数学建模问题分析

合集下载

数学建模之包饺子问题分析

数学建模之包饺子问题分析

包饺子问题分析摘要在日常生活中我们经常会遇到:同样的产品,不同大小的包装的时候,应该选择哪一种较为划算;包饺子,包馄饨的时候,皮多了或者馅多的问题,这个时候应该把饺子或者馄饨包大一些还是包小一些才能把多余的皮或馅用完。

这些问题在直观上不容易判断出结果,因此需要建立模型来来观察,以做出最佳选择。

关键词包饺子数学模型实际问题的抽象化正文一、问题提出设在包饺子的时通常1kg面和1kg馅包100个饺子,有一次馅多了0.4kg,问能否将饺子包大一些或小一些将这些馅仍用1kg面用完?二、问题分析这是一个日常生活中常见的问题,问题的本质就是里用同样面积的饺子皮包更多的饺子馅。

将问题抽象为数学问题时,可以做出两个合理的假设: ①饺子皮的厚度一样,也即是饺子皮的总面积不变;②饺子馅的形状都一样,可以都看成球体,因为同样表面积下球体的体积最大,可以包更多的馅。

那么饺子包大一些时,饺子的个数就会减少,饺子包小一些时,饺子的个数就会增多。

也就是可以问题转化为:总表面积一定的n (n=1,2,3……)个球体,当n取多少的时候可以使得所有球体的总体积最大。

这里忽略了饺子皮的厚度。

在解决这个问题的时候,可以把问题进一步抽象到把得到的总体积与1n 是情况比较,这样问题就可以的得到很大程度的简化。

并且可以先定性的分析问题,判断是将饺子包大还是包小才能达到题目要求,然后可以设计一个函数来模拟这个过程,通过函数来观察这个问题。

三、基本假设从上面的分析我们可以看到在实建立模型的时候,需要做出一些基本假设: ⒈ 饺子都是标准的球形的;⒉ 饺子皮的厚度都一样,也就是饺子皮的总面积是常数; ⒊ 每个饺子都是皮刚好把馅包起来,不多也不少;四、问题处理1n =时对应的情况是:表面积为S ,体积为V 的一个球体;在一般情况下对应的情况则为:表面积为s ,体积为v 的n 个球体。

n =1时的大球体,此时有:22S R π=, 343V R π=n 个小球体时,此时有:22s r π=, 343v r π=此时则有:22S R n s r ==, 33V R v r=n =1时,大球体,表面积S 体积Vn 个小球体,表面积s 体积v⇒ 32V n v =)nv =nv ≥由上式可以得到结论,球体个数少,即n 值越小,所有球体的体积和最大。

数学建模问题分析

数学建模问题分析

数学建模问题分析
一、数据处理
1、插值拟合:对数据补全和基本趋势分析对数据补全和基本趋势分析插值和拟合都是要根据一组数据构造一个函数作为近似,由于近似的要求不同,二者的数学方法上是完全不同的。

插值的方法多种多样,拟合问题除了用最小二乘,还可以用机器学习OR深度学习算法来实现,但要注意过拟合问题。

2、聚类分析,用于诊断数据异常值并剔除。

聚类分析用数量化的方法对事物进行分类,事物的类别标签未知,但已知样本的多个特征取值。

3、主成分分析,线性判别分析,局部保留投影:多维数据的降维处理,减少数据冗余。

二、分类与判别
1、距离聚类(系统聚类)常用。

2、关联性聚类(常用)。

3、层次聚类。

层次法先计算样本之间的距离。

每次将距离最近的点合并到同一个类。

然后,再计算类与类之间的距离,将距离最近的类合并为一个大类。

不停的合并,直到合成了一个类。

其中类与类的距离的计算方法有:最短距离法,最长距离法,中间距离法,类平均法等。

比如最短距离法,将类与类的距离定义为类与类之间样本的最短距离。

数学建模问题分析写法

数学建模问题分析写法

问题一的分析
本小题要求在分协作区的情况下进行大修时,如何安排才能使林区整体经济效益最优。

已知在林业生产中汽车是主要的运输工具,而汽车通行的有铁路和公路两种路线可走。

首先,由所给的大修厂在铁路和公路两条道路上的分布图可看出有些协作区可通不同的道路或是两种皆可通。

其次通过两张表中所给的信息可采用层次分析法来对各个协作区进行计算,得出各个协作区中,怎样安排才能使得所调用的汽车数量最少而总的生产成本最低。

最后均衡比较,求出所有大修厂最终的总生产成本以及调用的汽车数量和生产数量。

问题二的分析
本小题要求在不分协作区的情况下进行大修时,如何安排才能使林区整体经济效益最优。

与问题一相比,此问视所有协作区为一个整体,这使得交通更加便捷,不再拘束与各个协作区相互区分,也使层次分析法的相关量变多了,增加了其计算的难度。

同样选择层次分析法将所给材料进行分层,分成主要的目标层,决策层和属性层,其次进行建立模型求解,从而求出运用最低的成本,生产出最多的产品调动最少的汽车,最终得出结论。

数学建模课堂PPT(部分例题分析)

数学建模课堂PPT(部分例题分析)
和风险进行量化分析。
在解决实际问题时,概率论与数 理统计可以帮助我们描述和预测 随机事件,例如股票价格波动、
市场需求等。
概率论中的随机过程和数理统计 中的回归分析在金融、保险等领
域有广泛应用。
概率论与数理统计
概率论与数理统计是研究随机现 象的数学分支,用于对不确定性
和风险进行量化分析。
在解决实际问题时,概率论与数 理统计可以帮助我们描述和预测 随机事件,例如股票价格波动、
例题三:股票价格预测模型
要点一
总结词
要点二
详细描述
描述如何预测股票价格的走势
股票价格预测模型旨在通过分析历史数据和市场信息,来 预测股票价格的走势。该模型通常采用时间序列分析、回 归分析、机器学习等方法,来建立股票价格与相关因素之 间的数学关系。例如,可以使用ARIMA模型或神经网络模 型来预测股票价格的走势。
总结词
模型的复杂度
详细描述
在选择数学模型时,需要考虑模型的复杂度。如果数据量 较小,应选择简单模型以避免过拟合;如果数据量较大, 可以选择复杂模型以提高预测精度。
详细描述
在选择数学模型时,需要考虑模型的适用范围。例如,逻 辑回归模型适用于二分类问题,而K均值聚类模型则适用 于无监督学习中的聚类问题。
总结词
模型的复杂度
详细描述
在选择数学模型时,需要考虑模型的复杂度。如果数据量 较小,应选择简单模型以避免过拟合;如果数据量较大, 可以选择复杂模型以提高预测精度。
例题三:股票价格预测模型
总结词
分析模型的假设条件和局限性
详细描述
股票价格预测模型通常基于一些假设条件,如假设股票 价格是随机的或遵循一定的规律。然而,在实际情况下 ,股票价格受到多种因素的影响,如公司业绩、宏观经 济状况、市场情绪等。因此,这些模型可能存在局限性 ,不能完全准确地预测股票价格的走势。

数学建模中的问题分析与解决方法

数学建模中的问题分析与解决方法

解决方案的实施过程:详细描 述解决方案的执行过程。
解决方案的效果:该解决方案 对案例四的数学建模问题所起 到的效果如何?
汇报人:XX
解决方法:检查数据来源,进 行数据清洗和预处理
问题分析:模型假设与实际情 况不符
解决方法:调整模型假设,使 其更贴近实际情况
定义:模型在训练数据上的表现很好,但在测试数据上的表现较差 原因:模型过于复杂,容易过拟合训练数据 解决方法:简化模型,增加训练数据,使用正则化技术 案例分析:具体分析一个数学建模中模型泛化能力差的例子
解决方法:通过数 据分析和统计方法, 确定模型参数和变 量,建立数学模型
案例应用:以具体 案例为例,说明数 学模型在解决实际 问题中的应用
结论:总结数学建 模在解决实际问题 中的重要性和作用
问题:如何建立数学模型以描述并解决现实问题?
解决方法:通过案例分析,总结出建立数学模型的一般步骤和方法,包括问题分析、数 据收集、模型建立、模型求解和模型验证等。
XX,a click to unlimited possibilities
汇报人:XX
CONTENTS
PART ONE
问题的明确性: 确保问题定义 清晰,无歧义。
问题的可度量 性:建立可量 化的数学模型, 以便进行计算
和分析。
问题的可行性: 确保问题在现 实世界中具有 可行性,并考 虑资源和时间
PART FOUR
重新审视模型假设,确保其合理性和准确性 利用实际数据和信息,对模型假设进行验证和调整 引入新的假设或修改现有假设,以使模型更符合实际情况 采用敏感性分析等方法,评估模型假设变化对结果的影响
算法优化:改进算法以提 高求解效率
数值方法:采用数值计算 方法求解模型

数学建模的实例分析

数学建模的实例分析

数学建模的实例分析数学建模是一种将实际问题转化为数学模型进行求解的方法。

通过对问题的分析、建立适当的模型,运用数学方法进行求解,从而得到对实际问题的理解和解决方案。

本文将通过一个实例来具体分析数学建模在实际问题中的应用。

一、问题描述假设某城市的道路交通堵塞问题日益严重,市政府计划对交通信号灯进行优化。

为了合理地调配交通信号灯的时长,需要考虑到车辆流量、道路长度、红绿灯周期等多个因素。

具体问题如下:如何合理地设置交通信号灯的时长,以最大程度地提高交通效率并减少交通拥堵。

二、问题分析针对上述的问题,我们可以首先将道路网络抽象为一个图论模型。

将路口作为节点,道路作为边,通过各个路口之间的连接关系来描述交通情况。

而交通信号灯的时长则可以视为图论中边的权重,表示车辆通过该边所需要的时间。

基于上述分析,我们将问题进行数学建模:1. 定义变量:- $N$:路口数量- $G = (V, E)$:图,其中 $V$ 表示路口的集合,$E$ 表示道路的集合- $L$:红绿灯周期长度- $T(e)$:边 $e$ 的通过时间2. 建立模型:- 目标函数:最小化车辆的平均通过时间 $C$,即\[C = \frac{1}{N} \sum_{e \in E} \frac{T(e)}{T(L)}\]- 约束条件:- 路口的通过时间必须满足红绿灯周期长度 $L$,即对于任意路口 $i \in V$,有\[\sum_{e \in E(i)} T(e) = L\]其中 $E(i)$ 表示与路口 $i$ 相关联的道路集合。

3. 求解方法:- 利用优化算法,如遗传算法、模拟退火算法等,求解上述问题模型,得到最优的交通信号灯时长。

三、实例分析以某城市的一个交通繁忙的路口为例来具体分析。

1. 数据采集:- 通过交通监控摄像头,采集车辆通过路口的数据,并记录通过时间。

- 统计各个道路的车辆流量、道路长度等信息。

2. 建模过程:- 根据采集到的数据,构建图模型。

数学建模的基本方法与实例

数学建模的基本方法与实例

数学建模的基本方法与实例数学建模是一种通过数学模型来解决实际问题的方法。

它在现代科学研究和工程实践中扮演着重要的角色。

本文将介绍数学建模的基本方法,并通过实例来详细说明。

一、问题分析在进行数学建模之前,首先需要对问题进行分析和理解。

这包括明确问题的背景、确定问题的目标以及收集问题所需数据等。

通过充分了解问题,我们可以更加准确地进行建模和求解。

二、建立模型在问题分析的基础上,我们需要建立适当的数学模型来描述和解决问题。

数学模型是对实际问题的抽象和简化,它包括变量、参数、约束条件和目标函数等要素。

常见的数学模型包括线性规划模型、非线性规划模型、动态规划模型等。

以线性规划模型为例,其数学形式为:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙSubject to:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ其中,c₁、c₂、...、cₙ分别为模型的目标函数系数,x₁、x₂、...、xₙ为决策变量,a₁₁、a₁₂、...、aₙₙ为约束条件的系数,b₁、b₂、...、bₙ为约束条件的右侧常数。

三、求解模型建立完数学模型后,下一步是求解模型以得到问题的最优解。

对于不同类型的模型,可以使用不同的数学方法和工具来求解。

常见的方法包括线性规划的单纯形法、非线性规划的梯度法、动态规划的最优控制理论等。

四、模型验证与分析求解完模型后,需要对结果进行验证和分析。

这包括检验模型的可行性、灵敏度分析以及结果的解释和实际应用等。

通过对模型结果的分析,可以判断模型的有效性和可靠性。

接下来,让我们通过一个实例来具体说明数学建模的过程。

实例:某物流公司的货物配送问题某物流公司需要合理安排货物的配送路线,以最小化配送时间并满足客户的需求。

假设有n个客户需要送货,每个客户的货物量不同,同时每个客户的配送时间窗口也不同。

数学建模问题

数学建模问题

数学建模问题一、问题描述在现实生活中,数学建模是一种常见的解决问题的方法。

通过建立数学模型,我们可以更好地理解和分析问题,并找到解决问题的有效方法。

下面将以一个实际问题为例,介绍数学建模的过程和方法。

二、问题分析假设我们想研究一所学校的招生情况。

我们需要根据学生的综合素质和成绩等因素来预测学生的录取概率。

这个问题可以转换为一个分类问题,我们需要根据已知数据建立一个分类模型,以便预测未知数据的分类。

三、建立模型1. 数据收集首先,我们需要收集一定数量的数据,包括学生的个人信息、成绩、综合素质评价等因素。

这些数据可以通过学校的招生办公室或者学生自己提供。

2. 数据预处理在建立模型之前,我们需要对数据进行预处理。

这包括去除异常值、处理缺失数据、对数据进行离散化等操作。

预处理后的数据更加适合建立模型。

3. 特征选择在分类模型中,选择合适的特征对建模结果至关重要。

我们需要对数据进行特征选择,找到与分类结果相关性较高的特征。

可以使用相关性分析、特征重要性评估等方法进行特征选择。

4. 模型选择在建立模型之前,我们需要选择适合的模型。

常见的分类模型包括逻辑回归、支持向量机、决策树等。

根据数据的特点和问题的需求,选择最合适的模型进行建模。

5. 模型训练与评估在建立模型之后,我们需要使用已有的数据进行模型训练。

训练完成后,我们可以使用测试数据进行模型评估,计算模型的准确率、召回率等指标。

如果模型表现不佳,可以调整模型参数或者选择其他模型重新建模。

6. 模型应用模型建立完成后,我们可以将其应用于实际问题中。

通过输入学生的相关信息,模型可以预测该学生的录取概率。

这将为学校的招生工作提供参考依据。

四、模型优化与改进在模型应用过程中,我们可能会发现模型的表现有待优化和改进。

这时,我们可以使用一些优化方法来提升模型的性能,比如增大训练数据的规模、调整模型参数、使用集成学习等方法。

五、总结和展望数学建模是一种解决实际问题的有效方法。

数学建模论文[数学建模问题分析]

数学建模论文[数学建模问题分析]

数学建模论文[数学建模问题分析]
1、给出一个所感兴趣的建模的实际问题:上班高峰车辆拥堵情况(1) 写出问题的实际背景:某某发展迅速,人们生活水平提高,私家车越来越多。

上班高峰期车辆拥堵严重,通过调查统计603路公交车的双程的运行时间,与平常运行时间相对比,了解吴家坟→省体育场交通拥堵状况,合理地配置车辆资源。

(2) 给出解决问题的路径(建模与解答路径):通过调查统计,绘制相应的统计图。

根据统计图,了解各路段的拥堵状况,对车辆的运行稍作调整。

将调查结果提供给市民,是他们可以适当地选择合理的交通工具和上班路线,适当地缓解交通压力。

(3)要解决什么样的问题:了解该路段的拥堵情况,选择合适的交通工具以及交通路线,适当地减轻交通拥堵,减轻交通压力。

何谓模型简言之,模型是一种结构,它是由对原型的形象化或模拟与抽象而来、对原型的一个不失真的近似反映,例如建筑模型和玩具.数学模型是一种符号模型,在应用数学中,称反映特定的具体实体内在规律性的数学结构为数学模型。

本书的重点在于如何建立数学模型,而对这些数学模型的详细的教学分析,读者不难在有关的数学专业书中找到.建立数学模型的基本方法是机理分析法、数据分析法和计算机仿真。

数学模型方法是近10多年来随着计算机的广泛使用而发展起来的新学科,是利用数学知识解决实际问题的重要方法.这是一本关于数学建模
的理论与方法的入门书,内容包括数学建模的方法论基础,以及数学建模的三种主要方法:机理分析法、数据分析法和计算机仿真,本书避免了详细的理论证明和复杂的数学推导,在众多的实例中,介绍了数学建模的大量方法与技巧,着重研究了在不同背景下数学模型的构造,内容生动,富有启发性。

凡具有微积...。

数学建模方法知识点总结

数学建模方法知识点总结

数学建模方法知识点总结一、问题分析和建模1.问题分析数学建模的第一步是对实际问题进行分析和理解。

这包括确定问题的背景和范围,理解问题的关键要素,分析问题的复杂程度和不确定性,并确定问题的数学建模的可行性和必要性。

在问题分析阶段,需要充分调研、分析和理解现实世界中的问题,并准确把握问题的本质和特点,为建模和求解奠定基础。

2.建模的基本步骤建模的基本步骤包括确定问题的数学模型的类型,选择合适的数学模型,建立数学模型,进行模型的分析和求解,验证模型的有效性和适用性。

在建模的过程中,需要充分考虑问题的实际背景和要求,选择合适的数学工具和方法,保证模型的准确性和实用性。

3.模型假设在建立数学模型时,需要明确模型的假设,包括输入变量和输出变量,模型的非线性程度,问题的约束条件等。

模型假设的准确性和合理性对于模型的可靠性和有效性至关重要。

二、数学建模的数学方法1.微积分微积分是数学建模中最基本和最常用的工具之一,包括导数、积分、微分方程等。

在建立数学模型和求解问题时,常常涉及到对函数的求导和积分,微分方程的建立和求解等。

2.线性代数线性代数是数学建模中重要的数学工具,包括矩阵和向量的理论和方法,线性方程组的求解,特征值和特征向量的计算等。

在建模和求解问题时,常常需要用到线性代数的知识和方法。

3.概率论与统计学概率论和统计学是数学建模中涉及到的另一个重要领域,包括概率分布,随机变量,样本统计量,假设检验等。

在建立数学模型和分析问题时,需要考虑问题的不确定性和随机性,因此概率论和统计学的知识和方法非常重要。

4.优化方法优化方法是数学建模中用于求解最优化问题的重要工具,包括线性规划、非线性规划、整数规划等。

在建模和求解问题时,常常需要考虑优化问题,选择合适的优化方法进行求解。

5.离散数学与图论离散数学和图论是数学建模中用于处理离散结构和关系的重要工具,包括图的表示和遍历,图的匹配和覆盖,图的着色和路径等。

在建模和求解问题时,常常需要用到离散数学和图论的知识和方法。

实际问题的数学建模和解决方法

实际问题的数学建模和解决方法

实际问题的数学建模和解决方法数学建模是将实际问题转化为数学模型,并利用数学方法对问题进行分析和求解的过程。

在实际生活中,我们面临各种各样的问题,例如交通拥堵、疾病传播、环境污染等,这些问题的解决离不开数学建模的应用。

本文将通过几个具体案例,介绍实际问题的数学建模和解决方法。

案例一:交通拥堵问题交通拥堵是城市中常见的难题。

为了缓解交通拥堵,我们可以使用数学建模的方法来分析和优化交通流。

首先,我们可以将城市的交通网络抽象成一个图,节点表示交叉口,边表示道路。

然后,根据实际情况,给每条边赋予一个权重,表示该道路的通行能力。

接下来,我们可以使用最短路径算法来求解最短路径,并将结果应用于交通规划和调度。

案例二:疾病传播问题疾病传播是公共卫生领域的重要问题。

为了有效地控制疾病的传播,我们可以使用数学建模的方法来分析和预测疾病的传播路径和速度。

首先,我们可以将人群划分为不同的类别,如易感者、感染者和康复者。

然后,我们可以建立传染病传播的动力学模型,例如SIR模型,来描述不同类别之间的转化关系。

接下来,我们可以使用微分方程组来求解该模型,并根据模型的结果进行疾病控制和预防策略的制定。

案例三:环境污染问题环境污染是全球面临的重要挑战之一。

为了减少环境污染的影响,我们可以使用数学建模的方法来分析和评估不同的治理措施。

首先,我们可以建立环境污染的传输模型,考虑污染物在大气、地表和地下水中的运移规律。

然后,我们可以使用数学方法,如有限元法或数值模拟方法,来求解该模型,并评估不同治理方案的效果。

最后,根据模型的结果,制定相应的环境保护政策和措施。

总结起来,数学建模是解决实际问题的一种重要方法。

通过将实际问题抽象为数学模型,并运用数学方法对模型进行求解和分析,我们能够更好地理解问题的本质和规律,并提出有效的解决方案。

在今后的发展中,数学建模将在各个领域发挥重要作用,为我们解决更多实际问题提供帮助。

以上是对题目“实际问题的数学建模和解决方法”的论述,通过介绍交通拥堵、疾病传播和环境污染等不同领域的案例,说明了数学建模在解决实际问题中的应用。

数学建模例题及解析

数学建模例题及解析

.例1差分方程——资金(de)时间价值问题1:抵押贷款买房——从一则广告谈起每家人家都希望有一套(甚至一栋)属于自己(de)住房,但又没有足够(de)资金一次买下,这就产生了贷款买房(de)问题.先看一下下面(de)广告(这是1991年1月1日某大城市晚报上登(de)一则广告),任何人看了这则广告都会产生许多疑问,且不谈广告中没有谈住房面积、设施等等,人们关心(de)是:如果一次付款买这栋房要多少钱呢银行贷款(de)利息是多少呢为什么每个月要付1200元呢是怎样算出来(de)因为人们都知道,若知道了房价(一次付款买房(de)价格),如果自己只能支付一部分款,那就要把其余(de)款项通过借贷方式来解决,只要知道利息,就应该可以算出五年还清每月要付多少钱才能按时还清贷款了,从而也就可以对是否要去买该广告中所说(de)房子作出决策了.现在我们来进行数学建模.由于本问题比较简单无需太多(de)抽象和简化.a.明确变量、参数,显然下面(de)量是要考虑(de):需要借多少钱,用记;月利率(贷款通常按复利计)用R记;每月还多少钱用x记;借期记为N个月.b.建立变量之间(de)明确(de)数学关系.若用记第k个月时尚欠(de) 款数,则一个月后(加上利息后)欠款 , 不过我们又还了x元所以总(de)欠款为k=0,1,2,3,而一开始(de)借款为.所以我们(de)数学模型可表述如下(1)c. (1)(de)求解.由(2)这就是之间(de)显式关系.d.针对广告中(de)情形我们来看(1)和(2)中哪些量是已知(de).N=5年=60个月,已知;每月还款x=1200元,已知 A.即一次性付款购买价减去70000元后剩下(de)要另外去借(de)款,并没有告诉你,此外银行贷款利率R也没告诉你,这造成了我们决策(de)困难.然而,由(2)可知60个月后还清,即,从而得(3)A和x之间(de)关系式,如果我们已经知(3)表示N=60,x=1200给定时0A.例如,若R =0.01,则由(3)可算得道银行(de)贷款利息R,就可以算出053946元.如果该房地产公司说一次性付款(de)房价大于70000十53946=123946元(de)话,你就应自己去银行借款.事实上,利用图形计算器或Mathematica这样(de)数学软件可把(3)(de)图形画出来,从而可以进行估算决策.以下我们进一步考虑下面两个问题.注1问题1标题中“抵押贷款”(de)意思无非是银行伯你借了钱不还,因而要你用某种不动产(包括房子(de)产权)作抵押,即万一你还不出钱了,就没收你(de)不动产.例题1某高校一对年青夫妇为买房要用银行贷款60000元,月利率0.01,贷款期25年=300月,这对夫妇希望知道每月要还多少钱,25年就可还清.假设这对夫妇每月可有节余900元,是否可以去买房呢解:现在(de)问题就是要求使 (de)x,由(2)式知现=60000,R=0.01,k=300,算得x=632元,这说明这对夫妇有能力买房.例题2 恰在此时这对夫妇看到某借贷公司(de)一则广告:“若借款60000元,22年还清,只要;(i)每半个月还316元;(ii)由于文书工作多了(de)关系要你预付三个月(de)款,即316×6=1896元.这对夫妇想:提前三年还清当然是好事,每半个月还316元,那一个月不正好是还632元,只不过多跑一趟去交款罢了;要预付18%元,当然使人不高兴,但提前三年还清省下来(de)钱可是22752元哟,是1896元(de)十几倍哪这家公司是慈善机构呢还是仍然要赚我们(de)钱呢这对夫妇请教你给他们一个满意(de)回答.具体解法略.问题2:养老基金今后,当年青人参加工作后就要从其每月工资中扣除一部分作为个人 (de)养老基金,所在单位(若经济效益好(de)话)每月再投入一定数量(de)钱,再存入某种利息较高而又安全(de)“银行”(也可称为货币市场)到60岁退休时可以动用.也就是说,若退休金不足以维持一定(de)生活水平时,就可以动用自己(de)养老基金,每月取出一定(de)款项来补贴不足部分.假设月利率及=0.01不变,还允许在建立养老基金时自己可以一次性地存入A(不论多少),每月存入y元(个人和单位投入(de)总和);通常从一笔钱0三十一岁开始到六十岁就可以动用.这当然是一种简化(de)假设,但作为估算仍可作为一种考虑(de)出发点.本问题实际上有两个阶段,即退休前和退休后,其数学模型为其中x为每月要从养老基金中提出(de)款项.习题1 某大学年青教师小李从31岁开始建立自己(de)养老基金,他把已有(de)积蓄1万元也一次性地存入,已知月利率为0.01 (以复利计),每月存入300元,试问当小李60岁退休时,他(de)退休基金有多少又若,他退休后每月要从银行提取l000元,试问多少年后他(de)退休基金将用完你能否根据你了解(de)实际情况建立一个较好(de)养老基金(de)数学模型及相应(de)算法和程取软件).习题2 渔业(林业)管理问题设某养鱼池(或某海域)一开始有某种鱼条,鱼(de)平均年净繁殖率为R,每年捕捞x条,记第N年有鱼条,则池内鱼数按年(de)变化规律为注意,在实际渔业经营中并不按条数计算而是以吨记数(de).若对某海域(de)渔业作业中=100000吨,R=0.02,x=1000吨,试问会不会使得若干年后就没有鱼可捕捞了(资源枯竭了)例2比例分析法——席位分配问题:某学校有三个系联合成立学生会,(1)试确定学生会席位分配方案.(2)若甲系有100名,乙系60名,丙系40名.学生会设20个席位,分配方案如何(3)若丙系有3名学生转入甲系,3名学生转入乙系,分配方案有何变化(4)因为有20个席位(de)代表会议在表决提案时有可能出现10: 10(de)平局,会议决定下一届增加1席,若在第(3)问中将学生会席位增加一席呢(5)试确定一数量指标衡量席位分配(de)公平性,并以此检查(1)—(4).公平而又简单(de)席位分配办法是按人数(de)比例分配,若甲系有100名,乙系60名,丙系40名.学生会设20个席位,三个系分别应有10,6,4个席位.如果丙系有6名学生转入其他两系学习,各系人数如表所示系别学生人数所占比例(%)按比例分配(de)席位按惯例分配(de)席位甲10310乙636第二列所示,按比例分配席位时,出现了小数(见表中第四列).在将取得整数(de)19席分配完毕后,剩下(de)1席按照惯例分给余数最大(de)丙系,于是三个系仍分别占有10、6、4个席位.因为有20个席位(de)代表会议在表决提案时有可能出现10:10(de)平局,会议决定下一届增加1席,于是他们按照上述惯例重新分配席位,计算(de)结果令人吃惊:总席位增加1席,丙系反而减少1席,见下表.看来,要解决这个矛盾,必须重新研究所谓惯例分配方法,提出更加“公平”(de)办法.下面就介绍这样一个席位分配模型.设A、B两方人数分别是p1 和p2,分别占有n1 和n2 个席位,则两方每个席位所代表(de)人数分别是p1 /n12和p2/n2.很明显,仅当这两个数值相等时,席位(de)分配才是公平(de).但是,通常它们不会相等,这时席位分配得不公平.不公平(de)程度可以用数值来表示,它衡量(de)是“绝对不公平”.从下表所举(de)例子来看,A、B之间(de)“绝对不公平”与C、D之间是一样(de).但是从常识(de)角度看,A、B之间显然比C、D之间存在着更加严重(de)不公平.所以“绝对不公平”不是一个好(de)衡量标准.p n p/n p1/n1-p2/n2 A120101212-10=2B1001010C102010102102-100=2D100010100为了改进绝对标准,我们自然想到用相对标准.因为p/n越大,每个席位代表(de)人数越多,或者说,总人数一定时分配(de)席位越少.所以,如果p1/n13>p2/n2,则A方是吃亏(de),或者说,对A是不公平(de),由此,我们这样定义“相对不公平”:若p1/n1>p2/n2,则称为对A(de)相对不公平值,记做若p1/n1<p2/n2,则称为对B(de)相对不公平值,记做假设A、B两方已分别占有n1和n2个席位,我们利用相对不公平(de)城念来讨论,当总席位再增加1席时,应该给且A方还是B方不失一般性,可设p1/n1>p2/n2,即此时对A方不公平, ,有定义.当再分配1个席位时,关于p/n(de)不等式有以下三种可能:1)p1/(n1十1)>p2/n2,这说明即使A方增加1席,仍然对A不公平,所以这1席当然应给A方;2)p1/(n1十1)<p2/n2,说明当A方增加1席位,将对B不公平,此时应参照式,计算对B(de)相对不公平值3)说明当B方增加1席时,将对A方不公平,此时计算得对A (de)相对不公平值是(注意:在p1/n1p2/n2(de)假设下,不可能出现p1/n1<p2/(n2+1)(de)情况因为公平(de)席位分配方法应该使得相对不公平(de)数值尽量地小,所以如果则这1席应给A方;反之应给B方.根据(3)、(4)两式,(5)式等价于并且不难证明1从上述第1)种情况(de)p1/(n1十1)>p2/p2也可推出. 于是我们(de)结论是:当(6)式成立时,增加(de)1席应分配A方;反之,应分配给B方.若记,则增加(de)1席位应分配给Q值较大(de)一方.将上述方法可以推广到有m方分配席位(de)情况.下面用这个方法,重新讨论本节开始时提出(de),三个系分配21个席位(de)问题.首先每系分配1席,然后计算:甲系n1=1,乙系, n2=1,丙系,n3=1,因为最大,所以第4席应分配给甲系,继续计算:甲系n1=2,将与上面(de)相比,最大,第5席应分给乙系,继续计算.如此继续,直到第21席分配给某个系为止(详见列表).n甲系乙系丙系1(4)(5)578(9)2(6)(8)(15)3(7)(12)(21)4(10)(14)5(11)(18)6(13)7(16)8(17)9(19)10(20)11可以看出,用Q值法,丙系保住了它险些丧失(de)1席.你觉得这个方法公平吗习题:学校共1000名学生,235入住在A宿合,333人住在B宿合,432人住在C宿合.学生们要组织一个10人(de)委员会,试用下列办法分配各宿舍(de)委员数.1)惯例(de)方法,印按比例分配完整数名额后,剩下名额给余数最大者. 2)Q值方法.如果委员会从10人增至15人,分配名额将发生什么变化 ,例3 状态转移问题——常染色体遗传模型随着人类(de)进化,人们为了揭示生命(de)奥秘,越来越注重遗传学(de)研究,特别是遗传特征(de)逐代传播,引起人们(de)注意.无论是人,还是动植物都会将本身(de)特征遗传给下一代,这主要是因为后代继承了双亲(de)基因,形成自己(de)基因对,基因对将确定后代所表现(de)特征.下面,我们来研究两种类型(de)遗传:常染色体遗传和x—链遗传.根据亲体基因遗传给后代(de)方式,建立模型,利用这些模型可以逐代研究一个总体基因型(de)分布.在常染色体遗传中,后代从每个亲体(de)基因对中各继承一个基因,形成自己(de)基因对,基因对也称基因型.如果我们所考虑(de)遗传特征是有两个基因A和控制(de),那么就有三种基因对,记为AA,A,.例如,金草鱼由两个遗传基因决定花(de)颜色,基因型是AA(de)金鱼草开红花,型(de)开粉红色花,而型(de)开白花.又如人类(de)眼睛(de)颜色也是提高通过常染色体遗传控制(de).基因型是(de)人,眼睛是棕色,基因型是(de)人,眼睛是兰色.这里因为都表示了同一外部特征,我们认为基因A 支配基因,也可以认为基因对于A 来说是隐性(de)农场(de)植物园中某种植物(de)基因型为AA,A 和.农场计划采用AA 型(de)植物与每种基因型植物相结合(de)方案培育植物后代.那么经过若干年后,这种植物(de)任一代(de)三种基因型分布如何 第一步:假设:令 ,2,1,0=n .(1) 设n n b a ,和n c 分别表示第n 代植物中,基因型为AA,Aa 和aa(de)植物占植物总数(de)百分率.令)(n x 为第n 代植物(de)基因型分布:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n n n c b a x )(当n=0时⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000)0(c b a x表示植物基因型(de)初始分布(即培育开始时(de)分布),显然有1000=++c b a(2) 第n 代(de)分布与第n-1代(de)分布之间(de)关系是通过上表确定(de).第二步:建模根据假设(2),先考虑第n 代中(de)AA 型.由于第n-1代(de)AA 型与AA 型结合,后代全部是AA 型;第n-1代(de)Aa 型与AA 型结合,后代是AA 型(de)可能性为1/2,第n-1代(de)aa 型与AA 型结合,后代不可能是AA 型.因此,当 ,2,1,0=n 时11102/1---•++•=n n n n c b a a即2/11--+=n n n b a a 类似可推出2/11--+=n n n b c a 0=n c将式相加,得111---++=++n n n n n n c b a c b a根据假设(1),有1000=++=++c b a c b a n n n对于式、式和式,我们采用矩阵形式简记为,2,1,)1()(==-n Mx x n n其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=00012/1002/11M ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n n n c b a x )(式递推,得)0()2(2)1()(x M x M Mx x n n n n ====--式给出第代基因型(de)分布与初始分布(de)关系.为了计算出n M ,我们将M 对角化,即求出可逆矩阵P 和对角阵D,使1-=PDP M因而有,2,1,1==-n P PD M n n其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n nnn D 321321000000000λλλλλλ这里321,,λλλ是矩阵M(de)三个特征值.对于式中(de)M,易求得它(de)特征值和特征向量:0,2/1,1321===λλλ因此⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=00002/10001D ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=0112 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1213 所以[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==100210111321P通过计算1-=P P ,因此有)0(1)0()(x P PD x M x n n n -==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=0001002101110000)21(0010100210111c b a n 即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=--00011)(000)2/1()2/1(0)2/1(1)2/1(11c b a c b a x n n n n n n n n ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--++=--0)2/1()2/1()2/1()2/1(010010000c b c b c b a n n n n所以有⎪⎩⎪⎨⎧=+=--=--0)2/1()2/1()2/1()2/1(1010010n n n n n n n c c b b c b a当∞→n 时0)2/1(→n,所以从式得到0,1→→n n b a 和n c =0即在极限(de)情况下,培育(de)植物都是AA 型. 第三步:模型讨论若在上述问题中,不选用基因AA 型(de)植物与每一植物结合,而是将具有相同基因型植物相结合,那么后代具有三代基因型(de)概率如下表:并且)0()(x M xn n =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=14/1002/1004/11M M(de)特征值为2/1,1,1321===λλλ通过计算,可以解出与21,λλ相对应(de)两个线性无关(de)特征向量1 和2 ,及与3λ相对应(de)特征向量3 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1002 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1213 因此[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==111200101321P⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-02/1011102/111P)0(1)0()(x P PD x M x n n n -==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=00002/1011102/11)2/1(0001001111200101c b a n n所以有⎪⎩⎪⎨⎧-+==++=++010000100)2/1()2/1()2/1()2/1()2/1(bb c c b b b b a a n nn n n n当∞→n 时0)2/1(→n,所以从式得到0,)2/1(00→+→n n b b a a 和00)2/1(b c c n +→因此,如果用基因型相同(de)植物培育后代,在极限情况下,后代仅具有基因AA 和aa. 例4 合作对策模型在经济或社会活动中,几个社会实体(个人、公司、党派、国家)相互合作或结成联盟,常能获得比他们单独行动更多(de)经济或社会效益.这样合理地分配这些效益是合作对策要研究(de)问题.请看下面(de)例子.问题一:经商问题甲、乙、丙三人经商,若单干,每人仅能获利1元;甲乙合作可获利7元;甲丙合作可获利5元;乙丙合作可获利4元;三人合作可获利10元,问三人合作时如何分配10元(de)收入.甲(de)收入应按照甲对各种形式(de)合作(de)贡献来确定.对于某一合作(de)贡献定义为:有甲参加时这个合作(de)收入与无甲参加时这个合作(de)收入之差.例如甲对甲乙二人合作(de)贡献是7—1=6 (因为甲乙合作获利7元,而乙单干仅获利1元).甲可以参加(de),合作有四个:甲自己(单干视为合作(de)特例)、甲乙、甲丙、甲乙丙.甲对这些合作(de)贡献分别是甲:1一0=1元;甲乙:7—1=6元;甲内:5—1=4元;甲乙丙:10—4=6元,甲应分得(de)收入是这四个贡献(de)加权平均值,加权因子将由下面(de)一般模型给出.这个问题叫做3人合作对策,是对策论(de)一部分,这里介绍它(de)一种解法.一般(de)n人合作对策模型可以叙述如下:记n人集合为I=,如果对于I中 (de)任一子集,都对应一个实值函数v(s),满足则称为定义在I上(de)特征函数.所谓合作对策是指定义了特征函数(de)I中n个人(de)合作结果,用向量值函数来表示.在实际问题中.常可把I中各种组合(de)合作获得(de)利益定义为特征函数,上式表示合作规模扩大时,获利不会减少.不难看出,如将三人经商问题中合作(de)获利定义为特征函数v,v是满足(1)、(2)(de).为了确定,Shapley在1953年首先制定了一组应该满足(de)公理,然后证明了满足这组公理(de)(de)唯一解是其中是I中包含{i}(de)所有子集,是集合s中(de)人数,是加权因子,由确定.(3)式中可看作成员{i}对合作s(de)贡献;表示对所有包含{i}(de)集合求和.称为由v定义(de)合作(de)Shapley值.我们用(3)、(4)计算三人经商问题中各个人应得到(de)收入.甲、乙、丙分别记作{1},{2},{3},包含{1}(de)集合有{1}、{1,2}、{1,3}、{1,2,3},计算结果列入下表.S{1}{1,2}{1,3}{1,2,3}V(s)17510V(s-{1})0114V(s)- V(s-{1})1 6 4 612 23 W()1/31/61/61/3W()[V(s)-V(s-{1})]1/31 2/3 2.同样可以算出乙、丙应得收入为=3.5元,=元.问题二:三城镇(de)污水处理方案沿河有三城镇1、2和3,地理位置如图4;6所示.污水需处理后才能排入河中.三城镇或者单独建立污水处理厂,或者联合建厂,用管道将污水集中处理(污水应于河流(de)上游城镇向下游城镇输送).以Q 表示污水量(吨/秒),工表示管道长度(公里).按照经验公式,建立处理厂(de)费用为712.0173Q P =,铺设管道(de)费用为LQ P 51.0266.0=.今已知三城镇(de)污水量分别为5,3,5321===Q Q Q .L(de)数值38,202312==L L .试从节约总投资(de)角度为三城镇制定污水处理方案;包括是单独还是联合建厂;如果联合,如何分担投资额等.三城镇或单干或不同形式(de)联合,共有五种方案.下面一一计算所需(de)投资.方案一 三城镇都单干.投资分别为总投资:方案二城1、2合作.这时城1、2将从节约投资(de)角度对联合还是分别建厂作出决策,所以城1、2(de)投资为:=3500C(3)=2300总投资:方案三城2、3合作.C(1)=2300总投资:方案四城1、3合作.C(2)=1600总投资:方案五三城镇合作=5560总投资:比较五个方案可知,应该选择三城合作,联合建厂(de)方案. 下面(de)问题是如何分担总额为5560(de)费用.城3(de)负责人提出,联合建厂(de)费用按三城(de)污水量之比5:3:5分担,铺设管道费应由城1、2担负.城2(de)负责人同意,并提出从城2到城3(de)管道费由城1、2按污水量之比5:3分担;从城1到城2(de)管道费理应由城1自己担负.城1(de)负责人觉得他们(de)提议似乎是合理(de),但因事关重大,他没有马上表示同意;而是先算了一笔账.联合建厂(de)费用是4530)535(73712.0=++,城2到城3(de)管道费是730,城1到城2(de)管道费是300,按上述办法分配时,城3负担(de)费用为1740,城2(de)费用为1320,域1(de)费用为2500.结果出乎意料之外,城3和城2(de)费用都比单独建厂时少,而城1(de)费用却比单独建厂时(de)C(1)还要多.城1(de)负责人当然不能同意这个方法,但是一时他又找不出公平合理(de)解决办法.为了促成联合(de)实现,你能为他们提供一个满意(de)分担费用(de)方案吗首先,应当指出,城3和城2负责人提出(de)办法是不合理(de):从前面(de)计算我们知道,三城联合,才能使总投资节约了640(de)效益应该分配给三城,使三城分配(de)费用都比他们单干时要少,这是为促成联合所必须制定(de)一条原则.至于如何分配,则是下面要进一步研究(de)问题. 把分担费用转化为分配效益,就不会出现城1联合建厂分担(de)费用反比单独建厂费用高(de)情况.将三城镇记为I={1,2,3},联合建厂比单独建厂节约(de)投资定义为特征函数.于是有v(φ)=0,v({1})=v({2})=v({3})=0,v({1,2})=c(1)+c(2)-c(1,2)=2300+1600-3500=400,v({2,3})=c(2)+c(3)-c(2,3)=1600+2300-3650=250,v({1,3})=0,v(I)=c(1)+c(2)+c(3)-c(1,2,3)=640.S {1} {1,2} {1,3} {1,2,3} V(s) 0 400 0 640 V(s-{1}) 0 0 0 250 V(s)- V(s-{1})0 400 0 39012 23 W()1/31/61/61/3W()[V(s)-V(s-{1})] 0 67 0 130即197)(1=v ϕ同理得321)(2=v ϕ,122)(3=v ϕ那么, 城1分担(de)费用为2300-197=2103, 城2分担(de)费用为1600-321=1279, 城3分担(de)费用为2300-122=2178,合计5560. 习题:某甲(农民)有一块土地.如果从事农业生产可年收入100元;如果将土地租给某企业家用于工业生产,可年收入200元;如果租给某旅店老板开发旅游业,可年收入300元;当旅店老板请企业家参与经营时,年收入可达400元.为实现最高收入,试问如何分配各人(de)所得才能达成协议例5动态规划模型有不少动态过程可抽象成状态转移问题,特别是多阶段决策过程(de)最优化如最短路径问题,最优分配,设备更新问题,排序、生产计划和存储等问题.动态规划是一种将复杂问题转化为一种比较简单问题(de)最优化方法,它(de)基本特征是包含多个阶段(de)决策.1951年,美国数学家贝尔曼(R.Bellman)等人,提出了解决多阶段决策问题(de)“最优化原理”,并研究了许多实际问题,从而创建了动态规划·动态规划方法(de)基本思想是:将一个复杂问题分解成若干个阶段,每一个阶段作为一个小问题进行处理,从而决定整个过程(de)决策,阶段往往可以用时间划分这就具有“动态”(de)含义,然而,一些与时间无关(de)静态规划中(de)最优化问题,也可人为地把问题分成若干阶段,作为一个多阶段决策问题来处理,计算过程单一化,便于应用计算机.求解过程分为两大步骤,①先按整体最优化思想递序地求出各个可能状态(de)最优化决策;②再顺序地求出整个题(de)最优策略和最优路线.下面,结合一个求最短路径(de)例子,来说明动态规划(de)一些基本概念.最短路径问题如图所示(de)交通网络,节点连接线路上(de)数字表示两地距离,计算从A 到E(de)最短路径及长度.1.阶段.把所要处理(de)问题,合理地划分成若干个相互联系(de)阶段,通常用k 表示阶段变量.如例中,可将问题分为4个阶段,k=1,2,3,4. 2.状态和状态变量.每一个阶段(de)起点,称为该阶段(de)状态,描述过程状态(de)变量,称为状态变量,它可以用一个数、一组数或一个向量来描述,常用k x 来表示第k 阶段(de)某一状态.如果状态为非数量表示,则可以给各个阶段(de)可能状态编号,i x i k =)(()(i k x 表示第k 个阶段(de)第i 状态).第k 阶段状态(de)集合为},,,,,{)()()2()1(T k i k k k k x x x x X =如例6中,第3阶段集合可记为}3,2,1{},,{},,{321)3(3)2(3)1(33===C C C x x x X3.决策和决策变量.决策就是在某一阶段给定初始状态(de)情况下,从该状态演变到下一阶段某状态(de)选择.即确定系统过程发展(de)方案.用一个变量来描述决策,称这个变量为决策变量.设)(k k x u 表示第k 个阶段初始状态为k x (de)决策变量.)(k k x D 表示初始状态为k x (de)允许决 策集合,有)(k k x u ∈)(k k x D ={k u }如例6中},,{)(3211B B B A D =,若先取2B ,则21)(B A u =. 4.策略和子策略.由每段(de)决策)(k k x u 组成(de)整个过程(de)决策变量序列称为策略,记为n P ,1,即n P ,1=)}(,),(),({2211n n x u x u x u从阶段k 到阶段n 依次进行(de)阶段决策构成(de)决策序列称为k 子策略,记为n k P ,即)(1,x P n k =)}(,),(),({11n n k k k k x u x u x u ++显然,k=1时(de)k 子策略就是策略.如例6,选取路径E D C B A →→→→221就是一个子策略.从允许策略集中选出(de)具有最佳效果(de)策略称为最优策略. 5.状态转移方程.系统在阶段k 处于状态k x ,执行决策)(k k x u (de)结果是系统状态(de)转移,即由阶段K(de)状态k x 转移到阶段K 十1(de)状态1+k x 适用于动态规划方法求解(de)是一类具有无后效性(de)多阶段决策过程.无后效性又称马尔科夫性,指系统从某个阶段往后(de)发展,完全由本阶段所处(de)状态以及其往后(de)决策决定,与系统以前(de)状态及决策无关,对于具有无后效性(de)多阶段过程,系统由阶段k 向阶段k+1(de)状态转移方程为))(,(1k k k k k x u x T x =+意即1+k x 只与k x ,)(k k x u 有关,而与前面状态无关.))(,(k k k k x u x T 称为变换函数或算子.分确定型和随机型,由此形成确定型动态规划和随机型动态规划. 6.指标函数和最优指标函数.在多阶段决策中,可用一个数量指标来衡量每一个阶段决策(de)效果,这个数量指标就是指标函数,为该阶段状态变量及其以后各阶段(de)决策变量(de)函数,设为n k V ,即n k x x u x V V n k k k n k n k ,,2,1),,,,(1,, ==+指标(de)含义在不同(de)问题中各不相同,可以是距离、成本、产品产 量、资源消耗等.例6中,指标(de)含义就是距离,指标函数为A 到E(de)距离,为各阶段路程(de)和.最常见(de)指标函数取各阶段效果之和(de)形式,即∑==nk j j j j n k u x V V ),(,指标函数nk V ,(de)最优值,称为相应(de)最优指标函数,记为)(k k x fnk k k optV x f ,)(=式中opt 是最优化之意,根据问题要求取max 或min . 7.动态规划最优化原理.贝尔曼指出“作为整个过程(de)最优策略具有这样(de)性质:即无论过去(de)状态和决策如何,对前面(de)决策所形成(de)状态而言,余下(de)诸决策必须构成最优策略”基于这个原理,可有如下定理:定理 若策略*,1n P 是最优策略,则对于任意(de)k(1<k<n),它(de)子策略*,n k P 对于以),(*1*11*---=k k k k u x T x 为起点(de)k 到n 子过程来说,必是最优策略. 实质上,动态规划(de)方法是从终点逐段向始点方向寻找最短路径(de)一种方法.8.动态规划(de)数学模型.利用最优化原理,可以得到动态规划(de)数学模型)}(),({)(11+++=k k k k k k k x f u x V opt x f ))(1,,1,(k k k x D u n n k ∈-=0)(11=++n n x f这是一个由后向前(de)递推方程.下面以例6(de)最短路径问题说明这种递序解法.指标函数为两点之间(de)距离,记为),(k k u x d ,例中共分4个阶段. (倒推) 第4阶段2)(),()(5114=+=E f E D d D f 3)(),()(5224=+=E f E D d D f 5)(),()(5334=+=E f E D d D f 0)(5=E f第3阶段6835)(),(624)(),(min )(2421141113=⎭⎬⎫⎩⎨⎧=+=+=+=+=D f D C d D f D C d C f},,{11*4,3E D C P =4431)(),(826)(),(min )(2422141223=⎭⎬⎫⎩⎨⎧=+=+=+=+=D f D C d D f D C d C f},,{22*4,3E D C P =6651)(),(1239)(),(min )(3433243333=⎭⎬⎫⎩⎨⎧=+=+=+=+=D f D C d D f D C d C f},,{33*4,3E D C P =第2阶段7734)(),(1367)(),(min )(2321131112=⎭⎬⎫⎩⎨⎧=+=+=+=+=C f C B d C f C B d B f},,,{221*4,2E D C B P =7734)(),(826)(),(min )(2322131222=⎭⎬⎫⎩⎨⎧=+=+=+=+=C f C B d C f C B d B f},,,{222*4,2E D C B P =91468)(),(945)(),(min )(3333232332=⎭⎬⎫⎩⎨⎧=+=+=+=+=C f C B d C f C B d B f},,,{223*4,2E D C B P =第1阶段10111192)(),(74)(),(1073)(),(min )(323221211=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=+=+=+=+=+=+=B f B A d B f B A d B f B A d A f},,,,{221*4,1E D C B A P =故最短路径为E D C B A →→→→221,从A 到E(de)最短距离为10. 上述步骤可归纳为下述递推公式)}(),(m in{)(11+++=k k k k k k x f u x d x f 1,2,3,4(=k )0)(55=x f此递推关系叫做动态方程,即最短路径问题(de)动态规划模型,应用动态规划方法解决问题(de)关键是根据所给问题建立具体(de)动态规划模型,建立动态规划模型时(de)主要困难在于:如何将所遇到(de)最优化解释为合适(de)多段决策过程问题.从例6看出,划分I 阶段、定义状态、确定指标函数,是动态规划模型化时(de)主要工作,其合适性决定应用动态规划(de)成败.建模时,除将实际问题根据时间和空间恰当地划分若干阶段外,还须明确下列几点: (1)正确选择状态变量,使它既能描述过程(de)状态,又。

高二数学学科中的数学建模问题解析

高二数学学科中的数学建模问题解析

高二数学学科中的数学建模问题解析在高二数学学科中,数学建模问题是一种重要的学习内容。

通过数学建模,学生能够将数学理论与实际问题相结合,培养解决实际问题的能力,提高数学思维和创新能力。

本文将对高二数学学科中的数学建模问题进行详细解析。

一、什么是数学建模?数学建模是指运用数学的知识和方法,对实际问题进行抽象化、数学化的过程。

通过建立数学模型,分析问题的数学特征和规律,解决实际问题。

数学建模通常包括确定问题的各个变量、参数和约束条件,建立数学模型,进行模型的分析和求解以及对结果的解释和验证等步骤。

二、数学建模在高二数学学科中的重要性1. 培养实际问题解决能力:数学建模通过将数学知识与实际问题相结合,使学生能够培养解决实际问题的能力。

在高二数学学科中,学生将会遇到各种各样的实际问题,通过数学建模的学习,能够理解问题的本质,找到解决问题的方法。

2. 提高数学思维和创新能力:数学建模要求学生具备创造性思维和创新能力,通过对问题的抽象和建模,学生需要灵活运用数学知识,提出新的解决方案。

这种思维方式能够提高学生的数学思维和创新能力,培养他们的创造性思维和解决问题的能力。

三、数学建模问题的解析步骤1. 确定问题的数学特征和规律:在解决数学建模问题时,首先需要明确问题的数学特征和规律。

通过理解问题的背景和条件,确定问题中的各个变量和参数,了解它们之间的关系。

2. 建立数学模型:在确定问题的数学特征和规律后,需要建立相应的数学模型。

数学模型可以是代数模型、几何模型、概率模型等,根据不同的问题类型选择合适的模型。

3. 进行模型的分析和求解:建立数学模型后,需要进行模型的分析和求解。

根据具体的问题,选择合适的数学方法和技巧进行求解,得到问题的具体解答。

4. 对结果的解释和验证:在得到问题的解答后,还需要对结果进行解释和验证。

通过对结果的解释,说明数学模型对实际问题的合理性。

通过对结果的验证,检验数学模型的准确性和可靠性。

数学建模比赛例题解析

数学建模比赛例题解析

数学建模比赛例题解析
数学建模比赛通常提供一些实际问题,要求参赛者使用数学方法进行分析和解决。

以下是一个典型的数学建模比赛例题以及解析示例:
例题:某城市树木的生长速度问题
问题描述:某个城市的市政部门想要了解该城市内树木的生长速度,以便合理安排树木修剪和绿化工作。

为了解答该问题,需要参赛者进行如下任务:
1. 收集并分析该城市内树木的生长数据;
2. 建立数学模型,描述树木生长的规律;
3. 根据模型,预测未来某个时间点树木的高度;
4. 提出合理的树木修剪和绿化方案。

解析示例:
1. 收集并分析数据:参赛者可以通过实地调查和测量,收集不同树木在不同时间点的高度数据。

例如,可以选择20棵树木
作为样本,每个月测量它们的高度,记录在数据表中。

2. 建立数学模型:参赛者可以通过分析数据,找到树木生长的规律,建立数学模型描述树木的高度与时间的关系。

例如,可以假设树木的生长速度是线性增加的,即高度随时间的增加而增加。

3. 预测未来高度:根据建立的数学模型,参赛者可以使用已有数据预测未来某个时间点树木的高度。

例如,可以根据已有数据的拟合曲线,计算未来6个月后树木的预计高度。

4. 提出修剪和绿化方案:参赛者可以根据已有数据和预测结果,提出合理的修剪和绿化方案。

例如,可以根据树木的生长速度
和最佳高度范围,制定修剪方案,并根据城市规划要求,提出绿化方案。

总结:数学建模比赛的例题通常要求参赛者通过数据分析和数学建模,解决实际问题。

参赛者需要收集数据、建立模型、预测结果和提出解决方案。

数学建模典型例题

数学建模典型例题

数学建模典型例题The document was prepared on January 2, 2021一、人体重变化某人的食量是10467焦/天,最基本新陈代谢要自动消耗其中的5038焦/天.每天的体育运动消耗热量大约是69焦/千克天乘以他的体重千克.假设以脂肪形式贮存的热量100% 地有效,而1千克脂肪含热量41868焦.试研究此人体重随时间变化的规律.一、问题分析人体重Wt随时间t变化是由于消耗量和吸收量的差值所引起的,假设人体重随时间的变化是连续变化过程,因此可以通过研究在△t时间内体重W的变化值列出微分方程.二、模型假设1、以脂肪形式贮存的热量100%有效2、当补充能量多于消耗能量时,多余能量以脂肪形式贮存3、假设体重的变化是一个连续函数4、初始体重为W三、模型建立假设在△t时间内:体重的变化量为Wt+△t-Wt;身体一天内的热量的剩余为Wt将其乘以△t即为一小段时间内剩下的热量;转换成微分方程为:dWt+△t-Wt=Wtdt;四、模型求解d5429-69W/5429-69W=-69dt/41686W0=W解得:e-69t/416865429-69W=5429-69W即:Wt=5429/69-5429-69W/5429e-69t/41686当t趋于无穷时,w=81;二、投资策略模型一、问题重述一家公司要投资一个车队并尝试着决定保留汽车时间的最佳方案.5年后,它将卖出所有剩余汽车并让一家外围公司提供运输.在策划下一个5年计划时,这家公司评估在年i的开始买进汽车并在年j的开始卖出汽车,将有净成本a ij二、问题分析本问题是寻找成本最低的投资策略,可视为寻找最短路径问题.因此可利用图论法分析,用Dijkstra算法找出最短路径,即为最低成本的投资策略.三、条件假设除购入价折旧以及运营和维护成本外无其他费用;四、模型建立二511 7 三 64166 13 8四一 912 8 1120五10六运用Dijikstra算法1 2 3 4 5 60 4 6 9 12 206 9 12 209 12 2012 2020可发现,在第二次运算后,数据再无变化,可见最小路径已经出现即在第一年买进200辆,在第三年全部卖出,第三年再买进200第六年全部卖出.三、飞机与防空炮的最优策略一、问题重述:红方攻击蓝方一目标,红方有2架飞机,蓝方有四门防空炮,红方只要有一架飞机突破蓝方的防卫则红方胜.其中共有四个区域,红方可以其中任意一个接近目标,蓝方可以任意布置防空炮,但一门炮只能防守一个区域,其射中概率为1.那么双方各采取什么策略 二、问题分析该问题显然是红方与蓝方的博弈问题,因此可以用博弈论模型来分析本问题. 1、对策参与者为两方红蓝两方2、红军有两种行动方案,即两架飞机一起行动、两架飞机分开行动.蓝军有三种防御方案,即四个区域非别布置防空炮记为1-1-1-1、一个区域布置两架一个没有另外两个分别布置一个记为2-1-1-0、两个区域分别布置两架飞机另外两个没有记为2-2-0-0.显然是不需要在某个区域布置3个防空炮的.三、问题假设:(1) 红蓝双方均不知道对方的策略.(2) 蓝方可以在一个区域内布置3,4门大炮,但是大炮数量大于飞机的数量,而一门大炮已经可以击落一架飞机,因而这种方案不可取.(3) 红方有两种方案,一是让两架飞机分别通过两个区域去攻击目标,另一种是让两架飞机通过同一区域去攻击目标.(4) 假设蓝方四门大炮以及红方的两架飞机均派上用场,且双方必须同时作出决策.四、模型建立A= 1 0B= 0 1 没有鞍点,故用混合策略模型解决本问题设蓝方采取行动i 的概率为 xii=1,2,3,红方采取行动j 的概率为yjj=1,2,则蓝方与红方策略集分别为:S1={x=x1,x2,x30< xi<1,∑xi=1}, S2={y=y1,y20< yi<1,∑yi=1}. 五、模型求解下列线性规划问题的解就是蓝军的最优混合策略x Max v10x1+x 2+x 3 >v1 x 1+x 2+x 3 >v1 x 1+x 2+x 3 =1xi<=1下列线性规划问题的解就是红军的最优混合策略y Min v2 y 2 <v2 y 1+y 2 <v2 y 1+ y 2 <v2 y 1+y 2= 1 yi<=1四、雷达计量保障人员分配开展雷达装备计量保障工作中,合理分配计量保障人员是提高计量保障效能的关键.所谓合理分配是指将计量保障人员根据其专业特长、技术能力分配到不同的工作岗位上,并且使得所有人员能够发挥出最大的军事效益.现某雷达团共部署12种型号共16部雷达,部署情况及计量保障任务分区情说明:1.保障任务分区域进行保障;2.B 、H 、L 型雷达分为两个保障任务,分别为B 1、B 2、H 1、H 2、L 1、L 2,其它雷达为一个保障任务;3.同一区域多部相同雷达等同于一部雷达的保障任务; 4.不同区域的相同雷达看作不同保障任务; 5.每个保障人员只能保障一个任务; 6.每个保障任务只由一个保障人员完成.雷达的重要性由其性能和所担负的作战任务共同决定,即使同一型号的雷达在不同区域其重要性也可能不同.各雷达的重要性如下表所示表中下标表示雷达该雷达团修理所现在有10名待分配计量保障人员,他们针对不同保障任务的计量保障能力量化指标如下表所示:问题:如何给该团三个营分配计量保障人员,使他们发挥最大军事效益一、问题分析:该问题是人员指派问题,目的是得到最大效益.根据保障能力测试与雷达重要性定义出效益矩阵,用0—1整数规划方法来求解,得到最大效益矩阵.二、模型假设1.保障任务分区域进行保障;2.B、H、L型雷达分为两个保障任务,分别为B1、B2、H1、H2、L1、L2,其它雷达为一个保障任务;3.同一区域多部相同雷达等同于一部雷达的保障任务;4.不同区域的相同雷达看作不同保障任务;5.每个保障人员只能保障一个任务;6.每个保障任务只由一个保障人员完成.三、模型建立根据题目列出保障人员能力量化指标矩阵:⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=007.09.03.08.04.002.05.03.06.08.08.06.08.03.07.02.06.07.03.07.03.04.06.07.08.07.05.06.03.05.05.07.04.02.02.01.02.02.0001.02.02.02.06.01.006.04.02.08.05.03.03.06.03.0003.03.04.03.002.0004.09.05.02.01.08.08.08.08.06.08.08.008.06.07.08.06.08.005.07.03.03.03.03.07.07.05.03.003.06.03.07.06.07.08.05.02.02.07.02.02.05.08.06.02.002.05.005.05.0007.05.04.03.04.04.004.07.04.06.04.0000009.005.05.05.05.05.005.05.05.05.05.05.0005.005.09.08.07.0006.04.04.03.09.07.06.07.08.04.07.003.08.0A 根据题目,设保障任务的重要性向量),...,,(21i b b b B =,bi 表示第i 个任务的重要性.列出保障任务重要性向量:[]7.07.06.08.09.07.06.09.09.07.08.07.07.07.08.09.09.08.0=B 我们用二者的乘积表示效益矩阵: T *=B A R .我们设元素rij 表示第i 个人完成j 件事的效益,Xij 表示第i 个人去保障第j 件任务,如果是,其值为1,否则为0.利用这一个矩阵和0-1规划,我们就可以列出方程:∑=<=ni ij x 11,m<=nmodel: sets: M/1..10/; N/1..18/:a; allowedM,N:b,r,x; endsets data:a= ; b= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; enddatamax=sumallowedi,j:xi,jri,j;forMi:forNj:ri,j=ajbi,j;forMi:sumNj:xi,j=1;forNj:sumMi:xi,j<=1;forMi:forNj:binxi,j;End解得最大效益为,分配方案为:第5、7、8号保障人员分配到区域1,其中8号承担A型,5、7号承担B1,B2型;第1、2、3、4、9号保障人员分配到区域2,其中第9号保障人员承担F型2号G型,1、3号承担H1,H2型,4号I型;第6、10号保障人员分配到区域3,6号F型、10号J型.。

高中数学中常见的数学建模题分析

高中数学中常见的数学建模题分析

高中数学中常见的数学建模题分析在高中数学教学中,数学建模题是一种常见的题型,旨在让学生通过抽象建模,求解实际问题。

数学建模题通常涉及到数学知识、逻辑推理、数学模型的建立与优化等方面,对学生的综合能力提出了较高的要求。

本文将分析高中数学中常见的数学建模题,探讨解题方法及相关技巧。

1. 地面坡度问题地面坡度问题是高中数学建模中的常见题型,通常涉及到直角三角形、三角函数的知识。

这类问题常常以“某一杆塔吊挂重物”,“某座桥梁建设”等为背景,要求学生根据给定条件,计算坡度、高度、距离等。

解题时,可以通过绘制坡度示意图,使用三角函数公式,建立三角形关系等方法,辅助求解。

2. 最优生产方案问题最优生产方案问题是数学建模中的经典题型,要求学生根据生产成本、需求量、利润等条件,确定最优的生产方案。

这类问题常常涉及到线性规划、最值、函数优化等知识。

解题时,可以通过建立数学模型,使用线性规划方法,求解导数等方式,寻找最优生产方案。

3. 人口增长问题人口增长问题是数学建模中的典型题型,要求学生根据给定的人口增长率、初期人口数量等条件,预测未来人口数量。

这类问题常常涉及到指数函数、常微分方程等知识。

解题时,可以通过建立微分方程模型,使用指数函数性质,求解微分方程的通解等方法,完成人口增长问题的分析和预测。

4. 购物策略问题购物策略问题是数学建模中常见的实际问题,要求学生根据购物节省、优惠券折扣等条件,确定最佳购物策略。

这类问题通常涉及到百分数、比例、折扣计算等知识。

解题时,可以通过建立优惠券折扣函数,利用比例关系,计算购物节省金额等方式,找到最佳购物策略。

通过以上对高中数学中常见的数学建模题的分析,我们可以看到数学建模题在数学教学中的重要性和广泛性。

通过解答这些建模题,学生不仅可以提升数学能力,还可以锻炼主动解决实际问题的能力。

希望学生在学习数学建模的过程中,能够灵活运用数学知识,提高解决问题的能力,为将来的学习和工作打下坚实的基础。

数学建模中实际问题的稳定性分析与优化改进

数学建模中实际问题的稳定性分析与优化改进

数学建模中实际问题的稳定性分析与优化改进数学建模作为一种解决实际问题的工具,已经在许多领域得到广泛应用。

然而,在实际问题的求解过程中,我们常常会面临稳定性问题,即模型的解对输入数据的微小变化非常敏感,导致结果的不确定性。

为了提高模型的可靠性和准确性,我们需要对模型的稳定性进行分析,并进行优化改进。

稳定性分析是数学建模的重要环节。

在建立数学模型时,我们需要根据实际情况选择合适的数学方法和算法。

不同的数学方法和算法对输入数据的敏感性是不同的,因此,我们需要对模型进行稳定性分析,以确定模型的可靠性和准确性。

稳定性分析可以通过敏感度分析、误差传播分析等方法来实现。

敏感度分析是一种常用的稳定性分析方法。

它通过改变输入数据的微小变化,观察模型输出结果的变化情况,从而判断模型对输入数据的敏感性。

敏感度分析可以帮助我们确定模型中哪些参数对结果影响最大,从而有针对性地进行优化改进。

例如,在交通流量预测模型中,我们可以通过敏感度分析确定哪些因素对交通流量的影响最大,进而优化交通管理措施,提高交通效率。

误差传播分析是另一种常用的稳定性分析方法。

它通过分析模型中误差的传播路径,来评估模型对输入数据误差的敏感性。

误差传播分析可以帮助我们确定模型中哪些环节对误差的传播影响最大,从而有针对性地进行优化改进。

例如,在气象预报模型中,我们可以通过误差传播分析确定哪些因素对气象预报误差的传播影响最大,进而改进气象观测设备,提高气象预报准确性。

稳定性分析只是解决实际问题的第一步,为了进一步提高模型的可靠性和准确性,我们还需要进行优化改进。

优化改进可以通过调整模型的参数、改进算法、增加数据采集点等方式来实现。

例如,在供应链管理模型中,我们可以通过优化改进来减少库存成本、提高供货速度,从而提高供应链的效率。

优化改进需要综合考虑多个因素,包括模型的稳定性、准确性、可操作性等。

在进行优化改进时,我们需要根据实际情况制定合理的目标函数和约束条件,选择合适的优化算法,并进行多次试验和验证,以确保优化结果的可靠性和准确性。

数学建模与实际问题分析中的问题抽象与模型求解

数学建模与实际问题分析中的问题抽象与模型求解

04、
ቤተ መጻሕፍቲ ባይዱ
可视化与交互式 建模
可视化与交互式建模 将成为未来数学建模 的重要工具,帮助用 户更直观地理解模型 和结果。结合虚拟现 实、增强现实等技术, 将提升数学建模的沟 通效果和用户体验。
智能优化与决策支持
高效解决
帮助用户更快速、 更准确地解决实
际问题
人工智能结 合
结合人工智能和 智能算法
智能解决方 案
02、
风险管理
预测风险
制定风险控制策略
03、
市场预测
分析趋势
制定营销策略
04、
环境保护
减少污染 提高资源利用效率
数学建模的应用价值
数学建模能够帮助人们更好地理解和解决复杂的 实际问题,提高工作效率,降低成本,减少风险, 是现代科学技术发展的重要支撑。
● 02
第2章 实际问题抽象与模型 构建
实际问题抽象的 方法
总结全文内容
通过数学建模,我们 可以更好地理解和解 决实际问题,促进科 学的发展,推动社会 的进步。数学建模教 育的培养和跨学科合 作的加强将是未来发 展的重要方向。
感谢阅读者
01 积极参与
投身数学建模研究
02 了解基本概念
数学建模的应用意义
03 激发热情
追求数学建模的乐趣
参考文献
在此列出本PPT中涉及的主要参考文献和资源, 包括书籍、论文和在线资料,希望读者能够进一 步学习和深入研究数学建模相关内容。
模型
验证和应用 模型
测试模型准确性 并将结果应用于
实际问题
建立模型
选择适当的数学 模型来描述实际
问题
数学建模与实际问题分析的联 系
01 深入分析问题

高中数学中常见的数学建模题分析

高中数学中常见的数学建模题分析

高中数学中常见的数学建模题分析一、引言数学建模题在高中数学学习中起到了非常重要的作用,它既锻炼了学生的数学思维能力,又培养了学生的实际问题解决能力。

本文将重点分析高中数学中常见的数学建模题,并探讨解决这些问题的方法和步骤。

二、数学建模题的分类1. 线性规划问题线性规划是数学建模中最基本的问题之一。

该问题通常涉及到在一定的约束条件下,求解一个线性方程组的最优解。

例如,某工厂在一定的资源限制下,如何安排生产,以使成本最小化或产量最大化。

2. 最优化问题最优化问题包括最大化问题和最小化问题。

这类问题的解决方法通常是通过求导数进行优化,找到使目标函数取得极值的点。

例如,在扔老师纳什扬尼的蛋问题中,要确定扔鸡蛋的起始楼层,以便在最坏情况下扔的次数最少。

3. 动态规划问题动态规划问题是将一个复杂的问题分解为多个重叠子问题,通过求解子问题的最优解来获取原问题的最优解。

例如,在路径规划问题中,我们可以使用动态规划来确定从起点到终点的最短路径。

4. 概率模型问题概率模型问题涉及到在给定的概率条件下,预测某个事件发生的概率。

例如,在赌博游戏中,我们可以使用概率模型来计算某个玩家获胜的概率。

5. 统计问题统计问题主要是研究如何通过样本数据来推断总体的某些特性。

通常通过收集样本数据,计算样本均值、标准差等统计量,然后通过统计推断方法来估计总体的参数。

三、数学建模题的解决方法和步骤1. 理解问题首先要对问题进行深入的理解,包括确定问题的背景、目标、约束条件等。

通过仔细阅读问题描述,了解问题所涉及的数学概念和模型。

2. 建立模型在理解问题的基础上,根据问题的特点建立适当的数学模型。

模型的建立应符合实际情况,并能够准确描述问题的要求。

3. 分析模型对建立的数学模型进行分析,包括模型的性质、特点和解的存在性及唯一性等。

通过分析模型的特点,可以更好地理解问题的本质,并为后续的解决方法提供指导。

4. 求解模型根据建立的数学模型,选择合适的求解方法进行求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

问题分析:
我们的目标是通过决策好向不同的证卷分别投入多少的资金来实现税后收益最大化
限制条件有投资资金,必须购买的证券,平均信用等级,平均到期年限,以及其他证卷的50%的税率
虽然市政不收税并且相比税后的其他证券有很大的收益,但是有限制条件其他证券必须至少购进400万,那除了这400万是不是600万都买市政呢?但是市政的信用等级都高于1.4,所以必须还得在其他证券和市政上取得平衡,虽然其他证券中代办机构收入最高,但是到期年限也是最高的,所有在平均到期年限5年上也要做平衡
文字模型:
(1)
决策变量:
用x1,x2,x3,x4,x5分别表示A,B,C,D,E五中证券的购买量
决策目标:
税后收益为税前收益*税率
每种证券的购买量与到期税后收益的乘积的和就是总收益Z
max z = 0.043*x1 + 0.054*0.5*x2 + 0.050*0.5*x3 + 0.044*0.5*x4 + 0.045*x5;
约束条件:
金钱约束:总的投资资金只有1000万,得
x1+x2+x3+x4+x5<=1000;
信用约束:平均信用等级不超过1.4,将信用进行购买量加运算再取平均值
2*x1 + 2*x2 + 1*x3 + 1*x4 + 5*x5 < 1.4*(x1 + x2 + x3 + x4 + x5);
到期年限约束:平均到期年限不超过五年,同理加权求平均值
9*x1 + 15*x2 + 4*x3 + 3*x4 + 2*x5 < 5*(x1 + x2 + x3 + x4 + x5);
必须购买的证券限制:必须购买政府及代办机构至少购进400万
x2 + x3 + x4 > 400;
(2)
设借k万元资金
决策目标:
在原来的基础上减去k万的利率
max z = 0.043*x1 + 0.054*0.5*x2 + 0.050*0.5*x3 + 0.044*0.5*x4 + 0.045*x5 – 0.0275*k; 金钱约束:总的投资资金只有1000+k万,得
x1+x2+x3+x4+x5<=1000+k;
借钱约束:不超过100万
k<=100;
(3)
1. 只需要把决目标中相应的收益改为:
max z = 0.045*x1 + 0.054*0.5*x2 + 0.050*0.5*x3 + 0.044*0.5*x4 + 0.045*x5 ;
2. 只需要把决目标中相应的收益改为:
max z = 0.043*x1 + 0.054*0.5*x2 + 0.048*0.5*x3 + 0.044*0.5*x4 + 0.045*x5;
数学模型:
(1)
max = 0.043*x1 + 0.054*0.5*x2 + 0.050*0.5*x3 + 0.044*0.5*x4 + 0.045*x5;
x1 + x2 + x3 + x4 + x5 < 1000;
x2 + x3 + x4 > 400;
2*x1 + 2*x2 + 1*x3 + 1*x4 + 5*x5 < 1.4*(x1 + x2 + x3 + x4 + x5);
9*x1 + 15*x2 + 4*x3 + 3*x4 + 2*x5 < 5*(x1 + x2 + x3 + x4 + x5);
(2)
max = 0.043*x1 + 0.054*0.5*x2 + 0.050*0.5*x3 + 0.044*0.5*x4 + 0.045*x5 – 0.0275*k; x1 + x2 + x3 + x4 + x5 < 1000 + k;
k < 100;
x2 + x3 + x4 > 400;
2*x1 + 2*x2 + 1*x3 + 1*x4 + 5*x5 < 1.4*(x1 + x2 + x3 + x4 + x5);
9*x1 + 15*x2 + 4*x3 + 3*x4 + 2*x5 < 5*(x1 + x2 + x3 + x4 + x5);
(3)
1.
max = 0.045*x1 + 0.054*0.5*x2 + 0.050*0.5*x3 + 0.044*0.5*x4 + 0.045*x5;
x1 + x2 + x3 + x4 + x5 < 1000;
x2 + x3 + x4 > 400;
2*x1 + 2*x2 + 1*x3 + 1*x4 + 5*x5 < 1.4*(x1 + x2 + x3 + x4 + x5);
9*x1 + 15*x2 + 4*x3 + 3*x4 + 2*x5 < 5*(x1 + x2 + x3 + x4 + x5);
2.
max = 0.043*x1 + 0.054*0.5*x2 + 0.048*0.5*x3 + 0.044*0.5*x4 + 0.045*x5;
x1 + x2 + x3 + x4 + x5 < 1000;
x2 + x3 + x4 > 400;
2*x1 + 2*x2 + 1*x3 + 1*x4 + 5*x5 < 1.4*(x1 + x2 + x3 + x4 + x5);
9*x1 + 15*x2 + 4*x3 + 3*x4 + 2*x5 < 5*(x1 + x2 + x3 + x4 + x5);
求解结果:
(1)
Global optimal solution found.
Objective value: 29.83636
Infeasibilities: 0.000000
Total solver iterations: 3
Variable Value Reduced Cost
X1 218.1818 0.000000
X2 0.000000 0.3018182E-01
X3 736.3636 0.000000
X4 0.000000 0.6363636E-03
X5 45.45455 0.000000
Row Slack or Surplus Dual Price
1 29.83636 1.000000
2 0.000000 0.2983636E-01
3 336.3636 0.000000
4 0.000000 0.6181818E-02
5 0.000000 0.2363636E-02 (2)
Global optimal solution found.
Objective value: 30.07000
Infeasibilities: 0.000000
Total solver iterations: 3
Variable Value Reduced Cost
X1 240.0000 0.000000
X2 0.000000 0.3018182E-01 X3 810.0000 0.000000
X4 0.000000 0.6363636E-03 X5 50.00000 0.000000
K 100.0000 0.000000
Row Slack or Surplus Dual Price
1 30.07000 1.000000
2 0.000000 0.2983636E-01
3 0.000000 0.2336364E-02
4 410.0000 0.000000
5 0.000000 0.6181818E-02
6 0.000000 0.2363636E-02 (3)
1.
Global optimal solution found.
Objective value: 30.27273
Infeasibilities: 0.000000
Total solver iterations: 3
Variable Value Reduced Cost
X1 218.1818 0.000000
X2 0.000000 0.3436364E-01 X3 736.3636 0.000000
X4 0.000000 0.2727273E-03
X5 45.45455 0.000000
Row Slack or Surplus Dual Price
1 30.27273 1.000000
2 0.000000 0.3027273E-01
3 336.3636 0.000000
4 0.000000 0.6363636E-02
5 0.000000 0.2727273E-02
2.
Global optimal solution found.
Objective value: 29.42400
Infeasibilities: 0.000000
Total solver iterations: 3
Variable Value Reduced Cost
X1 336.0000 0.000000
X2 0.000000 0.3064000E-01
X3 0.000000 0.4400000E-03
X4 648.0000 0.000000
X5 16.00000 0.000000
Row Slack or Surplus Dual Price
1 29.42400 1.000000
2 0.000000 0.2942400E-01
3 248.0000 0.000000
4 0.000000 0.6360000E-02
5 0.000000 0.2440000E-02
结果分析:
x1~x5分别对应A~E的投资资金
row1为收入(万元)
(1)中A~E的投资分别为218.1818,0,736.3636,0,45.45455,可以收益29.83636 附件:。

相关文档
最新文档