探究规律题型方法总结和练习
专题08规律题方法总结与例题专训(原卷版)
专题08 规律题方法总结与例题专训【知识点睛】常见规律题类型❖周期性循环特点:常以3个或4个数据为一周期,以此循环往复;总数比较大,常和年份结合考察处理方法步骤:1.找出第一周期的几个数,确定周期数2.算出题目中的总数和待求数3.用总数÷周期数=m……n(表示这列数中有m个整周期,最后余n个)4.最后余几,待求数就和每周期的第几个一样;❖周期性递变循环特点:常以2个或3个一周期,后边的每组,周期数不变,但是数据的大小会以相同的关系递增或递减;处理方法:同周期性循环基本一致,最后一步需要加入递变的关系❖递变增减型特点:分以此递增和以此递减,通常是数据之间的直接变化,偶尔借助图形;常和年份结合考察处理方法:熟记单独数据规律,直接应用于考察问题;❖算式类比性特点:常给出几个算式或等式,先算简单的,再从简单的类比到复杂题目的计算处理办法:1.正确计算出前面简单算式的答案2.找出数字间的规律3.将简单数字间的关系推导到字母n的关系中❖常见数字间固定规律识记:1.裂项相消法:将一项拆分成多项,前后保持相等,然后利用某些项相消的原则简化运算;2.错位相减法:适用于两个式子间有相同项的题目,两式相减直接抵消掉中间项,剩余首项、尾项再计算;3.倒序求和发:如:计算1+2+3+......+50,可以设S=1+2+3+......+50,则亦有S=50+49+48+ (1)∴2S=51×50,∴S=51×25=…裂项法公式:kn n k n n k +-=+11)(【类题训练】1.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a ,b 的值分别为( )A .16,257B .16,91C .10,101D .10,1612.观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这组数的第2022个数是( ) A .B .C .D .3.一只小球落在数轴上的某点P 0,第一次从P 0向左跳1个单位到P 1,第二次从P 1向右跳2个单位到P 2,第三次从P 2向左跳3个单位到P 3,第四次从P 3向右跳4个单位到P 4……若按以上规律跳了100次时,它落在数轴上的点P 100所表示的数恰好是2021,则这只小球的初始位置点P 0所表示的数是( ) A .1971B .1970C .﹣1971D .﹣19704.有一列数a 1,a 2,a 3,…,a n ,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a 1=2,则a 2022为( ) A .B .2C .﹣1D .20225.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数﹣2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数﹣2022将与圆周上的哪个数字重合( )A .0B .1C .2D .36.观察图中正方形四个顶点所标的数字规律,可知数2022应标在( )A.第506个正方形的右上角B.第506个正方形的左下角C.第505个正方形的右上角D.第505个正方形的左下角7.等边三角形(三条边都相等的三角形是等边三角形)纸板ABC在数轴上的位置如图所示,点A、B 对应的数分别为2和1,若△ABC绕着顶点逆时针方向在数轴上连续翻转,翻转第1次后,点C所对应的数为0,则翻转2023次后,点C所对应的数是()A.﹣2021B.﹣2022C.﹣2023D.﹣20248.下列图形都是由圆和几个黑色围棋子按一定规律组成,图①中有4个黑色棋子,图②中有7个黑色棋子,图③中有10个黑色棋子,…,依次规律,图中黑色棋子的个数是()A.6067B.6066C.6065D.60649.算筹是古代用来进行计算的工具,它是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形武(如图).当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间:个位、百位、万位数用纵式表示;十位、千位、十万位数用横式表示;“0”用空位来代替,以此类推例如3306用算筹表示就是,则2022用算筹可表示为()A.B.C.D.10.根据图中数字的排列规律,在第⑦个图中,a﹣b﹣c的值是()A.﹣190B.﹣66C.62D.6411.已知整数m1,m2,m3,m4,…满足下列条件:m1=0,m2=﹣|1+m1|,m3=﹣|2+m2|,m4=﹣|3+m3|,…,以此类推,m2020=.12.在2020个“□”中依次填入一列数字m1,m2,m3…,m2020,使得其中任意四个相邻的“□”中所填的数字之和都等于15.已知m3=2,m6=7,则m1+m2020的值为.27…13.有一数值转换器,原理如图所示,若开始输入x的值是1,可发现第一次输出的结果是4,第二次输出的结果是2,……,请你探索第2021次输出的结果是.14.如图,数字都是按一定规律排列的,其中x的值是.15.观察图,找出规律.,则的值为.16.观察以下等式:第1个等式:×(2﹣)=1+;第2个等式:×(2﹣)=1+;第3个等式:×(2﹣)=1+;第4个等式:×(2﹣)=1+;第2021个等式:.17.请你观察:,,;…+=+=1﹣=;++=++=1﹣=;…以上方法称为“裂项相消求和法”.请类比完成:(1)+++=;(2)++++…+=;(3)计算:的值.18.先阅读下列内容,然后解答问题.因为.所以.请解答:(1)应用上面的方法计算:….(2)类比应用上面的方法计算:….19.观察以下图案和算式,解答问题:(1)1+3+5+7+9=;(2)1+3+5+7+9+…+19=;(3)请猜想1+3+5+7+……+(2n﹣1)=;(4)求和号是数学中常用的符号,用表示,例如,其中n=2是下标,5是上标,3n+1是代数式,表示n取2到5的连续整数,然后分别代入代数式求和,即:=3×2+1+3×3+1+3×4+1+3×5+1=46请求出的值,要求写出计算过程,可利用第(2)(3)题结论.20.从2开始,连续的偶数相加,它们的和的情况如表:加数m的个数和S12=1×222+4=6=2×332+4+6=12=3×442+4+6+8=20=4×552+4+6+8+10=30=5×6(1)按这个规律,当m=6时,和为;(2)从2开始,m个连续偶数相加,它们的和S与m之间的关系,用公式表示出来为:=.(3)应用上述公式计算:①2+4+6+ (200)②202+204+206+ (300)21.观察算式:1×3+1=4=22;2×4+1=9=32;3×5+1=16=42;4×6+1=25=52;……(1)请根据你发现的规律填空:7×9+1=()2;(2)用含n的等式表示上面的规律:;(3)用找到的规律解决下面的问题:计算:22.(1)①观察一列数1,2,3,4,5,…,发现从第二项开始,每一项与前一项之差是一个常数,这个常数是;根据此规律,如果a n(n为正整数)表示这个数列的第n项,那么a18=,a n =;②如果欲求1+2+3+4+…+n的值,可令S=1+2+3+4+…+n❶,将①式右边顺序倒置,得S =n+…+4+3+2+1❷,由❷式+❶式,得2S=;∴S=;由结论求1+2+3+4+…+55=;(2)①观察一列数2,4,8,16,32,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是;根据此规律,如果a n(n为正整数)表示这个数列的第n项,那么a18=,a n=;②为了求1+3+32+33+…+32018的值,可令M=1+3+32+33+…+32018❶,则3M=3+32+33+…+32019❷,由❷式﹣❶式,得3M﹣M=32019﹣1,∴M=,即1+3+32+33+...+32018=.仿照以上推理,计算1+5+52+53+ (551)。
初中数学规律探究问题的类型及解题技巧分析
初中数学规律探究问题的类型及解题技巧分析初中数学规律探究问题是指通过观察数列、图形或数据等,在一定的规则下寻找并探究其中的规律性的问题。
这种问题在初中数学中占有很重要的地位,有助于学生培养数学思维能力、观察力和逻辑推理能力。
初中数学规律探究问题的类型可以分为数列规律、图形规律和数据规律三类。
一、数列规律问题:数列规律问题是最常见的一类规律探究问题。
通过观察数列中的数字间的关系,找出数列中的规律,并根据规律继续发展数列的下一项。
解题技巧:1. 观察数列中的数字之间的差值或倍数关系,找出数列的通项公式。
1, 3, 5, 7, ...这个数列中,每项相差2,可推测通项公式为2n-1。
2. 观察数列中的数字之间的乘积关系,找出数列的通项公式。
2, 6, 18, 54, ...这个数列中,每项之间都是前一项乘以3,可推测通项公式为2*3^n-1。
3. 观察数列中的数字之间的其他关系,如开方、乘方、递推等。
1, 2, 4, 8, ...这个数列中,每项都是前一项乘以2,可推测通项公式为2^n。
二、图形规律问题:图形规律问题是通过观察一系列图形的形状、数量、位置等特征,找出其中的规律,并根据规律继续绘制下一个图形。
解题技巧:1. 观察图形中的线段、角度、对称性等几何特征,找出图形的规律。
菱形图形的内角和都是360度,可用来判断菱形的特征。
2. 观察图形之间的变形关系,如旋转、平移、翻转等。
向上平移一次得到下一个图形,可用来判断图形的规律。
3. 观察图形中的数字和符号之间的关系,如大小、顺序、重复等。
图形中重复出现的数字可能有特殊的含义,可以利用这些数字来推测规律。
解题技巧:1. 观察数据之间的数值关系,如加减、乘除、指数等。
一组数据之间的差值相等,可用来推测规律。
2. 观察数据之间的变化趋势,如递增、递减、周期性等。
一组数据呈现递增或递减的趋势,可用来推测规律。
3. 观察数据之间的比例关系,如比值、百分比、占比等。
初中数学规律题题型与解题基本方法(初三)
初中数学规律题题型与解题方法(一)数列或数式的找规律一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a+(n-1)b。
强调:均匀变化的数列规律可用待定系数法来求一次函数的解析式来求解。
例:4、10、16、22、28、……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2 (二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
举例说明:2、5、10、17、……,求第n位数。
分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。
那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1。
所以,第n位数是2+ n2-1= n2+1。
此解法虽然较烦,却是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出。
强调:增幅不均匀变化的数列规律可尝试用待定系数法来求二次函数的解析式来求解,一定要验证。
(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。
二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
初中数学规律探究问题题型梳理
初中数学规律探究题型“规律探究类问题”是中考中的一棵常青树,一直受到命题者的青睐。
这类试题要求学生有一定的数感与符号感,学生通过观察、分析、比较、概括、推理、判断等探索活动,得到图形或数式内在规律的一般通式。
不仅有利于促进数学知识和数学方法的巩固和提高,也有利于自主探索,创新精神的培养。
因此规律探究类问题一直成为命题的热点。
题型一、一阶等差规律一阶等差规律意思是第一次做差差为常数。
主要考察对图形变化的规律观察,从图形变化转化为数字变化,从数字变化中去发掘规律。
这部分内容相对简单,可以直接观察图形得出规律,也可以通过套通项公式的方法找出规律,考试中单独考察这部分的概率很小,往往与其它形式一起结合考察。
1、规律分析:问题本质:前后的图形相比较,每一幅图形以恒定不变的速度保持图形增加(减少)的个数。
2、首差法通项公式(通法)(1)将题目的已知转为一组数据,第一个数记为1a 以此第n 个数记为n a (2)对这组数据两两之间做差,差为一个固定常数记为d ,即=d 后项—前项 (3)则该类型的规律为:任意的第n 项满足:d n a a n )1(1-+=(4)若记不住公式,上述数据转化为坐标点),(n a n ,设通项公式为:b kn a n +=,代入前2组数据,通过解一次函数方法,即可得到通项公式;例1、如图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要( )枚棋子.【解析】用一阶等差实质进行分析。
根据题意分析可得:第1个图案中棋子的个数5个. 第2个图案中棋子的个数5611+=个.⋯.每个图形都比前一个图形多用6个.∴第30个图案中棋子的个数为5296179+⨯=个.答案:179例2、观察下列数:14,39,516,725,936⋯,它们按一定规律排列,那么这一组数第n 个数是( ) A .221n n - B .221n n + C .221(1)n n ++ D .221(1)n n -+ 【解析】法一:观察分析。
找规律题的答题技巧
找规律题的答题技巧全文共四篇示例,供读者参考第一篇示例:找规律题是解题过程中常见的一种题型,对于学生来说,掌握一定的解题技巧是非常重要的。
在面对找规律题时,不仅需要有敏锐的观察力和逻辑思维能力,还需要一定的解题方法和技巧。
下面,我将分享一些关于找规律题的解题技巧,希望能帮助到大家。
一、观察规律在解决找规律题时,首先要做的就是仔细观察已知的数据,发现数据之间的变化规律。
可以逐个分析数据的特点,看看它们之间是否存在一定的关联。
常见的规律包括等差数列、等比数列、递推数列等。
通过观察,我们可以找到一些线索,为后续的解题提供重要的线索。
二、列出数据表在发现规律的基础上,我们可以将已知的数据列成数据表,以便更清晰地观察数据之间的关系。
通过数据表的方式,可以帮助我们更方便地找到规律,提高解题效率。
三、分析规律在观察数据表的基础上,我们需要进行一些深入的分析,找到数据之间变化的原因和规律。
可以尝试进行数学运算,找到数据之间的关系,推测下一个数据的值。
还可以尝试建立数学模型,通过公式推导来预测未知的数据。
四、验证规律找到规律后,我们还需要通过验证来确认我们的猜测是否正确。
可以选择一些已知的数据来验证我们找到的规律是否成立。
如果验证成功,那么我们的规律就是正确的;如果验证失败,则需要重新考虑或寻找新的规律。
五、总结归纳在解题过程中,我们需要及时总结和归纳已经发现的规律,以便更好地理解问题和提高解题能力。
可以将已经找到的规律进行分类归纳,并将它们应用到未知的问题中,不断积累经验和提高自己的解题能力。
通过以上的解题技巧,我们可以更好地应对找规律题,提高解题效率和准确率。
在平时的学习中,我们还可以多做一些找规律题,锻炼自己的观察和逻辑思维能力,不断提升自己的解题能力。
希望以上内容对大家有所帮助,祝大家在解题过程中取得好成绩!第二篇示例:找规律题是数学中常见的一种题型,解这类题需要考察学生观察问题的能力和发现规律的能力。
对于找规律题,有一些解题技巧和方法可以帮助学生更好地解题。
初中数学规律探究问题的类型及解题技巧分析
初中数学规律探究问题的类型及解题技巧分析初中数学中,规律探究问题是一类需要通过观察、归纳、推理等方法来找出数学规律的问题。
这类问题通常涉及数字序列、图形变换、等式变形等方面,要求学生在探究规律的过程中培养逻辑思维能力和数学思维方式,提高解决问题的能力。
一、数字序列类问题数字序列类问题是初中数学中最常见的规律探究问题。
这类问题通常要求学生根据给定的数字序列找出其中的规律,并推算出下一个数字或几个数字。
解决这类问题的关键是观察敏锐和逻辑推理能力。
具体的解题技巧如下:1.观察数字序列中的差值:有些数字序列是等差数列,差值相等;有些数字序列是等比数列,比值相等;有些数字序列可能是其他规律,需要用其他方法来找出。
2.找出数字序列中的特殊数字:有些数字序列中会有特殊的数字,比如首项为1的斐波那契数列,第三个数字开始,每个数字是前两个数字之和。
3.归纳误差法:当已知前几个数字后无法确定规律时,可以假设一个规律并进行验证,找出规律的特点和一般性质,再用这个规律来验证后续数字。
二、图形变换类问题图形变换类问题通常涉及图形的旋转、翻转、平移、缩放等操作,要求学生根据给定的图形或一系列图形的变换找出其中的规律。
解决这类问题的关键是观察图形的形状和位置的变化,利用几何知识进行分析。
具体的解题技巧如下:1.观察图形的对称性:有些图形在某种变换后会保持对称,比如旋转180度后还是原来的图形。
2.观察图形的放大缩小关系:有些图形在变换后会变成原来的图形的倍数,比如放大或缩小一定的倍数。
3.观察图形的平移关系:有些图形在变换后会平移一定的距离,比如向左或向右平移一定的格数。
三、等式变形类问题等式变形类问题通常要求学生通过等式的变形推导出另一个等式,并验证等式的等价性。
解决这类问题的关键是掌握等式变形的基本方法和技巧。
具体的解题技巧如下:1.使用性质和定理:根据等式的性质和定理进行变形,如分配律、合并同类项等;2.开展移项、约去等操作:通过移动变量的位置、约去相同因式等操作推导出新的等式;3.代入数值验证等式的等价性:可以代入一些具体的数值来验证等式是否成立。
奥数找规律所有的题型和解法
奥数找规律所有的题型和解法
奥数找规律常见的题型包括数列、数阵图、数字谜、算式填充、几何计数等,下面是一些解法:
1. 数列:对于等差或等比数列,需要找到相邻两项之间的差或比,以及首项和公差或公比,才能找到规律。
对于一些非明显的数列,需要先进行适当的变形,如化简、提取公因式、分解质因式等,以便找到规律。
2. 数阵图:可以通过对图形进行对称、旋转、翻转等操作,找到规律。
对于填空题,可以通过尝试不同的数字进行尝试,找到符合规律的位置。
3. 数字谜:需要掌握一些数字规律,如和差规律、倍数规律、分组规律等,从而找到符合规律的数字组合。
4. 算式填充:需要理解题目的意思,运用代数式进行推导,找到规律。
5. 几何计数:需要掌握一些几何图形的性质和规律,如三角形、正方形、长方形等,以及它们的组合和变形。
总之,奥数找规律的解法需要灵活运用各种数学知识和技巧,需要不断练习和积累。
初中数学规律探究问题的类型及解题技巧分析
初中数学规律探究问题的类型及解题技巧分析初中数学规律探究问题是指通过观察数学题目中的规律,通过实际计算或逻辑推理,发现其中的数学规律,并运用规律解题的一类问题。
这类问题在初中数学中经常出现,解决这类问题需要掌握一些解题技巧和分析方法。
一、问题类型1. 数列规律问题:给出一系列数字,要求分析数字之间的规律,并预测下一个数字或找出满足条件的数字。
例如:1,4,9,16,...,下一个数是多少?答案是25,因为给定的数列是平方数列。
解题技巧:观察数列中相邻数字之间的差异或倍数关系,找出规律,并应用规律计算。
2. 图示规律问题:给出一幅图形或图形序列,要求分析图形之间的规律并预测下一幅图形或找出符合规律的图形。
例如:下面的图形序列中,哪个图形是下一个?□□□■■■■□□□■■■■■■□□□■■■■■■■■答案是:□□□■■■■■根据观察可以发现,□表示空白,■表示实心,图形序列遵循奇数行是空白实心交替,偶数行是实心空白交替的规律。
解题技巧:观察图形的形状、组成要素、排列方式等,找出规律,并应用规律预测下一个图形或找出符合规律的图形。
4. 条件规律问题:给出一组满足特定条件的数字或图形,要求分析条件之间的关系并找出满足条件的其他数字或图形。
例如:对于下面的等式,填入适当的数字:1 2 3 = 62 3 4 = 93 4 5 = 12答案是:4 5 6 = 15,等号右边的数字是等号左边三个数字的和。
解题技巧:通过观察和分析给定的条件,找出条件之间的关系,根据关系找出满足条件的其他数字或图形。
二、解题技巧1. 观察比较:解决规律问题首先要通过观察和比较找出数字、图形之间的规律。
可以通过列举题目给出的一些例子来观察,也可以通过自己构造一些例子来观察。
在观察的过程中,要关注数字或图形之间的差异、相似性,以及数字之间的大小关系、图形的形状变化等。
2. 抽象总结:通过观察找到规律后,要将观察到的规律进行抽象和总结,归纳出一个普遍适用的规律。
中考数学复习指导:探索规律型问题归类解析
探索规律型问题归类解析探索规律型问题是历年中考数学试题中的重要题型之一,其特点是给出一组变化了的数字、式子、表格、图形等,要求学生通过观察、归纳、猜想、验证、类比,探求其内在规律.1.通用的解题策略解答规律型问题一般要从特殊情况入手→探索发现规律→综合归纳→猜想得出结论→验证结论.这种“特殊——一般——特殊”的解题模式,体现了总结归纳的数学思想,也正是人们认识新事物的一般过程.具体来说,就是先写出开头几个数式的基本结构,然后通过横比或纵比找出各部分的特征,写出符合要求的结果.例1 如图1,房间地面的图案是用大小相同的黑、白正方形镶嵌而成.图中,第1个黑色“L”形由3个正方形组成,第2个黑色“L”形由7个正方形组成,…那么组成第6个黑色“L”形的正方形个数是( )(A)22 (B)23 (C)24 (D)25解析从特例入手:如图1.纵比正方形的个数3,7,11,15中,后一个数比前一个大4(即相邻两数的差为4),猜想与4有关.横比3与1,7与2,11与3,15与4之间有何关系?联想到与4有关,故改写为:3=4×1-1,7=4×2-1.11=4×3-1,15=4×4-1.猜想组成第6个黑色L形的正方形个数是4 ×6-1=23个.故选B.点评考察相邻两数的差(或商)是探究数字规律的常用手段.常见的类型有:相邻两数的差(或商)相等或成倍数关系,相邻两数的差相等与商相等交替出现等.2.关注特殊数列(1)斐波那契数列:1,1,2,3,5,8,13,21…(其规律为:从第三项开始,每一项都等于前两项之和);(2)平方数数列:1,4,9,16,25,36…(其规律为:n2,即每一项都等于项数的平方).例2 有一组数:1,2,5,10,17,26…请观察这组数的构成规律,用你发现的规律确定第8个数为_______.解析规律为:n2+1(n=0,1,2…).答案:50.点评此类题要注意n2,n2+1,n2-1等(3)三角形数列:1,3,6,10,15,21,…(其规律为1+2+3+…+n)例3 世界上著名的莱布尼茨三角形如图2所示,则排在第10行从左边数第3个位置上的数是:( )(A)(B)(C)(D)解析从第3行起,从左边数第3位置上的数分别为,,,,…它们的分母可分别改写为:1×3,3×4,6×5,10×6,15×7,21×8,…,而1,3,6,10,15,21,…,正是三角形数,故答案为:.选B.(4)杨辉三角形,杨辉三角形斜边上1以外的各数,都等于它“肩上”的两数之和,如图3.(5)与等差等比数列有关的数列.如例1中3,7,11,15…就是一个等差数列.例4 数字解密:第一个数是3=2+1,第二个数是5=3+2,第三个数是9=5+4,第四个数是17=9+8,……观察并猜想第六个数应是_______.解析第二个加数1,2,4,8…规律为2n(为一等比数列,也要关注这一数列),第一个加数2,3,5,9…比第二个加数大1.所以第六个数为(25+1)+25=65.例5 一组按规律排列的数:…请你推断第9个数是________.解析这列数的分母为2,3,4,5,6…的平方数,分子形成二阶等差数列,依次相差2,4,6,8…故第9个数分子为1+2+4+6+8+10+12+14+16=73,分母为100,故答案为.(6)与循环有关的问题例6 让我们轻松一下,做一个数字游戏:第一步:取一个自然数n1=5,计算n12+1得a1;第二步:算出a1的各位数字之和得n2,计算n22+1得a3;第三步:算出a2的各位数字之和得n3,再计算n32+1得a3;……依此类推,则a2008=_______.解析根据题意可算出a1=26,a2=65,a3=122,a4=26,a5=65,a6=122,…发现每3个数就出现一次循环.所以由2008=669×3+1,可得a2008=a1=26.点评一列数由某m个数循环出现组成,可依据同余等值(由n=p·m+r得a n=a r)实施转换.(7)分奇数项偶数项的问题例7 一组按规律排列的式子:,…(a b≠0),其中第7个式子是________,第n个式子是_(n为正整数).解析6的指数2,5,8,11…,相邻两数差为3,是等差数列,其规律为3n-1;再注意到奇数项为负,偶数项为正,则第n个式子为第七个式子为3.特殊数列的迁移例8 把数字按如图4所示排列起来,从上开始,依次为第一行、第二行、第三行、…,中间用虚线围的一列,从上至下依次为1.5.13.25.…,则第10个数为_______.解析1 中间框出的一列数的规律为:第n个数为1+4+8+12+…+4(n-1).所以第10个数为1+4+8+12+…+36=.解析2 用虚线圈出的一列数1,5,13,25可改写为:02+12,12+22,22+32,32+42,猜想第10个数为92+102=181.点评此列数可看成是平方数数列的迁移.例9 图5中是与杨辉三角有类似性质的三角形数垒.a,b,c,d是相邻两行的前四个数,那么当a=8时,c=_______,d=_______.解析除两边外,中间的每个数等于肩上两数的和.答案:9;32.点评此列数可看成是杨辉三角形的迁移.4.关注中考新题型例10 观察图6所示表格,依据表格数据排列的规律,数2008在表格中出现的次数共有_______次.解析从特例入手,通过扩充表格可得:数1,2,3,4,5,6,7,8,9,10出现次数分别为1,2,2,3,2,4,2,4,3,4.出现的次数恰为给定数的所有因数的个数,而2008的因数为1,2,4,8,251,502,1004,2008等8个.故答案为8.点评本例中新产生的数为自然数的倍数,因此,其出现的次数与其因数的多少有关,仔细观察便会发现,其出现次数就是给定数所有因数的个数,本题规律的隐蔽性较强,因而有一定的难度.。
中考探索规律题型总结
4.单词规律:考察单词序列中的规律。学生需要观察单词的拼写、词义、词性等规律,找出规律并推测下一个或缺失的单词。
5.颜色规律:考察颜色序列中的规律。学生需要观察颜色的变化、组合、重复等规律,找出规律并推测下一个或缺失的颜色。
解决"探索规律"Байду номын сангаас型的关键是仔细观察,寻找数字、图形、字母、单词或颜色之间的规律,并通过逻辑推理来得出答案。学生可以运用归纳、类比、比较等思维方法,训练自己的观察力和推理能力。
为了提高解决这类题型的能力,建议学生多做相关的练习题,积累经验,并注意总结不同类型的规律模式。此外,学生还可以培养自己的思维灵活性和逻辑推理能力,通过阅读、思考和讨论来提升对事物规律的敏感度。
在中考中,"探索规律"是一种常见的题型,主要考察学生观察、归纳和推理的能力。下面是对"探索规律"题型的总结:
1.数字规律:考察数字序列中的规律。学生需要观察数字之间的关系,找出规律并推测下一个或缺失的数字。
2.图形规律:考察图形序列中的规律。学生需要观察图形的形状、方向、大小、排列等特征,找出规律并推测下一个或缺失的图形。
[说明]探索规律题解题技巧
探索规律题的解题技巧1.“数”之规律探究纯数字类规律探索题就是题目中所提供的数字是在一定条件下的排列或者是运算顺序或者是部分结论,而要求以此探索规律,归纳出一般性的结论.此类题目的解题关键是将所给的每个“数”化成有规律的式子,找出规律,并用字母表示. 例1.下列一组按规律排列的数1,2,4,8,6, …,则第2008个数是_______________.解析:易观察出0123412,22,42,82,162,=====因此所排列的这组数都是2的整数次幂,再观察序数与指数的关系:指数等于序数减一,故第2008个数为20072.解答:20072.说明:⑴解题步骤:①寻找不变的量;②寻找变化的量;③研究变化的量如何变化;⑵熟悉数字规律后就为后续的图形类问题的解决创造了基础,因为求出各图中物体的个数后,问题的研究就由形转化为了数,只要研究数字规律即可得到图形规律.同步检测1:观察下列各数,用含n 的代数式表示:⑴ 1,2,3,4,5…; ⑵ 1,3,5,7,9…; ⑶ 2,4,6,8,10 …;⑷ 1,4,9,16,25 …; ⑸ 3,8,15,24,35 …; ⑹ 3,7,11,15,19 …;⑺ 4,8,12,16,20 …;2.“式”之规律探究此类题目的解题关键是将题目中的“式”化为有规律的代数式或等式,找出规律,并用字母表示.例2.观察下列等式:918,-=16412,-=25916,-=361620,-=…,这些等式反映出自然数间的某种规律,设n 表示自然数,用关于n 的等式表示为_______________.解析:29183142,-=→-=⨯221641224,-=→4-=⨯3 222591634,-=→5-=⨯42236162044,-=→6-=⨯5…,故n 的等式表示为22(2)4(1)n n n +-=+.解答:22(2)4(1)n n n +-=+.说明:解题的常用方法:⑴将所给的每个数据化为有规律的代数式或等式;⑵按规律排序这些式子,寻找不变的量和变化的量,并研究变化的量如何变化;⑶将发现的规律用代数式或等式表示出来;⑷用题中所给数据验证规律的正确性;⑸若要证明则注意证明格式.同步检测2:1.观察以下10个乘积,将乘积的两个因数分别用字母a b ,表示(a b ,为正数). 1129⨯ 1228⨯ 1327⨯ 1426⨯ 1525⨯1624⨯ 1723⨯ 1822⨯ 1921⨯ 2020⨯(1)请仿照式子“22210128-=⨯”,将以上各乘积分别写成一个两数平方差的形式;(2)请观察给出ab 、a b +、b a -之间的关系式.(只要求写出结果)2.老师在黑板上写出三个算式:283522⨯=-,229784-=⨯,5891122⨯=-……李明同学接着又写了两个具有同样规律的算式:68111322⨯=-,385722⨯=-.(1)请你再写出两个(不同于上面算式)具有上述规律的算式;(2)用文字写出上述算式的规律;(3)说明这个规律的正确性.3.观察下列各式:21-12=9; 75-57=18; 96-69=27; 84-48=36;45-54=-9;27-72=-45;19-91=-72;……(1)请用文字补全上述规律:把一个两位数的十位数字和个位数字交换位置,原来两位数与新的两位数的差是_________________________;(2)你能用所学知识解释这个规律吗?3. “图形”之规律探究 图形类规律探究题包含形状一样但颜色不同的多个几何图形的图案问题,图形的折叠、旋转问题,同一种图形大小不一排列问题,同一种图形的数量变化问题及数字与几何图形的有机结合排列等问题,通常以确定探索物体的个数和确定图形数量为主要内容出现.此类题目的解题关键是观察图形(数字图形或几何图形)的排列方式,明确题目提供素材的层属关系及内涵.例3.如图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,那么第n (n 是正整数)个图案中由 个基础图形组成.解析:第1个图形中基础图形的个数为4311=⨯+;第2个图形中基础图形的个数为731=⨯2+;第3个图形中基础图形的个数为1031=⨯3+;…,故第n 个图形中基础图形的个数为31n +.解答:31n +.说明:探索物体的个数时,可首先求出各图中物体的个数,然后将其与相应的图序数作对比,看两者有何关系,即得规律.或者求出各图中物体的个数后,问题的研究就由形转化为了数,只要研究数字规律即可得到图形规律.例4.如下图所示,小丽用棋子摆成三角形的图案,观察下面图案并填空:第1个 第2个 第3个 第4个按照这样的方式摆下去,摆第5个三角形图案需要__________枚棋子;摆第n 个三角形图案需要__________枚棋子(用含有n 的代数式表示);摆第100个三角形图案需要__________第3题图……∙∙∙∙∙∙枚棋子.解析:第1个图形中棋子个数为21342+==;第2个图形中棋子个数为213593++==;第3个图形中棋子个数为21357164+++==;第4个图形中棋子个数为213579255++++==;第5个图形中棋子个数为21357911366+++++==;…,故第n个图形中棋子个数为2(1)n+,第100个图形中棋子个数为10201.解答:236,(1),10201n+.同步检测3:1.如图,用同样并规格的黑白两种正方形瓷砖铺设正方形地面,观察图形并猜想填空:当白色瓷砖为为正整数)nn(2块时,黑色瓷砖有块(结果写成一个多项式形式).2.下面是用棋子摆成的“上”字:第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子,如果按照这样的规律继续摆下去,那么第n个“上”字需用枚棋子.3.如图,由若干盆花摆成图案,每个点表示一盆花,几何图形的每条边上(包括两个顶点)都摆有()3≥nn盆花,每个图案中花盆总数为S,按照图中的规律可以推断S关系是.4.某校的一间礼堂,第1排的座位数为12,从第2排开始,每一排都比前一排增加x个座位(2)由题可知,第5排座位数是_______________,第15排座位数是________________;(3)已知第15排座位数是第5排座位数的2倍,求第25排有多少个座位?以上资料只是个人针对知识点的一点梳理,尽量以中考要求为准,不当之处希望各位老师能多提宝贵意见!谢谢!6,3==Sn12,4==Sn20,5==Sn。
初中数学规律探究问题的类型及解题技巧分析
初中数学规律探究问题的类型及解题技巧分析
初中数学规律探究问题是一类旨在培养学生探究能力和提升数学思维的题目。
这类问
题通常要求学生通过观察数列、图形、图表等数学现象,发现其中的规律或性质,并进行
推理和验证。
下面将介绍几种常见的初中数学规律探究问题类型及解题技巧分析。
1. 数列规律问题
数列规律问题是初中数学规律探究问题中最为常见的一种。
这类问题通常给出一个数
列的前几项,要求学生找出数列中的规律,并预测或计算后面的项。
解题时,可以通过观
察数列项之间的差别、比值或其他特点,寻找其中的规律。
常见的解题技巧包括:找出数
列的增长规律(如等差或等比),找出公式或递推关系,并进行验证。
2. 图形规律问题
图形规律问题要求学生观察一系列图形的变化规律,推断出其中的规律性质。
解题时,可以通过观察图形的形状、角度、边长等特征,找出它们之间的联系。
常见的解题技巧包括:找出图形的对称性、旋转性或反射性,找出图形的组成方式或构造方法,并进行验
证。
在解决初中数学规律探究问题时,还需掌握一些基本的解题技巧。
要善于观察和思考,通过抓住问题的关键点,发现并总结问题中的规律。
要善于分析和推理,通过建立模型或
逻辑推理,验证或推导出规律的正确性。
要善于归纳和应用,通过总结规律的特点,解决
同类型或相关的问题。
初中数学规律探究问题的类型较多,解题技巧也需要学生具备一定的观察、推理和应
用能力。
希望同学们通过不断的练习和思考,掌握解题的方法和技巧,提高自己的数学素
养和解决问题的能力。
探索规律题解题技巧
探索规律题的解题技巧1.“数”之规律探究纯数字类规律探索题就是题目中所提供的数字是在一定条件下的排列或者是运算顺序或者是部分结论,而要求以此探索规律,归纳出一般性的结论.此类题目的解题关键是将所给的每个“数”化成有规律的式子,找出规律,并用字母表示.例1.下列一组按规律排列的数1,2,4,8,6, …,则第2008个数是_______________. 解析:易观察出0123412,22,42,82,162,=====因此所排列的这组数都是2的整数次幂,再观察序数与指数的关系:指数等于序数减一,故第2008个数为20072. 解答:20072.说明:⑴解题步骤:①寻找不变的量;②寻找变化的量;③研究变化的量如何变化;⑵熟悉数字规律后就为后续的图形类问题的解决创造了基础,因为求出各图中物体的个数后,问题的研究就由形转化为了数,只要研究数字规律即可得到图形规律. 同步检测1:观察下列各数,用含n 的代数式表示:⑴ 1,2,3,4,5…; ⑵ 1,3,5,7,9…; ⑶ 2,4,6,8,10 …; ⑷ 1,4,9,16,25 …; ⑸ 3,8,15,24,35 …; ⑹ 3,7,11,15,19 …; ⑺ 4,8,12,16,20 …; 2.“式”之规律探究此类题目的解题关键是将题目中的“式”化为有规律的代数式或等式,找出规律,并用字母表示.例2.观察下列等式:918,-=16412,-=25916,-=361620,-=…,这些等式反映出自然数间的某种规律,设n 表示自然数,用关于n 的等式表示为_______________. 解析:29183142,-=→-=⨯221641224,-=→4-=⨯3222591634,-=→5-=⨯42236162044,-=→6-=⨯5…,故n 的等式表示为22(2)4(1)n n n +-=+. 解答:22(2)4(1)n n n +-=+.说明:解题的常用方法:⑴将所给的每个数据化为有规律的代数式或等式;⑵按规律排序这些式子,寻找不变的量和变化的量,并研究变化的量如何变化;⑶将发现的规律用代数式或等式表示出来;⑷用题中所给数据验证规律的正确性;⑸若要证明则注意证明格式. 同步检测2:1.观察以下10个乘积,将乘积的两个因数分别用字母a b ,表示(a b ,为正数).1129⨯ 1228⨯ 1327⨯ 1426⨯ 1525⨯ 1624⨯1723⨯1822⨯1921⨯2020⨯(1)请仿照式子“22210128-=⨯”,将以上各乘积分别写成一个两数平方差的形式;(2)请观察给出ab 、a b +、b a -之间的关系式.(只要求写出结果)2.老师在黑板上写出三个算式:283522⨯=-,387922⨯=-,5891122⨯=-…… 李明同学接着又写了两个具有同样规律的算式:68111322⨯=-,385722⨯=-. (1)请你再写出两个(不同于上面算式)具有上述规律的算式; (2)用文字写出上述算式的规律; (3)说明这个规律的正确性. 3.观察下列各式:21-12=9; 75-57=18; 96-69=27; 84-48=36; 45-54=-9;27-72=-45;19-91=-72;……(1)请用文字补全上述规律:把一个两位数的十位数字和个位数字交换位置,原来两位数 与新的两位数的差是_________________________; (2)你能用所学知识解释这个规律吗? 3. “图形”之规律探究图形类规律探究题包含形状一样但颜色不同的多个几何图形的图案问题,图形的折叠、旋转问题,同一种图形大小不一排列问题,同一种图形的数量变化问题及数字与几何图形的有机结合排列等问题,通常以确定探索物体的个数和确定图形数量为主要内容出现.此类题目的解题关键是观察图形(数字图形或几何图形)的排列方式,明确题目提供素材的层属关系及内涵.例3.如图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,那么第n (n 是正整数)个图案中由 个基础图形组成.解析:第1个图形中基础图形的个数为4311=⨯+;第2个图形中基础图形的个数为731=⨯2+;第3个图形中基础图形的个数为1031=⨯3+;…,故第n 个图形中基础图形的个数为31n +. 解答:31n +.说明:探索物体的个数时,可首先求出各图中物体的个数,然后将其与相应的图序数作对比,看两者有何关系,即得规律.或者求出各图中物体的个数后,问题的研究就由形转化为了数,只要研究数字规律即可得到图形规律.例4.如下图所示,小丽用棋子摆成三角形的图案,观察下面图案并填空:第1个 第2个 第3个 第4个按照这样的方式摆下去,摆第5个三角形图案需要__________枚棋子;摆第n 个三角形图案需要__________枚棋子(用含有n 的代数式表示);摆第100个三角形图案需要__________第3题图……••••••枚棋子.解析:第1个图形中棋子个数为21342+==;第2个图形中棋子个数为213593++==;第3个图形中棋子个数为21357164+++==;第4个图形中棋子个数为213579255++++==;第5个图形中棋子个数为21357911366+++++==;…,故第n个图形中棋子个数为2(1)n+,第100个图形中棋子个数为10201.解答:236,(1),10201n+.同步检测3:1.如图,用同样并规格的黑白两种正方形瓷砖铺设正方形地面,观察图形并猜想填空:当白色瓷砖为为正整数)nn(2块时,黑色瓷砖有块(结果写成一个多项式形式).2.下面是用棋子摆成的“上”字:第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子,如果按照这样的规律继续摆下去,那么第n个“上”字需用枚棋子.3.如图,由若干盆花摆成图案,每个点表示一盆花,几何图形的每条边上(包括两个顶点)都摆有()3≥nn盆花,每个图案中花盆总数为S,按照图中的规律可以推断S关系是.4.某校的一间礼堂,第1排的座位数为12,从第2排开始,每一排都比前一排增加x个座位第1排的座位数第2排的座位数第3排的座位数第4排的座位数…12x+12x312+…(2)由题可知,第5排座位数是_______________,第15排座位数是________________;(3)已知第15排座位数是第5排座位数的2倍,求第25排有多少个座位?以上资料只是个人针对知识点的一点梳理,尽量以中考要求为准,不当之处希望各位老师能多提宝贵意见!谢谢!6,3==Sn12,4==Sn20,5==Sn。
小学奥数找规律的方法大全及常见题型大全(给力)
找规律的详细方法及题型一.有理数找规律的方法1.画桥法:画小桥、画大桥2.从前往后,从上往下3.从最前面两个开始突破二.找规律的几大常见题型1.前一个数比后一个数多几或前一个比后一个数少几.2.前一个数是后一个数的几倍或后一个数是前一个数的几倍.3.前一个是后一个的几倍多几,后一个是前一个的几倍多几.4.前两个的和等于第三个数.5.分数的找规律方法:先看分子,再看分母,最后调系数或调正负三.几种常见的数列1.奇数数列:1、3、5、7、9……2n-13、5、7、9、11……2n+12.偶数数列:2、4、6、8、10……2n0、2、4、6、10……2n-24、6、8、10 、12……2n+23.乘方数列:2 、4、8、16……2n1、2、4、8、16……2n-1-2 、4、-8、16、-32……(-1)n·2n1、-2、4、-8、16、-32…(-1)n+1·2n-1小学找规律专题二、精讲精练【例题1】在括号内填上合适的数。
(1)3,6,9,12,(),()(2)1,2,4,7,11,(),()(3)2,6,18,54,(),()举一反三1:1.在下面的括号里填上合适的数。
(1)2,4,6,8,10,(),()(2)1,2,5,10,17,(),()2.按规律填数。
(1)2,8,32,128,(),()(2)1,5,25,125,(),()3.先找规律再填数。
12,1,10,1,8,1,(),()【例题2】先找出规律,再在括号里填上合适的数。
(1)15,2,12,2,9,2,(),()(2)21,4,18,5,15,6,(),()(3)3,4,7,3,4,10,3,4,13,(),(),()举一反三2:1.按规律填数。
(1)2,1,4,1,6,1,(),()(2)3,2,9,2,27,2,(),()2.在括号里填上适当的数。
(1)18,3,15,4,12,5,(),()(2)1,15,3,13,5,11,( ),( ) 3.找规律填数。
初中数学规律探究问题的类型及解题技巧分析
初中数学规律探究问题的类型及解题技巧分析数学规律探究问题是初中数学学习中常见的一类问题,通过对数学规律的探究和分析,培养学生的逻辑思维和推理能力,提高他们的问题解决能力。
下面将介绍一些常见的数学规律探究问题类型及解题技巧分析。
一、数列规律问题数列规律问题是最常见的数学规律探究问题。
解题时,可以根据给定的数列和规律,通过观察和分析,推算出数列的通项公式或者下一个数的值。
常见的数列规律有等差数列、等比数列、斐波那契数列等。
解题技巧:1.观察相邻项之间的差值或比值,判断是等差数列还是等比数列。
2.求出数列的公差或公比,进而得到数列的通项公式。
3.根据已知条件,利用数列的通项公式求出需要的值。
图形规律问题是指通过观察和分析给定的图形,找出其中的规律,推导出图形的性质或者下一个图形的形状。
常见的图形规律有平移、旋转、翻转等。
解题技巧:1.观察图形的对称性和相邻图形之间的关系,判断是平移、旋转还是翻转。
2.根据已知条件,通过推理和逻辑推断,得出图形的性质。
3.根据已知条件,利用图形的性质,推导下一个图形的形状或者位置。
解题技巧:1.观察方程中的系数和常数项之间的关系,判断方程的类型。
2.根据已知条件,通过代入值,解方程得出结论。
3.利用已知方程和规律,推导出下一个方程的解。
概率规律问题是指通过观察和分析一系列事件的发生概率,找出其中的规律,推导出可能的结果。
常见的概率规律有独立事件、互斥事件等。
总结:解决数学规律探究问题需要学生运用观察、分析、推理和推导等数学思维和方法,不仅要灵活运用各种公式和定理,而且要发挥想象力和创造力,培养学生的数学思维和解决问题的能力。
在教学中,教师应该引导学生多做习题和实际应用,培养学生的观察力、分析力和推理能力,提高他们的问题解决能力。
教师也应该注重培养学生的创造力和创新意识,鼓励学生发散思维和多角度思考问题,使学生在探究数学规律问题中获得乐趣和成长。
专题19 探求规律题(解析版)
专题19探求规律题考纲要求:探索规律型问题:指的是给出一组具有某种特定关系的数、式、图形或是给出与图形有关的操作、变化过程,要求通过观察、分析、推理,探求其中所隐含的规律,进而归纳或猜想出一般性的结论.基础知识回顾:1.数字猜想型:在分析比较的基础上发现题目中所蕴涵的数量关系,先猜想,然后通过适当的计算回答问题.2.数式规律型:通过观察、分析、归纳、验证,然后得出一般性的结论,以列代数式或函数关系式为主要内容.3.图形规律型:图形规律问题主要是观察图形的组成、分拆等过程中的特点,分析其联系和区别,用相应的算式描述其中的规律.4.数形结合猜想型:首先要观察图形,从中发现图形的变化方式,再将图形的变化以数或式的形式反映出来,从而得出图形与数或式的对应关系.5.动态规律型:要将图形每一次的变化与前一次变化进行比较,明确哪些结果发生了变化,哪些结果没有发生变化,从而逐步发现规律.应用举例:类型一、数字猜想型【例1】观察一列数:﹣3,0,3,6,9,12,…,按此规律,这一列数的第21个数是_______.【答案】57【解析】由题意知,这列数的第n个数为﹣3+3(n﹣1)=3n﹣6,当n=21时,3n﹣6=3×21﹣6=57,故答案为:57.类型二、数式规律型【例2】按一定规律排列的一列数依次为:﹣,,﹣,,…(a≠0),按此规律排列下去,这列数中的第n个数是_____________.(n为正整数)【答案】(﹣1)n×【解析】第1个数为(﹣1)1×,第2个数为(﹣1)2×,第3个数为(﹣1)3×,第4个数为(﹣1)4×,…,所以这列数中的第n个数是(﹣1)n×.故答案为(﹣1)n×.类型三、图形规律型:【例3】观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有_____个〇.【答案】6058【解答】由图可得,第1个图象中〇的个数为:1+3×1=4,第2个图象中〇的个数为:1+3×2=7,第3个图象中〇的个数为:1+3×3=10,第4个图象中〇的个数为:1+3×4=13,……∴第2019个图形中共有:1+3×2019=1+6057=6058个〇,故答案为:6058.类型四、数形结合猜想型:【例4】在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边“OA1→A1A2→A2A3→A3A4→A4A5…”的路线运动,设第n秒运动到点P n(n为正整数),则点P2019的坐标是___________.【答案】(,).【解析】由题意知,A1(,)A2(1,0)A3(,)A4(2,0)A5(,﹣)A6(3,0)A7(,)…由上可知,每个点的横坐标为序号的一半,纵坐标每6个点依次为:,0,,0,﹣这样循环,∴A2019(,),故答案为:(,).类型五、动态规律型:【例5】如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD =3,则顶点A 在整个旋转过程中所经过的路径总长为( )A .2017πB .2034πC .3024πD .3026π 【答案】D . 【解析】方法、规律归纳: 数字规律:①标序数(1,2,3,…,n);②找规律,观察: 当所给的一组数字是整数时:A.数字与序数的关系;B.数字的符号规律,若为正负号交替,则用()1n -或1(1)n --表示符号; 代数式规律:①标序数(1,2,3,…,n);②找规律,观察:A.系数、代数式字母的指数与序数的关系;B.符号规律方法同“数字规律”. 图形规律:(1)基础图形固定累加:①标序号:记每组图形的序数为“1,2,3,…,n”; ②数图形个数:数出每组图形的个数;③寻找第n 项(某项)的个数与序数n 的关系:将后一个图形的个数与前一个图形的个数进行对比,通常作差来观察累加个数,然后按照定量变化推导出关系式; ④验证:代入序号验证所归纳的式子是否正确. (2)基础图形递变累加:①标序号:记每组图形的序数为“1,2,3,…,n”;②数图形个数:数出每组图形的个数;③寻找第n项(某项)的个数与序数n的关系:将后一个图形的个数与前一个图形的个数进行对比,通常作商来观察图形个数;或将图形个数与n进行对比,寻找是否是与n有关的平方、平方加1、平方减1等关系;④验证:代入序号验证所归纳的式子是否正确.实战演练:1、如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n幅图中有2019个菱形,则n=______.【答案】1010【解析】根据题意分析可得:第1幅图中有1个.第2幅图中有2×2﹣1=3个.第3幅图中有2×3﹣1=5个.第4幅图中有2×4﹣1=7个.….可以发现,每个图形都比前一个图形多2个.故第n幅图中共有(2n﹣1)个.当图中有2019个菱形时,2n﹣1=2019,n=1010,故答案为:1010.2.a1,a2,a3,a4,a5,a6,…,是一列数,已知第1个数a1=4,第5个数a5=5,且任意三个相邻的数之和为15,则第2019个数a2019的值是______.【答案】6【解答】解:由任意三个相邻数之和都是15可知:a 1+a2+a3=15,a 2+a 3+a 4=15, a 3+a 4+a 5=15, …a n +a n +1+a n +2=15,可以推出:a 1=a 4=a 7=…=a 3n +1,a 2=a 5=a 8=…=a 3n +2, a 3=a 6=a 9=…=a 3n , 所以a 5=a 2=5, 则4+5+a 3=15, 解得a 3=6, ∵2019÷3=673, 因此a 2017=a 3=6. 故答案为:6.3. 如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2017次运动后,动点P 的坐标是______.【答案】( 2017 , 1 )4.如图,将从1开始的自然数按下规律排列,例如位于第3行、第4行的数是12,则位于第45行、第7列的数是________.【答案】2019【解析】观察图表可知:第n 行第一个数是n 2, ∴第45行第一个数是2025,∴第45行、第7列的数是2025﹣6=2019, 故答案为20195. 已知a >0,S 1=,S 2=﹣S 1﹣1,S 3=,S 4=﹣S 3﹣1,S 5=,…(即当n 为大于1的奇数时,S n =;当n 为大于1的偶数时,S n =﹣S n ﹣1﹣1),按此规律,S 2018=_____. 【答案】-【解析】由已知可得: S 1=,S 2=-,S 3=-,S 4=-,S 5=-(a+1), S 6=a, S 7=⋯根据S n 的变化规律,得出S n 的值每6个为一个循环, 因为,2018=336×6+2, 所以,S 2018= S 2=-.故答案为:-6.已知有理数a ≠1,我们把称为a 的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=.如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……依此类推,那么a1+a2+…+a100的值是()A.﹣7.5 B.7.5 C.5.5 D.﹣5.5【答案】A【解析】∵a1=﹣2,∴a2==,a3==,a4==﹣2,……∴这个数列以﹣2,,依次循环,且﹣2++=﹣,∵100÷3=33…1,∴a1+a2+…+a100=33×(﹣)﹣2=﹣=﹣7.5,故选:A.7.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P2017的坐标是.【答案】(672,1)【解析】8. 观察下列各式及其验证过程:,验证:.,验证:.(1)按照上述两个等式及其验证过程,猜想的变形结果并进行验证;(2)针对上述各式反映的规律,写出用a(a为自然数,且a≥2)表示的等式,并给出验证;(3)用a(a为任意自然数,且a≥2)写出三次根式的类似规律,并给出验证说理过程.【答案】(1)见解析;(2),验证见解析;(3)见解析【解析】(1)∵,,∴,验证:(2)由(1)中的规律可知3=22﹣1,8=32﹣1,15=42﹣1,∴,验证:(3)(a为任意自然数,且a≥2),验证:.9. 图①是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图①倒置后与原图①拼成图②的形状,这样我们可以算出图①中所有圆圈的个数为1+2+3+…+n=.如果图③和图④中的圆圈都有13层.(1)我们自上往下,在图③的每个圆圈中填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是___;(2)我们自上往下,在图④每个圆圈中填上一串连续的整数−23,−22,−21,−20,…,求最底层最右边圆圈内的数是___;(3)求图④中所有圆圈中各数之和.(写出计算过程)【答案】(1)79;(2)67;(3)2002.【解析】(1)当有13层时,前12层共有:1+2+3+…+12=78个圆圈,78+1=79,故答案为:79;(2)图④中所有圆圈中共有1+2+3+…+13==91个数,其中23个负数,1个0,67个正数,故答案为:67;(3)图④中共有91个数,分别为-23,-22,-21,…,66,67,图④中所有圆圈中各数的和为:-23+(-22)+…+(-1)+0+1+2+…+67==2002.10.观察以下等式:第1个等式:=+,第2个等式:=+,第3个等式:=+,第4个等式:=+,第5个等式:=+,……按照以上规律,解决下列问题:(1)写出第6个等式:____________;(2)写出你猜想的第n个等式:____________(用含n的等式表示),并证明.【答案】(1);(2),证明见解析.【解析】(1)第6个等式为:,故答案为:;(2)证明:∵右边==左边.∴等式成立,故答案为:.。
初中规律题题型及解答方法
初中规律题题型及解答方法规律题是初中数学中的一大难点,很多学生在做规律题时容易感到困惑,不知道该如何下手。
本文将介绍初中规律题的常见题型及解答方法,希望能帮助广大学生更好地掌握规律题。
一、常见规律题的题型1. 数字规律题数字规律题是指给出一组数字,要求根据一定的规律求出下一个数字或者找出其中的规律。
例如:1 3 5 7 9 __2 4 6 8 10 __3 5 7 9 11 __4 8 12 16 20 __5 10 15 20 25 __2. 图形规律题图形规律题是指给出一组图形,要求根据一定的规律求出下一个图形或者找出其中的规律。
例如:3. 字母规律题字母规律题是指给出一组字母,要求根据一定的规律求出下一个字母或者找出其中的规律。
例如:A D G J __B D F H __C F I L __D G J M __E H K N __二、解答方法1. 数字规律题的解答方法数字规律题的解答方法主要有以下几种:(1)找规律法这种方法是最常见的解题方法,要求学生根据已知的数字找出规律。
例如,对于第一组数字规律题,我们可以发现每个数字都比前一个数字大2,因此下一个数字应该是11。
对于第二组数字规律题,我们可以发现每个数字都比前一个数字大2,因此下一个数字应该是12。
对于第三组数字规律题,我们可以发现每个数字都比前一个数字大2,因此下一个数字应该是13。
对于第四组数字规律题,我们可以发现每个数字都比前一个数字大4,因此下一个数字应该是24。
对于第五组数字规律题,我们可以发现每个数字都比前一个数字大5,因此下一个数字应该是30。
(2)递推法递推法是指根据已知的数列前几项,通过递推公式求出数列的通项公式,从而得出下一个数字。
例如,对于第一组数字规律题,我们可以发现这是一个等差数列,其通项公式为an=a1+(n-1)d,其中a1=1,d=2,n=6,因此下一个数字应该是11。
(3)代数法代数法是指将数字规律题转化为代数式,从而得到下一个数字。
初中数学找规律题型归纳
初中数学找规律题型归纳一、题型归纳找规律是初中数学中常见的一种题型,主要考察学生的观察、归纳和推理能力。
这种题型通常会给出一些数字、图形或其他信息,要求学生找出其中的规律,并据此解答相关问题。
找规律题型可以分为以下几种类型:1. 数字规律:给出一些数字,要求学生找出其中的规律,如数列中的递推关系、周期性等。
2. 图形规律:给出一些图形或图案,要求学生找出其中的规律,如对称性、旋转等。
3. 综合性规律:结合数字和图形等元素,考察学生的综合分析能力。
二、例题解析1. 数字规律例题:题目:数列1,4,9,16,…的下一个数是_______.解析:观察数列1,4,9,16,…可以发现,每一个数都是某个整数的平方。
具体来说,1是1的平方,4是2的平方,9是3的平方,16是4的平方。
因此,下一个数应该是5的平方,即25。
答案:25。
2. 图形规律例题:题目:观察下列图形,它们有共同点,请写出其中两条:_______.解析:观察给出的图形可以发现,它们都是轴对称图形。
具体来说,每一个图形都可以沿一条直线折叠,使得两侧的图形完全重合。
此外,每一个图形都有两个顶点关于这条直线对称。
因此,答案可以是“轴对称图形”和“两个顶点关于某一直线对称”。
答案:轴对称图形;两个顶点关于某一直线对称(答案不唯一)。
3. 综合性规律例题:题目:观察下列图形和数字:(1)找出其中的规律,并填写空白处的数字。
(2)按照这种规律,第8个图形中有多少个三角形?解析:观察给出的图形和数字可以发现,每一个图形中的三角形数量与图形的序号有关。
具体来说,第1个图形中有1个三角形,第2个图形中有3个三角形(1+2),第3个图形中有6个三角形(1+2+3),以此类推。
因此,空白处的数字应该是1+2+3+4=10。
对于第2个问题,由于第8个图形中的三角形数量是1+2+3+4+5+6+7+8=36个三角形。
答案:(1)10;(2)36。
做初中找规律的题的技巧
做初中找规律的题的技巧在初中数学学习中,经常会出现一种题目类型,即找规律的题。
这类题目通常要求学生通过观察、思考和总结,找出数列、图形或模式中的某种规律,从而得出正确的答案。
下面将分享一些做初中找规律的题的技巧。
一、观察数字的变化观察数字的变化是解决找规律题的关键。
我们可以通过观察数字间的关系来推测规律。
例如,给定一个数列:2,4,6,8,10,...我们可以发现,每个数字都比前一个数字增加了2。
因此,可以得出结论,这个数列是一个等差数列,公差为2。
二、寻找特殊性质有些数列或图形中可能存在特殊的性质,通过寻找这些性质可以更快地找到规律。
例如,给定一个数列:1,2,4,8,...我们可以发现,每个数字都是前一个数字的2倍。
因此,可以得出结论,这个数列是一个等比数列,公比为2。
三、研究图形的形状在解决找规律题时,也经常会涉及到图形。
研究图形的形状和特点可以帮助我们找到规律。
例如,给定一个图形序列:△,△△,△△△,△△△△,...我们可以发现,每个图形都是前一个图形的基础上增加了一个△。
因此,可以得出结论,这个图形序列是按照△的数量递增的。
四、利用代数方法对于一些复杂的找规律题,我们可以使用代数方法来推导规律。
例如,给定一个数列:1,4,9,16,...我们可以设第n个数字为an,通过代数运算,我们可以推导出an = n²。
因此,可以得出结论,这个数列是由每个数字的平方组成的。
五、总结归纳在解决多个找规律题后,我们可以总结归纳出一些常见的规律类型,从而更快地解决类似的题目。
例如,常见的规律类型包括等差数列、等比数列、平方数列、斐波那契数列等。
通过熟悉这些规律类型,我们在解题时可以更快地找到规律。
六、练习技巧掌握找规律题的技巧需要不断的练习和实践。
可以通过做题和解题训练来提高自己的解题能力。
每天花一些时间做一些找规律的题目,不仅可以熟悉各种规律类型,还可以锻炼自己的观察力和思维能力。
综上所述,做初中找规律的题目需要通过观察数字的变化、寻找特殊性质、研究图形的形状、利用代数方法以及总结归纳等技巧来解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探究规律题型方法总结和练习一、教学内容:规律探究型问题1. 图案变化规律2. 数列、代数式运算规律3. 几何变化规律4. 探索研究二、知识要点:近年来,探索规律的题目成为数学中考的一个热点,目的是考查学生观察分析及探索的能力. 题目分为题设和结论两部分,通常题设部分给出一些数量关系或图形变换关系,通过观察分析,要求学生找出这些关系中存在的规律。
这种数学题目本身存在一种数学探索的思想,体现了数学思想从特殊到一般的发现规律。
是中考的一个难点,越来越引起考生重视。
下面我们根据几种不同类型的规律变化类型题进行分析。
“规律探究型问题”根据学生已有的知识基础和认知特点,分别从直观形象和抽象符号上进行规律探索,突出数学的生活化,给学生提供更多机会体验学习和探索的“过程”与“经历”,使之拥有一定的问题解决、课题研究、社会调查的经验,使学生经历探索事物间的数量关系并用字母和代数式表示的过程,建立初步的符号感,发展抽象思维,进一步使学生体会到代数式是刻画现实世界的有效数学模型。
现就规律探究的几个例子,来探讨一下这类专题:一、规律探索型问题的分类:1、数式规律通常给定一些数字、代数式、等式或不等式,然后猜想其中蕴含的规律,反映了由特殊到一般的数学方法,考查了学生的分析、归纳、抽象、概括能力。
一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。
如:1、有一串单项式:a,2a2,3a3,4a4,…,19a19,20a20,…那么第n个单项式是。
2、争当小高斯:高斯在10岁的时候,曾计算出1+2+3+4+······+100=_________;还有另外一种解法:设S=1+2+3+······+99+100,那么也可以写成S=100+99+98+97+······+2+1,把这两个等式左右两边分别相加,可以得到2S= (1+100)+(2+99)+(3+97)+······ +(99+2) +(100+1),2S=100×101,S= 由此,猜想前n个自然数和:1+2+3+4+······+n=-________,前n个偶数和:2+4+6+8+······+2n=________,前n个奇数和:1+3+5+7+ 9+······+ (2n-1) =________.猜想归纳是解决这类问题的有效方法,通过对已给出的材料和信息对研究的对象进行观察、实验、比较、归纳和分析综合,作出符合一定规律与事实的推测性想象,从而发现一般规律.它是发现和认识规律的重要手段.平时的教学不能局限于课本,可以设计一些猜想性、类比性的活动,让学生经历一个观察、试验等活动过程,在活动中通过对大量特殊情形的观察猜想出一般情形的结论,从而探索事物的内在规律.2、图形规律根据一组相关图形的变化规律,从中总结图形变化所反映的规律。
解决这类图形规律问题的方法有两种,一种是数图形,将图形转化成数字规律,再用数字规律的解决问题,一种是通过图形的直观性,从图形中直接寻找规律。
如:1、下图是某同学在沙滩上用石子摆成的小房子.观察图形的变化规律,写出第n个小房子用了_________块石子。
2、下面是按照一定规律画出的一列“树型”图:经观察可以发现:图(2)比图(1)多出2个“树枝”,图(3)比图(2)多出5个“树枝”,图(4)比图(3)多出10个“树枝”,照此规律,图(7)比图(6)多出个“树枝”.图案、图表具有直观、形象、简明,包含的信息量多等特点,解决此类问题需要把“形”转化为“数”,考查学生数形结合的数学思想。
二、规律探索型问题常用解法1、抓住条件中的变与不变找数学规律的题目,都会涉及到一个或者几个变化的量.所谓找规律,多数情况下,是指变量的变化规律.所以,抓住了变量,就等于抓住了解决问题的关键.而这些变量通常按照一定的顺序给出,揭示的规律,常常包含着事物的序列号.如:一组按规律排列的式子:,,,,…(),其中第7个式子是,第个式子是(为正整数).分子和分母的底数没变,变化的是符号及它们的指数,再把变量和序列号放在一起加以比较,就很容易发现其中的奥秘。
2、化繁为简,形转化为数有些题目看上去很大、图形很复杂,实际上,关键性的内容并不多.对题目做一番认真地分析,去粗取精,取伪存真,把其中主要的、关键的内容抽出来,题目的难度就会大幅度降低,问题也就容易解决了.如:将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有个小圆.通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律.3、寻找事物的循环节有些题目包含着事物的循环规律,找到了事物的循环规律,其他问题就可以迎刃而解.如:把一张纸片剪成4块,再从所得的纸片中任取若干块,每块又剪成4块,像这样依次地进行下去,到剪完某一次为止。
那么2007,2008,2009,2010这四个数中______________可能是剪出的纸片数有些题目,虽然形式发生了变化,但是本质并没有改变.我们只要在观察形式变化的过程中,始终注意寻找它的不变量,就可以揭示出事物的本质规律.三、规律探索型问题常见的结论:1、乘方型:如:一张白纸引发的规律:将一张长方形的纸对折,可得到两层。
继续对折,对折时每次折痕与上次的折痕保持平行,1、连续对折n次后,可以得到几层?2、连续对折n次后,可以得到几条折痕?3、若这张白纸的面积为1,连续对折n次后单层面积是多少?另如:拉面问题:将一团拉面拉一次,再捏合一次,再拉第二次,又捏合一次,如此重复下去,第n次捏合后,有多少根拉面?这类问题的关键在于观察数的特征:将“数”进行比较,一定会发现“数”与“数”间的联系2、等比型:这类题型最简单,通过观察、比较,学生能很容易解决。
如:观察下列图形,则第个图形中三角形的个数是_________3、等差型:这些题型在数学中应用最广,题型最多。
例如:火柴棍引发若干的规律1、用火柴棍拼三角形三角形个数 1 2 3 4 5 ……n火柴棍根数 3 ……变式1:用火柴棍拼正方形正方形个数 1 2 3 。
n火柴棒条数(1)搭一搭,填一填:(2)根据你的算法,搭100个这样的正方形需要__根火柴棒。
变式2:用同样规律的蓝白两色正方形瓷砖铺设地面,如图所示第n个图形中需用蓝色瓷砖__块当数学问题所反映的数列的差值均为整数K时,其通式就与整数K的倍数有关,结果一定是(Kn±常数)的形式(n为自然数),将K代入特例中验证即可轻易得到通式,这种方法简便易行,熟练后可口头作出答解。
4、差值呈自然数增长型这类通式往往与前n个自然数的和、前n个奇数和或前n个偶数和有关。
这类习题有许多实例:一条直线上有2个点,则有1条线段;如有3个点,则有2+1条线段;有4个点,则有3+2+1条线段;依次类推:有n个已知点,则有线段(n-1)+(n-2)+……+3+2+1条线段,即有[(n-1+1)(n-1)]÷2=[n (n-1)]÷2条线段。
另外还有“几个人相互握手总次数和”、“打篮球进行单循环比赛取总场次”等问题。
所反映的是同一个数学问题,只是将其置身于各类不同的生活背景中,但归根到底是求前(n-1)个自然数的和。
又如,1、用大小相同的正方形拼图,拼第1个图形需要3个正方形,拼第2个图形需要6个正方形,依次类推,拼第4个图形需要______个正方形,拼第n个图形需要_________个正方形。
2、下边是一个有规律排列的数表,请用含n的代数式(n为正整数)表示数表中第n行第n列的数:_____________第一列第二列第三列第四列…第一行 1 2 5 10第二行 4 3 6 11第三行9 8 7 12第四行 16 15 14 13…结论的归结无非是乘方型、n的一次式s=kn+b或二次式s=an²+bn+c。
数学规律,多数是函数的解析式.函数的解析式里常常包含着数学运算,所以,要求把变量和序列号放在一起,做一些计算,是解答找规律题的好途径.规律探索型问题涉及的基础知识非常广泛,题目没有固定的形式,因此没有固定的解题方法。
它既能充分地考察学生对基础知识掌握的熟悉程度,又能较好地考察学生的观察、分析、比较、概括及发散思维的能力及创新意识,因而成为中考的热点.这就启发广大数学教师必须注重过程教学,用科学的方法引导学生亲身参与、经历探索规律的过程,在这样的过程中让学生认识数学之美,感受探索的愉悦,逐步培养学生的独立探究能力。
1. 图案变化规律探究题图案变化规律题是指在一定条件下,探索发现有关图形所具有的规律性或不变性的问题,它往往给出了一组变化了的图形或条件,要求学生通过阅读、观察、分析、猜想来探索规律,它体现了“特殊到一般”的数学思想方法,考查了学生分析、解决问题的能力,观察、联想、归纳的能力,以及探究能力和创新能力,题型可涉及填空、选择或解答。
例:如图,是一个装饰物品连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是()。
分析:观察图像变化规律,不难发现阴影部分的图形是按顺时针每次旋转两个小格。
答案是B2. 数列、代数式运算规律猜想型探究题题设中提供某些信息,供解题者观察、类比、推理、反思,从而归纳、猜测、验证得出一般性的规律和结论,这样的问题称为猜想型探究题。
猜想型探究题能培养学生对数字的敏感和直觉思维,能培养学生发现与创新的思维品质和探索精神。
3. 几何变化规律探究题观察几何图形、根据题中的变化规律进行分析,猜想下面所没有给出的图形变化情况、探究图形的变化和所求的结果、归纳总结发现规律。
例:对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB、BC、CA至点A、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得1到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1、B1C1、C1A1至点A2、B2、C,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2、B2、C2,得到△A2B2C2,2记其面积为S2;…;按此规律继续下去,可得到△A5B5C5,则其面积S=_____________.54. 探索研究已知题中给出一个全新的名词,根据所学的知识和名词的含义解题.体现学生对新知识、新事物的判断和认知能力,通过提高数学知识技能,准确地运用数学基本思想和方法解题.例:如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,则称这样的矩形为三角形的“友好矩形”. 如图①所示,矩形ABEF即为△ABC的“友好矩形”. 显然,当△ABC是钝角三角形时,其“友好矩形”只有一个.根据上面叙述,(1)说明什么样的平行四边形是一个三角形的“友好平行四边形”;(2)如图②,若△ABC为直角三角形,且∠C=90°,在图②中画出△ABC 的所有“友好矩形”,并比较这些矩形面积的大小.(2)此时共有2个友好矩形,如图的BCAD、ABEF.易知,矩形BCAD、ABEF的面积都等于△ABC面积的2倍,∴△ABC的“友好矩形”的面积相等.三、重点难点:通过观察、分析,找出存在的规律。