半导体物理基础 PN结 ppt课件
合集下载
半导体PN结_图文
n=5×1016/cm3 3 本征硅的原子浓度: 4.96×1022/cm3 以上三个浓度基本上依次相差106/cm3 。
21
1.1.3 半导体载流子的运动
漂移运动:两种载流子(电子和空穴)在
电场的作用下产生的定向运动。
两种载流子运动产生的电流方向一致。
空穴
电流I
. 。 。 。
.
∙
电子
电场作用下的漂移运动
因五价杂质原子中只有四个价电子能与周围四个半 导体原子中的价电子形成共价键,而多余的一个价电子 因无共价键束缚而很容易被激发而成为自由电子。
在N型半导体中自由电子是多数载流子,它主要由 杂质原子提供;空穴是少数载流子, 由热激发形成。
提供自由电子的五价杂质原子因带正电荷而成为 正离子,因此五价杂质原子也称为施主杂质。
按电容的定义:
即电压变化将引起电荷变化, 从而反映出电容效应。 而PN结两端加上电压, PN结内就有电荷的变
化, 说明PN结具有电容效应。 PN结具有的电容效应,由两方面的因素决定。 一是势垒电容CB 二是扩散电容CD
40
1) 势垒电容CT
势垒电容是由阻挡层内空间电荷引起的。 空间电荷区是由不能移动的正负杂质离子所形成的,均 具有一定的电荷量, 所以在PN结储存了一定的电荷, 当外 加电压使阻挡层变宽时, 电荷量增加;反之, 外加电压使阻 挡层变窄时, 电荷量减少。 即阻挡层中的电荷量随外加电压变化而改变, 形成了电容效 应, 称为势垒电容,用 CT表示。
如果外加电压使PN结中: P区的电位高于N区的电位,称为加正向电压, 简称正偏; P区的电位低于N区的电位,称为加反向电压, 简称反偏。
30
在一定的温度条件下 ,由本征激发决定的少子 浓度是一定的,故少子形 成的漂移电流是恒定的, 基本上与所加反向电压的 大小无关,这个电流也称 为反向饱和电流。
21
1.1.3 半导体载流子的运动
漂移运动:两种载流子(电子和空穴)在
电场的作用下产生的定向运动。
两种载流子运动产生的电流方向一致。
空穴
电流I
. 。 。 。
.
∙
电子
电场作用下的漂移运动
因五价杂质原子中只有四个价电子能与周围四个半 导体原子中的价电子形成共价键,而多余的一个价电子 因无共价键束缚而很容易被激发而成为自由电子。
在N型半导体中自由电子是多数载流子,它主要由 杂质原子提供;空穴是少数载流子, 由热激发形成。
提供自由电子的五价杂质原子因带正电荷而成为 正离子,因此五价杂质原子也称为施主杂质。
按电容的定义:
即电压变化将引起电荷变化, 从而反映出电容效应。 而PN结两端加上电压, PN结内就有电荷的变
化, 说明PN结具有电容效应。 PN结具有的电容效应,由两方面的因素决定。 一是势垒电容CB 二是扩散电容CD
40
1) 势垒电容CT
势垒电容是由阻挡层内空间电荷引起的。 空间电荷区是由不能移动的正负杂质离子所形成的,均 具有一定的电荷量, 所以在PN结储存了一定的电荷, 当外 加电压使阻挡层变宽时, 电荷量增加;反之, 外加电压使阻 挡层变窄时, 电荷量减少。 即阻挡层中的电荷量随外加电压变化而改变, 形成了电容效 应, 称为势垒电容,用 CT表示。
如果外加电压使PN结中: P区的电位高于N区的电位,称为加正向电压, 简称正偏; P区的电位低于N区的电位,称为加反向电压, 简称反偏。
30
在一定的温度条件下 ,由本征激发决定的少子 浓度是一定的,故少子形 成的漂移电流是恒定的, 基本上与所加反向电压的 大小无关,这个电流也称 为反向饱和电流。
半导体物理基础(6)PN结
外加电场与内建电场方向相反,削弱了内建电场,因而使势 垒两端的电势差由VD减小为(VD-Vf),相应地势垒区变薄。
XD
VD
(
q
2 r
0
)(
NA ND NAND
)
由于电场作用而使非平衡载流子进入半导体的过程称为-电注入
np0
nn0
Space charge region
Diffusion region
1. Alloyed Junctions (合金结)
合金温度
降温再结晶
2. Diffused Junctions (扩散结)
Conceptual example of the use of photolithography to form a pn junction diode.
3. Ion Implantation (离子注入)
p x pn0e k0T
I-V characteristic of a p-n junction
现假设:
1. 势垒区的自由载流子全部耗尽,并忽略势垒区中 载流子的产生和复合。
2. 小注入:注入的少数载流子浓度远小于半导体中 的多数载流子浓度。在注入时,扩散区的漂移电场 可忽略。
(1) 正向偏置 ( Forward bias)
刚接触,扩散》漂移
内建电场
漂移 扩散=漂移
(达到动态平衡)
漂移运动
P型半导体
---- - - ---- - - ---- - - ---- - -
内电场E N型半导体 + +++++ + +++++ + +++++ + +++++
XD
VD
(
q
2 r
0
)(
NA ND NAND
)
由于电场作用而使非平衡载流子进入半导体的过程称为-电注入
np0
nn0
Space charge region
Diffusion region
1. Alloyed Junctions (合金结)
合金温度
降温再结晶
2. Diffused Junctions (扩散结)
Conceptual example of the use of photolithography to form a pn junction diode.
3. Ion Implantation (离子注入)
p x pn0e k0T
I-V characteristic of a p-n junction
现假设:
1. 势垒区的自由载流子全部耗尽,并忽略势垒区中 载流子的产生和复合。
2. 小注入:注入的少数载流子浓度远小于半导体中 的多数载流子浓度。在注入时,扩散区的漂移电场 可忽略。
(1) 正向偏置 ( Forward bias)
刚接触,扩散》漂移
内建电场
漂移 扩散=漂移
(达到动态平衡)
漂移运动
P型半导体
---- - - ---- - - ---- - - ---- - -
内电场E N型半导体 + +++++ + +++++ + +++++ + +++++
Semiconductor- Physics课件.ppt
PN结根据杂质分布的特点可分为: ♦ 突变结 适用于离子注入浅结扩散和外延生长,Xj<1um ♦ 线性缓变结 适用于深结扩散, Xj>3um
中国科学技术大学物理系微电子专业
合金法
图6-2
图6-3
中国科学技术大学物理系微电子专业
扩散法
离子注入法
中国科学技术大学物理系微电子专业
★ PN结的基本概念
eV
p(xn ) pn0e kT
中国科学技术大学物理系微电子专业
中国科学技术大学物理系微电子专业
③电流: 仍有 J=J++J-= J+(xn)+ J- (-xp)
♦ 正向偏压时,在少子扩散区, 少子复合 率>产生率(非平衡载流子注入); 反向时, 产生率>复合率(少数载流子被抽取)
♦ 反向时, 少子浓度梯度很小反向电流 很小
②热平衡pn结及其能带图: ♦当无外加电压, 载流子的流动终将达到
动态平衡(漂移运动与扩散运动的效果相 抵消, 电荷没有净流动), pn结有统一的EF (平衡pn结)
♦ 结面附近,存在内建电场,造成能带弯 曲,形成势垒区(即空间电荷区).
中国科学技术大学物理系微电子专业
热平衡条件
P
Ec
Ef
Ei
Ev
中国科学技术大学物理系微电子专业
中国科学技术大学物理系微电子专业
★ 理想PN结伏安特性
♦①小注入条件 ♦②突变结,耗尽近似—可认为外加电 压全降落于耗尽层
①+②在扩散区,少子电流只需考虑扩散
♦③忽略耗尽层中的产生,复合
通过耗尽层时,可认为电子电流
和空穴电流均保持不变 ♦④玻耳兹曼边界条件
中国科学技术大学物理系微电子专业
中国科学技术大学物理系微电子专业
合金法
图6-2
图6-3
中国科学技术大学物理系微电子专业
扩散法
离子注入法
中国科学技术大学物理系微电子专业
★ PN结的基本概念
eV
p(xn ) pn0e kT
中国科学技术大学物理系微电子专业
中国科学技术大学物理系微电子专业
③电流: 仍有 J=J++J-= J+(xn)+ J- (-xp)
♦ 正向偏压时,在少子扩散区, 少子复合 率>产生率(非平衡载流子注入); 反向时, 产生率>复合率(少数载流子被抽取)
♦ 反向时, 少子浓度梯度很小反向电流 很小
②热平衡pn结及其能带图: ♦当无外加电压, 载流子的流动终将达到
动态平衡(漂移运动与扩散运动的效果相 抵消, 电荷没有净流动), pn结有统一的EF (平衡pn结)
♦ 结面附近,存在内建电场,造成能带弯 曲,形成势垒区(即空间电荷区).
中国科学技术大学物理系微电子专业
热平衡条件
P
Ec
Ef
Ei
Ev
中国科学技术大学物理系微电子专业
中国科学技术大学物理系微电子专业
★ 理想PN结伏安特性
♦①小注入条件 ♦②突变结,耗尽近似—可认为外加电 压全降落于耗尽层
①+②在扩散区,少子电流只需考虑扩散
♦③忽略耗尽层中的产生,复合
通过耗尽层时,可认为电子电流
和空穴电流均保持不变 ♦④玻耳兹曼边界条件
中国科学技术大学物理系微电子专业
《半导体物理学》【ch06】pn 结 教学课件
如设势垒高度为0. 7eV , 则该处的空穴浓度为
pn 结及其能带图
05 pn 结的载流子分布
6.1.5 pn 结的载流子分布
可见,在势垒区中势能比n区导带底高0.1eV 处,价带空穴浓度为p 区多数载流子浓度的10 -¹°倍, 而该处的导带电子浓度为n 区多数载流子浓度的1/50 。一般室温附近,对于绝大部分势垒区,其 中杂质虽然都已电离,但载流子浓度比起且区和p 区的多数载流子浓度小得多,好像已经耗尽了。 所以通常也称势垒区为耗尽层,即认为其中的载流子浓度很小,可以忽略,空间电荷密度就等于 电离杂质浓度。
pn 结及其能带图
01 归结的形成和杂质分布
6.1.1 归结的形成和杂质分布
1. 合金法 用合金法制造pn 结的过程,把一小粒铝 放在一块a 型单晶硅片上,加热到一定的 温度,形成铝硅的熔融体,然后降低温度, 熔融体开始凝固,在口型硅片上形成一含 有高浓度铝的p 型硅薄层,它与n 型硅衬 底的交界面处即为pn 结(这时称为铝硅 合金结〉。
pn 结及其能带图
01 归结的形成和杂质分布
6.1.1 归结的形成和杂质分布 合金结的杂质分布如图6-3 所示,其特点是:n 型区中施主杂质浓度为ND ,而且均匀分布;p 型 区中受主杂质浓度为NA ,也均匀分布。在交界面处,杂质浓度由NA(p 型)突变为ND(n 型〉, 具有这种杂质分布的pn 结称为突变结。设pn 结的位置在x =xi ,则突变结的杂质分布可以表示为
根据式(3 56 )、式( 3 57 ),令阳、均分别表示n 区和p 区的平衡电子浓度,则对非简并半 导体可得
pn 结及其能带图
04 pn 结接触电势差
6. 1. 4 pn 结接触电势差
上式表明,Vo 和pn结两边的掺杂浓度、温度、材料的禁带宽度有关。在一定的温度下,突变结 两边的掺杂浓度越高,接触电势差Vo越大;禁带宽度越大,m越小,Vo也越大,所以硅pn结的Vo 比锗pn 结的Vo 大。若NA =10¹7cm-³, No = 10¹5cm-³,在室温下可以算得硅的Vo=0. 70V , 锗的VD=0. 32V 。
pn 结及其能带图
05 pn 结的载流子分布
6.1.5 pn 结的载流子分布
可见,在势垒区中势能比n区导带底高0.1eV 处,价带空穴浓度为p 区多数载流子浓度的10 -¹°倍, 而该处的导带电子浓度为n 区多数载流子浓度的1/50 。一般室温附近,对于绝大部分势垒区,其 中杂质虽然都已电离,但载流子浓度比起且区和p 区的多数载流子浓度小得多,好像已经耗尽了。 所以通常也称势垒区为耗尽层,即认为其中的载流子浓度很小,可以忽略,空间电荷密度就等于 电离杂质浓度。
pn 结及其能带图
01 归结的形成和杂质分布
6.1.1 归结的形成和杂质分布
1. 合金法 用合金法制造pn 结的过程,把一小粒铝 放在一块a 型单晶硅片上,加热到一定的 温度,形成铝硅的熔融体,然后降低温度, 熔融体开始凝固,在口型硅片上形成一含 有高浓度铝的p 型硅薄层,它与n 型硅衬 底的交界面处即为pn 结(这时称为铝硅 合金结〉。
pn 结及其能带图
01 归结的形成和杂质分布
6.1.1 归结的形成和杂质分布 合金结的杂质分布如图6-3 所示,其特点是:n 型区中施主杂质浓度为ND ,而且均匀分布;p 型 区中受主杂质浓度为NA ,也均匀分布。在交界面处,杂质浓度由NA(p 型)突变为ND(n 型〉, 具有这种杂质分布的pn 结称为突变结。设pn 结的位置在x =xi ,则突变结的杂质分布可以表示为
根据式(3 56 )、式( 3 57 ),令阳、均分别表示n 区和p 区的平衡电子浓度,则对非简并半 导体可得
pn 结及其能带图
04 pn 结接触电势差
6. 1. 4 pn 结接触电势差
上式表明,Vo 和pn结两边的掺杂浓度、温度、材料的禁带宽度有关。在一定的温度下,突变结 两边的掺杂浓度越高,接触电势差Vo越大;禁带宽度越大,m越小,Vo也越大,所以硅pn结的Vo 比锗pn 结的Vo 大。若NA =10¹7cm-³, No = 10¹5cm-³,在室温下可以算得硅的Vo=0. 70V , 锗的VD=0. 32V 。
半导体物理基楚信息功能材料ppt课件
在一块纯净的半导体晶 片上,采用特殊的掺杂工艺, 在两侧分别掺入三价元素和 五价元素。一侧形成P型半 导体,另一侧形成N型半导 体,在结合面的两侧分别留 下了不能移动的正负离子, 呈现出一个空间电荷区。这 个空间电荷区就称为p-n结。
图1-5基本结构示意图
图1-6 p-n结的形成
12
❖ 单纯的p型或n型半导体,仅仅是导电能力增强而 已,还不具备半导体器件所要求的各种特性。但如 果形成一个p-n结。 当p型半导体和n型半导体“结 合”在一起时,由于p型半导体的空穴浓的高,自 由电子的浓度低;而n型半导体的自由电子浓度高, 空穴浓度低,所以交界面两侧的载流子在浓度上形 成了很大的差别。于是就在交界面附近产生了多数 载流子的扩散运动。
9
3、 杂质的补偿作用
❖ 实际的半导体中既有施主杂质(浓度nd), 又有受主杂质(浓度na),两种杂质有补偿 作用:
❖ 若nd na——为n型(施主) ❖ 若nd na——为p型(受主) ❖ 利用杂质的补偿作用,可以制成 p-n 结。
10
综上所述
Ⅲ族元素 Ⅴ族元素
掺入半导体, 分别成为
受主杂质 施主杂质
7
❖ 1、N型半导体
❖ 四价的本征半导体 Si 、Ge等,掺入少量五价的杂质元素 (如P、As等)形成电子型半导体,称 n 型半导体。
❖ 量子力学表明,这种掺杂后多余的电子的能级在禁带中紧靠 空带处, 杂质电离能∆ED~10-2eV,极易形成电子导电。该 能级称为施主能级。
在n型半导体中,电子是多数载流子而空穴是少数载流子
在禁带中引入了 新的能级,分别为
常温下,杂质都 处于离化态
受主能级:比价带顶高ΔEA 施主能级:比导带底低ΔED
受主杂质向价带提供空穴而成为负电中心 施主杂质向导带提供电子而成为正电中心
图1-5基本结构示意图
图1-6 p-n结的形成
12
❖ 单纯的p型或n型半导体,仅仅是导电能力增强而 已,还不具备半导体器件所要求的各种特性。但如 果形成一个p-n结。 当p型半导体和n型半导体“结 合”在一起时,由于p型半导体的空穴浓的高,自 由电子的浓度低;而n型半导体的自由电子浓度高, 空穴浓度低,所以交界面两侧的载流子在浓度上形 成了很大的差别。于是就在交界面附近产生了多数 载流子的扩散运动。
9
3、 杂质的补偿作用
❖ 实际的半导体中既有施主杂质(浓度nd), 又有受主杂质(浓度na),两种杂质有补偿 作用:
❖ 若nd na——为n型(施主) ❖ 若nd na——为p型(受主) ❖ 利用杂质的补偿作用,可以制成 p-n 结。
10
综上所述
Ⅲ族元素 Ⅴ族元素
掺入半导体, 分别成为
受主杂质 施主杂质
7
❖ 1、N型半导体
❖ 四价的本征半导体 Si 、Ge等,掺入少量五价的杂质元素 (如P、As等)形成电子型半导体,称 n 型半导体。
❖ 量子力学表明,这种掺杂后多余的电子的能级在禁带中紧靠 空带处, 杂质电离能∆ED~10-2eV,极易形成电子导电。该 能级称为施主能级。
在n型半导体中,电子是多数载流子而空穴是少数载流子
在禁带中引入了 新的能级,分别为
常温下,杂质都 处于离化态
受主能级:比价带顶高ΔEA 施主能级:比导带底低ΔED
受主杂质向价带提供空穴而成为负电中心 施主杂质向导带提供电子而成为正电中心
半导体物理学ppt课件
在电场
②当电流密度一定时, dEF/dx与载流子浓
度成反比 ③上述讨论也适用于电子子系及空穴子系
(用准费米能级取代费米能级):
J =n
dEF dx
J =p
dEF dx
35
36
★ 正向偏压下的p-n结
①势垒: ♦ 外电压主要降落
于势垒区 ♦ 加正向偏压V, 势
垒高度下降为 e(VD-V),
荷区的产生—复合作用。 P型区和N型区的电阻率都足够低,外加电压全部降落
在过渡区上。
57
准中性区的载流子运动情况
稳态时, 假设GL=0
0
DN
d 2np dx2
n p
n
......x
xp
0
DP
d 2pn dx2
边界条件:
pn
p
......x
xn
图6.4
欧姆接触边界
以及工作温度
24
③接触电势差:
♦ pn结的势垒高度—eVD 接触电势差—VD
♦ 对非简并半导体,饱和电离近似,接触 电势为:
VD
kT e
ln nn0 np0
kT e
ln
NDNA ni2
♦ VD与二边掺杂有关,
与Eg有关
25
电势
图6-8
电子势能(能带)
26
④平衡p-n结的载流子浓度分布: ♦ 当电势零点取x=-xp处,则有: EC (x) EC qV (x)
52
53
54
理想二极管方程
PN结正偏时
55
理想二极管方程
PN结反偏时
②当电流密度一定时, dEF/dx与载流子浓
度成反比 ③上述讨论也适用于电子子系及空穴子系
(用准费米能级取代费米能级):
J =n
dEF dx
J =p
dEF dx
35
36
★ 正向偏压下的p-n结
①势垒: ♦ 外电压主要降落
于势垒区 ♦ 加正向偏压V, 势
垒高度下降为 e(VD-V),
荷区的产生—复合作用。 P型区和N型区的电阻率都足够低,外加电压全部降落
在过渡区上。
57
准中性区的载流子运动情况
稳态时, 假设GL=0
0
DN
d 2np dx2
n p
n
......x
xp
0
DP
d 2pn dx2
边界条件:
pn
p
......x
xn
图6.4
欧姆接触边界
以及工作温度
24
③接触电势差:
♦ pn结的势垒高度—eVD 接触电势差—VD
♦ 对非简并半导体,饱和电离近似,接触 电势为:
VD
kT e
ln nn0 np0
kT e
ln
NDNA ni2
♦ VD与二边掺杂有关,
与Eg有关
25
电势
图6-8
电子势能(能带)
26
④平衡p-n结的载流子浓度分布: ♦ 当电势零点取x=-xp处,则有: EC (x) EC qV (x)
52
53
54
理想二极管方程
PN结正偏时
55
理想二极管方程
PN结反偏时
PN结的形成及特性PPT课件
- - - - - - + ++ +++
- - - - - - + ++ +++
- - - - - -+ ++ +++
少子(自由电子)
P
N
少子(空穴)
N区有许多自由电子(多数载流子)和几个由于热产生的空穴 (少数载流子),而P区有许多空穴(多数载流子)和几个由于热产生 的自由电子(少数电子)。PN结构成了基本的二极管。二极管是只允 许电流往一个方向流动的元件。
P
N
第2页/共44页
P 型半导体
N 型半导体
- - - - - - + ++ +++
- - - - - - + ++ +++
- - - - - - + ++ +++
- - - - - - + ++ +++
- - - - - - + ++ +++
- - - - - -+ ++ +++
少子(自由电子)
P
N
第6页/共44页
- - - - - - + ++ +++
- - - - - - + ++ +++
- - - - - - + ++ +++
第6章pn结ppt课件
p-n结的制作过程
衬底制备 → 氧化 → 光刻出窗口 → 从窗口掺入杂质 (高温扩散或离子注入) → 形成p-n结。
SiO2
n型衬底
1. ( 表面制备 )
杂质
n型衬底
2. ( 氧化 )
n型衬底
3. ( 光刻 )
n型衬底
4. ( 扩散 )
p
n型衬底
5. ( p-n结 )
6. ( 做电极 和封装等 )
不断升高,导致能带
上下-x移P 动0
xn
x
qVD EF Ei
W
内建电势 的求解
对内建电场作积分可得 内建电势(也称为 扩散电势)Vbi
Vbi
xn xp
E(x) dx
1 2
xn xp
Emax
s
2qN0
E2 max
1
或
Emax
2qN
s
0
Vbi
2
(2-10)
qV ( x)qVD
∴ n(x) nn0 e k0T
同理:
qVD qV ( x)
p(x) pn0 e k0T
qVD
np0 nn0e k0T
qVD
pn0 pp0e k0T
势垒区中,电子、空穴服从玻耳兹曼分布
多子浓度指数衰减,与相应的n区,p区体内相比,多 子好像被耗尽一样,因此一般常把势垒区叫耗尽区
ln
ni
EF Ei k0T
d (ln n) 1 ( dEF dEi )
dx
k0T dx dx
Jn
nqn
E
《半导体物理基础》课件
当电子从导带回到价带时,会释 放能量并发出光子,这就是发光 效应。发光效应是半导体的一个 重要应用,如发光二极管和激光 器等。
04 半导体中的载流子输运
CHAPTER
载流子的产生与复合
载流子的产生
当半导体受到外界能量(如光、热、电场等)的作用时,其 内部的电子和空穴的分布状态会发生改变,导致电子和空穴 从价带跃迁到导带,产生电子-空穴对。
06 半导体物理的应用与发展趋势
CHAPTER
半导体物理在电子器件中的应用
01
02
03
晶体管
利用半导体材料制成的晶 体管是现代电子设备中的 基本元件,用于放大、开 关和整流信号。
集成电路
集成电路是将多个晶体管 和其他元件集成在一块芯 片上,实现特定的电路功 能。
太阳能电池
利用半导体的光电效应将 光能转化为电能,太阳Hale Waihona Puke 电池是可再生能源的重要 应用之一。
半导体物理在光电子器件中的应用
LED
发光二极管,利用半导体的光电效应发出可见光 ,广泛应用于照明和显示领域。
激光器
利用半导体的光放大效应产生激光,用于数据存 储、通信和医疗等领域。
光探测器
利用半导体的光电效应探测光信号,用于光纤通 信、环境监测等领域。
半导体物理的发展趋势与展望
新材料和新型器件
随着科技的发展,人们不断探索新的半导体材料和新型器件,以 提高性能、降低成本并满足不断变化的应用需求。
闪锌矿结构
如铬、钨等金属的晶体结构。
如锗、硅等半导体的晶体结构。
面心立方结构(fcc)
如铜、铝等金属的晶体结构。
纤锌矿结构
如氮化镓、磷化镓等半导体的晶 体结构。
晶体结构对半导体性质的影响
04 半导体中的载流子输运
CHAPTER
载流子的产生与复合
载流子的产生
当半导体受到外界能量(如光、热、电场等)的作用时,其 内部的电子和空穴的分布状态会发生改变,导致电子和空穴 从价带跃迁到导带,产生电子-空穴对。
06 半导体物理的应用与发展趋势
CHAPTER
半导体物理在电子器件中的应用
01
02
03
晶体管
利用半导体材料制成的晶 体管是现代电子设备中的 基本元件,用于放大、开 关和整流信号。
集成电路
集成电路是将多个晶体管 和其他元件集成在一块芯 片上,实现特定的电路功 能。
太阳能电池
利用半导体的光电效应将 光能转化为电能,太阳Hale Waihona Puke 电池是可再生能源的重要 应用之一。
半导体物理在光电子器件中的应用
LED
发光二极管,利用半导体的光电效应发出可见光 ,广泛应用于照明和显示领域。
激光器
利用半导体的光放大效应产生激光,用于数据存 储、通信和医疗等领域。
光探测器
利用半导体的光电效应探测光信号,用于光纤通 信、环境监测等领域。
半导体物理的发展趋势与展望
新材料和新型器件
随着科技的发展,人们不断探索新的半导体材料和新型器件,以 提高性能、降低成本并满足不断变化的应用需求。
闪锌矿结构
如铬、钨等金属的晶体结构。
如锗、硅等半导体的晶体结构。
面心立方结构(fcc)
如铜、铝等金属的晶体结构。
纤锌矿结构
如氮化镓、磷化镓等半导体的晶 体结构。
晶体结构对半导体性质的影响
《半导体与PN结》PPT课件
在没有外加偏压的情况下,导带和价带中的载流子浓 度就叫本征载流子浓度。对于多子来说,其平衡载流子浓度 等于本征载流子浓度加上掺杂入半导体的自由载流子的浓度。 在多数情况下,掺杂后半导体的自由载流子浓度要比本征载 流子浓度高出几个数量级,因此多子的浓度几乎等于掺杂载 流子的浓度。
在平衡状态下,多子和少子的浓度为常数, 由质量作用定律可得其数学表达式。
--半导体的结构
半导体的价键结构决定了半导体材料的性 能。一个关键影响就是限制了电子能占据的能级和电子 在晶格之间的移动。半导体中,围绕在每个原子的电子 都是共价键的一部分。共价键就是两个相邻的原子都拿 出自己的一个电子来与之共用,这样,每个原子便被8 个电子包围着。共价键中的电子被共价键的力量束缚着, 因此它们总是限制在原子周围的某个地方。因为它们不 能移动或者自行改变能量,所以共价键中的电子不能被 认为是自由的,也不能够参与电流的流动、能量的吸收 以及其它与太阳能电池相关的物理过程。
禁带会使得载流子很难通过热激发来穿过它,因此宽禁
带的本征载流子浓度一般比较低。导但带 还可以通过提高温
度让电子更容易被激发到导带,同时也提高了本征载流
子的浓度。
2021/3/12
价带
15
§ 2.2.3
基本原理
--本征载流子浓度
下图显示了两个温度下的半导体本征载流子浓 度。需要注意的是,两种情况中,自由电子的数目与空穴 的数目都是相等的。
下面的动画展示了三种不同能量层次的光子 在半导体内产生的效应。
2021/3/12
UNSW新南威尔士大学
25
§ 2.3.1 载流子的产生 --光的吸收
对光的吸收即产生了多子又产生少子。 在很多光伏应用中,光生载流子的数目要比由于 掺杂而产生的多子的数目低几个数量级。因此, 在被光照的半导体内部,多子的数量变化并不明 显。但是对少子的数量来说情况则完全相反。由 光产生的少子的数目要远高于原本无光照时的光 子数目,也因此在有光照的太阳能电池内的少子 数目几乎等于光产生的少子数目。
在平衡状态下,多子和少子的浓度为常数, 由质量作用定律可得其数学表达式。
--半导体的结构
半导体的价键结构决定了半导体材料的性 能。一个关键影响就是限制了电子能占据的能级和电子 在晶格之间的移动。半导体中,围绕在每个原子的电子 都是共价键的一部分。共价键就是两个相邻的原子都拿 出自己的一个电子来与之共用,这样,每个原子便被8 个电子包围着。共价键中的电子被共价键的力量束缚着, 因此它们总是限制在原子周围的某个地方。因为它们不 能移动或者自行改变能量,所以共价键中的电子不能被 认为是自由的,也不能够参与电流的流动、能量的吸收 以及其它与太阳能电池相关的物理过程。
禁带会使得载流子很难通过热激发来穿过它,因此宽禁
带的本征载流子浓度一般比较低。导但带 还可以通过提高温
度让电子更容易被激发到导带,同时也提高了本征载流
子的浓度。
2021/3/12
价带
15
§ 2.2.3
基本原理
--本征载流子浓度
下图显示了两个温度下的半导体本征载流子浓 度。需要注意的是,两种情况中,自由电子的数目与空穴 的数目都是相等的。
下面的动画展示了三种不同能量层次的光子 在半导体内产生的效应。
2021/3/12
UNSW新南威尔士大学
25
§ 2.3.1 载流子的产生 --光的吸收
对光的吸收即产生了多子又产生少子。 在很多光伏应用中,光生载流子的数目要比由于 掺杂而产生的多子的数目低几个数量级。因此, 在被光照的半导体内部,多子的数量变化并不明 显。但是对少子的数量来说情况则完全相反。由 光产生的少子的数目要远高于原本无光照时的光 子数目,也因此在有光照的太阳能电池内的少子 数目几乎等于光产生的少子数目。
半导体物理 第六章 pn结ppt课件
E E cn x n n exp( ) x n 0 k T 0
qV ( x ) qV D n ) n 0exp( k T 0
当 X=Xn时,V(x)=VD,
n(x)=nn0
当 X=-Xp时,V(x)=0, n(-xp)=nn0
qV D n ( x ) n n exp( ) p p 0 n 0 k T 0
产生漂移电流
6.1.3
电子从费米能级高的n区流 向费米能级低的p区, 空穴从p流到n区。
最后,Pn具有统一费米能级EF,
EFn不断下移,EFp不断上 Pn结处于平衡状态。 移,直到EFn=EFp,
能带发生整体相对移动与pn结空 间电荷区中存在内建电场有关。
随内建电场(np)不断增大, V(x)不断降低,
使漂移电流〉扩散电流
少数载流子的抽取或吸出:n区边界nn’处的空穴被 势垒区强场驱向p区, p区边界pp’处的电子被驱向n 区。
qV D p p exp( ) n 0 p 0 k T 0
平衡时,pn结具有统一的费米 能级,无净电流流过pn结。 1. 外加电压下,pn结势垒的变化及载流子的运动 势垒区:载流子浓度很小,电阻很大; 势垒外:载流子浓度很大,电阻很小; 外加正向偏压主要降在势垒区;外加正向电场与 内建电场方向相反, 产生现象:势垒区电场减小,使势垒区空间电荷减小; 载流子扩散流〉漂移流, 净扩散流〉0 ; 宽度减小; 势垒高度降低(高度从qVD降到q(VD-V)
高温熔融的铝冷却后,n型硅片 上形成高浓度的p型薄层。
P型杂质浓度NA,
n型杂质浓度ND,
特点:交界面浓度发生突变。
在n型单晶硅片上扩散受主杂质,形成pn结。 杂质浓度从p到n 逐渐变化,称为缓变结。
半导体的基础知识与PN结(ppt 24页)
2、 P 型半导体
在硅或锗的晶体中掺入少量的 3 价杂质元素,如 硼、镓、铟等,即构成 P 型半导体(或称空穴型半导 体)。
空穴浓度多于自由电子浓度 空穴为多数载流子(简称多子), 电子为少数载流子(简称少子)。
+3
(本征半导体掺入 3 价元素后,原来 晶体中的某些硅原子将被杂质原子 代替。杂质原子最外层有 3 个价电 子,3与硅构成共价键,多余一个空 穴。)
扩散运动使空间电荷区增大,扩散电流逐渐减小;
随着内电场的增强,漂移运动逐渐增加;
当扩散电流与漂移电流相等时,PN 结总的电流等于零, 空间电荷区的宽度达到稳定。
即扩散运动与漂移运动达到动态平衡时,形成PN结。
P
PN结
N
二、 PN 结的单向导电性 空间电荷区变窄,有利
1. PN结 外加正向电压时处于导通于状扩态散运动,电路中有
外电场使空间电荷区变宽;
不利于扩散运动,有利于漂移运动,漂移电流大于扩 散电流,电路中产生反向电流 I ;
由于少数载流子浓度很低,反向电流数值非常小。
P
耗尽层
N
IS
内电场方向
外电场方向
V
R
图 1.1.7 PN 结加反向电压时截止
反向电流又称反向饱和电流。对温度十分敏感,
随着温度升高, IS 将急剧增大。
P
空间电荷区
N
—— PN 结,耗 尽层。
(动画1-3)
3. 空间电荷区产生内电场
空间电荷区正负离子之间电位差 Uho —— 内电场; 内电场阻止多子的扩散 —— 阻挡层。
4. 漂移运动 内电场有利 于少子运动—漂 移。
少子的运动 与多子运动方向 相反
阻挡层
半导体器件物理课件-pn结2
平衡p-n结:
载流子在内建电场的作用下,漂移运动和扩散运动相抵时,所达到 的动态平衡(p-n结的净电流为零)。
PN结
多子的扩散运动
少子的漂移运动
形成扩散电流 并增加空间电荷区的宽度
形成漂移电流 并减小空间电荷区的宽度
平衡时
空间电荷区的宽度也达到稳定,电流为零
平衡p-n结
PN结
2.1热平衡PN结
2.PN结空间电荷区的形成(热平衡系统划分)
x
y0
c ( )
Na Nd
xn 电场分布、电势分布
PN结
2.1热平衡PN结
qN d d 2y 对N侧Poisson方程 做一次积分: 2 dx k 0 qN dy d ( x xn ) dx k 0 dy 0 x xn , 边界条件: dx x dy 应用 得: m 1 dx xn qN x m d n k 0
恒定费米能级的条件是由电子从N型 一边转移至P型一边,空穴则沿相反
p 型电中性区 边界层 边界层 n 型电中性区 耗尽区
方向转移实现的。电子和空穴的转移
在N型和P型各边分别留下未被补偿的 施主离子和受主离子。它们是荷电的,
固定不动的,称为空间电荷。空间电
荷存在的区域叫做空间电荷区。
(c) 与(b)相对应的空间电荷分布
PN结
引言
3.采用硅平面工艺制备PN结的主要工艺过程
光刻胶
N Si
N+
SiO 2
N Si
N+
N+
(a)抛光处理后的型硅晶片
紫外光
(b)采用干法或湿法氧化 工艺的晶片氧化层制作
(c)光刻胶层匀胶及坚膜
PN结 PPT课件
将一块半导体的一侧掺杂成P型半导体,另一侧掺杂
成N型半导体,在两种半导体的交界面处将形成一
个特殊的薄层
PN结
13
① 多子扩散运动形成空间电荷区
由于浓度差,电子和空穴都要从浓度高的区域向…
扩散的结果,交界面P区一侧因失去空穴而留下不
能移动的负离子,N区一侧因失去电子而留下不能
移动的正离子,这样在交界面处出现由数量相等的
(b)锗原子 简化模型
硅和锗都是四价元素,原子的最外层轨道上有四个
价电子。
4
1.本征半导体(纯净的半导体晶体)
点阵结构:每个原子周围有四个相邻的原子,原子 之间通过共价键紧密结合在一起。原子最外层的 价电子不仅围绕…两个相邻原子共用一对电子
硅 和 锗 的
晶 体 结 构 (a)点阵结构
(b)共价键结构
a. 外加正向电压较小时,外电场不足以克服内 电场对多子扩散的阻力,PN结仍处于截止状态 b. 正向电压大于“开启电压UON”后,i 随着 u 增大迅速上升。
19
P42
c. 外加反向电压时, PN结处于截止状态,反 向电流 IR 很小。 d. 反向电压大于“击穿电压U(BR)”时,反向 电流 IR 急剧增加。
5
热激发产生自由电子和空穴
室温下,由于热运动少数价电子挣脱共价键的束缚
成为自由电子,同时在 共价键中留下一个空位 这个空位称为“空穴” 。失去价电子的原子成 为正离子,就好象空穴 带正电荷一样。
在电子技术中,将空穴看 成带正电荷的载流子。
6
空穴运动 (与自由电子的运动不同)
有了空穴,邻近共价键中的价电子很容易过来填补
(a)管芯结构图 (b)结构示意图 (c) 电路符号
半导体物理学PPT课件(共7章)第04章 p-n结
半导体物理学
Semiconductor Physics
2022年1月26日星期三
1
4.1 pn结的形成及其平衡态
4.1.1 pn结的形成及其杂质分布 一、 pn结的形成及其杂质分布 二、pn结的杂质分布 4.1.2 热平衡状态下的pn结 一、pn结的空间电荷区与内建电场的形成 二、平衡pn结的能带结构 三、pn结的接触电势差 四、平衡pn结的载流子分布
2022年1月26日星期三
24
4.2.1 广义欧姆定律
对n= n0+n、p= p0+p的一般情况,也可得类似结果:
Jn
nn
dEF dx
Jp
p p
dEF dx
该式表明: 若费米能级随位置变化,则pn结中必有电流;当电流密度一定时,载流子 密度大的地方, EF随位置变化小,而载流子密度小的地方,EF随位置变化较大。
qV x
~ e k0T
2022年1月26日星期三
22
第四章 p-n结
4.1 pn结的形成及其平衡态 4.2 pn结的伏安特性 4.3 pn结电容 4.4 pn结击穿 4.5 pn结的光伏效应 4.6 pn结发光
2022年1月26日星期三
23
4.2 pn结的伏安特性
4.2.1 广义欧姆定律 4.2.2 理想状态下的pn结伏安特性方程 4.2.3 pn结伏安特性对理想方程的偏离
导带
E ● ● ● ● ● ● ● ● ● ● ●
C
EF
价带 EV
2022年1月26日星期三
10
1、能带弯曲
电子从费米能级高的n区流向费米能级低的p区,以及空穴从p区流向n区 来实现的。在载流子转移的过程中,EFn下降,EFp上升,直至EFn=EFp= EF时达到平衡。
Semiconductor Physics
2022年1月26日星期三
1
4.1 pn结的形成及其平衡态
4.1.1 pn结的形成及其杂质分布 一、 pn结的形成及其杂质分布 二、pn结的杂质分布 4.1.2 热平衡状态下的pn结 一、pn结的空间电荷区与内建电场的形成 二、平衡pn结的能带结构 三、pn结的接触电势差 四、平衡pn结的载流子分布
2022年1月26日星期三
24
4.2.1 广义欧姆定律
对n= n0+n、p= p0+p的一般情况,也可得类似结果:
Jn
nn
dEF dx
Jp
p p
dEF dx
该式表明: 若费米能级随位置变化,则pn结中必有电流;当电流密度一定时,载流子 密度大的地方, EF随位置变化小,而载流子密度小的地方,EF随位置变化较大。
qV x
~ e k0T
2022年1月26日星期三
22
第四章 p-n结
4.1 pn结的形成及其平衡态 4.2 pn结的伏安特性 4.3 pn结电容 4.4 pn结击穿 4.5 pn结的光伏效应 4.6 pn结发光
2022年1月26日星期三
23
4.2 pn结的伏安特性
4.2.1 广义欧姆定律 4.2.2 理想状态下的pn结伏安特性方程 4.2.3 pn结伏安特性对理想方程的偏离
导带
E ● ● ● ● ● ● ● ● ● ● ●
C
EF
价带 EV
2022年1月26日星期三
10
1、能带弯曲
电子从费米能级高的n区流向费米能级低的p区,以及空穴从p区流向n区 来实现的。在载流子转移的过程中,EFn下降,EFp上升,直至EFn=EFp= EF时达到平衡。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)集成电路中的隔离介质和绝缘介质; (5)集成电路中电容器元件的绝缘介质。 硅表面二氧化硅薄膜的生长方法:热氧化和化 学气相沉积方法。
9
半导体物理基础 PN结
• 扩散工艺:由于热运动,任何物质都有一种从 浓度高处向浓度低处运动,使其趋于均匀的趋 势,这种现象称为扩散。
• 离子注入技术:将杂质元素的原子离化变成带 电的杂质离子,在强电场下加速,获得较高的 能量(1万-100万eV)后直接轰击到半导体基 片(靶片)中,再经过退火使杂质激活,在半 导体片中形成一定的杂质分布。
• 最终达到平衡后,形成P高N低的能带图 结构。
15
半导体物理基础 PN结
p
EC
EF EV
p
n
n
漂移
EC EF
p
EV
扩散
E
扩 散 q0
EC
n
EF
Ei
EV 漂移
在接触前分开的P型和N型硅的能带图
接触后的能带图
16
半导体物理基础 PN结
• 突变结:N型区到P型区是陡变的 • 缓变结:具有逐渐改变的杂质分布
• 光刻工艺的基本原理是把一种称为光刻 胶的高分子有机化合物涂敷在半导体晶 片表面上。经光线的照射后,光刻胶的 化学结构发生变化。
• 正性胶和负性胶
12
半导体物理基础 PN结
一、PN结的形成 • PN结是几乎所有半导体器件的基本单元。
PN结含有丰富的物理知识,掌握PN结的 物理原理是学习其它半导体器件器件物 理的基础。
P Si N+
SiO2 N Si
(i)蒸发/溅射金属
金属
S iO2
P Si N Si
金属
N+
(j) P-N 结制作完成
3
半导体物理基础 PN结
• PN结是几乎所有半导体器件的基本单元。 除金属-半导体接触器件外,所有结型 器件都由PN结构成。PN结本身也是一种 器件-整流器。PN结含有丰富的物理知 识,掌握PN结的物理原理是学习其它半 导体器件器件物理的基础。
半导体物理基础 PN结
1
半导体物理基础 PN结
• 采用硅平面工艺制备PN 结的主要工艺过程
光刻胶
N Si
N+
(a)抛光处理后的 N型硅晶 片
紫外光
N+
(b)采用干法或湿法氧化 工艺的晶片氧化层制作
S iO2
N Si N+
(c)光刻胶层匀胶及坚膜
掩模板
光刻胶 S iO2
N Si N+
(d)图形掩膜、曝光
10
半导体物理基础 PN结
• 外延工艺:外延是一种薄膜生长工艺, 外延生长是在单晶衬底上沿晶体原来晶 向向外延伸生长一层薄膜单晶层。
• 外延工艺可以在一种单晶材料上生长另 一种单晶材料薄膜。
• 外延工艺可以方便地形成不同导电类型, 不同杂质浓度,杂质分布陡峭的外延层。
11
半导体物理基础 PN结
• 光刻工艺:光刻工艺是为实现选择掺杂、 形成金属电极和布线,表面钝化等工艺 而使用的一种工艺技术。
NaNd NaNd
Na
xHale Waihona Puke 0 -Nd0 x17
-ax
xj x
半导体物理基础 PN结
p 型电中性区
边界层
边界层
耗尽区
n 型电中性区
18
半导体物理基础 PN结
• 泊松方程:电荷密度、电场、电势的关系
: dd22xkq 0pNdnNa
E d
dx
ddE xkq 0pNdnNa
19
半导体物理基础 PN结
• P型半导体和N型半导体接触后,当在浓 度梯度作用下的扩散运动和在内建电场 作用下的漂移运动达到动态平衡后,就 形成了 PN结。
13
半导体物理基础 PN结
N 内建电场 P
++ ++ ++
++ - ++ - ++ - -
V qND V qNA
空间电荷区
----
14
半导体物理基础 PN结
• 当P型硅和N型硅放在一起并达到热平衡 后,费米能级应该在整个系统中保持恒 定;费米能级以下的能态更趋向于被电 子填满,费米能级以上的能态更趋向于 空着。
• 由1-12-1和1-12-2得:
EFn EFpqT VlnNn diN 2aq 0
21
半导体物理基础 PN结
• 这也是热平衡时电子从N区进入P区,或空穴 从P区进入N区需要跨越的势垒高度。因此, 也把空间电荷区称为势垒区。
• (2)边界层 • 边界层的宽度约为非本征德拜(Debye)长
度的3倍。 • 边界层小于耗尽层的宽度,所以可以忽略。 • PN结可以只简单的划分为中性区和耗尽区。
7
半导体物理基础 PN结
• 氧化工艺: 1957年人们发现硅表面的二氧化硅层具有阻止 杂质向硅内扩散的作用。这一发现直接导致了 硅平面工艺技术的出现。 在集成电路中二氧化硅薄膜的作用主要有以下 五条: (1)对杂质扩散的掩蔽作用; (2)作为MOS器件的绝缘栅材料; (3)器件表面钝化作用;
8
半导体物理基础 PN结
22
半导体物理基础 PN结
• 由同种导电类型的物质构成的结叫做同 型结(如P-硅和P-型硅、P-硅和P-型 锗),由不同种导电类型的物质构成的 结叫做异型结(如P-硅和N-硅、P-硅和N -锗)。
6
半导体物理基础 PN结
• 因此PN结有同型同质结、同型异质结、 异型同质结和异型异质结之分。
• 广义地说,金属和半导体接触也是异质 结,不过为了意义更明确,把它们叫做 金属-半导体接触或金属-半导体结 (M-S结)。
• (1)对于电中性区 • 利用中性区电中性条件导出了两个中性区
间的电势差公式。称为内建电势或扩散电 势。只存在于热平衡PN结。
0npVTlnNndiN 2 a
20
半导体物理基础 PN结
• 形成PN结之前,N区的费米能及比P区要 高。形成PN结之后,费米能级要求恒定,
即N区费米能级要下降 EFnEFp
4
半导体物理基础 PN结
• 由P型半导体和N型半导体实现冶金学接 触(原子级接触)所形成的结构叫做PN 结。
• 任何两种物质(绝缘体除外)的冶金学 接触都称为结(junction),有时也叫做 接触(contact).
5
半导体物理基础 PN结
• 由同种物质构成的结叫做同质结(如 硅),由不同种物质构成的结叫做异质 结(如硅和锗)。
光刻胶
SiO2 n Si
N+
SiO2
N Si N+
(e)曝光后去掉扩散窗口 (f)腐蚀SiO2后的晶片 胶膜的晶片
2
半导体物理基础 PN结
•采用硅平面工艺制备结的主要工艺过程
S iO2
N Si N+
(g)完成光刻后去胶的晶片
金属
P Si N+
SiO2
N Si
(h)通过扩散(或离子注入)形成 P-N结
9
半导体物理基础 PN结
• 扩散工艺:由于热运动,任何物质都有一种从 浓度高处向浓度低处运动,使其趋于均匀的趋 势,这种现象称为扩散。
• 离子注入技术:将杂质元素的原子离化变成带 电的杂质离子,在强电场下加速,获得较高的 能量(1万-100万eV)后直接轰击到半导体基 片(靶片)中,再经过退火使杂质激活,在半 导体片中形成一定的杂质分布。
• 最终达到平衡后,形成P高N低的能带图 结构。
15
半导体物理基础 PN结
p
EC
EF EV
p
n
n
漂移
EC EF
p
EV
扩散
E
扩 散 q0
EC
n
EF
Ei
EV 漂移
在接触前分开的P型和N型硅的能带图
接触后的能带图
16
半导体物理基础 PN结
• 突变结:N型区到P型区是陡变的 • 缓变结:具有逐渐改变的杂质分布
• 光刻工艺的基本原理是把一种称为光刻 胶的高分子有机化合物涂敷在半导体晶 片表面上。经光线的照射后,光刻胶的 化学结构发生变化。
• 正性胶和负性胶
12
半导体物理基础 PN结
一、PN结的形成 • PN结是几乎所有半导体器件的基本单元。
PN结含有丰富的物理知识,掌握PN结的 物理原理是学习其它半导体器件器件物 理的基础。
P Si N+
SiO2 N Si
(i)蒸发/溅射金属
金属
S iO2
P Si N Si
金属
N+
(j) P-N 结制作完成
3
半导体物理基础 PN结
• PN结是几乎所有半导体器件的基本单元。 除金属-半导体接触器件外,所有结型 器件都由PN结构成。PN结本身也是一种 器件-整流器。PN结含有丰富的物理知 识,掌握PN结的物理原理是学习其它半 导体器件器件物理的基础。
半导体物理基础 PN结
1
半导体物理基础 PN结
• 采用硅平面工艺制备PN 结的主要工艺过程
光刻胶
N Si
N+
(a)抛光处理后的 N型硅晶 片
紫外光
N+
(b)采用干法或湿法氧化 工艺的晶片氧化层制作
S iO2
N Si N+
(c)光刻胶层匀胶及坚膜
掩模板
光刻胶 S iO2
N Si N+
(d)图形掩膜、曝光
10
半导体物理基础 PN结
• 外延工艺:外延是一种薄膜生长工艺, 外延生长是在单晶衬底上沿晶体原来晶 向向外延伸生长一层薄膜单晶层。
• 外延工艺可以在一种单晶材料上生长另 一种单晶材料薄膜。
• 外延工艺可以方便地形成不同导电类型, 不同杂质浓度,杂质分布陡峭的外延层。
11
半导体物理基础 PN结
• 光刻工艺:光刻工艺是为实现选择掺杂、 形成金属电极和布线,表面钝化等工艺 而使用的一种工艺技术。
NaNd NaNd
Na
xHale Waihona Puke 0 -Nd0 x17
-ax
xj x
半导体物理基础 PN结
p 型电中性区
边界层
边界层
耗尽区
n 型电中性区
18
半导体物理基础 PN结
• 泊松方程:电荷密度、电场、电势的关系
: dd22xkq 0pNdnNa
E d
dx
ddE xkq 0pNdnNa
19
半导体物理基础 PN结
• P型半导体和N型半导体接触后,当在浓 度梯度作用下的扩散运动和在内建电场 作用下的漂移运动达到动态平衡后,就 形成了 PN结。
13
半导体物理基础 PN结
N 内建电场 P
++ ++ ++
++ - ++ - ++ - -
V qND V qNA
空间电荷区
----
14
半导体物理基础 PN结
• 当P型硅和N型硅放在一起并达到热平衡 后,费米能级应该在整个系统中保持恒 定;费米能级以下的能态更趋向于被电 子填满,费米能级以上的能态更趋向于 空着。
• 由1-12-1和1-12-2得:
EFn EFpqT VlnNn diN 2aq 0
21
半导体物理基础 PN结
• 这也是热平衡时电子从N区进入P区,或空穴 从P区进入N区需要跨越的势垒高度。因此, 也把空间电荷区称为势垒区。
• (2)边界层 • 边界层的宽度约为非本征德拜(Debye)长
度的3倍。 • 边界层小于耗尽层的宽度,所以可以忽略。 • PN结可以只简单的划分为中性区和耗尽区。
7
半导体物理基础 PN结
• 氧化工艺: 1957年人们发现硅表面的二氧化硅层具有阻止 杂质向硅内扩散的作用。这一发现直接导致了 硅平面工艺技术的出现。 在集成电路中二氧化硅薄膜的作用主要有以下 五条: (1)对杂质扩散的掩蔽作用; (2)作为MOS器件的绝缘栅材料; (3)器件表面钝化作用;
8
半导体物理基础 PN结
22
半导体物理基础 PN结
• 由同种导电类型的物质构成的结叫做同 型结(如P-硅和P-型硅、P-硅和P-型 锗),由不同种导电类型的物质构成的 结叫做异型结(如P-硅和N-硅、P-硅和N -锗)。
6
半导体物理基础 PN结
• 因此PN结有同型同质结、同型异质结、 异型同质结和异型异质结之分。
• 广义地说,金属和半导体接触也是异质 结,不过为了意义更明确,把它们叫做 金属-半导体接触或金属-半导体结 (M-S结)。
• (1)对于电中性区 • 利用中性区电中性条件导出了两个中性区
间的电势差公式。称为内建电势或扩散电 势。只存在于热平衡PN结。
0npVTlnNndiN 2 a
20
半导体物理基础 PN结
• 形成PN结之前,N区的费米能及比P区要 高。形成PN结之后,费米能级要求恒定,
即N区费米能级要下降 EFnEFp
4
半导体物理基础 PN结
• 由P型半导体和N型半导体实现冶金学接 触(原子级接触)所形成的结构叫做PN 结。
• 任何两种物质(绝缘体除外)的冶金学 接触都称为结(junction),有时也叫做 接触(contact).
5
半导体物理基础 PN结
• 由同种物质构成的结叫做同质结(如 硅),由不同种物质构成的结叫做异质 结(如硅和锗)。
光刻胶
SiO2 n Si
N+
SiO2
N Si N+
(e)曝光后去掉扩散窗口 (f)腐蚀SiO2后的晶片 胶膜的晶片
2
半导体物理基础 PN结
•采用硅平面工艺制备结的主要工艺过程
S iO2
N Si N+
(g)完成光刻后去胶的晶片
金属
P Si N+
SiO2
N Si
(h)通过扩散(或离子注入)形成 P-N结