棱.【类题通法】1.明确组合体的结构特征,主要弄清它是由哪些简单几何体组成的,必要时也可以指出棱数、面数和顶点数,如图③所示的组合体有9个面,9个顶点,16条棱.2.会识别较复杂的图形是学好立体几何的第一步,因此我们应注意观察周围的物体,然后将它们“分拆”成几个简单的几何体,进而培养我们的空间想象能力和识图能力.【对点训练】2.下列组合体是由哪些几何体组成的?解:(1)由两个几何体组合而成,分别为球、圆柱.(2)由三个几何体组合而成,分别为圆柱、圆台、圆柱.(3)由三个几何体组合而成,分别为圆锥、圆柱、圆台.【练习反馈】1.圆锥的母线有()A.1条B.2条C.3条D.无数条答案:D2.右图是由哪个平面图形旋转得到的()解析:选A图中几何体由圆锥、圆台组合而成,可由A中图形绕图中虚线旋转360°得到.3.等腰三角形绕底边上的高所在直线旋转180°,所得几何体是________.答案:圆锥4.如图所示的组合体的结构特征为________.解析:该组合体上面是一个四棱锥,下面是一个四棱柱,因此该组合体的结构特征是四棱锥和四棱柱的一个组合体.答案:一个四棱锥和一个四棱柱的组合体5.如图,AB为圆弧BC所在圆的直径,∠BAC=45°.将这个平面图形绕直线AB旋转一周,得到一个组合体,试说明这个组合体的结构特征.解:如图所示,这个组合体是由一个圆锥和一个半球体拼接而成的.。

第四讲-立体几何题型归类总结

第四讲-立体几何题型归类总结

第四讲-立体几何题型归类总结高中数学-立体几何第四讲立体几何题型归类总结一、考点分析基本图形1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

斜棱柱底面是正多边形的棱柱正棱柱直棱柱其他棱柱2.棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的垂线上,这样的棱锥叫做正棱锥。

3.球球的性质:球心与截面圆心的连线垂直于截面;r=R2-d2(其中,球心到截面的距离为d、球的半径为R、截面的半径为r)球与多面体的组合体:球与正四面体、长方体、正方体等的内接与外切。

注:球的有关问题转化为圆的问题解决。

球面积、体积公式:S球=4πR,V球=4/3πR³(其中R为球的半径)二、平行垂直基础知识网络平行与垂直关系可互相转化平行关系a⊥α,b⊥α⇒a//ba⊥α,a//b⇒b⊥αa⊥α,a⊥β⇒α//βα//β,a⊥α⇒a⊥βα//β,γ⊥α⇒γ⊥β垂直关系线线平行判定线线垂直性质判定性质判定面面垂直定义面面垂直线面平行面面平行线面垂直异面直线所成的角,线面角,二面角的求法1.求异面直线所成的角θ∈(0°,90°):解题步骤:找(作):利用平移法找出异面直线所成的角;(1)可固定一条直线平移另一条与其相交;(2)可将两条一面直线同时平移至某一特殊位置。

常用中位线平移法证:证明所找(作)的角就是异面直线所成的角(或其补角)。

常需要证明线线平行;计算:通过解三角形,求出异面直线所成的角;2求直线与平面所成的角度$\theta\in[0^\circ,90^\circ]$:关键在于找到“两足”:垂足和斜足。

解题步骤:1.找到斜线与其在平面内的射影的夹角(注意三垂线定理的应用);2.证明所找到的角度就是直线与平面所成的角度(或其补角)(常常需要证明线面垂直);3.通过解直角三角形,计算线面角度。

高中数学第八章立体几何初步知识汇总大全(带答案)

高中数学第八章立体几何初步知识汇总大全(带答案)

高中数学第八章立体几何初步知识汇总大全单选题1、一个正方体的平面展开图及该正方体的直观图如图所示,在正方体中,设BC 的中点为M ,的中点为N ,下列结论正确的是( )A .MN//平面ABEB .MN//平面ADEC .MN//平面BDHD .MN//平面CDE答案:C解析:根据题意,得到正方体的直观图及其各点的标记字母,取FH 的中点O ,连接ON ,BO ,可以证明MN ‖BO ,利用BO 与平面ABE 的关系可以判定MN 与平面ABE 的关系,进而对选择支A 作出判定;根据MN 与平面BCF 的关系,利用面面平行的性质可以判定MN 与平面ADE 的关系,进而对选择支B 作出判定;利用线面平行的判定定理可以证明MN 与平面BDE 的平行关系,进而判定C ;利用M ,N 在平面CDEF 的两侧,可以判定MN 与平面CDE 的关系,进而对D 作出判定.根据题意,得到正方体的直观图及其各点的标记字母如图所示,取FH 的中点O ,连接ON ,BO ,易知ON 与BM 平行且相等,∴四边形ONMB 为平行四边形,∴MN ‖BO ,∵BO 与平面ABE (即平面ABFE )相交,故MN 与平面ABE 相交,故A 错误;∵平面ADE ‖平面BCF ,MN ∩平面BCF =M ,∴MN 与平面ADE 相交,故B 错误;∵BO ⊂平面BDHF ,即BO ‖平面BDH ,MN ‖BO ,MN ⊄平面BDHF ,∴MN ‖平面BDH ,故C 正确;显然M ,N 在平面CDEF 的两侧,所以MN 与平面CDEF 相交,故D 错误.GH小提示:本题考查从面面平行的判定与性质,涉及正方体的性质,面面平行,线面平行的性质,属于小综合题,关键是正确将正方体的表面展开图还原,得到正方体的直观图及其各顶点的标记字母,并利用平行四边形的判定与性质找到MN 的平行线BO .2、《九章算术·商功》中,将四个面都为直角三角形的四面体称为鳖臑.如图,在鳖臑ABCD 中,AB ⊥平面BCD ,AC ⊥CD ,AC =BC +CD =2,当△BCD 的面积最大时,鳖臑ABCD 的表面积为( )A .√3+√62B .3+√62C .2+√3+√62D .3+√3+√62答案:D分析:根据题意可证明CD ⊥BC ,从而说明三角形BCD 是直角三角形,求得BD ,进而求得四个直角三角形的面积,可得答案.由题意可知:AB ⊥平面BCD ,CD ⊂平面BCD ,故AB ⊥CD ,又AC ⊥CD ,AC ∩AB =A,AB,AC ⊂平面ABC ,故CD ⊥平面ABC ,BC ⊂平面ABC ,所以S △BCD =12BC ⋅CD ≤12×(BC+CD 2)2=12 ,当且仅当BC =CD =1时取得等号, 故BD =√1+1=√2 ,由AB ⊥平面BCD ,可知AB ⊥BD,AB ⊥BC ,故AB =√AC 2−BC 2=√4−1=√3 ,所以S △ABD =12AB ⋅BD =√62,S △ABC =12AB ⋅BC =√32 , S △BCD =12BC ⋅CD =12,S △ACD =12AC ⋅CD =1,所以鳖臑ABCD 的表面积为√62+√32+12+1=3+√3+√62 , 故选:D3、在正方体ABCD −A 1B 1C 1D 1中,三棱锥A −B 1CD 1的表面积为4√3,则正方体外接球的体积为( )A .4√3πB .√6πC .32√3πD .8√6π答案:B解析:根据三棱锥的表面积进一步求出正方体的棱长,最后求出正方体的外接球的半径,进一步求出结果. 解:设正方体的棱长为a ,则B 1D 1=AC =AB 1=AD 1=B 1C =D 1C =√2a ,由于三棱锥A −B 1CD 1的表面积为4√3,所以S =4S △AB 1C =4×12×√32(√2a)2=4√3所以a =√2所以正方体的外接球的半径为√(√2)2+(√2)2+(√2)22=√62,所以正方体的外接球的体积为43π(√62)3=√6π故选:B.小提示:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.4、如图1,已知PABC是直角梯形,AB∥PC,AB⊥BC,D在线段PC上,AD⊥PC.将△PAD沿AD折起,使平面PAD⊥平面ABCD,连接PB,PC,设PB的中点为N,如图2.对于图2,下列选项错误的是()A.平面PAB⊥平面PBC B.BC⊥平面PDCC.PD⊥AC D.PB=2AN答案:A分析:由已知利用平面与平面垂直的性质得到PD⊥平面ABCD,判定C正确;进一步得到平面PCD⊥平面ABCD,结合BC⊥CD判定B正确;再证明AB⊥平面PAD,得到△PAB为直角三角形,判定D正确;可证明平面PBC⊥平面PDC,若平面PAB⊥平面PBC,则平面PAB与平面PDC的交线⊥平面PBC,矛盾,可判断A图1中AD⊥PC,则图2中PD⊥AD,又∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PD⊥平面ABCD,则PD⊥AC,故选项C正确;由PD⊥平面ABCD,PD⊂平面PDC,得平面PDC⊥平面ABCD,而平面PDC∩平面ABCD=CD,BC⊂平面ABCD,BC⊥CD,∴BC⊥平面PDC,故选项B正确;∵AB⊥AD,平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴AB⊥平面PAD,则AB⊥PA,即△PAB是以PB为斜边的直角三角形,而N为PB的中点,则PB=2AN,故选项D正确.由于BC⊥平面PDC,又BC⊂平面PBC∴平面PBC⊥平面PDC若平面PAB⊥平面PBC,则平面PAB与平面PDC的交线⊥平面PBC由于AB//平面PDC,则平面PAB与平面PDC的交线//AB显然AB不与平面PBC垂直,故A错误故选:A5、如图,在三棱锥A−BCD中,E,F,G分别是AB,BC,AD的中点.若∠GEF=120°,则异面直线BD与AC所成角的大小为()A.30°B.60°C.120°D.150°答案:B分析:根据异面直线所成角的定义判断.因为BD∥EG,AC∥EF,所以异面直线BD与AC所成角即∠GEF或其补角,因为异面直线所成角的范围为(0°,90°],所以异面直线BD与AC所成角的大小为60°.故选:B.6、某圆锥母线长为2,底面半径为√3,则过该圆锥顶点的平面截此圆锥所得截面面积的最大值为()A.2B.√3C.√2D.1分析:如图截面为△SMN,P为MN的中点,设OP=x(0<x≤√3),S△SMN=√−(x2−1)2+4,进而可得面积最大值.如图所示,截面为△SMN,P为MN的中点,设OP=x(0<x≤√3)SB=2,OB=√3,∴SO=1,SP=√x2+1,MN=2√3−x2S△SMN=12MN SP=12√x2+1√3−x2=√−(x2−1)2+4当x=1时,S△SMN=2,此时截面面积最大.故选:A小提示:易错点睛:先求出面积的函数表达式进而判断最大值,本题容易误认为垂直于底面的截面面积最大.7、正方体中,点P,O,R,S是其所在棱的中点,则PQ与RS是异面直线的图形是()A.B.C.D.分析:对于A,B,D,利用两平行线确定一个平面可以证明直线PQ与RS共面,对于C,利用异面直线的定义推理判断作答.对于A,在正方体ABCD−A1B1C1D1中,连接AC,A1C1,则AC//A1C1,如图,因为点P,Q,R,S是其所在棱的中点,则有PQ//AC,RS//A1C1,因此PQ//RS,则直线PQ与RS共面,A错误;对于B,在正方体ABCD−A1B1C1D1中,连接AC,QS,PR,如图,因为点P,Q,R,S是其所在棱的中点,有AP//CR且AP=CR,则四边形APRC为平行四边形,即有AC//PR,又QS//AC,因此QS//PR,直线PQ与RS共面,B错误;对于C,在正方体ABCD−A1B1C1D1中,如图,因为点P ,Q ,R ,S 是其所在棱的中点,有RS//BB 1,而BB 1⊂平面,RS ⊄平面, 则RS//平面,PQ ⊂平面,则直线PQ 与RS 无公共点,又直线PQ 与直线BB 1相交,于是得直线PQ 与RS 不平行,则直线PQ 与RS 是异面直线,C 正确;对于D ,在正方体ABCD −A 1B 1C 1D 1中,连接A 1B ,D 1C ,PS ,QR ,如图,因为A 1D 1//BC 且A 1D 1=BC ,则四边形A 1D 1CB 为平行四边形,有A 1B//D 1C ,因为点P ,Q ,R ,S 是其所在棱的中点,有PS//A 1B ,QR//D 1C ,则PS//QR ,直线PQ 与RS 共面,D 错误. 故选:C8、下列说法中正确的是( )A .如果一条直线与一个平面平行,那么这条直线与平面内的任意一条直线平行B .平面α内△ABC 的三个顶点到平面β的距离相等,则α与β平行C .α//β,a//α,则a//βD .a//b ,a//α,b ⊄α,则b//α答案:D分析:根据线面关系,逐一判断每个选项即可.解:对于A 选项,如果一条直线与一个平面平行,那么这条直线与平面内的无数条直线平行,而不是任意的直线平行,故错误;对于B 选项,如图1,D ,E ,F ,G 分别为正方体中所在棱的中点,平面DEFG 设为平面β,易知正方体的三个顶点A ,B ,C 到平面β的距离相等,但△ABC 所在平面α与β相交,故错误;对于选项C ,a 可能在平面β内,故错误;对于选项D ,正确.11ABB A 11ABB A 11ABB A 11ABBA故选:D.多选题9、如图是正方体的平面展开图,在这个正方体中,下列结论正确的是()A.BM与ED平行B.CN⊥AFC.CN与BM成60°D.四条直线AF、BM、CN、DE中任意两条都是异面直线答案:BCD分析:还原成正方体之后根据正方体性质分析线线位置关系.根据展开图还原正方体如图所示:BM与ED不平行,所以A错误;正方体中CN⊥DM,DM//FA,所以CN⊥AF,所以B正确;CN//EB,CN与BM成角就是∠EBM,△EBM是等边三角形,所以∠EBM=60°,所以C正确;由图可得四条直线AF、BM、CN、DE中任意两条既不想交也不平行,所以任意两条都是异面直线.故选:BCD10、已知PA⊥矩形ABCD所在的平面,则下列结论中正确的是()A.PB⊥BCB.PD⊥CDC.PD⊥BDD.PA⊥BD答案:ABD分析:由PA⊥矩形ABCD,得PA⊥BD,若PD⊥BD,则BD⊥平面PAD,又BA⊥平面PAD,则过平面外一面有两条直线与平面垂直,不成立,故PD⊥BD不正确.解:∵PA⊥矩形ABCD,BD⊂矩形ABCD,∴PA⊥BD,故D正确.若PD⊥BD,则BD⊥平面PAD,又BA⊥平面PAD,则过平面外一面有两条直线与平面垂直,故PD⊥BD不正确,故C不正确;∵PA⊥矩形ABCD,∴PA⊥CD,AD⊥CD,∴CD⊥平面PAD,∴PD⊥CD,故B正确;∵PA⊥矩形ABCD,∴由三垂线定理得PB⊥BC,故A正确;故选:ABD.11、如图,在棱长均相等的正四棱锥P−ABCD中,M、N分别为侧棱PA、PB的中点,O是底面四边形ABCD对角线的交点,下列结论正确的有()A.PC//平面OMN B.平面PCD//平面OMNC.OM⊥PA D.PD⊥平面OMN答案:ABC分析:A选项,由中位线证明线线平行,推导出线面平行;B选项,在A选项的基础上证明面面平行;从而推导出D错误;由勾股定理的逆定理得到PA⊥PC,从而得到OM⊥PA.因为O为底面四边形ABCD对角线的交点,所以O为AC的中点,由M是PA的中点,可得PC∥MO,因为PC⊄在平面OMN,OM⊂平面OMN,所以PC//平面OMN,A正确;同理可推得PD//平面OMN,而PC∩PD=P,所以平面PCD//平面OMN,B正确;因为PD⊂平面PCD,故PD不可能垂直平面OMN,D错误;设该正四棱锥的棱长为a,则PA=PC=a,AC=√2a,所以PA⊥PC,因为PC∥MO,所以OM⊥PA,C正确.故选ABC.12、用平行于棱锥底面的平面去截棱锥,得到上、下两部分空间图形且上、下两部分的高之比为1:2,则关于上、下两空间图形的说法正确的是()A.侧面积之比为1:4B.侧面积之比为1:8C.体积之比为1:27D.体积之比为1:26答案:BD分析:计算出小棱锥与原棱锥的相似比,结合两个棱锥侧面积之积为相似比的平方、体积之比为相似比的立方可求得结果.依题意知,上部分为小棱锥,下部分为棱台,所以小棱锥与原棱锥的底面边长之比为1:3,高之比为1:3,所以小棱锥与原棱锥的侧面积之比为1:9,体积之比为1:27,即小棱锥与棱台的侧面积之比为1:8,体积之比为1:26.故选:BD.13、已知α,β是两个不重合的平面,m,n是两条不重合的直线,则下列命题正确的是()A.若m//n,m//α,则n//αB.若m//α,α∩β=n,则m//nC.若m⊥α,m⊥β,则α//βD.若m⊥α,m//n,n⊥β,则α//β答案:CD分析:根据空间中线、面的位置关系,逐一分析各个选项,即可得答案.对于A:若m//n,m//α,则n//α或n⊂α,故A错误;对于B:若m//α,α∩β=n,则m与n可平行也可异面,故B错误;对于C:若m⊥α,m⊥β,则α//β,故C正确;对于D:若m⊥α,m//n,则n⊥α,又n⊥β,则α//β,故D正确.故选:CD填空题14、已知正四棱锥的侧棱长为2√3,侧棱与底面所成的角为60°,则该四棱锥的高为_______. 答案:3解析:根据立体图形,作出直线与平面所成的角,结合线面角即可求得锥体的高.如图,过点S作SO⊥平面ABCD,连接OC,∠SCO就是侧棱与底面所成的角,×2√3=3.则∠SCO=60°,∴SO=sin60°⋅SC=√32所以答案是:3.小提示:此题考查根据线面角求线段长度,关键在于弄清正四棱锥的几何特征.15、如图所示,P 为平行四边形ABCD 所在平面外一点,E 为AD 的中点,F 为上一点,若PA//平面EBF ,则PF FC =_______答案:12##0.5分析:连接AC 交BE 于点M ,连接,由线面平行的性质得线线平行,由平行线性得结论.连接AC 交BE 于点M ,连接,∵PA//平面EBF ,PA ⊂平面,平面PAC ∩平面EBF =EM ,∴PA//EM ,又AE//BC ,∴PF FC =AM MC =AE BC =12. 所以答案是:12. 16、对于任意给定的两条异面直线,存在______条直线与这两条直线都垂直.答案:无数分析:平移一条直线与另一条相交并确定一个平面,再由线面垂直的意义及异面直线所成角判断作答. 令给定的两条异面直线分别为直线a,b ,平移直线b 到直线bʹ,使bʹ与直线a 相交,如图,则直线bʹ与a 确定平面α,点A 是平面α内任意一点,过点A 有唯一直线l ⊥α, PC FM FMPAC因此,l⊥a,l⊥bʹ,即有l⊥b,由于点A的任意性,所以有无数条直线与异面直线a,b都垂直.所以答案是:无数解答题17、如图所示,斜三棱柱ABC−A1B1C1中,点D1为A1C1上的中点.(1)求证:BC1//平面AB1D1;(2)设三棱锥A−A1B1D1的体积为V1,三棱柱ABC−A1B1C1的体积为V2,求V1V2.答案:(1)证明见解析;(2)16.分析:(1)连接A1B交AB1于点O,连接OD1,可得OD1∥BC1,由线面平行的判定定理即可证明BC1∥平面AB1D1;(2)由V1=V A−A1B1D1=12V A−A1B1C1=16V ABC−A1B1C1=16V2,即可求得结论.(1)证明:连接A1B交AB1于点O,连接OD1.则在平形四边形ABB1A1中,点O为A1B的中点,又点D1为A1C1的中点,所以OD1∥BC1,又OD1⊂平面AB1D1,B1C⊄平面AB1D1,所以BC1∥平面AB1D1.(2)V1=V A−A1B1D1=12V A−A1B1C1=16V ABC−A1B1C1=16V2所以V1V2=16.18、如图,四边形ABCD是一个半圆柱的轴截面,E,F分别是弧,AB上的一点,EF//AD,点H为线段AD的中点,且AB=AD=4,∠FAB=30°,点G为线段CE上一动点.(1)试确定点G的位置,使DG//平面CFH,并给予证明;(2)求三棱锥E−CFH的体积.答案:(1)点G为线段CE中点,证明见解析;(2)8√33.分析:(1)点G为线段CE中点,取CF中点M,证明DG//HM,再利用线面平行的判定推理作答.(2)根据给定条件,证得CE⊥平面ADEF,再结合等体积法即可求出三棱锥E−CFH的体积作答.(1)当点G为线段CE中点时,DG//平面CFH,取CF中点M,连接HM,GM,如图,则GM//EF,GM=12EF,DC因E,F分别是弧,AB上的一点,EF//AD,则EF是半圆柱的一条母线,即EF=AD,而点H为线段AD的中点,于是得GM//DH,GM=DH,即四边形DGMH为平行四边形,则DG//HM,而DG⊄平面CFH,HM⊂平面CFH,所以DG//平面CFH.(2)依题意,AB是半圆柱下底面半圆的直径,则∠AFB=90∘,而∠FAB=30°,有AF=√32AB=2√3,BF=12AB=2,显然CD是半圆柱上底面半圆的直径,则CE⊥DE,由(1)知EF是半圆柱的一条母线,则EF⊥平面CDE,而CE⊂平面CDE,即有CE⊥EF,DE∩EF=E,DE,EF⊂平面ADEF,因此,CE⊥平面ADEF,而EF//BC,EF=BC,即四边形BCEF是平行四边形,CE=BF=2,又点H为线段AD的中点,则S△EFH=12AD⋅AF=4√3,所以三棱锥E−CFH的体积V E−CFH=V C−EFH=13⋅S△EFH⋅CE=13×4√3×2=8√33.DC。

数学竞赛中的立体几何组合体问题的解法探究

数学竞赛中的立体几何组合体问题的解法探究
: 研 『 究













数 学 竞赛中 的 立 体几 何组 合 体问 题的 解 法 探究
■ 覃章 平
摘 要: 在数学竞赛的试题 中 , 立体几何 占有很 重要的地位 ,而其中的组合体 问题是一类常见 的题 型, 是立体几何 的一个难点 , 因此找到合适 的解题方
法至关重要 。
问题 。
对 于一 些具有对称性 的几何体组 合体 问题 , 我 们通常可 以找到几者的连接点 , 即纽带 , 把各个几何 体 中的重要构成要素连接起来 , 找 出关系 , 再进行求
解。
例 1 求棱 长为n 的正 四面体 的外接球表面积。 分 析:由于正 四面体和其外 接球都是具有对称 性 的几何体 , 所 以球心也就是正 四面体的中心 , 把它 作为纽带 , 把球 的半径和正 四面体 的棱长联系起 来。 解: 如 图设球心为0, 球半径为R, O A= O D= R, 过A 点作 面B C D的垂线
要 的探 究 。

即 一 =
+r
, 解 得r : ( 2 了一 3 o


三、 连接球心 。 转化 为熟 悉 的 多面 体 问 题

找共同点 。 建 立 关 系
当两球外切 时 , 球心连线通过切点 , 球心距等于 两球半径 之和。因此 , 研究 多球相切 问题时 , 连接球 心使其构成多面体 的主要元素 ,从而转化为多面体
C D= 4,

有A D= A C = B D = B C = 5 ,

8一 . O,D :
_ = _ | 三 一 0D D : R, 由D 0, : + D, D 2 = O D 2 , 可得 : _ = _ f 鱼 一 口

高中数学立体组合体教案

高中数学立体组合体教案

高中数学立体组合体教案
教学目标:
1. 理解立体的概念,并能够区分各种不同的立体;
2. 能够分析和解决立体组合体的问题;
3. 提高学生的逻辑思维能力和空间想象力。

教学重点:
1. 立体的特点和性质;
2. 立体的组合体的概念;
3. 立体组合体相关问题的解决方法。

教学难点:
1. 立体组合体的构造和分析;
2. 立体组合体的体积计算。

教学准备:
1. 教材《数学》(高中必修一);
2. 多媒体教学设备。

教学内容:
1. 立体的概念和特点;
2. 立体组合体的概念和构造;
3. 立体组合体的体积计算。

教学过程:
一、引入:通过展示不同的立体图形,引导学生思考什么是立体以及立体的特点。

二、讲解:介绍立体组合体的概念,并讲解立体组合体的构造方法。

三、示例:通过具体的例题,演示如何分析和解决立体组合体相关问题。

四、练习:让学生进行相关练习,巩固所学知识。

五、总结:总结立体组合体的性质和计算方法,强化学生的理解和应用能力。

六、作业:布置相关作业,深化学生对立体组合体的理解和运用。

教学反思:
本节课主要围绕立体组合体展开,通过理论讲解、示例演练和练习训练,帮助学生掌握立
体组合体的相关知识和解题方法。

同时,也要重点培养学生的逻辑思维能力和空间想象力,提高他们的数学素养和解决问题的能力。

希望能够激发学生对数学的兴趣和热情,提升他
们的学习效果和成就感。

(必考题)高中数学必修二第一章《立体几何初步》测试卷(有答案解析)(3)

(必考题)高中数学必修二第一章《立体几何初步》测试卷(有答案解析)(3)

一、选择题1.某几何体的三视图如图所示(单位:cm ),则该几何体的外接球的表面积(单位:2cm )是( )A .36πB .54πC .72πD .90π2.现有一个三棱锥形状的工艺品P ABC -,点P 在底面ABC 的投影为Q ,满足12QABQAC QBC PABPACPBCS S S S S S ===△△△△△△,22222213QA QB QC AB BC CA ++=++,93ABCS =,若要将此工艺品放入一个球形容器(不计此球形容器的厚度)中,则该球形容器的表面积的最小值为( )A .42πB .44πC .48πD .49π3.大摆锤是一种大型游乐设备(如图),游客坐在圆形的座舱中,面向外,通常大摆锤以压肩作为安全束缚,配以安全带作为二次保险,座舱旋转的同时,悬挂座舱的主轴在电机的驱动下做单摆运动.假设小明坐在点A 处,“大摆锤”启动后,主轴OB 在平面α内绕点O 左右摆动,平面α与水平地面垂直,OB 摆动的过程中,点A 在平面β内绕点B 作圆周运动,并且始终保持OB β⊥,B β∈.设4OB AB =,在“大摆锤”启动后,下列结论错误的是( )A .点A 在某个定球面上运动;B .β与水平地面所成锐角记为θ,直线OB 与水平地面所成角记为δ,则θδ+为定值;C .可能在某个时刻,AB//α;D .直线OA 与平面α所成角的正弦值的最大值为17. 4.已知三棱锥A BCD -的各棱长都相等,E 为BC 中点,则异面直线AB 与DE 所成角的余弦值为( ) A .13 B .36C .33 D .1165.一个几何体的三视图如图所示,则该几何体的外接球的表面积是( )A .2πB .3πC .4πD .16π6.如图,在四棱锥P ABCD -中,底面ABCD 是矩形.其中3AB =,2AD =,PAD △是以A ∠为直角的等腰直角三角形,若60PAB ∠=︒,则异面直线PC 与AD 所成角的余弦值是( )A .2211B .2211-C 27D .11117.如图,正方形ABCD 的边长为4,点E ,F 分别是AB ,B C 的中点,将ADE ,EBF △,FCD 分别沿DE ,EF ,FD 折起,使得A ,B ,C 三点重合于点A ',若点G 及四面体A DEF '的四个顶点都在同一个球面上,则以FDE 为底面的三棱锥G -DEF 的高h 的最大值为( )A.263+B.463+C.4263-D.2263-8.某几何体的三视图如图所示,该几何体的体积为V,该几何体所有棱的棱长之和为L,则()A.8,14253V L==+B.8,1425V L==+C.8,16253V L==+D.8,1625V L==+9.某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16B.13C.23D.210.在四棱锥P -ABCD 中,//AD BC ,2AD BC =,E 为PD 中点,平面ABE 交PC 于F ,则PFFC=( ) A .1B .32C .2D .311.平行六面体1111ABCD A B C D -的六个面都是菱形,那么点1A 在面11AB D 上的射影一定是11AB D 的________心,点1A 在面1BC D 上的射影一定是1BC D 的________心( )A .外心、重心B .内心、垂心C .外心、垂心D .内心、重心12.如图(1),Rt ABC ,1,3,2AC AB BC ===,D 为BC 的中点,沿AD 将ACD △折起到AC D ',使得C '在平面ABD 上的射影H 落在AB 上,如图(2),则以下结论正确的是( )A .AC BD '⊥B .AD BC '⊥ C .BD C D ⊥' D .AB C D ⊥'二、填空题13.已知直三棱柱111ABC A B C -,14AB BC AA ===,42AC =,若点P 是上底面111 A B C 所在平面内一动点,若三棱锥P ABC -的外接球表面积恰为41π,则此时点P 构成的图形面积为________.14.如图所示,Rt A B C '''∆为水平放置的ABC ∆的直观图,其中A C B C ''''⊥,2B O O C ''''==,则ABC ∆的面积是________________.15.已知正四棱锥的体积为18,侧棱与底面所成的角为45,则该正四棱锥外接球的表面积为___________.16.已知一个几何体的三视图如图所示,俯视图为等腰三角形,则该几何体的外接球表面积为_________.17.在三棱锥D ABC -中,AD ⊥平面ABC ,3AC =,17BC =,1cos 3BAC ∠=,若三棱锥D ABC -的体积为27,则此三棱锥的外接球的表面积为______18.已知棱长为4的正方体ABCD -A 1B 1C 1D 1中,点M 是棱AD 的中点,点N 是棱AA 1的中点,P 是侧面四边形ADD 1A 1内一动点(含边界),若C 1P ∥平面CMN ,则线段C 1P 长度的取值范围是________.19.如图,在直角梯形ABCD 中,//,,2,3,60AB CD AB AD CD AB ABC ⊥==∠=°,将此梯形以AD 所在直线为轴旋转一周,所得几何体的表面积是_________________.20.将底面直径为8,高为23为______.三、解答题21.如图,在直三棱柱111ABC A B C -中,1,2AC BC AC BC CC ⊥===.(1)求三棱柱111ABC A B C -的体积; (2)求异面直线1CB 与1AC 所成角的大小; (3)求二面角1B AC C --的平面角的余弦值.22.如图,四棱锥P ABCD -的底面ABCD 是边长为2的菱形,60BCD ∠=,已知2PB PD ==,6PA =,E 为PA 的中点.(1)求证:PC BD ⊥;(2)求二面角B PC E --的余弦值; (3)求三棱锥P BCE -的体积.23.如图,在多面体ABCDEF 中,底面ABCD 为菱形,且∠DAB =π3,AB =2,EF //AC ,EA =ED =3,BE =5.(1)求证:平面EAD ⊥平面ABCD ; (2)求三棱锥F -BCD 的体积.24.如图,四棱锥E ABCD -中,底面ABCD 是边长为2的正方形,平面AEB ⊥平面ABCD ,4EBA π∠=,2EB =F 为CE 上的点,BF CE ⊥.(1)求证:BF ⊥平面ACE ; (2)求点D 到平面ACE 的距离.25.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为梯形,//AD BC ,6BC =,2PA AD CD ===,E 是BC 上一点且23BE BC =,PB AE ⊥.(1)求证:AB ⊥平面PAE ; (2)求点C 到平面PDE 的距离.26.如图,在直角梯形ABED 中,//BE AD ,DE AD ⊥,BC AD ⊥,4AB =,23BE =.将矩形BEDC 沿BC 翻折,使得平面ABC ⊥平面BCDE .(1)若BC BE =,证明:平面ABD ⊥平面ACE ;(2)当三棱锥A BCE -的体积最大时,求平面ADE 与平面ABC 所成的锐二面角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由三视图知该几何体是底面为等腰直角三角形,且侧面垂直于底面的三棱锥,由题意画出图形,结合图形求出外接球的半径,再计算外接球的表面积. 【详解】解:由几何体的三视图知,该几何体是三棱锥P ABC -,底面为等腰ABC ∆, 且侧面PAB ⊥底面ABC ,如图所示;设D 为AB 的中点,又3DA DB DC DP ====,且PD ⊥平面ABC ,∴三棱锥P ABC -的外接球的球心O 在PD 上,设OP R =,则OA R =,3OD R =-,222(3)3R R ∴=-+, 解得3R =,∴该几何体外接球的表面积是32436R cm ππ=.故选:A . 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.2.D解析:D 【分析】作QM AB ⊥,连接PM ,易证AB PM ⊥,由112122QAB PABAB QMS S AB PM ⨯⨯==⨯⨯△△,得到2PM QM=,再根据12 QAB QACQBCPAB PAC PBCS S SS S S===△△△△△△,由对称性得到AB BC AC==,然后根据22222213QA QB QCAB BC CA++=++,93ABCS=,求得6,23AB AQ==,在AOQ△中,由222AO OQ AQ=+求解半径即可.【详解】如图所示:作QM AB⊥与M,连接PM,因为PQ⊥平面ABC,所以PQ AB⊥,又QM PQ Q⋂=,所以AB⊥平面PQM,所以AB PM⊥,所以112122QABPABAB QMSS AB PM⨯⨯==⨯⨯△△,2PM QM=,因为12QAB QAC QBCPAB PAC PBCS S SS S S===△△△△△△,由对称性得AB BC AC==,又因为22222213QA QB QCAB BC CA++=++,93ABCS=所以21sin60932ABCS AB=⨯⨯=解得6,3AB AQ==所以3,23,3QM PM PQ===,设外接球的半径为r,在AOQ △中,222AO OQ AQ =+,即()()222323r r =-+, 解得72r =, 所以外接球的表面积为2449S r ππ==, 即该球形容器的表面积的最小值为49π. 故选:D 【点睛】关键点点睛:本题关键是由12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△得到三棱锥是正棱锥,从而找到外接球球心的位置而得解..3.C解析:C 【分析】利用已知条件确定OA 是定值,即得A 选项正确;作模型的简图,即得B 正确;依题意点B 在平面α内,不可能AB//α,得C 错误;设AB a ,结合题意知AB α⊥时,直线OA 与平面α所成角最大,计算此时正弦值,即得D 正确. 【详解】因为点A 在平面β内绕点B 作圆周运动,并且始终保持OB β⊥,所22OA OB AB =+,又因为OB ,AB 为定值,所以OA 也是定值,所以点A 在某个定球面上运动,故A 正确;作出简图如下,OB l ⊥,所以2πδθ+=,故B 正确;因为B α∈,所以不可能有AB//α,故C 不正确; 设AB a ,则4OB a =,2217OA AB OB a =+,当AB α⊥时,直线OA 与平面α所成角最大,此时直线OA 与平面α1717a=,故D 正确. 故选:C. 【点睛】本题解题关键在于认真读题、通过直观想象,以实际问题为背景构建立体几何关系,再运用立体几何知识突破难点.4.B解析:B 【分析】取AC 中点F ,连接,EF DF ,证明FED ∠是异面直线AB 与DE 所成角(或其补角),然后在三角形中求得其余弦值即可得. 【详解】取AC 中点F ,连接,EF DF ,∵E 是BC 中点,∴//EF AB ,12EF AB =, 则FED ∠是异面直线AB 与DE 所成角(或其补角), 设1AB =,则12EF =,32DE DF ==, ∴在等腰三角形DEF 中,11324cos 63EF FED DE ∠===. 所以异面直线AB 与DE 所成角的余弦值为36. 故选:B .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.5.C解析:C 【分析】由三视图还原出原几何体,确定其结构,再求出外接球的半径得球的表面积. 【详解】由三视图,知原几何体是一个四棱锥P ABCD -,如图,底面ABCD 是边长为1的正方形,PB ⊥底面ABCD ,由PB ⊥底面ABCD ,AD ⊂面ABCD ,得PB AD ⊥,又AD AB ⊥,AB PB B ⋂=,,AB PB ⊂平面PAB ,所以AD ⊥平面PAB ,而PA ⊂平面PAB ,所以AD PA ⊥,同理DC PC ⊥,同样由PB ⊥底面ABCD 得PB BD ⊥,所以PD 中点O 到四棱锥各顶点距离相等,即为其外接球球心,PD 为球直径,222222PD PB BD PA AD AB =+=++=,∴外接球半径为12ADr ==, 表面积为2414S ππ=⨯=. 故选:C .【点睛】关键点点睛:本题考查由三视图还原几何体,考查棱锥的外接球表面积.解题关键是确定外接球的球心.棱锥的外接球球心在过各面外心(外接圆圆心)且与该面垂直的直线上.6.D解析:D 【分析】在图形中找到(并证明)异面直线所成的角,然后在三角形中计算. 【详解】因为//AD BC ,所以PCB ∠是异面直线PC 与AD 所成角(或其补角), 又PA AD ⊥,所以PA BC ⊥,因为AB BC ⊥,AB PA A ⋂=,,AB PA ⊂平面PAB ,所以BC ⊥平面PAB , 又PB ⊂平面PAB ,所以PB BC ⊥. 由已知2PA AD ==,所以22222cos 23223cos607PB PA AB PA AB PAB =+-⋅∠=+-⨯⨯︒=22211cos 11(7)2BC PCB PC ∠===+, 所以异面直线PC 与AD 所成角的余弦值为21111. 故选:D . 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.7.A解析:A 【分析】先求出'A FDE -外接球的半径和外接圆的半径,再利用勾股定理求出外接球的球心到外接圆的圆心的距离,可得高h 的最大值. 【详解】因为A ,B ,C 三点重合于点A ',原来A B C ∠∠∠、、都是直角,所以折起后三条棱'''A F A D A E 、、互相垂直,所以三棱锥'A FDE -可以看作一个长方体的一个角,它们有相同的外接球,外接球的直径就是长方体的体对角线,即为'2'2'22441626R AF AD AE =++=++6R =2241625DE DF AD AE ==++=2222EF BE BF =+= 在DFE △中,22210cos 222522DE EF DF DEF DE EF +-∠===⨯⨯⨯, 所以DEF ∠为锐角,所以2310sin 1cos DEF DEF ∠=-∠=,DEF的外接圆的半径为552 2sin310DFrDEF===∠,则球心到DEF外心的距离为2223R r-=,以FDE为底面的三棱锥G-DEF的高h的最大值为1R OO+的距离为263+.故选:A.【点睛】本题考查了翻折问题和外接球的问题,关键点翻折前后量的变化及理解外接球和三棱锥的关系,考查了学生的空间想象力和计算能力.8.A解析:A【分析】由三视图还原几何体,由棱锥的体积公式可得选项.【详解】在如图所示的正方体1111ABCD A B C D-中,P,E分别为11,B C BC的中点,该几何体为四棱锥P ABCD-,且PE⊥平面ABCD.由三视图可知2AB=,则5,3PC PB PD PA====,则21825681425,2233L V=++=+=⨯⨯=.故选:A.【点睛】方法点睛:三视图问题的常见类型及解题策略:(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.9.C解析:C【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果.【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD△是等腰三角形,且底边和底边上的高线都是2;且侧棱AD⊥底面BCD,1AD=,所以112 =221=323V⨯⨯⨯⨯,故选:C.【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下:(1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称;(2)根据三视图还原几何体;(3)利用椎体体积公式求解即可.10.C解析:C【分析】首先通过延长直线,DC AB,交于点G,平面BAE变为GAE,连结PG,EG交于点F,再根据三角形中线的性质,求PFFC的值.【详解】延长,DC AB,交于点G,连结PG,EG交PC于点F,//AD BC ,且2AD BC =,可得点,B C 分别是,AG DG 的中点,又点E 是PD 的中点,PC ∴和GE 是△PGD 的中线,∴点F 是重心,得2PFFC=故选:C 【点睛】关键点点睛:本题的关键是找到PC 与平面BAE 的交点,即将平面BAE 转化为平面GAE 是关键. 11.C解析:C 【分析】将三棱锥111A AB D -、三棱锥11A BC D -分离出来单独分析,根据线段长度以及线线关系证明1A 的射影点分别是11AB D 和1BC D 的哪一种心. 【详解】三棱锥111A AB D -如下图所示:记1A 在面11AB D 上的射影点为O ,连接11,,AO B O D O ,因为11111AA A D A B ==,又1A O ⊥平面11AB D , 所以222222*********1,,AA AO AO A D AO OD A B AO OB =+=+=+ 所以11AO OB OD ==,所以O 为11AB D 的外心;三棱锥11A BC D -如下图所示:记1A 在面1BC D 上的射影点为1O ,连接1111,,BO C O DO ,因为11//BC AD ,且四边形11ADD A 是菱形,所以11AD A D ⊥,所以11BC A D ⊥, 又因为11A O ⊥平面1BC D ,所以1111111,AO BC AO A D A ⊥=,所以1BC ⊥平面11AO D ,又因为1DO ⊂平面11AO D ,所以11DO BC ⊥, 同理可知:1111,BO DC C O DB ⊥⊥,所以1O 为1BC D 的垂心, 故选:C. 【点睛】关键点点睛:解答本题的关键是通过1A 的射影点去证明线段长度的关系、线段位置的关系,借助线面垂直的定义和判定定理去分析解答问题.12.C解析:C 【分析】设AH a =,则3BH a =,由线面垂直的性质和勾股定理可求得DH a AH ==,由等腰三角形的性质可证得BD ⊥DH ,再根据线面垂直的判定和性质可得选项. 【详解】设AH a =,则3BH a =,因为'C H ⊥面ABD ,AB 面ABD ,DH ⊂面ABD ,所以'C H ⊥AB ,'C H ⊥DH ,'C H ⊥DB , 又Rt ABC ,1,3,2AC AB BC ===,D 为BC 的中点,所以'1,6C D BD B DAB π==∠=∠=,所以在'Rt AC H 中,()2''221C H AC AHa =-=-Rt C HD ’中,()2'222'211DH C D C H a a =-=--=,所以DH a AH ==,所以6ADH DAB π∠=∠=,又23ADB π∠=,所以2HDB π∠=,所以BD ⊥DH ,又'C HDH H =,所以BD ⊥面'C DH ,又'C D ⊂面'C DH ,所以BD ⊥'C D , 故选:C. 【点睛】关键点点睛:在解决折叠问题时,关键在于得出折叠的前后中,线线、线面、面面之间的位置关系的不变和变化,以及其中的边的长度、角度中的不变量和变化的量.二、填空题13.【分析】确定是等腰直角三角形的中点分别是和的外心由直棱柱性质得的外接球的球心在上外接球面与平面的交线是圆是以为圆心为半径的圆求出可得面积【详解】则设分别是的中点则分别是和的外心由直三棱柱的性质得平面 解析:4π【分析】确定ABC 是等腰直角三角形,11,AC A C 的中点1,D D 分别是ABC 和111A B C △的外心,由直棱柱性质得P ABC -的外接球的球心O 在1DD 上,外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,求出1PD 可得面积. 【详解】4,AB BC AC ===90ABC ∠=︒,设1,D D 分别是11,AC A C 的中点,则1,D D 分别是ABC 和111A B C △的外心,由直三棱柱的性质得1DD ⊥平面ABC , 所以P ABC -的外接球的球心O 在1DD 上,如图,24()41OA ππ=,则2OP OA ==,32OD ===, 所以11135422OD DD OD AA OD =-=-=-=,12PD ===, P ABC -的外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,其面积为224S ππ=⨯=. 故答案为:4π.【点睛】关键点点睛:本题考查立体几何中动点轨迹问题的求解,重点考查了几何体的外接球的有关问题的求解,关键是根据外接球的性质确定球心位置,结合勾股定理得出动点所满足的具体条件,结论:三棱锥的外接球的球心在过各面外心且与此面垂直的直线上.14.【分析】根据直观图和原图的之间的关系由直观图画法规则将还原为如图所示是一个等腰三角形直接求解其面积即可【详解】由直观图画法规则将还原为如图所示是一个等腰三角形则有所以故答案为:【点睛】关键点点睛:根 解析:82【分析】根据直观图和原图的之间的关系,由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,直接求解其面积即可. 【详解】由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,则有2BO OC B O O C ''''====,242AO A O ''==所以114428222ABCSBC AO =⋅=⨯⨯= 故答案为:2【点睛】关键点点睛:根据斜二测画法的规则,可得出三角形的直观图,并求出对应边长,根据面积公式求解.15.【分析】作出图形计算出正四棱锥的高与底面边长设底面的中心为计算得出为正四棱锥的外接球球心可求得该正四棱锥的外接球半径即可得解【详解】如下图所示设正四棱锥的底面的中心为连接设正四棱锥的底面边长为则由于解析:36π【分析】作出图形,计算出正四棱锥P ABCD -的高与底面边长,设底面ABCD 的中心为E ,计算得出E 为正四棱锥P ABCD -的外接球球心,可求得该正四棱锥的外接球半径,即可得解. 【详解】如下图所示,设正四棱锥P ABCD -的底面ABCD 的中心为E ,连接PE 、AC 、BD ,设正四棱锥P ABCD -的底面边长为a ,则2AC BD a ==,由于E 为正四棱锥P ABCD -的底面ABCD 的中心,则PE ⊥平面ABCD , 由于正四棱锥P ABCD -的侧棱与底面所成的角为45,则45PAC PCA ∠=∠=, 所以,PAC △是以APC ∠为直角的等腰直角三角形, 同理可知,PBD △是以BPD ∠为直角的等腰直角三角形,E 为AC 的中点,1222PE AC a ==,2ABCD S a =正方形, 231122183326P ABCD ABCD V S PE a a a -=⋅=⨯⨯==正方形,解得32a =,232PE a ==,由直角三角形的性质可得1122PE AC BD ==,即PE AE BE CE DE ====,所以,E 为正四棱锥P ABCD -外接球的球心, 球E 的半径为3r PE ==,该球的表面积为2436r ππ=. 故答案为:36π. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.16.【分析】首先把三视图转换为直观图进一步求出几何体的外接球的半径最后求出球的表面积【详解】根据几何体的三视图可知该几何体是底面为等腰三角形高为2的三棱锥体如图所示:设底面外接圆的半径为t 圆心为H 则解得 解析:414π 【分析】首先把三视图转换为直观图,进一步求出几何体的外接球的半径,最后求出球的表面积.【详解】根据几何体的三视图可知该几何体是底面为等腰三角形,高为2的三棱锥体.如图所示:设底面外接圆的半径为t ,圆心为H ,则2221(2)t t =+-,解得54t =, 设外接球的半径r ,球心为O ,则OH ⊥底面,且1OH =, 则22541()144r =+=所以41414().164S ππ=⨯⨯= 故答案为:414π 【点睛】 关键点点睛:球心与底面外接圆圆心连线垂直底面,且OH 等于棱锥高的一半,利用勾股定理求出球的半径,由面积公式计算即可.17.【分析】设出外接球的半径球心的外心半径r 连接过作的平行线交于连接如图所示在中运用正弦定理求得的外接圆的半径r 再利用的关系求得外接球的半径运用球的表面积公式可得答案【详解】设三棱锥外接球的半径为球心为 解析:20π【分析】设出外接球的半径R 、球心O ,ABC 的外心1O 、半径 r , 连接1AO ,过O 作的平行线OE 交AD 于 E ,连接OA ,OD ,如图所示,在ABC 中,运用正弦定理求得 ABC的外接圆的半径r ,再利用1,,R r OO 的关系求得外接球的半径,运用球的表面积公式可得答案.【详解】设三棱锥外接球的半径为R 、球心为O ,ABC 的外心为1O 、外接圆的半径为r ,连接1AO ,过O 作平行线OE 交AD 于E ,连接OA ,OD ,如图所示,则OA OD R ==,1O A r =,OE AD ⊥,所以E 为AD 的中点.在ABC 中,由正弦定理得172sin 22BC r BAC ==∠,解得334r =. 在ABC 中,由余弦定理2222cos BC AB AC AB AC BAC =+-⋅⋅∠,可得2117963AB AB =+-⋅⋅,得4AB =. 所以1122sin 3442223ABC S AB AC BAC =⋅⋅∠=⨯⨯⨯=△. 因为112742333D ABC ABC V S AD AD -=⋅⋅=⨯⨯=△,所以144AD =.连接1OO ,又1//OO AD ,所以四边形1EAO O 为平行四边形,111428EA OO AD ===,所以22221114324588R OO AO ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭. 所以该三棱锥的外接球的表面积()224π4π520πS R ===.故答案为:20π.【点睛】本题考查三棱锥的外接球,及球的表面积计算公式,解决问题的关键在于利用线面关系求得外接球的球心和球半径,属于中档题.18.【分析】分别取棱的中点连接易证平面平面由题意知点必在线段上由此可判断在或处时最长位于线段中点处时最短通过解直角三角形即可求得【详解】如下图所示连分别为所在棱的中点则又平面平面平面四边形为平行四边形又 解析:[32,25]【分析】分别取棱1BB 、11B C 的中点M 、N ,连接MN ,易证平面1//A MN 平面AEF ,由题意知点P 必在线段MN 上,由此可判断P 在M 或N 处时1A P 最长,位于线段MN 中点处时最短,通过解直角三角形即可求得.【详解】如下图所示,连MN ,EF ,1A D ,EMM ,N ,E ,F 分别为所在棱的中点,则1//MN A D ,1//EF A D ,//EF MN ∴,又MN ⊂平面1C EF ,EF ⊂平面1C EF ,//MN ∴平面1C EF .11//,C C EM C C EM =,∴四边形1C CME 为平行四边形,1//C E CM ,又CM ⊄平面1C EF ,1C E ⊂平面1C EF ,//CM ∴平面1C EF ,又NM CM M =, ∴平面//NMC 平面1C EF .P 是侧面四边形ADD 1A 1内一动点,且C 1P ∥平面CMN ,∴点P 必在线段EF 上.在Rt △11C D E 中,222211114225C E C D D E =+=+=同理,在Rt △11C D F 中,可得125C F =, ∴△1C EF 为等腰三角形.当点P 为EF 中点O 时,1C P EF ⊥,此时1C P 最短;点P 位于,E F 处时,1C P 最长. ()222211(25)232C O C E OE =-=-=1125C E C F ==∴线段1C P长度的取值范围是.故答案为:【点睛】本题考查点、线、面间的距离问题,考查学生的运算能力及推理转化能力,属中档题,解决本题的关键是通过构造平行平面寻找P点位置.19.【分析】此梯形以AD所在直线为轴旋转一周得到的是圆台然后根据圆台的侧面积和表面积公式进行计算【详解】将此梯形以AD所在直线为轴旋转一周得到的是圆台其中圆台的上底半径为r=CD=2下底半径为R=AB=解析:23π【分析】此梯形以AD所在直线为轴旋转一周,得到的是圆台,然后根据圆台的侧面积和表面积公式进行计算.【详解】将此梯形以AD所在直线为轴旋转一周,得到的是圆台,其中圆台的上底半径为r=CD=2,下底半径为R=AB=3,母线BC=2,∴圆台的上底面积为πr2=4π,下底面积为πR2=9π,圆台的侧面积为(πr+πR)•BC=π(2+3)×2=10π,∴圆台的表面积为4π+9π+10π=23π,故答案为23π.【点睛】本题考查圆台表面积的计算,利用旋转体的定义确定该几何体是圆台是解决本题的关键.20.【分析】欲使圆柱侧面积最大需使圆柱内接于圆锥设圆柱的高为h底面半径为r用r表示h从而求出圆柱侧面积的最大值【详解】欲使圆柱侧面积最大需使圆柱内接于圆锥;设圆柱的高为h底面半径为r则解得;所以;当时取解析:【分析】欲使圆柱侧面积最大,需使圆柱内接于圆锥,设圆柱的高为h,底面半径为r,用r表示h,从而求出圆柱侧面积的最大值.【详解】欲使圆柱侧面积最大,需使圆柱内接于圆锥;设圆柱的高为h ,底面半径为r , 23423r =,解得33h r =; 所以()23222334S rh r r r πππ⎛⎫===- ⎪ ⎪⎝⎭圆柱侧; 当2r 时,S 圆柱侧取得最大值为43π 故答案为:3π.【点睛】本题考查了求圆柱侧面积的最值,考查空间想象能力,将问题转化为函数求最值,属于中档题.三、解答题21.(1)4;(2)60︒;(3)33. 【分析】(1)根据棱锥的体积公式求解即可;(2)作辅助线,利用平行得出异面直线1CB 与1AC 所成角就是COE ∠,再结合等边三角形的性质得出夹角;(3)过C 作1CF AC ⊥于点F ,连接,CF BF ,由11,CF AC BF AC ⊥⊥结合定义得出二面角1B AC C --的平面角,再由直角三角形的边角关系得出平面角的余弦值.【详解】(1)三棱柱111ABC A B C -的体积1122242ABC V S CC ⎛⎫=⋅=⨯⨯⨯= ⎪⎝⎭(2)记1BC 与1B C 的交点为O ,作AB 的中点E ,连接,OE CE ,异面直线1CB 与1AC 所成角就是COE ∠2CO OE CE ===60COE ︒∴∠=(3)过C 作1CF AC ⊥于点F ,连接,CF BF11,CF AC BF AC BFC ⊥⊥⇒∠为所求角 3tan 2,cos 2BC BFC BFC FC ∠===∠=【点睛】关键点睛:在求异面直线的夹角时,关键是利用中位线定理得出平行,从而得出异面直线的夹角.22.(1)证明见解析;(2)155;(3)12. 【分析】(1)连接AC 交BD 于点O ,连接PO ,推导出BD ⊥平面PAC ,进而可得出PC BD ⊥;(2)过点O 在平面PAC 内作OF PC ⊥,垂足为点F ,连接BF ,推导出OFB ∠为二面角B PC E --的平面角,计算出OF 、BF ,可计算出cos OFB ∠,即可得解; (3)计算出PCE 的面积,利用锥体的体积公式可得出13P BCE B PCE PCE V V S OB --==⋅△,即可得解. 【详解】证明:(1)连接AC 交BD 于O 点,连接PO ,∵四边形ABCD 是菱形,AC BD ∴⊥,则O 是BD 的中点,PB PD =,PO BD ∴⊥,又AC PO O =,AC 、OP ⊂平面PAC ,BD ∴⊥平面PAC ,又PC ⊂平面PAC ,PC BD ∴⊥;(2)由(1)知BO ⊥平面PAC ,PC ⊂平面PAC ,则OB PC ⊥,过O 在平面PAC 内作OF PC ⊥于F ,连接BF ,由OB OF O ⋂=,则PC ⊥平面OBF ,BF ⊂平面OBF ,得BF PC ⊥,故OFB ∠为二面角B PC E --的平面角, 四边形ABCD 是菱形,60BAD ∠=,ABD ∴为等边三角形,2BD AB AD ∴===,112OB BD ∴==,223OC OA AB OB ==-= OB ⊥平面PAC ,OP ⊂平面PAC ,OP OB ∴⊥,223OP PB OB ∴-= 3OA =3OP =6PA =222OP PA OA +∴=,即OA OP ⊥,即PO AC ⊥,3366PO OC OF PC ⋅⨯∴===,222261012BF BO OF ⎛⎫=+=+= ⎪ ⎪⎝⎭, 故615cos 510OF OFB BF ∠===,即二面角B PC E --的余弦值是155; (3)E 为PA 的中点,11333222PCE PAC POA S S S ∴====△△△, 又OB ⊥平面PAC ,113113322P BCE B PCE PCE V V S OB --∴==⋅=⨯⨯=△. 【点睛】方法点睛:求二面角常用的方法:(1)几何法:二面角的大小常用它的平面角来度量,平面角的作法常见的有: ①定义法;②垂面法,注意利用等腰三角形的性质;(2)空间向量法:分别求出两个平面的法向量,然后通过两个平面法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求二面角是锐角还是钝角.。

2021_2022学年新教材高中数学第6章立体几何初步章末综合提升学案含解析北师大版必修第二册 (1

2021_2022学年新教材高中数学第6章立体几何初步章末综合提升学案含解析北师大版必修第二册 (1

第6章立体几何初步类型1 平面的根本性质与应用1.证明点共线问题的常用方法根本事实法先找出两个平面,然后证明这些点都是这两个平面的公共点,再根据根本事实3证明这些点都在交线上同一法选择其中两点确定一条直线,然后证明其余点也在该直线上证明假如干线共点的根本思路是先找出两条直线的交点,再证明其他直线都经过该点.而证明直线过该点的方法是证明点是以该直线为交线的两个平面的公共点.3.证明点、直线共面问题的常用方法纳入平面法先确定一个平面,再证明有关点、线在此平面内辅助平面法先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合【例1】如图,在正方体ABCD­A1B1C1D1中,E,F分别为D1C1,B1C1的中点,AC ∩BD=P,A1C1∩EF=Q,直线A1C与平面BDEF的交点为R.(1)证明:B,D,E,F四点共面.(2)证明:P,Q,R三点共线.(3)证明:DE,BF,CC1三线共点.[证明](1)连接B1D1,因为EF是△D1B1C1的中位线,所以EF∥B1D1.在正方体ABCD­A1B1C1D1中,B1D1綊BD,所以EF∥BD.所以EF,BD确定一个平面,即B,D,E,F四点共面.(2)在正方体ABCD­A1B1C1D1中,设A1ACC1确定的平面为α,又设平面BDEF为β,因为Q∈A1C1,所以Q∈α.又因为Q∈EF,所以Q∈β.如此Q是α与β的公共点,同理,P点也是α和β的公共点,所以α∩β=PQ.又因为A1C∩β=R,所以R∈A1C.所以R∈α且R∈β.如此R∈PQ.故P,Q,R三点共线.(3)因为EF∥BD,且EF≠BD,所以DE与BF一定相交,设交点为M,因为BF⊂平面BCC1B1,DE⊂平面DCC1D1,且平面BCC1B1∩平面DCC1D1=CC1,所以M∈CC1,所以DE,BF,CC1三线共点.[跟进训练]1.如图,ABCD-A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,如此如下结论正确的答案是( )A.A,M,O三点共线B.A,M,O,A1不共面C.A,M,C,O不共面D.B,B1,O,M共面A[连接A1C1,AC,如此A1C1∥AC,所以A1,C1,C,A四点共面,所以A1C⊂平面ACC1A1,因为M∈A1C,所以M∈平面ACC1A1,又M∈平面AB1D1,所以M在平面ACC1A1与平面AB1D1的交线上,因为平面ACC1A1∩平面AB1D1=AO,所以M∈AO,所以A,M,O三点共线.]类型2 平行问题(1)证明线线平行的依据①平面几何法(常用的有三角形中位线、平行四边形对边平行);②根本事实4;③线面平行的性质定理;④面面平行的性质定理;⑤线面垂直的性质定理.(2)证明线面平行的依据①定义;②线面平行的判定定理;③面面平行的性质.(3)证明面面平行的依据①定义;②面面平行的判定定理;③垂直于同一直线的两平面平行;④面面平行的传递性.【例2】 如下列图,四边形ABCD 是平行四边形,PB ⊥平面ABCD ,MA ∥PB ,PB =2MA .在线段PB 上是否存在一点F ,使平面AFC ∥平面PMD ?假如存在,请确定点F 的位置,并给出证明;假如不存在,请说明理由.[解]当点F 是PB 的中点时,平面AFC ∥平面PMD ,证明如下:如图,连接AC 和BD 交于点O ,连接FO ,如此PF =12PB .∵四边形ABCD 是平行四边形,∴O 是BD 的中点.∴OF ∥PD . 又OF ⊄平面PMD ,PD ⊂平面PMD , ∴OF ∥平面PMD .又MA ∥PB ,MA =12PB ,∴PF ∥MA ,PF =MA .∴四边形AFPM 是平行四边形. ∴AF ∥PM .又AF ⊄平面PMD ,PM ⊂平面PMD . ∴AF ∥平面PMD .又AF ∩OF =F ,AF ⊂平面AFC ,OF ⊂平面AFC . ∴平面AFC ∥平面PMD . [跟进训练]2.m ,n 是两条不同的直线,α,β,γ是三个不同的平面,如此如下命题正确的有________.(写出所有正确命题的序号)①假如α⊥γ,β⊥γ,如此α∥β; ②假如m ∥n ,m ∥α,如此n ∥α;③假如α∩β=n ,m ∥α,m ∥β,如此m ∥n ; ④假如m ⊥α,m ⊥n ,如此n ∥α.③[对于①,假如α⊥γ,β⊥γ,如此α与β的位置关系是垂直或平行,故①错误;对于②,假如m ∥n ,m ∥α,如此n 可能在α内或平行于α,故②错误;对于③,假如α∩β=n ,m ∥α,m∥β,根据线面平行的性质定理和判定定理,可以判断m∥n,故③正确;对于④,假如m ⊥α,m⊥n,如此n可能在α内或平行于α,故④错误.]类型3 垂直问题(1)证明直线和平面垂直的常用方法:①判定定理;②垂直于平面的传递性(a∥b,a⊥α⇒b⊥α);③面面平行的性质(a⊥α,α∥β⇒a⊥β);④面面垂直的性质.(2)证明线面垂直的关键是证线线垂直,而证明线线垂直如此需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的根本思想.【例3】如下列图,在四棱锥P­ABCD中,平面PAB⊥平面ABCD,AD∥BC,AD=2BC,∠DAB=∠ABP=90°.(1)求证:AD⊥平面PAB;(2)求证:AB⊥PC.[证明](1)因为∠DAB=90°,所以AD⊥AB.因为平面PAB⊥平面ABCD,且平面PAB∩平面ABCD=AB,所以AD⊥平面PAB.(2)由(1)知AD⊥AB,因为AD∥BC,所以BC⊥AB.又因为∠ABP=90°,所以PB⊥AB.因为PB∩BC=B,所以AB⊥平面PBC,因为PC⊂平面PBC,所以AB⊥PC.在本例(1)中,假如点E 在棱PD 上,且CE ∥平面PAB ,求PEPD的值.[解]过E 作EF ∥AD 交PA 于F ,连接BF . 因为AD ∥BC ,所以EF ∥BC . 所以E ,F ,B ,C 四点共面. 又因为CE ∥平面PAB ,且CE ⊂平面BCEF ,平面BCEF ∩平面PAB =BF , 所以CE ∥BF ,所以四边形BCEF 为平行四边形,所以EF =BC =12AD .在△PAD 中,因为EF ∥AD , 所以PE PD =EFAD =12,即PEPD =12. 类型4 几何体的外表积和体积(1)与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点〞、“接点〞作出截面图,把空间问题化归为平面问题.(2)假如球面上四点P ,A ,B ,C 中PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.【例4】 三棱锥S ­ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.假如平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,如此球O 的外表积为________.36π[如图,连接AO ,OB , ∵SC 为球O 的直径, ∴点O 为SC 的中点,∵SA =AC ,SB =BC ,∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,∴AO ⊥平面SCB , 设球O 的半径为R ,如此OA =OB =R ,SC =2R .∴V S ­ABC =V A ­SBC =13×S △SBC ×AO =13×⎝ ⎛⎭⎪⎫12×SC ×OB ×AO ,即9=13×⎝ ⎛⎭⎪⎫12×2R ×R ×R ,解得R =3,∴球O 的外表积为S =4πR 2=4π×32=36π.][跟进训练]3.《算数书》竹简于上世纪八十年代在某某省江陵县X 家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖〞的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈275L 2h 相当于将圆锥体积公式中的π近似取为( )A .227B .258C .15750D .355113B [圆锥的体积V =13πr 2h =13π⎝ ⎛⎭⎪⎫L 2π2h =L 2h 12π,由题意得12π≈752,π近似取为258,应当选B.]类型5 简单的空间角问题根据定义作平行线,作出异面直线所成的角;证明作出的角是异面直线所成的角;解三角形,求出作出的角.如果求出的角是锐角或直角,如此它就是要求的角;如果求出的角是钝角,如此它的补角才是要求的角.【例5】 四棱锥P -ABCD 的侧棱长与底面边长都相等,点E 是PB 的中点,如此异面直线AE 与PD 所成角的余弦值为( )A .13B .23C .33D .23C [设四棱锥P ­ABCD 的棱长为1,AC ∩BD =O ,如此O 是AC 与BD 的中点,连接OE (图略),又E 是PB 的中点,所以由三角形中位线定理,得OE ∥PD ,OE =12PD =12,如此∠AEO或其补角是异面直线AE 与PD 所成的角.又△PAB 是等边三角形,所以AE =32AB =32.易得OA =OB =OC =OD =22,在△OAE 中,由余弦定理,得cos ∠AEO =AE 2+OE 2-OA 22AE ·OE =33,即异面直线AE 与PD 所成角的余弦值为33.][跟进训练]4.如图,在圆锥PO 中,PO ⊥底面⊙O ,PO =2,⊙O 的直径AB =2,C 是AB ︵的中点,D 为AC 的中点.(1)证明:平面POD ⊥平面PAC ; (2)求二面角B -PA -C 的余弦值.[解](1)证明:连接OC .∵PO ⊥底面⊙O ,AC ⊂底面⊙O ,∴AC ⊥PO .∵OA =OC ,D 是AC 的中点,∴AC ⊥OD . 又∵OD ∩PO =O ,∴AC ⊥平面POD . 又∵AC ⊂平面PAC , ∴平面POD ⊥平面PAC .(2)在平面POD 内,过点O 作OH ⊥PD 于点H .由(1)知,平面POD ⊥平面PAC ,又平面POD ∩平面PAC =PD ,∴OH ⊥平面PAC . 又∵PA ⊂平面PAC , ∴PA ⊥OH .在平面PAO 中,过点O 作OG ⊥PA 于点G ,连接HG , 如此有PA ⊥平面OGH , ∴PA ⊥HG .故∠OGH 为二面角B -PA -C 的平面角. ∵C 是AB ︵的中点,AB 是直径, ∴OC ⊥AB .在Rt △ODA 中,OD =OA ·sin 45°=22.在Rt △POD 中,OH =PO ·OD PD=PO ·ODPO 2+OD 2=2×222+12=105.在Rt △POA 中,OG =PO ·OA PA=PO ·OAPO 2+OA 2=2×12+1=63. 在Rt △OHG 中,sin ∠OGH =OH OG=10563=155.∴cos ∠OGH =1-sin 2∠OGH =1-1525=105.故二面角B ­PA ­C 的余弦值为105.1.(2020·某某卷)假如棱长为23的正方体的顶点都在同一球面上,如此该球的外表积为( )A .12πB .24πC .36πD .144π C [设外接球的半径为R ,易知2R =3×23=6,所以R =3,于是外表积S =4πR 2=36π,应当选C.]2.(2020·全国Ⅰ卷)埃与胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,如此其侧面三角形底边上的高与底面正方形的边长的比值为( )A .5-14B .5-12C .5+14D .5+12C [由题意知,可将金字塔看成如下列图的正四棱锥S ­ABCD ,其中M 为AD 的中点,O 为底面正方形ABCD 的中心,连接SM ,SO ,OM ,如此SO ⊥底面ABCD ,SM ⊥AD ,OM ⊥AD ,即正四棱锥S ­ABCD的高为SO ,侧面△SAD 的高为SM .设底面正方形ABCD 的边长为a ,SM =h ,如此OM =a2,正四棱锥S ­ABCD 的一个侧面三角形的面积为12ah ,在Rt △SOM 中,SO 2=SM 2-OM 2=h 2-⎝ ⎛⎭⎪⎫a 22=h 2-a 24,以该正四棱锥的高为边长的正方形的面积为SO 2=h 2-a 24,故12ah =h 2-a 24,化简、整理得4h 2-2ah -a 2=0,得4⎝ ⎛⎭⎪⎫h a 2-2⎝ ⎛⎭⎪⎫h a -1=0,令h a =t ,如此4t 2-2t -1=0,因为t >0,所以t =1+54,即h a =1+54,所以其侧面三角形底边上的高与底面正方形的边长的比值为5+14,应当选C.] 3.(2020·全国Ⅰ卷)A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.假如⊙O 1的面积为4π,AB =BC =AC =OO 1,如此球O 的外表积为( )A .64πB .48πC .36πD .32πA [如下列图,设球O 的半径为R ,⊙O 1的半径为r ,因为⊙O 1的面积为4π,所以4π=πr 2,解得r =2,又AB =BC =AC =OO 1,所以AB sin 60°=2r ,解得AB =23,故OO 1=23,所以R 2=OO 21+r 2=(23)2+22=16,所以球O 的外表积S =4πR 2=64π.应当选A.]4.(2020·某某卷)圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图为半圆,如此这个圆锥的底面半径(单位:cm)是________.1[法一:设该圆锥的母线长为l ,因为圆锥的侧面展开图是一个半圆,其面积为2π,所以12πl 2=2π,解得l =2,所以该半圆的弧长为2π.设该圆锥的底面半径为R ,如此2πR =2π,解得R =1.法二:设该圆锥的底面半径为R ,如此该圆锥侧面展开图中的圆弧的弧长为2πR ,因为侧面展开图是一个半圆,设该半圆的半径为r ,如此πr =2πR ,即r =2R ,所以侧面展开图的面积为12·2R ·2πR =2πR 2=2π,解得R =1.] 5.(2020·某某卷)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半径为0.5 cm ,如此此六角螺帽毛坯的体积是__________cm 3. 123-π2[正六棱柱体积为6×34×22×2=123,圆柱体积为π⎝ ⎛⎭⎪⎫122·2=π2 所求几何体体积为(123-π2)cm 3,故答案为:123-π2.] 6.(2020·全国Ⅲ卷)圆锥的底面半径为1,母线长为3,如此该圆锥内半径最大的球的体积为________.23π[易知半径最大的球即为该圆锥的内切球.圆锥PE 与其内切球O 如下列图,设内切球的半径为R ,如此sin ∠BPE =ROP =BE PB =13,所以OP =3R ,所以PE =4R =PB 2-BE 2=32-12=22,所以R =22,所以内切球的体积V =43πR 3=23π,即该圆锥内半径最大的球的体积为23π.]。

专题提升卷04 立体几何中组合体问题(解析版)

专题提升卷04  立体几何中组合体问题(解析版)

高一下学期期中复习备考精准测试卷---第二篇 专题提升卷 专题4 立体几何中的组合体问题类型一 组合体的表面积与体积【典型例题】早期的毕达哥拉斯学派学者注意到:用等边三角形或正方形为表面可构成四种规则的立体图形,即正四面体、正六面体、正八面体和正二十面体,它们的各个面和多面角都全等.如图,正二十面体是由20个等边三角形组成的正多面体,共有12个顶点,30条棱,20个面,是五个柏拉图多面体之一.如果把sin 36︒按35计算,则该正二十面体的表面积与该正二十面体的外接球表面积之比等于___________.【答案】36π【分析】可得正二十面体的外接球即为上方正五棱锥的外接球,设外接球半径为R ,正五边形的外接圆半径为r ,正二十面体的棱长为l ,可得56l r =,11R =,即可表示出外接球的表面积和正二十面体的表面积,得出答案.【详解】由图知正二十面体的外接球即为上方正五棱锥的外接球,设外接球半径为R ,正五边形的外接圆半径为r ,正二十面体的棱长为l ,则3sin 3652lr =︒=,得56lr =,所以正五棱锥的顶点到底面的距离是h ===,所以222()R r R h =+-,即22256l R R ⎛⎫⎛⎫=+- ⎪ ⎪ ⎪⎝⎭⎝⎭,解得R =.所以该正二十面体的外接球表面积为22236441111S R l πππ⎛⎫==⨯= ⎪ ⎪⎝⎭球,而该正二十面体的表面积是2 120sin 602S l l =⨯⨯⨯⨯︒=正二十面体,所以该正二十面体的表面积与该正二十面体的外.【变式训练】已知一个圆锥的底面半径与高均为2,且在这个圆锥中有一个内接圆柱.当此圆柱的侧面积最大时,此圆柱的体积等于___________. 【答案】π【分析】先画出几何体的轴截面图,设圆柱的底面半径为r ,则圆柱的侧面积为222(2)2(2)2[(1)1]S r r r r r πππ=-=--=---,从而可求出1r =时,S 取得最大值,进而可求出圆柱的体积【详解】该几何体的轴截面如图所示,则2OA OB OC ===,设圆柱的底面半径为r ,则,2OD ME AM r OM r ====-,所以圆柱的侧面积为222(2)2(2)2[(1)1]S r r r r r πππ=-=--=---, 所以当1r =时,S 取得最大值2π,此时圆柱的体积为211V ππ=⨯⨯=。

[立体几何] 球的组合体

[立体几何] 球的组合体

球的组合体一、正方体+球例1、甲球内切于某正方体的各个面,乙球内切于该正方体的条棱,丙球外接于该正方体,则三球表面面积之比是二、四面体+球例2、球的内接正四面体内有一内球,求这两球的表面积之比练习:过球O表面上一点A引三条长度相等的弦AB,AC,AD,且两两夹角都是60o,若球的半径为R,则∆BCD的面积是()例题:1、已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,该圆柱的体积是()A、3π4B、π C、π2D、π42、(“墙角型”三棱锥外接球):在球面上有四个点P、A、B、C,如果PA,PB,PC两两互相垂直,且PA=PB=PC=a,求这个球的表面积。

解法一、找截面图,找球心解法二、补正方体3、(“鳖臑型”三棱锥外接球)《九章算术》中,将底面是长方形且一条侧棱于底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑。

两类三棱锥具有典型性,需重视。

(1)已知四面体P-ABC的四个顶点都在球面上,若PB⊥平面ABC,AB⊥AC ,且AC=1,PB=AB=2,则球O的表面积为解法一、构造长方体解法二:RT∆PBC和RT∆PAC有公共的斜边PC ,其中点到四个顶点距离相等。

(2)若三棱锥A-BCD为鳖臑,AB⊥平面BCD,AB=BC=2,BD=4, 三棱锥A-BCD的顶点都在球O的球面上,则球O的体积是()提示:外接球的球心是AD的中点4、已知三棱锥S—ABC,所有顶点都在球O的球面上,SC是球O的直径,若平面SCA⊥平面SBC,SA=AC,SB=BC, 三棱锥S—ABC的体积等于9,则球O的表面积为5、正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为。

关于球的组合体问题

关于球的组合体问题

常见几何体的外接球
(一)柱体的外接球 1.正方体 2.长方体 3.直棱柱(或圆柱)
1、正方体的内切球、外接球
2r a
2R
3a
2、长方体(或正四、六棱柱) 的外接球
体对角线=球直径
长方体中, a2 b2 c2 2R
3.直棱柱(或圆柱)的外接球
上下底面外接圆圆心连线的中点,即为球心
( A)
2 6
(B)
3 6
(C )
2 3
( D)
2 2
2. 【2012 辽宁理 16】已知正三棱锥 P ABC,点 P,A,B,C 都在半 径为 3 的求面上,若 PA,PB,PC 两两互相垂直,则球心到截 面 ABC 的距离为________。 3.(11 新课标理 15)已知矩形 ABCD 的顶点都在半径为 4 的球 O 的 球 面 上 , 且 AB=6 , BC=
点都在一个球面上,则该球的表面积为 (A) a
2
7 2 (B) 3 a
(C)
11 2 a 3
2 (D) 5 a
3. 直 三 棱 柱
A B C A1 B 1 C 1 的 各 个 顶 点 在 同 一 球 面 上 , 若
AB AC AA1 2, BAC 120 ,则球的表面积为_______.
反思总结:
1.解决球的组合体问题的基本思路:找球心,求半径
正方体、长方体、直棱柱 2.锥体的外接球问题,可把锥体补成: 3.关于球的组合体的常见规律和结论,你能总结几个?
巩固强化:
1. 【2012 新课标 11】 已知三棱锥 S ABC 的所有顶点都在球 O 的求面上, ABC 是边长为1 的正三角形, SC 为球 O 的直径,且 SC 2 ;则此棱锥的 体积为( )

《立体几何》解答题20题及答案

《立体几何》解答题20题及答案

立体几何解答题(1)1、如图,在棱长为2的正方体ABCD —A 1B 1C 1D 1中,M 、N 分别为棱AB 、BC 的中点。

(Ⅰ)证明:平面MNB 1⊥平面BDD 1B 1 (Ⅱ)求点B 到平面1MNB 的距离。

NDC B B 1D 1AA 1C 1NMD 1A 1B 1C 1BC AD(Ⅰ)证明:,BD MN ⊥Θ且,1BB MN ⊥,11D D BB MN 面⊥∴又,1MN B MN 面⊆ ∴平面MNB 1⊥平面BDD 1B 1(Ⅱ)解:设点B 到平面1MNB 的距离为d ,则三棱锥MN B B V 1-的高等于d 。

BMN B MN B B V V --=11131311BB S d S BMN MN B ⋅=⋅∴∆∆MN B S 1∆=23,BMN S ∆=21221312331⨯⨯=⨯∴d∴32=d ,即点B 到平面1MNB 的距离为322、 已知四棱锥P ABCD -的底面ABCD 是边长为4的正方形, PD ABCD ⊥平面,6,,PD E F =分别为,PB AB 中点。

(1)证明:BC PDC ⊥平面;(2)求三棱锥P DEF -的体积。

解:(1),PD ABCD BC ABCD PD BC ⊥⊂∴⊥平面平面又底面ABCD 是正方形,故BC CD ⊥ ,PD DC 相交 故BC PDC ⊥平面M DCB A P (2)E PB 为中点,故,P B 两点到平面DEF 的距离相等 故P DEF B DEF E BDF V V V ---==设BD 中点'E ,则1'32EE PD ==且'//EE PD ,又PD ABCD ⊥平面故'EE ABCD ⊥平面,又14242BDF S ∆=⨯⨯=故14343P DEF E BDF V V --==⨯⨯=3、如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥ 平面ABCD ,2PA AD ==,1AB =,BM PD ⊥于点M .(1) 求证:AM ⊥PD ;(2) 求直线CD 与平面ACM 所成的角的余弦值.(1)证明:∵ PA ⊥平面ABCD ,AB ⊂平面ABCD ,∴PA AB ⊥.∵AB AD ⊥,,AD PA A AD =⊂I 平面PAD ,PA ⊂平面PAD , ∴AB ⊥平面PAD .∵PD ⊂平面PAD ∴AB PD ⊥, ∵BM PD ⊥, AB BM B =I ,AB ⊂平面ABM , BM ⊂平面ABM ,∴PD ⊥平面ABM .∵AM ⊂平面ABM ,∴AM ⊥PD .(2)解:由(1)知,AM PD ⊥,又PA AD =,则M 是PD 的中点,在Rt △PAD 中,得AM =在Rt △CDM 中,得MC =,∴122ACM S AM MC ∆=⋅=.设点D 到平面ACM 的距离为h ,由D ACM M ACD V V --=,得PA S h S ACD ACM 213131⋅=⋅∆∆.解得h =,设直线CD 与平面ACM 所成的角为θ,则sin 3h CD θ==,∴cos 3θ=.∴ 直线CD 与平面ACM所成的角的余弦值为3.4、如图,三棱柱111C B A ABC -的底面是边长为2的正三角形且侧棱垂直于底面,侧棱长是3,D 是AC 的中点.(1)求证:平面BD A 1⊥平面11A ACC ; (2)求直线1AB 与平面BD A 1所成的角的正弦值. 【解】:(1)Θ正三棱住111C B A ABC -,∴ 1AA ⊥底面ABC ,又ΘBD ⊥AC ,1A A AC A =I ,∴BD ⊥平面11A ACC ,又ΘBD ⊂平面B A 1 D ∴平面B A 1 D ⊥平面11A ACC(2)作AM ⊥D A 1,M 为垂足,由(1)知AM ⊥平面B 1D A ,设1A B 与B A 1相交于点P ,连接MP ,则A PM ∠就是直线B A 1与平面B A 1D 所成的角,Θ1AA =3,AD=1,∴在Rt ∆1AA D 中,DA A 1∠=3π,∴23sin601AM =⨯=ο,27AB 21AP 1==,∴.7212723AP AM APM sin ===∠ 直线1A B 与平面B A 1D 所成的角的正弦值为7215、如图所示,CE ABC PA ACB BC AC ,,90,1平面⊥=∠==ο∥22,==CE PA PA . (Ⅰ)求三棱锥PAB E -的体积;(Ⅱ)在棱PB 上是否存在一点F ,使得EF ∥平面ABC ?证明你的结论.【解】(Ⅰ) .311122131=⨯⎪⎭⎫⎝⎛⨯⨯⨯==--EPA B PAB E V V(Ⅱ)取棱PB 的中点为F ,则有EF ∥平面.证明如下: 取棱PB 的中点为F ,EF G AB 连的中点为,,∥EC PA FG PA ,又且121,==∥PA FG CE ,所以且1=∥EC FG CE =且,,因此四边形EF EFGC 为平行四边形,所以∥ABC CG ABC EF CG 平面平面又⊂⊄,,,所以EF ∥平面ABC .6、如图,已知在侧棱垂直于底面的三棱柱111C B A ABC -中,AC BC ==2,且AC BC ⊥,点D 是11A B 中点.PECC 1B 1(1)求证:平面1AC D ⊥平面11A ABB ; (2)若直线1AC 与平面11A ABB 所成角的正弦值为1010, 求三棱锥11A AC D -的体积.【解】(1)证明(略) (2)由(1)可知111C D A ABB ⊥平面,所以AC 1与平面A 1ABB 1所成的角为1C AD ∠,在1RT C AD ∆中,由11110sin 10C D C AD AC ∠==, 122A A ∴= ∴1111A AC D C A AD V V --==1112.33A AD S C D ∆=7、 已知四边形ABCD 为矩形,AD =4,AB =2,E 、F 分别是线段AB 、BC 的中点,P A ⊥面ABCD .(1)求证:PF ⊥FD ;(2)设点G 在P A 上,且EG ∥面PFD ,试确定点G 的位置.【解】证明:(1)连接AF ,在矩形ABCD 中, ∵AD=4,AB=2,点F 是BC 的中点,∴∠AFB=∠DFC=45ο,∠AFD=90ο,即AF ⊥FD,又∵PA ⊥面ABCD,∴PA ⊥FD,又∵AF∩PA=A,FD ⊥面PAF, ∵PF ⊂ 面PAF,∴PF ⊥FD(2)过E 作EH ∥FD 交AD 于H ,则EH ∥面AFD,且AH=41AD, 过H 作HG ∥PD 交PA 于G ,则GH ∥面PFD 且AG=14PA,∴面EHG ∥面PFD,则EG ∥面PFD,从而G 点满足AG=14PA ,及G 点的位置在PA 上靠近A 点处的四等分点。

第6章立体几何(学生版)--培优辅导讲义

第6章立体几何(学生版)--培优辅导讲义

第6章立体几何第一节多面体与球的组合体问题纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段出现这类问题加以类型的总结和方法的探讨.一、球与柱体的组合体规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题.1、球与正方体如图1所示,正方体1111ABCD A B C D -,设正方体的棱长为a ,,,,E F H G 为棱的中点,O 为球的球心.常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFGH 和其内切圆,则2a OJ r ==;二是与正方体各棱相切的球,截面图为正方形EFGH 和其外接圆,则22GO R a ==;三是球为正方体的外接球,截面图为长方形11ACA C 和其外接圆,则132A O R '==.通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题.例1棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为()A.2B.1C.12+【强化训练】将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为()A.π2B.π4C.π6D.π162、球与长方体长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的棱长为,,,a b c 其体对角线为l .当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径222.22l a b c R ++==例2在长、宽、高分别为2,2,4的长方体内有一个半径为1的球,任意摆动此长方体,则球经过的空间部分的体积为()A.10π3 B.4π C.8π3 D.7π3【强化训练】已知正四棱柱的底边和侧棱长均为32,则该正四棱锥的外接球的表面积为.3、球与正棱柱球与一般的正棱柱的组合体,常以外接形态居多.下面以正三棱柱为例,介绍本类题目的解法构造直角三角形法.设正三棱柱111ABC A B C -的高为,h 底面边长为a ,如图2所示,D 和1D 分别为上下底面的中心.根据几何体的特点,球心必落在高1DD 的中点O ,3,,,23h OD AO R AD a ===借助直角三角形AOD 的勾股定理,可求223()()23h R a =+.例3正四棱柱1111ABCD A B C D -的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最________值,为_______.【强化训练】直三棱柱111ABC A B C -的六个顶点都在球O 的球面上,若1AB BC ==,0120ABC ∠=,123AA =,则球O 的表面积为()A.4πB.8πC.16πD.24π二、球与锥体的组合体规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者表面积等相关问题.2.1球与正四面体正四面体作为一个规则的几何体,它既存在外接球,也存在内切球,并且两心合一,利用这点可顺利解决球的半径与正四面体的棱长的关系.如图4,设正四面体S ABC -的棱长为a ,内切球半径为r ,外接球的半径为R ,取AB 的中点为D ,E 为S 在底面的射影,连接,,CD SD SE 为正四面体的高.在截面三角形SDC ,作一个与边SD 和DC 相切,圆心在高SE 上的圆,即为内切球的截面.因为正四面体本身的对称性可知,外接球和内切球的球心同为O .此时,,CO OS R OE r ===,23,,33SE a CE a ==则有2222233a R r a R r CE +=-=,=解得:66,.412R a r ==这个解法是通过利用两心合一的思路,建立含有两个球的半径的等量关系进行求解.同时我们可以发现,球心O 为正四面体高的四等分点.如果我们牢记这些数量关系,可为解题带来极大的方便.例4将半径都为1的四个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为() A.3263+ B.2+263 C.4+263 D.43263+2.2球与三条侧棱互相垂直的三棱锥球与三条侧棱互相垂直的三棱锥组合问题,主要是体现在球为三棱锥的外接球.解决的基本方法是补形法,即把三棱锥补形成正方体或者长方体.常见两种形式:一是三棱锥的三条侧棱互相垂直并且相等,则可以补形为一个正方体,它的外接球的球心就是三棱锥的外接球的球心.如图5,三棱锥111A AB D -的外接球的球心和正方体1111ABCD A B C D -的外接球的球心重合.设1AA a =,则32R a =.二是如果三棱锥的三条侧棱互相垂直并且不相等,则可以补形为一个长方体,它的外接球的球心就是三棱锥的外接球的球心.2222244a b c l R ++==(l 为长方体的体对角线长).例5在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且AM MN ⊥,若侧棱3SA =,则正三棱锥S ABC -外接球的表面积是________.【强化训练】一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为()A.12πB.43πC.3πD.123π2.3球与正棱锥球与正棱锥的组合,常见的有两类,一是球为三棱锥的外接球,此时三棱锥的各个顶点在球面上,根据截面图的特点,可以构造直角三角形进行求解.二是球为正棱锥的内切球,例如正三棱锥的内切球,球与正三棱锥四个面相切,球心到四个面的距离相等,都为球半径R .这样求球的半径可转化为球球心到三棱锥面的距离,故可采用等体积法解决,即四个小三棱锥的体积和为正三棱锥的体积.例6在三棱锥P-ABC 中,PA=PB=PC=3,侧棱PA 与底面ABC 所成的角为60°,则该三棱锥外接球的体积为()A.π B.3πC.π4D.34π【强化训练】已知正三棱锥ABC P -,点P,A,B,C 都在半径为3的球面上,若PA,PB,PC 两两互相垂直,则球心到截面ABC 的距离为____________.2.4球与特殊的棱锥球与一些特殊的棱锥进行组合,一定要抓住棱锥的几何性质,可综合利,OA OS OB OC ===用截面法、补形法等进行求解.例如,四个面都是直角三角形的三棱锥,可利用直角三角形斜边中点几何特征,巧定球心位置.如图8,三棱锥S ABC -,满足,,SA ABC AB BC ⊥⊥面取SC 的中点为O ,由直角三角形的性质可得:所以O 点为三棱锥S ABC -的外接球的球心,则2SC R =.例7矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积是()A.π12125 B.π9125 C.π6125 D.π3125例8三棱锥A BCD -中,2,AB CD ====5AC AD BD BC ==则三棱锥A BCD -的外接球的半径是_______.三、球与球的组合体对个多个小球结合在一起,组合成复杂的几何体问题,要求有丰富的空间想象能力,解决本类问题需掌握恰当的处理手段,如准确确定各个小球的球心的位置关系,或者巧借截面图等方法,将空间问题转化平面问题求解.例9在半径为R 的球内放入大小相等的4个小球,则小球半径r 的最大值为()A.(2-1)R B .(6-2)R C.14R D.13R 四、球与几何体的各条棱相切球与几何体的各条棱相切问题,关键要抓住棱与球相切的几何性质,达到明确球心的位置为目的,然后通过构造直角三角形进行转换和求解.如与正四面体各棱都相切的球的半径为相对棱的一半:24r a '=.例10把一个皮球放入如图10所示的由8根长均为20cm 的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都有接触点,则皮球的半径为()3B.10cm 2cm D.30cm 五、与三视图相结合的组合体问题本类问题一般首先给出三视图,然后考查其直观图的相关的组合体问题.解答的一般思路是根据三视图还原几何体,根据几何体的特征选择以上介绍的方法进行求解.例11某几何体的三视图如图所示,则该几何体的外接球的球面面积为()A.5πB.12πC.20πD.8π【强化训练】若一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为()A.163π B.193π C.1912π D.43π第二节立体几何中折叠问题立体几何中的折叠问题主要包含两大问题:平面图形的折叠与几何体的表面展开。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.立体几何中的组合体问题
一、补(补成长方体或正方体)
1. 一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为
A 、3π
B 、4π
C 、33π
D 、6π
2. 在正三棱锥ABC S -中,M 、N 分别是棱SC 、BC 的中点,且AM MN ⊥,若侧棱
32=SA ,则正三棱锥ABC S -外接球的表面积是( )
A .π12
B .π32
C .π36
D .π48
3. 点P
的球面上,过P 作两两互相垂直的三条弦(两端点均在球面上的线
段),若其中一条弦长是另一条弦长的2倍,则这三条弦长之和的最大值是
A .6
B
C D
4. 一个正方体的体积是8,则这个正方体的内切球的表面积是( )
A .8π
B .6π
C .4π
D .π
5. 设正方体的棱长为233,则它的外接球的表面积为( )
A .π38
B .2π
C .4π
D .π3
4 6. 已知三棱锥S ABC -的三条侧棱两两垂直,且2,4SA SB SC ===,则该三棱锥的外接球的半径为
A .3
B .6
C .36
D .9
7. 已知长方体1111ABCD A BC D -的外接球的表面积为16,则该长方体的表面积的最大值为
A .32
B .36
C .48
D .64
8. 长方体1111ABCD A B C D -的各个顶点都在表面积为16π的球O 的球面上,其中
1::AB AD AA =O ABCD -的体积为
A . 3
B . 3
C .
D .3 9.【山东省潍坊一中2013届高三12月月考测试数学文】四棱
锥P ABCD -的三视图如右图所示,四棱锥P ABCD -的五个顶
点都在一个球面上,E 、F 分别是棱AB 、CD 的中点,直线EF
被球面所截得的线段长为
A .12p
B .24p
C .36p
D .48p
10. (河南省豫东、豫北十所名校2013届高三阶段性测试四)已知四面体ABCD 中,
AB 丄平面ACD ,则四面体 ABCD 外接球的表面积为
A . π36
B . π88
C . π92
D . π128
11. 正方体1111ABCD A BC D -的棱长为6,一个球与正方体的棱长都相切,则这个球的半
径是____________.
12. 三棱锥A -BCD 中,侧棱AB 、AC 、AD 两两垂直,ΔABC ,ΔACD , ΔADB 的面积分别
为2,则三棱锥A -BCD 的外接球的体积为. ______ 13. 四面体ABCD 中,共顶点A 的三条棱两两相互垂直,且其长分别为361、、,若四面
体的四个顶点同在一个球面上,则这个球的表面积为 。

14. 正三角形ABC 的边长为2,将它沿高AD 翻折成直二面角B AD C --,则三棱锥
B AD
C -的外接球的表面积为 。

15. 已知正三棱锥P -ABC ,点P ,A ,B ,C P A ,PB ,PC
两两互相垂直,则球心到截面ABC 的距离为________。

16.【山东省烟台市莱州一中20l 3届高三第二次质量检测 (文)】在正三棱锥S-ABC 中,
侧面SAB 、侧面SAC 、侧面SBC 两两垂直,且侧棱SA =S ABC -外接球的表面积为____________.
答案:1-9 ACDCC AAAAB 11. 12.
, 13. 16π; 14. 5π; 15. 16. 36π
二、利用球的定义确定球心的位置
1. 从P 点出发三条射线P A ,PB ,PC 两两成60°,且分别与球O 相切于A ,B ,C 三点,
若球的体积为4π3,则OP 的距离为( )
A . 2
B . 3
C .32
D .2
2. 一个正方体的四个顶点在半球的底面上,另四个顶点在该半球面上,则这个半球体积与正方体的体积之比为 ( )
A .5π∶6
B .6π∶2
C .π∶2
D .5π∶12
3. 2,则此四面体的外接球半径为
A B . C D 4. 若棱长均为2的正三棱柱内接于一个球,则该球的半径为
A .
33 B .332 C .321 D .7
5. (天津市新华中学2013届高三第三次月考理科数学)已知三棱锥S ABC -的所有顶
点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,
则此棱锥的体积为( )
A .6
B .6
C .3
D .2
6. 已知球的直径SC =4,A ,B 是该球球面上的两点,AB ASC =∠BSC =300,则棱锥S —ABC 的体积为
A .
B .
C .
D . 1
7. 已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,BC =则球O 的表面积等于
A . 4π
B . 3π
C . 2π
D . π
8 .已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB =3,BC =2,则棱锥O -ABCD 的体积为
A . 51
B . 351
C . 251
D . 516
9. 已知矩形ABCD 的面积为8,当矩形周长最小时,沿对角线AC 把△ACD 折起,则三棱锥D —ABC 的外接球的表面积等于( )
A .4π
B .8π
C .16π
D .24π
10.(2013年高考辽宁数学(理)试题)已知三棱柱111ABC A B C -的6个顶点都在球O 的
球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的半径为( )
A B . C .132 D .
11.【云南省玉溪一中2013届高三第四次月考文】四面体BCD A -中,
,5,4======BD AD AC BC CD AB 则四面体外接球的表面积为( )
A . π33
B . π43
C . π36
D . π18
12. 【2014高考大纲卷文第10题】正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积是( )
A .
814
π B . 16π C . 9π D . 274π 13. (河南省郑州外国语学校2014届高三11月月考)平面四边形ABCD 中,1===CD AD AB ,CD BD BD ⊥=,2,将其沿对角线BD 折成四面体BCD A -',使平面⊥BD A '平面BCD ,若四面体BCD A -'顶点在同一个球面上,则该球的体积为( ) A . π23 B . π3 C . π3
2 D . π2 14. (河南省六市2013年高中毕业班第一次联考文)球O 的球面上有四点S 、A 、B 、C ,
其中O 、A 、B 、C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S -ABC 的体积的最大值为
A .1
B .13
C
D .3
15. (东北育才双语学校2013届高三第五次模拟理)若三棱锥S -ABC 的底面是以AB 为斜边的等腰直角三角形,AB =2,SA =SB =SC =2,则该三棱锥的外接球的表面积为( )
A . 83π
B .3
C . 43π
D . 163π 16.(湖北省武汉市2013届高三5月模拟考试数学(理)试题)已知球O 是棱长为1的
正方体1111ABCD A B C D -的内切球,则以1B 为顶点,以平面1ACD 被截得的圆为底面的
圆锥的全面积为_____________________.
17. 在三棱柱ABC —A ′B ′C ′中,已知AA′⊥平面ABC ,AA′=2,BC =BAC =2
π,且此三棱柱的各个顶点都在一个球面上,则球的体积为 。

18. 已知三棱锥A BCD -中,2,AB AD ==3CD BC =,90BAD ∠= ,则此三棱锥的外接球的表面积为 .
答案:1-15 BBCCA CAACC AAADD 16. 23π ; 17. 323π ; 18. 14π 三、割(利用体积相等)
1. 正三棱锥P —ABC 的三条侧棱两两互相垂直,则该正三棱锥的内切球与外接球的半径之比为
A .1:3
B .)33(:1+
C .3:)13(+
D .3:)13(-
2. 已知四面体P ABC -的外接球的球心O 在AB 上,且PO ⊥平面ABC ,2AC =,若四面体P ABC -的体积为32
,则该球的体积为( )
A B .2π C . D .
3. (湖北省天门市2013届高三模拟测试(一)数学理试题 )点P 是底边长为高
为2的正三棱柱表面上的动点,MN 是该棱柱内切球的一条直径,则PM PN ⋅ 取值范围是
A .[0,2]
B .[0,3]
C .[0,4]
D .[—2,2]
4. 一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是
π332,那么这个三棱柱的体积是 .
5. 三棱锥A -BCD 的两条棱AB =CD =6 ,其余各棱长均为5.则三棱锥的内切球的半径为 .
答案:1-3 DDC 4. 5. 8。

相关文档
最新文档