COX回归分析分析

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
y2 a21 a22
3
y3 a31 a32
X3 …. XP
a13 … a1p a23 … a2p a33 … a3p
… ……… ………
n
yn an1 an2
an3 … anp
━━━━━━━━━━━━━━━━━━
其中:y取值是二值或多项分类
定义:
log it( p) ln[ p /(1 p)]
为Logistic变换,即:
Logit( p) 0 1 X1 p X p
SPSS操作步骤:
▪ Analyze-----Regression-----Binary Logistic ▪ -----Dependent框(y)-----Covariates框
(x1,x2,…)------ok
第十九章 Cox回归分析 (Cox regression)
二、生存分析的主要内容
第一,描述生存过程 研究生存时间的分布特点,估计生存
率,生存曲线; 第二,比较生存过程(假设检验) 对两组或多组生存率进行比较; 第三,影响生存时间的因素分析 了解影响生存过程的主要因素为改善
预后提供指导。
例在对资料进行描述时: 5名癌症患者存活时间(月) 6 10 14 20 20 n=5 平均生存时间,
供了不完全的信息,称为不完全数据(截尾数据、
删失数据:censor data)。
▪ 始点
终点
▪ 始点
终点
▪ 生 存 分 析 (survival analysis) : 生存时间一般是通过随访收集。不 完全数据提供了部分信息。须要用 专门的方法进行统计处理,这类统 计方法起源于对寿命资料的统计分 析,故称为生存分析。
……
an1 an2
X3 …. XP
a13 … a1p a23 … a2p a33 … a3p
… ……
an3 … anp
3、COX回归模型 (Cox regression model)
(1)风险率(hazard rate):
患者在t时刻仍存活,在时间t后的瞬间 死亡率,以h(t)表示。
h(t)
死于区间(t,t t)的病人数 在t时刻尚存的病人数 t
变量xj暴露水平时的风险率与非暴 露水平时的风险率之比称为风险比hr (hazard ratio)
hr= eβi
hr风险比相对危险度RR
(5)Cox回归模型的检验
▪ 对Cox模型的检验采用似然比检验。
▪ 假设为H0:所有的βi 为0 ,

H1:至少有一个 βi 不为0 。

将值分Ho和别记H1条为件
▪ 表1 多元线性回归分析的数据结构
实验对象 y
1
y1
2
y2
3
y3
X1
X2
a11 a12
a21 a22
a31 a32
X3 …. XP
a13 … a1p a23 … a2p a33 … a3p
… ……… ………
n
yn an1 an2
an3 … anp
━━━━━━━━━━━━━━━━━━
其中:y取值是服从正态分布
mean=18 ,median=14
7 8+ 25 35 + 50
? 当有截尾数据时,
Kaplanmeier生存率曲线图
三、Cox回归分析(Cox regression)
▪ 影响生存时间的长短不仅与治疗措施有 关, 还可能与病人的体质, 年龄, 病情的轻 重等多种因素有关。如何找出它们之间的关 系呢?对生存资料不能用多元线性回归分析。 1972年英国统计学家Cox DR. 提出了一种能 处理多因素生存分析数据的比例危险模型
(3)Cox比例风险回归模型
ln(h(t)/ h0(t))=β1x1+β2x2+…+βpxp 参数β 1,β2…,βp称为偏回归系数 , 由于h0(t)是未知的,所以COX模型称为半参 数模型。
COX比例风险函数的另一种形式: h(t)= h0(t)exp(β1x1+β2x2+…+βpxp)
(4) 流行病学意义
“ 生存”的概念
生物生存 仪器始使正常 疾病产生 疾病治愈
阴性
与死亡 与出现故障 与治愈 与复发
与阳性
起始事件 随访时间 终点事件
▪ 疾病确诊 治疗开始 治疗开始 接触危险物
死亡 死亡 痊愈 出现反映
截尾数据的处理
▪ 因为不太好处理截尾数据,很多临床 研究工作者常常将失访或中止等原因造 成的截尾数据在分析时抛弃。截尾数据 提供的信息虽然是不完全的,但也很有 价值,不应随便删掉它。
SPSS实现逐步回归方法:
操作过程:Analyze---Regression--Linear---y选入Dependent---x1、x2、 X3选入Independent---Stepwise--options--ok
▪ 表2 Logistic回归模型的数据结构
实验对象 y
X1
X2
1
y1 a11 a12
下的最 LLP (H1)
大部分似然函 和 LLP (H1 )



ຫໍສະໝຸດ Baidu

▪ 可以证明在H0成立的条件下,统计量
▪ 自χ由2=度-为2[p的LχLP2分(H布1 )。- LLP (H 0 ) ] 服从
(2)COX回归模型的构造
▪ 多元线性回归模型:
yˆi b0 b1x1i b2 x2i bp xpi
▪ Logistic回归模型:

ln[ p /(1 p)] 0 1 X1 p X p
设不存在因素X1、X2 、Xp的影响下, 病人t 时刻死亡的风险率为h0(t), 存在因素X1、 X2 、Xp t的影响下, t时刻死亡的风险率为h(t). 用死亡率的比 h(t)/h0(t) 代替P/(1-P)即得。
( Cox's proportional harzard model)。
1、数据结构
设含有p个变量x1, x2,…,xp及时间T和结局C的 n个观察对象. 其数据结构见表3。
表3 COX模型数据结构
实验对象 t C
1
t1 1
2
t2 0
3
t3 0
… ……
n
tn 1
X1 X2
a11 a12 a21 a22 a31 a32
一、基本概念

生存时间(survival time):疾病治疗的预后
情况,一方面看结局好坏,另一方面还要看出现这
种结局所经历的时间长短。所经历的时间称为生存
时间。
▪ 完全与不完全数据
▪ 一部分研究对象可观察到死亡,从而得到准确的生 存时间,所提供的信息是完全的,称为完全数据;
另一部分病人由于失访、意外事故、或到观察结束 时仍存活等原因,无法知道确切的生存时间,它提
相关文档
最新文档