两角和与差及二倍角公式经典例题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
:两角和与差及其二倍角公式知识点及典例
知识要点:
1、两角和与差的正弦、余弦、正切公式
C(α-β):cos(α-β)= ; C(α+β):cos(α+β)= ; S(α+β):sin(α+β)= ; S(α-β):sin(α-β)= ; T(α+β):tan(α+β)= ; T(α-β):tan(α-β)= ; 2、二倍角的正弦、余弦、正切公式
2S α:sin2α= ; 2T α:tan2α= ;
2C α:cos2α= = = ;
3、在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等。
如T(α±β)可变形为:
tan α±tan β=___________________; tan αtan β= = . 考点自测:
1、已知tan α=4,tan β=3,则tan(α+β)=( )
711
A 、 711
B 、- 713
C 、 713
D 、-
2、已知cos ⎝⎛⎭⎫α-π6+ sin α=4
5
3,则 sin ⎝⎛⎭⎫α+7π6的值是( ) A .-235 B.235 C .-45 D.4
5
3、在△ABC 中,若cos A =45,cos B =5
13
,则cos C 的值是( )
A.1665
B.5665
C.1665或5665 D .-1665 4、若cos2θ+cos θ=0,则sin2θ+sin θ的值等于( )
A .0
B .±3
C .0或 3
D .0或
±3
5
、三角式2cos55°-3sin5°
cos5°
值为( )
A.
3
2
B.3 C .2 D .1 题型训练
题型1 给角求值
一般所给出的角都是非特殊角,利用角的关系(与特殊角的联系)化为特殊角
例1求[2sin50sin10(1)]︒︒︒+.
变式1:化简求值:2cos10sin 20.cos 20
︒︒
︒
- 题型2给值求值
三角函数的给值求值问题解决的关键在于把“所求角”用“已知角”表示.如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,
22
αβ
αβ++=⋅
,
(
)()
222αβ
β
ααβ+=-
--
例2 设cos ⎝⎛⎭⎫α-β2=-19
,sin ⎝⎛⎭⎫α2-β=2
3,其中α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫0,π2,求cos(α+β).
变式2:π3π33π5
0π,cos(),sin(),4445413
βααβ<<
<<-=+=已知求sin(α+β)的值.
题型3给值求角
已知三角函数值求角,一般可分以下三个步骤:(1)确定角所在的范围;(2)求角的某一个三角函数值(要求该三角函数应在角的范围内严格单调);(3)求出角。
例3已知α,β∈(0,π),且tan(α-β)=12,tan
β=-1
7
,求2α-β的值.
变式3:已知tan α=
17,tan β= 1
3
,并且α,β 均为锐角,求α+2β的值.
题型4辅助角公式的应用
()sin cos a x b x
x θ+=+ (其中θ角所在的象限由a , b 的符号确定,θ角的值由
tan b
a
θ=
确定) 在求最值、化简时起着重要作用。 例4求函数2
5f (x )sin x cos x x =-
x R )∈的单调递增区间?
变式4(1)如果()()sin 2cos()f x x x ϕϕ=+++是奇函数,则tan ϕ= ;
(2)若方程sin x x c -=有实数解,则c 的取值范围是___________. 题型5公式变形使用
二倍角公式的升幂降幂
tan tan αβ±()()tan 1tan tan αβαβ=± t a n t a n
t a n
t a n 1t a n ()
αβαβαβ±=±
例5(1)设ABC ∆
中,tan A tan B Atan B ++=
,sin Acos A =____
三角形
(2)
变式5已知A 、B 为锐角,且满足tan tan tan tan 1A B A B =++,则cos()A B += ; 专题自测
1、下列各式中,值为1
2
的是 ( )
A 、1515sin cos
B 、2
2
12
12
cos sin π
π
- C 、
2
2251225tan .tan .- D
2、命题P :0tan(A B )+=,
命题Q :0tan A tan B +=,则P 是Q 的 ( ) A 、充要条件 B 、充分不必要条件 C 、必要不充分条件 D 、既不充分也不必要条件
3、已知3sin 5α=,tan 0α<则tan()4
π
α-= .
4、=︒+︒
-︒20sin 6420cos 120sin 32
22
5
、2sin()2sin()cos()333
x x x πππ
++--=______________.
6、0
cos(27)cos(18)sin(18)sin(27)x x x x +---+=
7
、若sin α=
,sin β=,αβ都为锐角,则αβ+=
8、在△ABC 中,已知tan A 、tan B 是方程3x 2
+8x -1=0的两个根,则tan C 等于 9
、
11080
sin sin -= ;
10、
︒
︒
-︒70sin 20sin 10cos 2=
11、(1tan 22)(1tan 23)︒
︒
++=
12、)20tan 10(tan 320tan 10tan ︒+︒+︒︒=
13、(福建理17)在ABC △中,1tan 4A =,3
tan 5
B =. (Ⅰ)求角
C 的大小;
(Ⅱ)若ABC △
14、(四川理17)已知0,14
13
)cos(,71cos 且=β-α=α<β<α<2π,
(1)求α2tan 的值. (2)求β.
15、(2008·江苏)如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α,β,它们的终边分别与单位圆相交于A,B 两点,已知A,B
(1)求tan(α+β)的值;
(2)求α+2β的值.
答案:考点自测:1-5BCADD 变式1
、
5665 3:4
π
4(1)-2 (2)[-2,2] 5
、