第三章 平面任意力系和平面平行力系
第03章+平面力系
![第03章+平面力系](https://img.taocdn.com/s3/m/b45895543b3567ec102d8a1f.png)
物系平衡的特点: ① 当物体系平衡时,组成该系统的每一个物体都处于平 衡状态。 ② 每个单体可列3个平衡方程, 整个系统可列3n个方程 (设物系中有n个物体) 在求解静定的物体系的平衡问题时, 可以选每个物体为研 究对象, 列出全部平衡方程,然后求解;也可以先取整个系统 为研究对象, 列出平衡方程,求出部分未知量,再从系统中选 取某些物体作为研究对象, 列出另外的平衡方程,直至求出所 有的未知量为止。
Fy =0 mO (F )=0
平面平行力系平衡方程的二矩式:
m A (F )=0 mB (F )=0
例3-3 求图示刚架在A、B端所受的约束反力。
解:⑴ 作刚架的受力图。 ⑵ 列出平衡方程:
cos45 å F =0, F 窗 sin45 å F =0, F 窗
x A
y
A
+ F =0 + FB =0
(1)正负号的规定 (2)投影是代数量 (3)力沿轴的分力与力在轴上的投影的区别
Fy Fx cos a = , cos b = F F
讨论:力的投影与分量
y
y
y
F
Fy
O
F
F
Fy
F
O
Fx
x
Fy
O
Fx
x
O
Fx
x
Fx
x
分力Fx=?
⑴ 力F在垂直坐标轴 x、y上的投影与沿轴分 解的分力大小相等。 ⑵ 力F在相互不垂直的轴 x、y‘上的投影与沿 轴分解的分力大小是不相等的。
例3-5 试计算刚架支座A、B的约束反力。
解:⑴ 取整体为研究对象,列出平衡方程:
å å
å
Fx =0, FAx +10kN - FBx =0
3第三章平面任意力系
![3第三章平面任意力系](https://img.taocdn.com/s3/m/0375c01f55270722192ef77c.png)
固定端(插入端)约束
说明: ①认为Fi 这群力在同一平面内; ② 将Fi向A点简化得一力和一力偶; ③FA方向不定可用正交分力FAx, Fay 表示; ④ FAy, FAx, MA为固定端约束反力;
⑤ FAx, FAy限制物体平动, MA为限
制转动。
11
MO
§3-2 平面一般力系的简化结果 合力矩定理 y 简化结果:主矢 F ' R ,主矩 M O 。
∴ 力的直线方程为:
MO
x
FR '
x
O
x
670.1 x 232.9 y 2355 0
2355 当 y 0, x 3.5 m 670 .1
18
FR
§3-3 平面一般力系的平衡条件与平衡方程
F' 0 R MO 0
为力平衡,没有移动效应。 为力偶平衡,没有转动效应。
P
45
0
M A (F i ) 0 :
FC sin45 AC P AB 0
B
FAy
FAx
y
A
C
FAx 20.01kN ,
FAy 10.0kN
FC
x
FC 28.3kN
或: M C ( F i ) 0 : FAy AC P CB 0
22
o
例:求横梁A、B处的约束力。已知 M Pa, q, 解:1)AB杆 q M B A 2)受力分析
主矩MO 方向:方向规定 +
Fiy tg 方向: tg FRx Fix
1
FRy
1
大小: M O M O ( Fi ) , (与简化中心有关),(因主矩等于各力对简化中心取矩 的代数和)
建筑力学-第三章(全)
![建筑力学-第三章(全)](https://img.taocdn.com/s3/m/7c3a0adb551810a6f5248660.png)
建筑力学
3.5 平面一般力系平衡条件和平衡方程
众所周知,当主矢 FR 0 时,为力平衡;当主矩 MO 0 时,为力偶平衡。
故平面任意力系平衡的充要条件为: 力系的主矢 FR和 主矩 都M O等于零。
上述平衡条件可表示为
FR ( Fx )2 ( Fy )2 0
Mo Mo (Fi ) 0
YA
XA
A
Q1=12kN
300 S
Q2=7kN 三力矩方程:再去掉Σ X=0方程 B
mC 0, X A60tg300 30Q1 60Q2 0
D
(二)力系的平衡
示例:斜梁。求支座反力
300
2kN/m B
2kN/m B
300
RB
A
300
A
2m
YA XA
C
X 0, X A RB sin 300 0
30cm
30cm Q1=12kN
Q2=7kN
X 0, X A S cos 300 0
X A 22.5kN
A
600
B
Y 0,YA Q1 Q2 S sin 300 0
YA 6kN
二力矩方程:去掉Σ Y=0方程
C
mB 0, 60YA 30Q1 0
FBl cos M 0
从而有:
FB
M l cos
20 kN 5 c os30
4.62kN
故:
FA FB 4.26kN
建筑力学
[例] 求图中荷载对A、B两点之矩.
解:
(a)
(b)
图(a): MA = - 8×2 = -16 kN ·m MB = 8×2 = 16 kN ·m
建筑力学(第二版)第3章 平面力系
![建筑力学(第二版)第3章 平面力系](https://img.taocdn.com/s3/m/ba4869501fb91a37f111f18583d049649b660e17.png)
§ 3 - 1-2 简化结果的分析
■ (3) F′R≠0,M0≠0,原力系可以进一步简化为一个合力,如图3 -2a 所示。为此,只要将力偶M0 用一对等 值、反向、不共线的平行力F″R和FR 表示,且使FR = - F″R = F′R0 = F′R,则力偶臂 如图3 -2b 所示。若使力F″R作用于O 点,则力F′RO和F″R构成一对平衡力,可以去掉这一对平衡力,只剩下作用 于O′点的力FR。显然,力FR 就是原力系的合力,如图3 -2c 所示。因此,在这种情况下,原力系简化的最后结果是 一个合力FR,其大小和方向与主矢F′R相同,合力的作用线离简化中心O 的垂直距离为
§ 3 - 2-2 平面特殊力系的平衡方程
■ 3. 平面平行力系的平衡方程
力系中各力的作用线均相互平行的平面力系称为平面平行力系。设物体受平面平行力系F1,F2,…,Fn 的作用(图 3 -13)。如选取x 轴(或y 轴)与各力垂直,则不论力系是否平衡,每一个力在x 轴(或y 轴) 上的投影恒等于 零,即∑Fx = 0 (或∑Fy =0)。于是,平面平行力系的独立平衡方程的数目只有两个,即
■ 斜梁ABC 为一楼梯的计算简图,如图3 -14a 所示。其上承受的荷载为作用于斜梁AB 中点的集中力F =600 N,作用于C 处的集中力偶M =1. 2 kN·m 及沿梁AB 长度方向的均布荷载q =1 kN/ m,l =1 m, 试求梁A,B 处的约束反力。
§ 例题
■ 例 3-12
■ 塔式起重机如图3 -15 所示。机架重W1 =700 kN,其作用线通 过塔架的中心。最大起重量W2 =200 kN,最大悬臂长为12 m, 轨道AB 的间距为4 m。平衡荷重W3 到机身中心线距离为6 m。试问 :
工程力学教学课件 第3章 平面任意力系
![工程力学教学课件 第3章 平面任意力系](https://img.taocdn.com/s3/m/5b5da528ad51f01dc381f128.png)
A
MA
FAx
A
简 化
2021/7/22
FAy
11
一、简化结果分析
3.2
平
面 任
F1
A1
F2
O A n A2
M O FR'
O
意
Fn
力
系 的 简 化
1 . F R ' 0 ,M o 0
2 . F R ' 0 ,M O 0
结 果
3 . F R ' 0 ,M O 0 4 . F R ' 0 ,M O 0
的 简 化
此时主矩与简化中心的位置无关。
3、主矢不等于零,主矩等于零 (F R ' 0 ,M O 0 )
结 果
此时平面力系简化为一合力,作用在简化
中心,其大小和方向等于原力系的主矢,即
FRF
2021/7/22
13
一、简化结果分析
3.2 4、主矢和主矩均不等于零 (F R ' 0 ,M O 0 )
平
此时还可进一步简化为一合力。
面
任
FR'
FR'
FR
FR
意 力
O M O O
O
d
O
O
O
d
系 的 简 化
FR'' M O m O ( F R ) F R d F R 'd 于是
d M
F
由主矩的定义知:M O m O (F i)
O ' R
结 所以:
m O (F R ) m O (F i)
果 结论:平面任意力系的合力对作用面内任一点之矩
杆所受的力。
A
45
第3章平面一般力系
![第3章平面一般力系](https://img.taocdn.com/s3/m/a269e042e45c3b3567ec8b0b.png)
第3章 平面任意力系
§3.1 力线平移定理 §3.2 平面任意力系的简化 §3.3 平面任意力系的平衡条件 和平衡方程 §3.4 物体系统的平衡静定 和静不定问题 §3.5 平面桁架
M A / FR 2375.0 / 711.5 d a = AC = = = = 3.52 m o sin ϕ sin ϕ sin 71.6
§3.2 平面任意力系的简化
四、 合力矩定理
平面任意力系的合力对于点O之矩等于原力系对简化中心 O的主矩,即:
M O = M O ( FR ) M O = ∑ M O (F )
第3章 平面任意力系
§3.1 力线平移定理 §3.2 平面任意力系的简化 §3.3 平面任意力系的平衡条件 和平衡方程 §3.4 物体系统的平衡静定 和静不定问题 §3.5 平面桁架
§3.3 平面任意力系的平衡条件和平衡方程
一、 平面任意力系的平衡方程
′ =0 保证物体移动平衡 由于 FR MO=0 为转动平衡
§3.2 平面任意力系的简化
二、主矢和主矩
建立坐标系oxy
′ = F1 x + F2 x + ⋅⋅⋅ + Fnx = ∑ Fx FRx ′ = F1 y + F2 y + ⋅⋅⋅ + Fny = ∑ Fy FRy
y
MO
r ′ FR
α
O
主矢大小 ′ = ( FR ′x )2 + ( FR ′y )2 = ( ∑ Fx )2 + ( ∑ Fy ) 2 FR 主矢方向 r r ′,i ) = cos( FR
工程力学第三章-力系的平衡
![工程力学第三章-力系的平衡](https://img.taocdn.com/s3/m/441ec478168884868762d60c.png)
将上式两边向x、y、z 轴投影,可得平衡方程
F F F
可以求解3个未知量。
x y
z
0 0 0
• 2.平面汇交力系
力系的平衡
• 力偶系的平衡方程 • 1.空间力偶系
平衡的充要条件(几何条件) M Mi 0 将上式两边向x、y、z 轴投影,可得平衡方程
M M M
可以求解3个未知量。
ix iy iz
0 0 0
• 2.平面力偶系
力系的平衡
• 平衡的充要条件:力偶系中各力偶矩的代数和等于零.
m 0
i
• 任意力系的平衡方程 空间任意力系: • 平衡的充要条件:力系的主矢和对任一点的主矩均为零。
FR 0
MO 0
G3 a
e
G 3(a b) FNAb G1e G 2L 0 G 3(a b) G1e G 2L FNA 2 b
由(1)、(2)式 得:
G1 G2 L
G1e G 2L G3 ab
3
A FN A b
B FN B
(2)空载时
不翻倒条件:FNB≥0 (4) 由 mA 0 得:
FAB = 45 kN
600
y B TBC 15 15 30 TBD
0 0 0
x
C
D
150
B
300
TBD=G E
A
E
FAB G
解题技巧及说明:
1、一般地,对于只受三个力作用的物体,且角度特殊时用 几 何法(解力三角形)比较简便。 2、一般对于受多个力作用的物体,且角度不特殊或特殊, 都用解析法。 3、投影轴常选择与未知力垂直,最好使每个方程中只有一 个未知数。
第三章 平面力系
![第三章 平面力系](https://img.taocdn.com/s3/m/60d9ce7fa26925c52cc5bf6d.png)
x'
工程力学 第三章 平面力系
[例] 已知 P=2kN 例 求SCD , RA
解 ①研究AB杆 ②画出受力图 研究 杆 ③选坐标系 ④列平衡方程
∑
RA ⋅ cosφ − SCD ⋅ cos450 = 0 X =0
Y = 0 −P − RA ⋅ sinφ + SCD ⋅ sin450 = 0 ∑
ϕ
工程力学 第三章 平面力系
=
=
=
工程力学 第三章 平面力系
M = FRd = Fd + F2d +L− Fnd = M1 + M2 +LMn 1
M = ∑ Mi = ∑Mi
i= 1
n
平面力偶系平衡的充要条件 M = 0 ,有如下平衡方程
∑ Mi
=0
平面力偶系平衡的必要和充分条件是: 平面力偶系平衡的必要和充分条件是:所有各力偶矩的代数 和等于零. 和等于零.
k=1
n
力在平面直角坐 标系中的解析式
FR = FRxi + FRy j
工程力学 第三章 平面力系
合力投 影定理
合力投影定理: 合力投影定理:平面汇交力系的合力在任一坐标轴 上的投影,等于各分力在同一坐标轴上投影的代数和 代数和。 上的投影,等于各分力在同一坐标轴上投影的代数和。
工程力学 第三章 平面力系
∑Fi = 0
i=1
n
注意 因为力是矢量,其包括大小和方向二个元素。所以 因为力是矢量,其包括大小和方向二个元素。
用封闭力多边形可以求出二个未知元素,即可以有一个力大 封闭力多边形可以求出二个未知元素, 可以求出二个未知元素 小和方向都未知,或者有二个力各有一个未知元素( 小和方向都未知,或者有二个力各有一个未知元素(大小或 方向)。 方向)。
静力学:第三章-平面任意力系(1)详解
![静力学:第三章-平面任意力系(1)详解](https://img.taocdn.com/s3/m/82455b4ccc7931b765ce159c.png)
合力
合力
3.3 平面任意力系的平衡
平面任意力系平衡的充要条件:力系的主矢和对任
意点的主矩都等于零。
平面任意力系的平衡方程:
一般式
二矩式
三矩式
Fx Fy
0 0
MO 0
F x
0
M A 0
M B 0
M A 0 M B 0 M C 0
两个取矩点连线, 不得与投影轴垂直
三个取矩点, 不得共线
解得: P3max=350kN
P3
P1
P2
75kN P3 350kN A
B
FA
FB
当 P3=180kN 时(平面平行力系):
M A 0 4 P3 2 P1 14 P2 4 FB 0 P3
P1
P2
Fy 0 FA FB P1 P2 P3 0
解得: FA=210kN FB=870kN
平面任意力系的平衡方程只有三个,只能求三 个未知数。
三个特例:
平面汇交力系: Fx 0, Fy 0 平面力偶系: M o 0
平面平行力系: Fy 0, M o 0 或者 M A 0, M B 0
3.4 物体系统的平衡
静定问题:系统未知量数目等于独立的平衡方程数目。 超静定问题(静不定问题):系统未知量数目超过独
其中:M B M B (F ) Fd
3.2 平面任意力系向作用面内一点简化
主矢:矢量和 FR Fi 主矩: 代数和 M O M O (Fi )
主矢与简化中心无关,而主矩一般与简化中心有关.
主矩简化什么情况下与简化位置无关?
平面任意力系应用:平面固定端约束
=
=
平面任意力系的简化结果
(1) FR 0, M O 0
论力学第三章课件
![论力学第三章课件](https://img.taocdn.com/s3/m/fcd5f8b13086bceb19e8b8f67c1cfad6195fe929.png)
FAx
MA
FAy
解:取ABD为对象,受力图如图示。 其中Fq=1/2×q×3l=30kN
∑X=0: FAx+Fq–Fsin600=0
∑Y=0: FAy–P–Fcos600=0
MA–M–Fql+Fcos600l+Fsin6003l=0
解得:FAx=316.4kN; FAy=300kN MA=–1188kN.m (与图示转向相反)
静力学/第三章:平面任意力系
■ 平衡方程的其它形式
1 二矩式: X = 0
B
A
x
C
A
A、B 连线不垂直 于x 轴
A、B、C 三点不 在同一条直线上
附加条件:
附加条件:
B
2 三矩式:
静力学/第三章:平面任意力系
■二矩式的证明:
必要性
即
力系平衡
二矩式成立
由力系平衡→
F1
F2
F3
Fn
二、 平面任意力系向一点简化,主矢和主矩
1、 简化 思路:用力的平移定理将各力移至同一点,然后再合成。
将每个力向简化中心O平移
任选一个 简化中心O
其中:
O
因此:
平面任意力系
平面汇交力系
+ 平面力偶系
O
F1’
M1
F2’
M2
F3’
M3
Fn’
Mn
静力学/第三章:平面任意力系
向O点简化
F1
静力学/第三章:平面任意力系
几点讨论: 根据题意选择研究对象 分析研究对象的受力情况,正确地画出其受力图 研究对象与其他物体相互连接处的约束,按约束的性质表示约束反力 正确地运用二力杆的性质和三力平衡定理来确定约束反力的方位
理论力学平面任意力系
![理论力学平面任意力系](https://img.taocdn.com/s3/m/a0eaa073e3bd960590c69ec3d5bbfd0a7956d534.png)
解: 取齿轮I及重物C ,画受力图.
M B 0 Pr F R 0 F 10 P1
由 Fr taan 200 3.64 P1
t
X 0 FBx Fr 0 FBx 3,64P1
Y 0 FBy P P2 F 0 FBy 32P1
[例1]
静定(未知数三个)
静不定(未知数四个)
[例2]
物体系统(物系): ——由若干个物体经过 约束所构成旳系统。
超静定拱
[P62 思索题 3-10]
超静定梁
超静定桁架
3-3 物体系旳平衡•静定与超静定问题
二、物体系统旳平衡问题
外力:外界物体作用于系统上旳力。 内力:系统内部各物体之间旳相互作用力。
R
主矢
FR 0 FR 0
主矩
MO 0
MO 0 MO 0
MO 0
最终成果
阐明
合力 合力作用线过简化中心
合力 合力偶
合力作用线距简化中心M O FR
与简化中心旳位置无关
平衡
与简化中心旳位置无关
3-2 平面任意力系旳平衡条件与平衡方程
一、平面任意力系平衡旳充要条件为:
力系旳主矢
FR
'和对于任一点旳主矩
独立方程旳数目
平面力偶系
mi 0
1
平面平行力系 Y 0, mo (F ) 0
2
平面汇交力系
X 0
2
Y 0
平面任意力系
X 0
Y
0
3
mO (F i ) 0
3-3 物体系旳平衡•静定与超静定问题
独立方程数目≥未知数数目时,是静定问题 (可求解) 独立方程数目<未知数数目时,是超静定问题(静不定问题)
第三章平面力系
![第三章平面力系](https://img.taocdn.com/s3/m/6126ba0b0066f5335b812127.png)
(3)若FR‘≠0,MO‘≠0,这时根据力的平移定理的 逆过程,可以进一步简化成一个作用于另一点 的合力。
(4) FR‘=0,MO‘=0,则力系是平衡力系 。 综上所述,平面一般力系简化的最后结果 (即合成结果)可能是一个力偶,或者是一个合 力,或者是平衡。 3-1-3合力矩定理 当FR‘=0,MO‘≠0 时,还可进一步简化为一 M o ( FR ) FR d 合力,合力对点的矩是 / / 而 Mo mo ( F ) FR d M o 所以 Mo (FR ) mO (F )
3-1-2简化结果的分析 平面一般力系向一点简化,一般可得到一 个力和一个力偶,但这并不是最后简化结果。 根据主矢与主矩是否存在,可能出现下列几种 情况: (1)若FR‘=0,MO‘≠0,说明原力系与一个力偶等 效,而这个力偶的力偶矩就是主矩。 (2)若FR‘≠0,MO‘=0 ,则作用于简化中心的主 矢FR'就是原力系FR的合力,作用线通过简化中 心。
228 .9kN m
计算结果为正值表示是逆时针转向。
因为主矢
≠0,主矩 FR
/ Mo ,如图 0 (b)所示,
所以还可进一步合成为一个合力FR。 FR的大小、 方向与FR‘相同,它的作用线与点的距离为
M O 228.9 d 0.375m FR 612.9
因为MO正,故m0(FR)也应为正,即合力FR 应在点O左侧,
X
F F
0
二力矩形式的平衡方程 (简称二矩式)
在力系作用面内任取两点A、B及X轴,平 面一般力系的平衡方程可改写成两个力矩方程 和一个投影方程的形式,即
F m m
X
0 0 0
A
B
式中轴不与A、B两点的连线垂直。
力系的简化和平衡方程
![力系的简化和平衡方程](https://img.taocdn.com/s3/m/d6de180efe4733687f21aa06.png)
表示,并 合成为一
个作用在点
O'
的力
v R
如图
3—2
所示。
R΄ O M O΄΄
R′ OR
R″O΄
Od R O΄
(a)
(b) 图 3-2
(c)
这个力
v R
就是原力系的合力,合力矢等于主矢,合力的作用线在
O
的哪一侧,需根
据主矢和主矩的方向确定;合力作用线到点 O 的距离 d,可按下式计算。
d = M0 R
必须指明是力系对哪一点的主矩。
二、简化结果的讨论
由于平面任意力系对刚体的作用决定于力系的主矢和主矩,因此,可由这两个物理
量来研(究一力)系若简主化矢的Rv最′ =后0 ,结主果矩。M 0 ≠ 0 ,则原力系与一力偶等效。此力偶称为平面任意
力系的合力偶,合力偶矩等于
M0
=
n
v
∑ m0 (Fi )
。由力偶的性质可知,力偶对任意点的力
一、平面任意力系向作用面内一点简化、主矢和主矩
设刚体上作用一平面任意力系
v F1 ,
v F2
⋅⋅⋅
⋅
⋅
⋅Fvn
如图(3—1)。根据力的平移定理,将力
矩系Fv1'分中, Fv别诸2' ..等力....F于向vn' 力平,以面MFv及11内,=F相v任2M应⋅ ⋅一0⋅(的⋅F点⋅v1⋅附F)vnO加对点M力O平2偶点=移系M的,0M矩(OF1v,,2M)点即2称:..M..为..3M简=nM化。0这中(Fv些心3 )力。偶这作样用得在到同作一用平于面O内点,它的们力系的
θ
态。取料斗车为研究对象,对料斗车进行受力分析,所
O
受力有:重力
工程力学 第三章 平面任意力系
![工程力学 第三章 平面任意力系](https://img.taocdn.com/s3/m/d2367b72a417866fb84a8e27.png)
M O FR d
合力矩定理:
M o ( FR ) M O M O ( Fi )
3.1.5 平面任意力系的简化结果分析 ⑶平衡的情形
FR 0 M O 0
平衡
与简化中心的位置无关
例3-1 已知作用在梁AB上的 两力a=3m,求合力大小及作 用线位置。 解:
⑴大小: FR=30KN ⑵方向: 铅垂向下 ⑶作用线位置: A
Fy 0 F1 sin F2 sin F3 sin 0
平面平行力系的方程为两个,有两种形式:
Fy 0 M A 0
各力不得与投影轴垂直
M A 0 M B 0
两点连线不得与各力平行
例3-10已知: P 700kN, P2 200kN, AB=4m; 1
3.2.1 平面任意力系的平衡条件 平面任意力系平衡的充要条件是:
力系的主矢和对任意点的主矩都等于零
FR 0 M O 0
3.2.2 平面任意力系的平衡方程
FR ( Fx ) ( Fy )
2
2
M O M O ( Fi )
Fx 0 Fy 0 M O 0
d.方程要标准
例3-4 已知: AC=CB= l,P=10kN;求:铰链A和DC杆 受力。
解:取AB梁,画受力图.
Fx 0 FAx FC cos 45 0 Fy 0 FAy FC sin 45 P 0 M A 0 FC cos 45 l P 2l 0 解得: FC 28.28kN, FAx 20kN, FAy 10kN
例 3-5 已知: 1 4kN, P2 10kN, 尺寸如图; P 求:BC杆受力及铰链A受力。
第03章 平面任意力系
![第03章 平面任意力系](https://img.taocdn.com/s3/m/e383fdeb5ef7ba0d4a733b11.png)
第三章平面任意力系3.1 平面任意力系的简化·主矢与主矩3.2 平面任意力系的平衡条件与平衡方程3.3 物体系统的平衡·静定与静不定问题3.4 平面简单桁架的内力计算3.1 平面任意力系的简化·主矢与主矩所谓平面任意力系是指力系中各力的作用线在同一平面内且任意分布的力系,简称平面力系。
在实际工程中经常会遇到平面任意力系的情形,例如,下图所示的曲柄连杆机构,受力F ,矩为M 1,M 2的力偶以及支座反力F Ax ,F Ay 和F N 的作用,这些力及力偶构成平面任意力系。
3、固定端(或插入端)约束FAxFAyM AA4、平面任意力系的简化结果分析(1)简化为一个力偶当F R = 0,M O ≠0则原力系合成为合力偶,其矩为∑=)(i O O M M F 此时主矩与简化中心选择无关,主矩变为原力系合力偶。
由此很容易证得平面任意力系的合力矩定理:平面任意力系的合力对作用面内任一点的矩等于力系中各力对同一点的矩的代数和。
即∑=)()(R i O O M M F F 当F R ’= 0,M O = 0则原力系平衡。
(3)平面力系平衡例题3-3考虑一小型砌石坝的1m长坝段,受重力和的静水压力作用。
已知h = 8 m,a= 1.5 m,b= 1 m,P1=600 kN,P2=300 kN,单位体积的水重γ = 9.8 kN/m3。
求(1)将重力和水压力向O点简化的结果,(2)合力与基线OA的交点到点O的距离x,以及合力作用线方程。
解:(1)以点O 为简化中心,求主矢∑=′x RxF F ()()kNF F yxR1.95322=+=′∑∑F 329.0cos =′=∑RxF F θ944.0cos −=′=∑RyF F β°±=79.70θ°±°=21.19180β故主矢在第四象限内,与x 轴的夹角为°−79.70F R ’M O θβkN 6.313=22121h qh γ==kN P P F F y Ry 90021−=−−==′∑(2)以点O 为简化中心,求主矩F R ’M O θβ()()()q M P M P M M O O O O ++=21bP a P hh 212321−+×−=γmkN ⋅−= 27.236表明主矩的方向与假设方向相反,及主矩的方向为顺时针。
第3章 平面任意力系
![第3章 平面任意力系](https://img.taocdn.com/s3/m/c46863fe0029bd64793e2c13.png)
,i
FRx FR
0.614,
FR , i 52.1
A
cosFR
,
j
FRy FR
0.789,
2. 求主矩MO
FR , j 37.9
MO O
FRF R
MO MO F
2F2 cos 60 2F3 3F4 sin 30 0.5 kN m
由于主矢和主矩都不为零,所以最后合
成结果是一个合力FR。如右图所示。
M
F
q
45
B
A
l
24
例题3-6
A
y
FAx
A
MA FAy
解: 取梁为研究对象,受力分析如图
由平衡方程
M
F
Fx 0, FAx F cos 45 0
q
45
B
Fy 0, FAy ql F sin 45 0
l
M AF 0,
MA
ql 2 2
Fl cos
45
M
0
解方程得
q
M 45 F FAx F cos 45 0.707 F
FR FR
合力FR到O点的距离
d MO 0.51 m FR
B x
C
12
例题3-2
水平梁AB受三角形分布的载荷作用,如图所示。
载荷的最大集度为q, 梁长l。试求合力作用线的位置。
A l
解:
q
在梁上距A端为x的微段dx
B x 上,作用力的大小为q'dx,其
中q'为该处的载荷集度 ,由相
似三角形关系可知
F
A
B
C
D
20
例题3-4
A
第三章 构件的受力分析4、5、6
![第三章 构件的受力分析4、5、6](https://img.taocdn.com/s3/m/d4a72cc1c1c708a1284a44d2.png)
∑Fy=0
FAy-0.5-1.5+FBC sin30°=0
∑MA(F)=0 FBC ×2.5×sin30°-0.5×1.25-1.5×2=0 FBC=2.9kN(拉力) FAX=2.51kN FAy=0.55kN
例5 如图所示夹紧加工零件的夹紧机构,已知:作用的水平力 F=300N,杆OA=0.2m,杆AB=0.4m。求当杆OA与铅垂线OB 的夹角α=30°,作用的水平力F=300N,时,夹头作用于物体M 的压力。
解:分别取销子A和夹头B为研究对象 1)销子A,单独画出,受力分析,画出受力图 运用平衡方程列方程:
Fx 0
Fy 0
sin
F FOA sin FBA sin 0 FOA cos FBA cos 0
0.1 0.25 0.4
0.42 0.12 cos 0.9675 0.4
解: 1)研究对象法兰盘 2)画受力图 4根螺栓的约束力F1=F2=F3=F4 3)运用平衡方程列方程
M O F 0
M 4F1 0.2 0
2.5 4F1 0.2 0
F1=F2=F3=F4=3.125kN
例4 回转式悬臂吊车如图所示,横梁AB长L=2.5m,拉杆CD倾 斜角度α=30˚,自重G1=0.5kN,电动葫芦连同重物共重G2=1.5kN, 当电动葫芦在图示位置平衡时,a=2m,不计接触处摩擦和自重, 试求拉杆的拉力和铰链A的约束反力。
例1 如图所示悬臂梁,已知梁长L=2m,所受载荷 F=100N,求固定端A处的约束反力。
解: 受力分析
1)取梁AB为研究对象 2)画出AB梁的受力图 3)在受力图上建立直角坐标系Axy 4)运用平衡方程列出平衡方程 ∑Fx=0 ∑Fy=0 FAX-Fcos30˚=0 FAy-Fsin30˚=0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X ) 0
m A ( Fi ) 0 mB ( Fi ) 0 mC ( Fi ) 0
③三矩式 条件:A、B、C 不在同一直线上
Y 0
mO ( Fi ) 0
①一矩式
mB ( Fi ) 0
②二矩式 条件:x 轴不⊥AB 连线
向一点简化
汇交力系+力偶系 (已知力系)
力 , R'(主矢) , (作用在简化中心) 力偶 ,MO (主矩) , (作用在该平面上)
5
主矢R ' F1 F2 F3 Fi
主矩 M O m1 m2 m3 mO ( F1 ) mO ( F2 ) mO ( Fi )
1
第三章
平面任意力系与平面平行力系
§3–1 平面任意力系向一点的简化
§3–2 平面任意力系的平衡问题
§3–3 平面平行力系
2
引言
平面任意力系:各力的作用线在同一平面内,既不汇交为一 点又不相互平行的力系,叫平面任意力系。 [例 ]
力系向一点简化:把未知力系(平面任意力系)变成已 知力系(平面汇交力系和平面力偶系)
3
§3-1 平面任意力系向一点简化
一、力的平移定理
作用在刚体上点A的力 F,可以平行移到任一点B,但必须
同时附加一个力偶。这个力偶的矩,等于原来的力 F 对新作
用点B的矩。 [证 ] 力 F 力系 F , F , F
力F 力偶(F,F )
4
二、平面任意力系的简化
一般力系(任意力系) (未知力系) 汇交力系 力偶系
出平衡重的最大值Wmax=375 kN 。实际工作时不允许处于
极限状态,需使其安全工作,平衡重应在这两者之间,即 Wmin<W<Wmax。
27
28
③ R≠0, MO =0,即简化为一个作用于简化中心的合力。 这时简化结果就是合力(这个力系的合力), R R 。 ( 此时与简化中心有关,换个简化中心,主矩不为零)
8
④ R ≠0,MO ≠0,为最一般的情况。此种情况还可以继续 简化为一个合力 R 。
合力 R 的大小等于原力系的主矢 合力 R 的作用线位置
方程,只能求解两个独立的 未知数。
[例4] 已知:P=20kN, m=16kN· m, q=20kN/m,
a=0.8m, 求:A、B的支反力。 解:研究AB梁
由 X 0, X A 0
m A ( F ) 0 ;
a R B a q a m P 2 a 0 2 Y 0 YA RB qa P 0
解得:
qa m 200.8 16 RB 2 P 22012( kN) 2 a 2 0.8 YA P qa RB 20 200.81224(kN) 24
[例5] 塔式起重机如图所示。机架自重W1=500 kN,其
作用线至右轨的距离e=0.5 m,最大起重量W2=250 kN, 其作用线至右轨的距离L=10 m,轨道AB的间距b=4 m,
MO d R
9
§3-2
平面任意力系的平衡
平面一般力系的平衡条件和平衡方程 由于 R =0 为力平衡
MO=0 为力偶也平衡 所以 平面任意力系平衡的充要条件为:
力系的主矢 R 和主矩 MO 都等于零,即:
R' ( X ) 2 ( Y ) 2 0 M O mO ( Fi ) 0
15
解 (1) 取T形刚架为研究对象,其上作用有主动力W、 F 、 M 和线性分布载荷。将线性分布载荷化为一合力,其 大小等于线性分布载荷的面积,即 F1 = q×3L÷2 = 30 kN ,其作用线作用于三角形分布载荷的几何中心,即距点 A 为L处。约束反力有FAx,FAy和MA。其受力与坐标如图 b)
FA 62.5 kN,FB 987.5 kN
讨论:如何保证起重机提起重物时安全工作?(重物
的重量范围)
(1) 当满载时,为了使起重机不绕B点翻倒,考虑平衡 的临界状况FA=0,这时列Σ MB(F)=0的平衡方程,可求
出平衡重的最小值Wmin=275 kN ,
26
(2) 当空载时,为了使起重机不绕A点翻倒,考虑平衡 的临界状况FB=0,这时列Σ MA(F)=0的平衡方程,可求
雨搭
车刀
7
二、平面任意力系的简化结果分析
简化结果:主矢 R ,主矩 MO ,下面分别讨论。 ① R =0, MO =0,则力系平衡,下节专门讨论。 ② R =0,MO≠0,即简化结果为一合力偶 MO=M ,此时 刚体等效于只有一个力偶的作用,因为力偶可以在刚体
平面内任意移动,故这时主矩与简化中心O无关。
16
【练习1】
约
梁
B
X
17
【练习2】
20KN
18
【练习3】
19
【练习4】
20
【练习5】
21
§3-3 平面平行力系
各力的作用线在同一平面内且相互平行的力系,叫平 面平行力系。 设有F1, F2 … Fn 各平行力系,
向O点简化得:
主矢RO R 'F
主矩M O mO ( Fi ) Fi xi
解得: FAx 15.01kN
FAy 5.33kN
F Ax
F Ay
A D
F BC
B E
FBC 17.33kN
P
Q
14
[例3] 自重W=100 kN的T形刚架ABD,置于铅垂面内, 载荷如图 a)所示。已知M=20 kN· m,F=400 kN,q=20
kN/m,L=l m。求固定端A处的约束反力。
F Ax
3m 3m C
P P
Q Q
2m 2m
F cos 30 , M F ) 0 ,F F AB F sin cos 30 30 P 0 0AD Q AE 0 X Ax BC A (0 BC Ax BC M ) 0 ,F PAy DB AB Q sin EB 30 F P AD AB Q 0 AE 0 F sin 30 P Q 0F , Y BC B A( BC Ay PBC DB Q EB FP AB 0 AB sin 30 AD Q M A (F F) ) 0 ,F Q AE 0 AE 0 B( C Ax AC P AD Ay
13
【例2】
如图所示简易吊车, A 、 C 处为固定铰支 座,B处为铰链。已知AB梁重P=4kN,重物重 Q= 10kN 。 求 拉 杆 BC 和 支 座 A 的 约 束 反 力 。
C C
F Ay
A A D D
F BC
B B E E 1m 1m
解: 以AB及重物作为研究对象; 受力分析,画出受力如图; 列平衡方程
所示。
(2) 列平衡方程: Σ Fx=0, FAx F1 F sin 60o 0 Σ Fy=0,
FAy W F cos 60o 0
Σ MA(F)=0, M A M F1L FL cos 60o 3FL sin 60o 0 解得: FAx 316.4 kN,FAy 100 kN,M A 789.2 kN
平衡的充要条件为 主矢
主矩MO =0
R
=0
22
所以 平面平行力系的 平衡方程为:
Y 0
m (F ) 0
O i
一矩式
m A ( Fi ) 0
实质上是各力在x 轴上的投影 恒等于零,即 X 0
二矩式
mB ( Fi ) 0
条件:AB连线不能平行 于力的作用线
23
恒成立 ,所以只有两个独立
平衡重W到左轨的距离a=6 m。若W=300 kN,W2=250 kN
,求轨道A、B对两轮的反力。
25
解 取起重机为研究对象。画出受力图如图所示,该力系
为一平面平行力系。其平衡方程为 Σ Fy=0, 解得
FA FB W2 W1 W 0
Σ MB(F)=0,W (a b) FAb W1e W2 L 0
2 2 R ' R ' R ' ( X ) ( Y ) 大小: x y 2 2
主矢 R (移动效应)方向:
tg1
Ry Y 1 tg Rx X
简化中心
(与简化中心位置无关)
6
[因主矢等于各力的矢量和]
大小: M O mO ( Fi )
主矩MO 方向: 方向规定 + (转动效应) 简化中心: (与简化中心有关) (因主矩等于各力对简化中心取矩的代数和) 例:固定端(插入端)约束
12
[例1 ] 已知:P,a , 求:A、B两点的支座反力。 解:① 选AB梁研究;
② 画受力图(以后注明
解除约束,可把支反 力直接画在整体结构 的原图上); ③ 列平衡方程:
由 m A ( Fi ) 0
X 0
Y 0
2P P2a N B 3a 0, N B 3 XA 0 P YB N B P 0, YA 3
上式有三个独立方程,只能求出三个未知 数。 证明略
11
用平衡方程求解平衡问题的步骤: 1、选研究对象,并作其受力图 2、列平衡方程 3、解方程 4、校核
用平衡方程求解平衡问题技巧: 1、X、Y轴尽量建立在与多个未知力平行或垂直的方向上; 2、列力矩式时,矩心选在未知力的交点上; 3、尽量不要求解联立方程组;使得一个方程只有一个未知量