正方体与球的组合体

合集下载

高中数学常见结论

高中数学常见结论

高中数学常见结论三角形中的结论 1、三角形中,任意两角的余弦之和大于零,即coscos 0,cos cos 0,cos cos 0A B A C B C +>+>+>2、三角形中,tan tan tan tan tan tan A B C A B C ++=⨯⨯3、三角形中,sin sin A B A B >⇔>,其他同理4、锐角三角形中,任意一个角的正弦值大于另一个角的余弦值,即sincos ,sin cos A B A C >>,其他同理5、钝角三角形中(角C 为钝角),一个锐角的正弦值小于另一个锐角的余弦值。

即sin cos ,sin cos A B B A <>6、直角三角形中的结论都有逆定理7、三角形内切圆的半径:2S r a b c ∆=++,特别地,直角三角形中:2a b cr +-=8、三角形中的射影定理:在△ABC 中,A c C a b cos cos ⋅+⋅=,…函数中的结论1、函数()y f x =在定义域D 上单调递增⇔对任意的12,,x x D ∈若12x x >,都有12()()f x f x >⇔对任意的12,,x x D ∈1212()(()())0x x f x f x -->⇔对任意的12,,x x D ∈1212()()0f x f x x x ->- ⇔对任意的,x D ∈/()0f x ≥恒成立⇔对任意的,x D ∈总存在t>0,使()()f x t f x +>2、函数()y f x =在定义域D 上单调递减,对应以上结论是什么?3、函数单调递增、递减的运算性质:(加、减、乘、除、开方) (1)增+增=增,减+减=减,增-减=增,减-增=减,(2)()k f x ⨯与()f x 的单调性的关系是 (3)1()f x 与()f x 的单调性的关系是 (4()f x 的单调性的关系是4、对称轴、对称中心、周期之间的结论是:(1)若函数y=f(x)满足:f(x+a)=f(a-x)↔x=a 是y=f(x)的一条对称轴.函数y=f(x)满足:f(x)=f(2a-x) ↔ x=a 是y=f(x)的一条对称轴.函数y=f(x)满足:f(x+a)=f(b-x) ↔ x=2a b+是y=f(x)的一条对称轴.(2)函数y=f(x)满足:f(x+a)=-f(a-x) ↔A (a,0)是y=f(x)的一个对称中心. 函数y=f(x)满足:f(x)=-f(2a-x) ↔A (a,0)是y=f(x)的一个对称中心.函数y=f(x)满足:f(x+a)=-f(b-x) ↔A(2a b+,0)是y=f(x)的一个对称中心 (3)函数y=f(x)满足:f(x+T)=f(x) ↔T 是y=f(x)的一个周期函数y=f(x)满足:f(x+a)=f(x+b) ↔T=a-b 是y=f(x)的一个周期(a >b ) 函数y=f(x)满足:f(x+a)=-f(x) ,则T=2a 是y=f(x)的一个周期(4)若x=a,x=b 是函数y=f(x)的两条对称轴,则T=2(a-b) (a >b ) ,反之也成立若A(a,0),B(b,0)是函数y=f(x)的两个对称中心,则T=2(a-b) (a >b ), 反之也成立 若x=a,B(b,0)分别是函数y=f(x)的对称轴和对称中心,则T=4(a-b) (a >b )5、若两个函数()y f x a =+,()y f b x =-有对称轴,则对称轴是2b a x -=6、函数奇偶性:函数y=f(x)是定义域D 上的偶函数⇔对任意的,x D ∈()()0f x f x --=恒成立⇔对任意的,x D ∈()1()f x f x -=恒成立7、函数y=f(x)是定义域D 上的奇函数⇔对任意的,x D ∈()()0f x f x -+=恒成立⇔对任意的,x D ∈()1()f x f x -=-恒成立8、函数奇偶性的运算性质:加减乘除:偶+偶=偶,偶-偶=偶,偶⨯偶=偶,偶÷偶=偶奇+奇=奇,奇-奇=奇,奇⨯奇=奇,奇÷奇=奇 偶⨯偶=偶,偶⨯奇=奇,奇⨯奇=偶 除法运算结论依然 9、奇偶性与单调性的关系:奇函数在关于原点对称的两区间上的单调性相同 偶函数在关于原点对称的两区间上的单调性相反 10、奇函数定义域中若有0,则(0)0f =11、奇函数定义域中若有最大值M 和最小值N ,则M+N=0 12、奇偶性与导数的关系:奇函数的导函数是偶函数 偶函数的导函数是奇函数 13、若函数y=f(x)是偶函数,则()()f x f x =14、若函数y=f(x)是D 上的上凸函数⇔对12,,x x D ∈有1212()()()22f x f x x x f ++<15、若函数y=f(x)是D 上的上凹函数⇔对12,,x x D ∈有1212()()()22f x f x x xf ++>16、二次函数2y ax bx c =++是偶函数⇔b=0三次函数32y ax bx cx d=+++是奇函数⇔b=d=017、二次函数在限定区间上的最值问题:讨论对称轴与区间的位置关系----大大小小(1)当a>0时,求最小值讨论对称轴在区间的左、内、右,求最大值讨论对称轴与区间中点的位置关系(2)当a<0时,求最大值讨论对称轴在区间的左、内、右,求最小值讨论对称轴与区间中点的位置关系18、二次函数2y ax bx c =++的对称轴是2b x a=-,三次函数32y ax bx cx d =+++的对称中心是,()33b b f aa ⎛⎫--⎪⎝⎭19、若函数y=f(x)在定义域D 上连续可导,且在定义域的任何子区间上导函数不恒为0,则/()0f x ≥⇔y=f(x)在D 上单调递增/()0f x ≤⇔y=f(x)在D 上单调递减20、若函数y=f(x)在定义域D 上连续可导,/0()0f x =不能保证0()f x 为极值,反之成立。

高考数学专题突破:外接球题型总结

高考数学专题突破:外接球题型总结

高考数学专题突破:外接球模型模板一:即一、题型描述几何体的外接球问题:题目中涉及几何体外接球体,或者球内接几何体,再或者说成球面上有几个点围成几何体,这类题型称之为几何体的外接球问题。

二、模法讲解以下这幅图,大家应该都能看明白吧!一个底面半径为,高为的圆柱,求它的外接球半径。

那么问题来了?这个式子怎么来的。

那么这个式子有何妙用?1、如果我们对圆柱上下底面对应位置处,取相同数量的点,比如都取三个点,如图所示:我们可以得到(直)三棱柱,它的外接球其实就是这个圆柱的外接球,所以说直棱柱的外接球求半径符合这个模型。

在这里棱柱的高就是公式中h的,而棱柱底面外接圆的半径则是公式中的r(至于怎么求外接圆半径可以用正弦定理。

2、我们再继续进行,如果我把刚刚那个三棱柱上面的两点去掉,我将得到三棱锥,如图:这个三棱锥的特点是AA1⊥底面ABC,即有一根侧棱⊥底面的锥体,依然符合这个模型。

那条竖直棱AA1就是公式中的h,而底面ABC的外接圆半径是公式中的r。

3、题目还喜欢这么干:面PAD垂直面ABCD。

它非常符合圆柱外接球模型!我们知道,这里的r为PAD的外接圆半径,h为AB或者CD为的长。

接着看,当我对第二幅图中的三棱柱 ABC-A1B1C1只去掉C1这个点,会得到什么呢?没错!这就是刚刚那个四棱锥放倒了!它的特点是:底面A1B1AB⊥CAB侧面,出题的时候则不会这么仁慈,就会像上一幅图那样,有一个侧面⊥矩形底面的四棱锥!圆柱外接球模型——适用于:①圆柱-------r,h自带②直棱柱-------r:底面外接圆半径;h:直棱柱的高③一根侧棱⊥底面的锥体-------r:底面外接圆半径;h:垂直于底面的那条侧棱④一个侧面⊥矩形底面的四棱锥-------r:垂直底面的侧面的外接圆半径;h:垂直于那个侧面的底边长那么接下来第二步就是找到,求出,而又怎么求呢?用正弦定理。

可以说正弦定理求外接圆半径这种方法咱们基本上就在高一学的时候提及过,根本就没用过它!告诉你,几乎整个高考也就此处求外接球题型可以用它来求求那个了。

高考复习28-组合体的“切”“接”综合问题高考试题解读与变式

高考复习28-组合体的“切”“接”综合问题高考试题解读与变式

高考复习28 :组合体的“切”“接”综合问题知识储备汇总1.知识储备汇总: 1.1球的性质球被平面截得的图形是圆,球心与截面圆圆心的连线与截面圆垂直,球的半径R ,截面圆的半径r ,球心到截面圆的距离为d ,则222d r R +=.1.2长方体性质:长方体的一条对角线的平方等于一个顶点上三条棱长的平方和. 1.3几个与球有关的切、接常用结论 (1)正方体的棱长为a ,球的半径为R , ①正方体的外接球,则23R a =; ②正方体的内切球,则2R a =; ③球与正方体的各棱相切,则22R a =.(2)长方体的同一顶点的三条棱长分别为,,a b c ,外接球的半径为R ,则2222R a b c =++. (3)正四面体的外接球与内切球的半径之比为3∶1.1.4与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.球与旋转体的组合,通常作它们的轴截面进行解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图. 1.5.解决与球有关的切、接问题的方法:(1)一般要过球心及多面体中的特殊点或过线作截面将空间问题转化为平面问题,从而寻找几何体各素之间的关系.(2)若球面上四点,,,P A B C 中,,PA PB PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.1.6.求解球与多面体的组合问题时,其关键是确定球心的位置,可以根据空间几何体的对称性判断球心的位置,然后通过作出辅助线或辅助平面确定球的半径和多面体中各个几何元素的关系,达到求解解题需要的几何量的目的.题型与相关高考题解读1.棱柱的外接球问题 1.1考题展示与解读例1 长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 ________.【命题意图探究】本题主要考查长方体的对角线性质、球的表面积公式,是容易题.【解题能力要求】空间想象能力、运算求解能力【方法技巧归纳】对球内接直棱柱问题,利用球心到棱柱底面所在的截面圆的距离就是棱柱高的一半,棱柱底面所在的截面圆的半径利用正弦定理计算,再利用球的截面性质即可求出球的半径,再利用球的表面积或体积公式计算球的表面积或体积.1.2【典型考题变式】【变式1:改编条件】若一个正三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为()A. 163πB.193πC.1912πD.43π【变式2:改编结论】底面边长为1,侧棱长为263的正三棱柱的各顶点均在同一个球面上,则该球的体积为()A. 32π3B. 4πC. 2πD.4π3【变式3:改编问法】已知某几何体的外接球的半径为,其三视图如图所示,图中均为正方形,则该几何体的体积为()A. 16B.C.D. 82.球与圆柱或圆锥的切接问题2.1考题展示与解读例2已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为________.A.πB.3π4C.π2D.π4【命题意图探究】本题主要考查球内接圆柱的体积问题,是基础题.【解题能力要求】空间想象能力、运算求解能力【方法技巧归纳】对球内接圆柱问题,利用球的截面性质沟通球的半径与圆柱底面半径高之间的关系.2.2【典型考题变式】【变式1:改编条件】已知圆柱的高为2,它的两个底面的圆周在直径为4的同一个球的球面上,则该圆柱的体积是( )A. πB. 34πC.2πD. 6π【变式2:改编结论】已知圆锥的底面半径为4,高为8,则该圆锥的外接球的表面积为()A. 10πB. 64πC. 100πD. 500 3π【变式3:改编问法】某几何体的三视图如图所示,其正视图和侧视图都是边长为23的正三角形,该几何体的外接球的表面积为()A. 9πB. 16πC. 24πD. 36π3.棱锥的外接球问题3.1考题展示与解读例3已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为________.【命题意图探究】本题主要考查球内接棱柱问题及球的表面积,是中档题.【解题能力要求】空间想象能力、逻辑推理能力、运算求解能力【方法技巧归纳】球内接棱锥问题,若有同一顶点上三条垂直的棱,可将三棱锥补成球内接长方体,利用长方体的对角线的平方等于同于同一顶点三棱长的平方和、长方体的对角线等于球的直径沟通球与棱锥量之间的关系.3.2【典型考题变式】【变式1:改编条件】某多面体的三视图如图所示,每一小格单位长度为l,则该多面体的外接球的表面积是A. 27πB.π C. 9π D.π 【变式2:改编结论】在正三棱锥中,,,则该三棱锥外接球的直径为( )A. 7B. 8C. 9D. 10【变式3:改编问法】已知四棱锥E-ABCD 的都在球心为,半径为的球面上,四边形ABC D 为矩形,,且,则四棱锥E-ABCD 的体积的最大值为( )A.324B. 372,C. 38D. 348 4.多面体内切球问题 4.1考题展示与解读例4在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π(C )6π (D )323π【命题意图探究】本题主要考查直棱柱内的球的最大体积问题,是中档题. 【解题能力要求】空间想象能力、运算求解能力【方法技巧归纳】立体几何最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解. 4.2【典型考题变式】【变式1:改编条件】在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bie nao ).已知在鳖臑中,平面,,则该鳖臑的外接球与内切球的表面积之和为_______.【变式2:改编结论】在正方体1111ABCD A B C D -中,若1D AC ∆内切圆的半径为263,则该正方体内切球的表面积为 ( )A. 2πB. 8πC. 12πD. 16π【变式3:改编问法】已知一个直三棱柱,其底面是正三角形,一个体积为43π的球体与棱柱的所有面均相切,那么这个三棱柱的表面积是A. 243B. 183C. 123D. 3典例高考试题演练1.若正四棱锥P ABCD -内接于球O ,且底面ABCD 过球心O ,设正四棱锥P ABCD -的高为1,则球O的体积为( ) A.43π B. 23π C. 4π D. 22π 2.如图为某几何体的三视图,则该几何体的外接球的表面积为( )A .B .27πC .27πD .3.网络用语“车珠子”,通常是指将一块原料木头通过加工打磨,变成球状珠子的过程,某同学有一圆锥状的木块,想把它“车成珠子”,经测量,该圆锥状木块的底面直径为12cm ,体积为96πcm 3,假设条件理想,他能成功,则该珠子的体积最大值是( ) A .36πcm 3 B .12πcm 3C .9πcm 3D .72πcm 34.半径为2的球O 中有一内接正四棱柱(底面是正方形,侧棱垂直底面),当该正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差是( ) A .16()B .16() C .8(2)D .8(2)5.已知一个四棱锥三视图如图所示,若此四棱锥的五个顶点在某个球面上,则该球的表面积为( )A. 48πB. 52πC.1723π D. 1963π6.将半径为4的半圆围成一个圆锥,则该圆锥的内切球的表面积为( ) A.83π B. 163π C. 43π D. 43 7.若一个正四面体的表面积为1S ,其内切球的表面积为2S ,则12S S =( )A.6π B. 2π C. 16πD. 63π8.已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为( ) A.823π B. 833π C. 863π D. 1623π 9.某三棱锥的三视图如图所示,其中俯视图是一个等腰直角三角形,则该三棱锥的外接球的表面积为( )A.B.C.D.556π10.已知三棱锥的四个顶点都在同一个球面上,底面满足,若该三棱锥体积最大值为3,则其外接球的表面积为( ) A.B.C.D .11.三棱锥A BCD -的一条长为a ,其余棱长均为1,当三棱锥A BCD -的体积最大时,它的外接球的表面积为( ) A.53π B. 54π C. 56π D. 58π 12.如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切,记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则的值是13.已知三棱锥的三条棱所在的直线两两垂直且长度分别为3,2,1,顶点都在球的表面上,则球的表面积为__________.14.已知四棱锥 P ﹣ABCD 的底面ABCD 是正方形,侧棱PA 与底面垂直,且PA=AB ,若该四棱锥的侧面积为16 __.15.已知正六棱柱的顶点都在同一个球面上,且该六棱柱的体积为2,当球的体积最小时,正六棱柱底面边长为_________.。

高中必修1至选修1-1常用公式及结论(北师大版)

高中必修1至选修1-1常用公式及结论(北师大版)

高中必修1至选修1-1常用公式及结论1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.2. 德摩根公式();()U U U U U U C A B C A C B C A B C A C B ⋂=⋃⋃=⋂.3. 包含关系A B A A B B ⋂=⇔⋃=U U A B C B C A ⇔⊆⇔⊆4.集合12{,,....,}n a a a 的子集个数共有2n 个;真子集有2n–1个; 5. 二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠;(2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 6. 解连不等式()N f x M <<常有以下转化()N f x M <<⇔[()][()]0f x M f x N --< 7.方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于 0)()(21<k f k f ,或0)(1=k f 且22211k k ab k +<-<,或0)(2=k f 且22122k ab k k <-<+.8. 闭区间上的二次函数的最值 :二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在ab x 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p ab x ,2∈-=,则{}m in m ax m ax()(),()(),()2b f x f f x f p f q a=-=;若[]q p a b x ,2∉-=,则{}max max()(),()f x f p f q =,{}min min ()(),()f x f p f q =.(2)当a<0时,若[]q p a b x ,2∈-=,则{}min ()min (),()f x f p f q =, 若[]q p ab x ,2∉-=,则{}m a x ()ma x(),()f x f p f q=,{}min ()min (),()f x f p f q =.9.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. (注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.) 10.11.常见结论的否定形式12.四种命题的相互关系13.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么 []1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.14.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 15.多项式函数110()nn n n P x a x a xa --=+++ 的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零.16.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.17.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ;(2)()()f x a f x a -=+,或)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,则)(x f 的周期T=2a ;18.分数指数幂(1)1mn a =(0,,a m n N *>∈,且1n >).(2)1m nmnaa-=(0,,a m n N *>∈,且1n >).19.根式的性质(1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.20.有理指数幂的运算性质(1) (0,,)rsr sa a aa r s Q +⋅=>∈. (2) ()(0,,)r s rsa a a r s Q =>∈.(3)()(0,0,)rrrab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.21.指数式与对数式的互化式log ba Nb a N =⇔=(0,1,0)a a N >≠>.22.对数的换底公式log log log m a m N N a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log mna a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).23.对数的四则运算法则: 若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a M N M N =+; (2) log log log aa a M M N N=-; (3)log log ()na a Mn M n R =∈.24.设函数)0)((log)(2≠++=a c bx axx f m,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.25. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+. 26.数列的通项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩ ( 数列{}n a 的前n 项的和为12n n s a a a =+++ ).27.等差数列的通项公式 *11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为 1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-.28.等比数列的通项公式 1*11()n nn a a a q qn N q-==⋅∈;其前n 项的和公式为 11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.29.分期付款(按揭贷款) : 每次还款(1)(1)1nnab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ).30.常见三角不等式 (1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤ (3) |sin ||cos |1x x +≥.31.同角三角函数的基本关系式22sin cos 1θθ+=, tan θ=θθcos sin , tan 1cot θθ⋅=.32.正弦、余弦的诱导公式○1Sin(2k π+α)=sin α cos(2k π+α)=cos α tan(2k π+α)=tan α○2Sin(-α)=- sin α cos(-α)=cos α tan(-α)= - tan α○3Sin(2π-α)=-sin α cos(2π-α)=cos α tan(2π-α)= - tan α○4Sin(π-α)=sin α cos(π-α)= - cos α tan(π-α)= - tan α○5Sin(π+α)=sin α cos(π+α)= - cos α tan(π+α)= tan α○6Sin(π/2 +α)=cos α cos(π/2 +α)= -Sin α ○7Sin(π/2 -α)=cos α cos(π/2 -α)= Sin α○8Sin(3π/2 +α)=cos α cos(3π/2 +α)= -Sin α ○9Sin(3π/2 -α)=cos α cos(3π/2 -α)= Sin α 33.和角与差角公式sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±=.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan b aϕ= ).34.二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-. 22tan tan 21tan ααα=-.35.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=.36.正弦定理 2sin sin sin a b c R ABC===.37.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.38.面积定理 (1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高).(2)111sin sin sin 222S ab C bc A ca B ===. (3)O AB S ∆=39.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+.40.实数与向量的积的运算律 :设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 41.向量的数量积的运算律:(1) a ·b= b ·a (交换律);(2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 42.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 43.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=. 44. a 与b 的数量积(或内积) a ·b =|a ||b |cos θ. 45. a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 46.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +. 47.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).48.平面两点间的距离公式,A B d =||AB ==(A 11(,)x y ,B 22(,)x y ).49.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a ||b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 50.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++.51. 三角形四“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222O A O B O C ⇔== .(2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅. (4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=.52.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b +≥(当且仅当a =b 时取“=”号).53.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2;(2)若和y x +是定值s ,则当y x =时积xy 有最大值241s .54.含有绝对值的不等式当a> 0时,有22x a x aa x a <⇔<⇔-<<. 22x a x a x a >⇔>⇔>或x a <-.55.斜率公式 2121y y k x x -=- (111(,)P x y 、222(,)P x y ).56.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式 112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式1x y ab+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 57.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠; ②1212120l l A A B B ⊥⇔+=;58.直线系方程(1)共点直线系方程:经过两直1111:0l A x B y C ++=,2222:0l A x B y C ++= 的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++= (除2l ),其中λ是待定的系数.(2)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程0Ax By λ++=(0λ≠),λ是参变量.(3)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量. 59.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).60. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是: 仅讨论A>0的情况(只分直线左右侧,不论上下)Ax By C ++>0 : 表示直线右侧区域 Ax By C ++<0 : 表示直线右侧区域61. 圆的方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0). 62. 圆系方程(1)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(2) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++= 的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定系数.63.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.64.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d . 其中22BA C Bb Aa d +++=.65.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21124d r r >+⇔⇔相离条公切线; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .66.圆的切线方程(1)已知圆方程为一般式220x y Dx Ey F ++++=时. ①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=.当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线. (2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=; ②斜率为k的圆的切线方程为y kx =±. 67.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-by ax ⇒渐近线方程:22220x y ab-=⇔x ab y ±=.(2)若渐近线方程为x ab y ±=⇔0=±by ax ⇒双曲线可设为λ=-2222by ax .(3)若双曲线与12222=-by ax 有公共渐近线,可设为λ=-2222by ax (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上).68. 抛物线22(0)y px p =>焦半径02p C F x =+.过焦点弦长p x x p x p x CD ++=+++=212122.69.直线与圆锥曲线相交的弦长公式AB =1212||x x y y ==-==-=(弦端点A ),(),,(2211y x B y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,k 为直线的斜率). 70. 斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l =斜棱柱侧.②1V S l =斜棱柱.71.球的半径是R ,则其体积 343V R π=, 其表面积24S R π=.72.球的组合体(1)球与长方体的组合体: 长方体的外接球的直径是长方体的体对角线长.(2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体:棱长为a 的正四面体的内切球的半径为12a ,外接球的半径为4a .73.柱体、锥体的体积13V Sh =柱体 13V Sh =锥体 (S 是的底面积、h 是的高).74.古典概型等()m P A n=. 几何概型 P(点M 落在G1) =1G G 的面积的面积75.互斥事件A ,B 分别发生的概率的和 P(A +B)=P(A)+P(B). 76.瞬时速度 0()()()limlimt t ss t t s t s t t tυ∆→∆→∆+∆-'===∆∆. 77.瞬时加速度0()()()limlimt t v v t t v t a v t tt ∆→∆→∆+∆-'===∆∆.78.)(x f 在),(b a 的导数()f x y ''==00()()lim lim x x y f x x f x x x∆→∆→∆+∆-==∆∆.79. 函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. 80.几种常见函数的导数(1) 0='C (C 为常数). (2) '1()()nn x nxn R -=∈.(3) x x cos )(sin ='. (4) x x sin )(cos -='. (5) xx 1)(ln =';e axxa log1)(log ='. (6) x x e e =')(; a a a xx ln )(='.(7)2211(tan )(cot )cos sin x x xx''==-81.导数的运算法则(1)'''()u v u v ±=±.(2)'''()uv u v uv =+.(3)'''2()(0)uu v uv v vv-=≠.82.判别)(0x f 是极大(小)值的方法: 当函数0()0f x '=时,(1)如果在0x 附近的左侧0)(>'x f ,右侧0)(<'x f ,则)(0x f 是极大值; (2)如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,则)(0x f 是极小值.。

立体几何复习初步

立体几何复习初步
2 时,求三棱锥F-DEG的体积VF-DEG. 3
【自主解答】(1)在等边△ABC中,AD=AE,所以 AD AE ,在折叠
DB EC
后的三棱锥A-BCF中也成立,所以DE∥BC.因为DE⊄平面BCF,BC⊂ 平面BCF,所以DE∥平面BCF. (2)在等边△ABC中,F是BC的中点, 所以AF⊥FC①,BF=CF= 1 .
6.表面积与体积公式 (1)柱体:①表面积:S=S侧+2S底;②体积:V=S底h(h为柱体的高).
1 (2)锥体:①表面积:S=S侧+S底;②体积:V= S底h(h为锥体的高). 3 (3)台体:①表面积:S=S侧+S上底+S下底;②体积:V= 1 (S上底+ S上底S下底 3
+S下底)h(h为台体的高).
3
×60+402×20=32000+32000=64000(cm3). 答案:64000cm3
【延伸探究】本例中如何证明直线BD⊥平面PEG. 【证明】如图,连接EG,HF及BD,EG与HF相交于O点,连接PO, 由正四棱锥的性质可知,PO⊥平面EFGH, 所以PO⊥HF.因为EG⊥HF, PO∩EG=O,所以HF⊥平面PEG. 又因为BD∥HF,所以BD⊥平面PEG.
所以BA⊥平面PAD,
因为AB∥CD,所以CD⊥平面PAD,所以CD⊥PD且CD⊥AD, 又因为在平面PCD中,EF∥PD(三角形的中位线),于是CD⊥FE 因为在平面ABCD中,由(2),BE∥AD,于是CD⊥BE. 因为FE∩BE=E,FE⊂平面BEF,BE⊂平面BEF,所以CD⊥平面BEF, 又因为CD⊂平面PCD,所以平面BEF⊥平面PCD.
【解析】易知该四棱锥中,PA⊥底面ABCD,PA=a,底面是边长为a 的正方形,故体积V= 答案: 1 a3

正方体与球的组合体

正方体与球的组合体
使用CAD软件制作正方体与球的组合体的步骤包括建立三维模型、进行仿真分析、优化设计等。建立三维模型可以使用专业 的CAD软件,如SolidWorks、AutoCAD等。仿真分析可以使用有限元分析软件,优化设计可以通过调整参数来实现。
06
组合体的扩展思考
其他几何形状的组合
01
02
03
圆柱与圆锥的组合
形式美
运用对称、平衡、比例等美学原则, 可以赋予组合体和谐、优美的外观。
感谢观看
THANKS
几何形状的特性
对称性
正方体具有高度的对称性,其对称轴有六个,分别是经过相 对两面的中心的三条直线。
稳定性
由于正方体的结构特点,它是一种非常稳定的几何体,不易 发生形变。
空间位置关系
组合关系
正方体可以与其他几何体组合形成复杂的组合体。
运动关系
正方体可以在空间中做平移、旋转等运动。
02
球的基本特性
3D打印正方体与球的组合体的步骤包括设计模型、切片、打印和后处理等。设计软件可以使用专业的 CAD软件,如SolidWorks、AutoCAD等,也可以使用在线的3D模型设计平台。
手工制作
手工制作正方体与球的组合体需要一 定的手工技巧和材料。可以使用木材、 塑料、纸张等材料,通过切割、折叠、 粘合等步骤制作出组合体。
定义与性质
定义
球是三维空间中,所有与固定点等距的点的集合。
性质
球是中心对称和旋转对称的几何体,其表面是连续且光滑的。
几何形状的特性
1 2
体积
球的体积公式为 V = (4/3)πr³,其中 r 是球的半 径。
表面积
球的表面积公式为 A = 4πr², 其中 r 是球的间距离最短的点,即球心。

高中阶乘公式总结大全多篇

高中阶乘公式总结大全多篇

高中阶乘公式总结大全多篇高中阶乘公式总结大全12篇高中阶乘公式总结大全(1)1 元素与集合的关系:,.2 集合的子集个数共有个;真子集有个;非空子集有个;非空的真子集有个.3 二次函数的解析式的三种形式:(1) 一般式;(2) 顶点式;(当已知抛物线的顶点坐标时,设为此式)(3) 零点式;(当已知抛物线与轴的交点坐标为时,设为此式)(4)切线式:。

(当已知抛物线与直线相切且切点的横坐标为时,设为此式)4 真值表:同真且真,同假或假5 常见结论的否定形式;6 四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)原命题互逆逆命题若p则q若q则p互互互为为互否否逆逆否否否命题逆否命题若非p则非q互逆若非q则非p充要条件:(1)、,则P是q的充分条件,反之,q是p的必要条件;(2)、,且q ≠ p,则P是q的充分不必要条件;(3)、p ≠ p ,且,则P是q的必要不充分条件;4、p ≠ p ,且q ≠ p,则P是q的既不充分又不必要条件。

7 函数单调性:增函数:(1)、文字描述是:y随x的增大而增大。

(2)、数学符号表述是:设f(x)在xD上有定义,若对任意的,都有成立,则就叫f(x)在xD上是增函数。

D则就是f(x)的递增区间。

减函数:(1)、文字描述是:y随x的增大而减小。

(2)、数学符号表述是:设f(x)在xD上有定义,若对任意的,都有成立,则就叫f(x)在xD上是减函数。

D则就是f(x)的递减区间。

单调性性质:(1)、增函数+增函数=增函数;(2)、减函数+减函数=减函数;(3)、增函数-减函数=增函数;(4)、减函数-增函数=减函数;注:上述结果中的函数的定义域一般情况下是要变的,是等号左边两个函数定义域的交集。

复合函数的单调性:等价关系:(1)设那么上是增函数;上是减函数.(2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.8函数的奇偶性:(注:是奇偶函数的前提条件是:定义域必须关于原点对称)奇函数:定义:在前提条件下,若有,则f(x)就是奇函数。

2020新课标高考数学讲义:立体几何含解析

2020新课标高考数学讲义:立体几何含解析
V= (S上+S下+ )h

S=4πR2
V= πR3
2.空间线面位置关系的证明方法
(1)线线平行: ⇒a∥b、 ⇒a∥b、
⇒a∥b、 ⇒c∥b.
(2)线面平行: ⇒a∥α、 ⇒a∥α、 ⇒a∥α.
(3)面面平行: ⇒α∥β、 ⇒α∥β、
⇒α∥γ.
(4)线线垂直: ⇒a⊥b.
(5)线面垂直: ⇒l⊥α、 ⇒a⊥β、 ⇒a⊥β、 ⇒b⊥α.
(6)面面垂直: ⇒α⊥β、 ⇒α⊥β.
[提醒]要注意空间线面平行与垂直关系中的判定定理和性质定理中的条件.如由α⊥β、α∩β=l、m⊥l、易误得出m⊥β的结论、就是因为忽视面面垂直的性质定理中m⊂α的限制条件.
3.用空间向量证明平行垂直
设直线l的方向向量为a=(a1、b1、c1)、平面α、β的法向量分别为μ=(a2、b2、c2)、υ=(a3、b3、c3).则有:
若存在某个位置.使得AD⊥BC、又因为AD⊥AB、则AD⊥平面ABC、所以AD⊥AC、而斜边CD小于直角边AD、矛盾、故C错误.
6. 如图、在四棱锥PACBD中、底面ACBD为正方形、PD⊥平面ACBD、BC=AC=a、PA=PB= a、PC= a、则点C到平面PAB的距离为________.
解析:
解析:选B.若存在某个位置、使得AC⊥BD、作AE⊥BD于E、则BD⊥平面AEC、所以BD⊥EC、在△ABD中、AB2=BE·BD、BE= 、而在△BCD中、BC2=BE·BD、BE= 、两者矛盾.故A错误.
若存在某个位置、使得AB⊥CD、又因为AB⊥AD、则AB⊥平面ACD、所以AB⊥AC、故AC=1、故B正确、D错误.
4.用向量求空间角
(1)直线l1、l2的夹角θ有cosθ=|cos〈l1、l2〉|(其中l1、l2分别是直线l1、l2的方向向量).

立体几何中的组合体问题专题(有答案)

立体几何中的组合体问题专题(有答案)

立体几何中的组合体问题专题(有答案)例1.正方体与球问题:正方体的棱长为1.求球的半径:⑴若正方体的八个顶点都在球面上,⑵若球内切于正方体;⑶12条棱组成一个正方体,一充气球在正方体内,求球的最大半径.例2.正四面体与球问题:正四面体的棱长为1.求球的半径:⑴若正四面体的四个顶点都在球面上,⑵若球内切于正四面体;⑶6条棱组成一个正四面体,一充气球在正四面体内,求球的最大半径.例3.四球问题:四个球的半径都为1.⑴桌面放两两相切的3个球,这3个球上面放一个球,求这个球的最高点离桌面的距离;⑵求与上述4个球都相切的小球的半径.例4.圆锥、圆柱与球⑴底面半径为1cm高为10cm的圆柱内,可以放几个半径为0.5cm的小球?⑵圆锥底面半径为3,高为4,一个球内切于圆锥,求球的半径;⑶圆锥底面半径为3,高为4,两个半径相同的球两两相切,放在圆锥底面上,且内切于圆锥,求这两个球的半径;⑷圆锥底面半径为3,高为4,三个半径相同的球两两相切,放在圆锥底面上,且内切于圆锥,求这两个球的半径;⑸圆锥底面半径为3,内接于一个半径为4的球,求圆锥的高.例5.圆锥与正四棱柱⑴圆锥底面半径为3,高为4,正四棱柱的高为3,且内接于圆锥,求正四棱柱的底面边长;⑵圆锥底面半径为3,高为4,正四棱柱的高为x,且内接于圆锥,求正四棱柱的体积.练习一、补(补成长方体或正方体)1. 一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为A 、3πB 、4πC 、33πD 、6π2. 在正三棱锥ABC S -中,M 、N 分别是棱SC 、BC 的中点,且AM MN ⊥,若侧棱32=SA ,则正三棱锥ABC S -外接球的表面积是( ) A .π12 B .π32 C .π36 D .π483. 点P 在直径为6的球面上,过P 作两两互相垂直的三条弦(两端点均在球面上的线段),若其中一条弦长是另一条弦长的2倍,则这三条弦长之和的最大值是 A .6B .435C .2215D .210554. 一个正方体的体积是8,则这个正方体的内切球的表面积是( )A .8πB .6πC .4πD .π 5. 设正方体的棱长为233,则它的外接球的表面积为( )A .π38B .2πC .4πD .π346. 已知三棱锥S ABC -的三条侧棱两两垂直,且2,4SA SB SC ===,则该三棱锥的外接球的半径为 A .3 B .6 C .36 D .97. 已知长方体1111ABCD A B C D -的外接球的表面积为16,则该长方体的表面积的最大值为A .32B .36C .48D .648. 长方体1111ABCD A B C D -的各个顶点都在表面积为16π的球O 的球面上,其中1::2:1:3AB AD AA =,则四棱锥O ABCD -的体积为A .263 B . 63C .23D .3 9.【山东省潍坊一中2013届高三12月月考测试数学文】四棱锥P ABCD 的三视图如右图所示,四棱锥P ABCD 的五个顶点都在一个球面上,E 、F 分别是棱AB 、CD 的中点,直线EF 被球面所截得的线段长为22,则该球表面积为A .12B .24C .36D .4810. (河南省豫东、豫北十所名校2013届高三阶段性测试四)已知四面体ABCD 中,AB =AD =6,AC =4,CD =213,AB 丄平面ACD ,则四面体 ABCD 外接球的表面积为A . π36B . π88C . π92D . π12811. 正方体1111ABCD A B C D -的棱长为6,一个球与正方体的棱长都相切,则这个球的半径是____________.12. 三棱锥A -BCD 中,侧棱AB 、AC 、AD 两两垂直,ΔABC ,ΔACD , ΔADB 的面积分别为,222,则三棱锥A -BCD 的外接球的体积为. ______13. 四面体ABCD 中,共顶点A 的三条棱两两相互垂直,且其长分别为361、、,若四面体的四个顶点同在一个球面上,则这个球的表面积为 。

2019年四川省成都高考数学二诊试卷(理科)含答案解析

2019年四川省成都高考数学二诊试卷(理科)含答案解析

2017年四川省成都高考数学二诊试卷(理科)一.选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求.把答案涂在答题卷上.)1.已知集合A={﹣2,﹣1,0,1,2},B={x|lgx≤0},则A∩B=()A.{1} B.{0,1}C.{0,1,2}D.{1,2}2.i是虚数单位,若=a+bi(a,b∈R),则乘积ab的值是()A.﹣15 B.﹣3 C.3 D.153.如图,某组合体的三视图是由边长为2的正方形和直径为2的圆组成,则它的体积为()A.4+4πB.8+4πC.D.4.为了得到函数的图象,只需把函数y=log2x的图象上所有的点()A.向左平移1个单位长度,再向上平移2个单位长度B.向右平移1个单位长度,再向上平移2个单位长度C.向左平移1个单位长度,再向下平移2个单位长度D.向右平移1个单位长度,再向下平移2个单位长度5.某程序框图如图所示,若使输出的结果不大于20,则输入的整数i的最大值为()A.3 B.4 C.5 D.66.如图,圆锥的高,底面⊙O的直径AB=2,C是圆上一点,且∠CAB=30°,D为AC的中点,则直线OC和平面PAC所成角的正弦值为()A.B.C.D.7.若曲线C1:x2+y2﹣2x=0与曲线C2:y(y﹣mx﹣m)=0有四个不同的交点,则实数m的取值范围是()A.(﹣,)B.(﹣,0)∪(0,)C.[﹣,]D.(﹣∞,﹣)∪(,+∞)8.三棱锥A﹣BCD中,AB,AC,AD两两垂直,其外接球半径为2,设三棱锥A﹣BCD的侧面积为S,则S的最大值为()A.4 B.6 C.8 D.169.已知a=(﹣ex)dx,若(1﹣ax)2017=b0+b1x+b2x2+…+b2017x2017(x∈R),则的值为()A.0 B.﹣1 C.1 D.e10.由无理数引发的数学危机已知延续带19世纪,直到1872年,德国数学家戴德金提出了“戴德金分割”,才结束了持续2000多年的数学史上的第一次大危机.所谓戴金德分割,是指将有理数集Q划分为两个非空的子集M与N,且满足M∪N=Q,M∩N=∅,M中的每一个元素都小于N中的每一个元素,则称(M,N)为戴金德分割.试判断,对于任一戴金德分割(M,N),下列选项中不可能恒成立的是()A.M没有最大元素,N有一个最小元素B.M没有最大元素,N也没有最小元素C.M有一个最大元素,N有一个最小元素D.M有一个最大元素,N没有最小元素11.已知函数,其中m∈{2,4,6,8},n∈{1,3,5,7},从这些函数中任取不同的两个函数,在它们在(1,f(1))处的切线相互平行的概率是()A.B.C.D.以上都不对12.若存在正实数x,y,z满足≤x≤ez且zln=x,则ln的取值范围为()A.[1,+∞)B.[1,e﹣1]C.(﹣∞,e﹣1]D.[1, +ln2]二.填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.)13.在△ABC中,边a、b、c分别是角A、B、C的对边,若bcosC=(3a﹣c)cosB,则cosB=.14.已知点P(x,y)的坐标满足条件,若点O为坐标原点,点M(﹣1,﹣1),那么的最大值等于.15.动点M(x,y)到点(2,0)的距离比到y轴的距离大2,则动点M的轨迹方程为.16.在△ABC中,∠A=θ,D、E分别为AB、AC的中点,且BE⊥CD,则cos2θ的最小值为.三.解答题(17-21每小题12分,22或23题10分,共70分.在答题卷上解答,解答应写出文字说明,证明过程或演算步骤.)17.设数列{a n}的前n项和S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(1)求数列{a n}的通项公式;(2)求数列的前n项和T n.18.为宣传3月5日学雷锋纪念日,成都七中在高一,高二年级中举行学雷锋知识竞赛,每年级出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为,乙队每人答对的概率都是.设每人回答正确与否相互之间没有影响,用X表示甲队总得分.(1)求随机变量X的分布列及其数学期望E(X);(2)求甲队和乙队得分之和为4的概率.19.已知等边△AB′C′边长为,△BCD中,(如图1所示),现将B与B′,C与C′重合,将△AB′C′向上折起,使得(如图2所示).(1)若BC的中点O,求证:平面BCD⊥平面AOD;(2)在线段AC上是否存在一点E,使ED与面BCD成30°角,若存在,求出CE的长度,若不存在,请说明理由;(3)求三棱锥A﹣BCD的外接球的表面积.20.已知圆,将圆E2按伸缩变换:后得到曲线E1,(1)求E1的方程;(2)过直线x=2上的点M作圆E2的两条切线,设切点分别是A,B,若直线AB与E1交于C,D两点,求的取值范围.21.已知函数g(x)=xsinθ﹣lnx﹣sinθ在[1,+∞)单调递增,其中θ∈(0,π)(1)求θ的值;(2)若,当x∈[1,2]时,试比较f(x)与的大小关系(其中f′(x)是f(x)的导函数),请写出详细的推理过程;(3)当x≥0时,e x﹣x﹣1≥kg(x+1)恒成立,求k的取值范围.[选修4-4:坐标系与参数方程]22.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2acosθ(a>0),过点P(﹣2,﹣4)的直线l的参数方程为(t为参数),l与C分别交于M,N.(1)写出C的平面直角坐标系方程和l的普通方程;(2)若|PM|、|MN|、|PN|成等比数列,求a的值.[选修4-5:不等式选讲]23.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.2017年四川省成都高考数学二诊试卷(理科)参考答案与试题解析一.选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求.把答案涂在答题卷上.)1.已知集合A={﹣2,﹣1,0,1,2},B={x|lgx≤0},则A∩B=()A.{1} B.{0,1}C.{0,1,2}D.{1,2}【考点】交集及其运算.【分析】先分别求出集合A,B,由此利用交集定义能求出A∩B.【解答】解:∵集合A={﹣2,﹣1,0,1,2},B={x|lgx≤0}={x|0<x≤1},∴A∩B={1}.故选:A.2.i是虚数单位,若=a+bi(a,b∈R),则乘积ab的值是()A.﹣15 B.﹣3 C.3 D.15【考点】复数相等的充要条件;复数代数形式的乘除运算.【分析】先根据两个复数相除的除法法则化简,再依据两个复数相等的充要条件求出a和b的值,即得乘积ab的值.【解答】解:∵===﹣1+3i=a+bi,∴a=﹣1,b=3,∴ab=﹣1×3=﹣3.故选B.3.如图,某组合体的三视图是由边长为2的正方形和直径为2的圆组成,则它的体积为()A.4+4πB.8+4πC.D.【考点】由三视图求面积、体积.【分析】根据三视图知该几何体是正方体与球的组合体,结合图中数据计算它的体积即可.【解答】解:根据三视图知,该几何体的下面是棱长以2的正方体,上面是半径为1的球的组合体,结合图中数据,计算它的体积为V=V球+V正方体=π•13+23=π+8故选:D.4.为了得到函数的图象,只需把函数y=log2x的图象上所有的点()A.向左平移1个单位长度,再向上平移2个单位长度B.向右平移1个单位长度,再向上平移2个单位长度C.向左平移1个单位长度,再向下平移2个单位长度D.向右平移1个单位长度,再向下平移2个单位长度【考点】函数的图象与图象变化;程序框图.【分析】利用对数的运算性质化简平移目标函数的解析式,然后根据“左加右减,上加下减”的原则,可得答案.【解答】解:∵函数=log2(x+1)﹣log24=log2(x+1)﹣2,故其图象可由函数y=log2x的图象向左平移1个单位长度,再向下平移2个长度单位得到,故选C.5.某程序框图如图所示,若使输出的结果不大于20,则输入的整数i的最大值为()A.3 B.4 C.5 D.6【考点】程序框图.【分析】算法的功能是求S=2°+21+22+…+2n+n+1的值,根据输出的结果不大于20,得n≤3,由此可得判断框内i的最大值.【解答】解:由程序框图知:算法的功能是求S=2°+21+22+…+2n+n+1的值,∵输出的结果不大于20,∴n≤3,∴判断框的条件n<i,i的最大值为4.故选:B.6.如图,圆锥的高,底面⊙O的直径AB=2,C是圆上一点,且∠CAB=30°,D为AC的中点,则直线OC和平面PAC所成角的正弦值为()A.B.C.D.【考点】直线与平面所成的角.【分析】由已知易得AC⊥OD,AC⊥PO,可证面POD⊥平面PAC,由平面垂直的性质考虑在平面POD中过O作OH⊥PD于H,则OH⊥平面PAC,∠OCH是直线OC和平面PAC所成的角,在Rt△OHC中,求解即可.【解答】解:因为OA=OC,D是AC的中点,所以AC⊥OD,又PO⊥底面⊙O,AC⊂底面⊙O,所以AC⊥PO,而OD,PO是平面内的两条相交直线所以AC⊥平面POD,又AC⊂平面PAC所以平面POD⊥平面PAC在平面POD中,过O作OH⊥PD于H,则OH⊥平面PAC连接CH,则CH是OC在平面上的射影,所以∠OCH是直线OC和平面PAC所成的角在Rt△ODA中,OD=DA•sin30°=,在Rt△POD中,OH==,在Rt△OHC中,sin∠OCH=,故直线OC和平面PAC所成的角的正弦值为.故选C.7.若曲线C1:x2+y2﹣2x=0与曲线C2:y(y﹣mx﹣m)=0有四个不同的交点,则实数m的取值范围是()A.(﹣,)B.(﹣,0)∪(0,)C.[﹣,]D.(﹣∞,﹣)∪(,+∞)【考点】圆的一般方程;圆方程的综合应用.【分析】由题意可知曲线C1:x2+y2﹣2x=0表示一个圆,曲线C2:y(y﹣mx﹣m)=0表示两条直线y=0和y﹣mx﹣m=0,把圆的方程化为标准方程后找出圆心与半径,由图象可知此圆与y=0有两交点,由两曲线要有4个交点可知,圆与y﹣mx﹣m=0要有2个交点,根据直线y﹣mx﹣m=0过定点,先求出直线与圆相切时m的值,然后根据图象即可写出满足题意的m的范围.【解答】解:由题意可知曲线C1:x2+y2﹣2x=0表示一个圆,化为标准方程得:(x﹣1)2+y2=1,所以圆心坐标为(1,0),半径r=1;C2:y(y﹣mx﹣m)=0表示两条直线y=0和y﹣mx﹣m=0,由直线y﹣mx﹣m=0可知:此直线过定点(﹣1,0),在平面直角坐标系中画出图象如图所示:直线y=0和圆交于点(0,0)和(2,0),因此直线y﹣mx﹣m=0与圆相交即可满足条件.当直线y﹣mx﹣m=0与圆相切时,圆心到直线的距离d==r=1,化简得:m2=,解得m=±,而m=0时,直线方程为y=0,即为x轴,不合题意,则直线y﹣mx﹣m=0与圆相交时,m∈(﹣,0)∪(0,).故选B.8.三棱锥A﹣BCD中,AB,AC,AD两两垂直,其外接球半径为2,设三棱锥A﹣BCD的侧面积为S,则S的最大值为()A.4 B.6 C.8 D.16【考点】球内接多面体.【分析】三棱锥A﹣BCD的三条侧棱两两互相垂直,所以把它扩展为长方体,它也外接于球,对角线的长为球的直径,然后利用基本不等式解答即可.【解答】解:设AB,AC,AD分别为a,b,c,则三棱锥A﹣BCD的三条侧棱两两互相垂直,所以把它扩展为长方体,它也外接于球,对角线的长为球的直径,∴a2+b2+c2=16,S=(ab+bc+ac)≤(a2+b2+c2)=8,故选C.9.已知a=(﹣ex)dx,若(1﹣ax)2017=b0+b1x+b2x2+…+b2017x2017(x∈R),则的值为()A.0 B.﹣1 C.1 D.e【考点】二项式定理的应用.【分析】利用微积分基本定理可得:a=﹣=2.因此(1﹣2x)2017=,分别令x=0,1=b0;x=,则0=b0+,即可得出.【解答】解:=﹣=﹣=2.∵(1﹣2x)2017=,令x=0,则1=b0.x=,则0=b0+,∴=﹣1,故选:B.10.由无理数引发的数学危机已知延续带19世纪,直到1872年,德国数学家戴德金提出了“戴德金分割”,才结束了持续2000多年的数学史上的第一次大危机.所谓戴金德分割,是指将有理数集Q划分为两个非空的子集M与N,且满足M∪N=Q,M∩N=∅,M中的每一个元素都小于N中的每一个元素,则称(M,N)为戴金德分割.试判断,对于任一戴金德分割(M,N),下列选项中不可能恒成立的是()A.M没有最大元素,N有一个最小元素B.M没有最大元素,N也没有最小元素C.M有一个最大元素,N有一个最小元素D.M有一个最大元素,N没有最小元素【考点】子集与真子集.【分析】由题意依次举例对四个命题判断,从而确定答案.【解答】解:若M={x∈Q|x<0},N={x∈Q|x≥0};则M没有最大元素,N有一个最小元素0;故A正确;若M={x∈Q|x<},N={x∈Q|x≥};则M没有最大元素,N也没有最小元素;故B正确;若M={x∈Q|x≤0},N={x∈Q|x>0};M有一个最大元素,N没有最小元素,故D正确;M有一个最大元素,N有一个最小元素不可能,故C不正确;故选C.11.已知函数,其中m∈{2,4,6,8},n∈{1,3,5,7},从这些函数中任取不同的两个函数,在它们在(1,f(1))处的切线相互平行的概率是()A.B.C.D.以上都不对【考点】利用导数研究曲线上某点切线方程.【分析】求出函数的导数,求得切线的斜率,由题意列举斜率相等的情况,得到共有多少组,求得总的基本事件,由古典概率的计算公式即可得到所求值.【解答】解:函数,导数为f′(x)=mx2+nx+1,可得在(1,f(1))处的切线斜率为m+n+1.则切线相互平行即有斜率相等,即有(m,n)为(2,7),(8,1),(4,5),(6,3),(2,5),(4,3),(6,1),(2,3),(4,1),(4,7),(6,5),(8,3),(8,5),(6,7)共++1++1=6+3+1+3+1=14组,总共有=120组,则它们在(1,f(1))处的切线相互平行的概率是=.故选:B.12.若存在正实数x,y,z满足≤x≤ez且zln=x,则ln的取值范围为()A.[1,+∞)B.[1,e﹣1]C.(﹣∞,e﹣1]D.[1, +ln2]【考点】简单线性规划.【分析】由已知得到ln=,求出的范围,利用函数求导求最值.【解答】解:由正实数x,y,z满足≤x≤ez且zln=x,得到,∈[,e],ln=,设t=,则,t∈[,2],f'(t)=,令f'(t)=0,得到t=1,所以当时,f'(t)<0,函数f(t)单调递减;当1<t≤2时,函数f(t)单调递增;当t=1时函数的最小值为f(1)=1+ln1=1;又f(2)=+ln2,f()=e﹣1,.又f()﹣f(2)=e﹣ln2﹣>e﹣lne﹣=e﹣2.5>0,所以f()>f(2),所以ln的取值范围为[1,e﹣1];故选B.二.填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.)13.在△ABC中,边a、b、c分别是角A、B、C的对边,若bcosC=(3a﹣c)cosB,则cosB=.【考点】余弦定理;正弦定理.【分析】bcosC=(3a﹣c)cosB,由正弦定理可得:sinBcosC=3sinAcosB﹣sinCcosB,可得sin(B+C)=3sinAcosB,即sinA=3sinAcosB,sinA≠0,即可得出.【解答】解:在△ABC中,∵bcosC=(3a﹣c)cosB,由正弦定理可得:sinBcosC=3sinAcosB﹣sinCcosB,∴sin(B+C)=3sinAcosB,即sinA=3sinAcosB,sinA≠0,化为cosB=.故答案为:.14.已知点P(x,y)的坐标满足条件,若点O为坐标原点,点M(﹣1,﹣1),那么的最大值等于4.【考点】简单线性规划.【分析】由约束条件作出可行域,令z==﹣x﹣y,化为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件作出可行域如图,令z==﹣x﹣y,化为y=﹣x﹣z,由图可知,当直线y=﹣x﹣z过点A(0,﹣4)时,直线在y轴上的截距最小,z有最大值为4.故答案为:4.15.动点M(x,y)到点(2,0)的距离比到y轴的距离大2,则动点M的轨迹方程为y2=8x(x≥0)或y=0(x<0).【考点】轨迹方程.【分析】由已知列出方程,化简即可求出动点M的轨迹C的方程.【解答】解:∵动点M(x,y)到点(2,0)的距离比到y轴的距离大2,∴=|x|+2,整理,得y2=4x+|4x|,∴当x≥0时,动点M的轨迹C的方程为y2=8x.当x<0时,动点M的轨迹C的方程为y=0.故答案为:y2=8x(x≥0)或y=0(x<0)16.在△ABC中,∠A=θ,D、E分别为AB、AC的中点,且BE⊥CD,则cos2θ的最小值为.【考点】二倍角的余弦.【分析】不妨设C(2,0),B(x,y),A(0,0),根据•=0,可得+y2=,故点B在此圆上.过点A作圆的切线,故当点B为切点时,∠A最大,即θ最大,故cosθ最小,从而求得cos2θ的最小值.【解答】解:△ABC中,∠A=θ,D、E分别为AB、AC的中点,且BE⊥CD,如图所示,不妨设C(2,0),B(x,y),A(0,0),∵AD=AB,AE=AC,∴E(1,0),D(,).∵BE⊥CD,∴•=(1﹣x,﹣y)•(﹣2,)=(1﹣x)(﹣2)﹣y•=﹣ [+y2﹣]=0,∴+y2=,表示以(,0)为圆心,半径等于的圆,故点B在此圆上.过点A作圆的切线,故当点B为切点时,∠A最大,即θ最大,故cosθ===最小,则cos2θ的最小值为2cos2θ﹣1=2×﹣1=,故答案为:.三.解答题(17-21每小题12分,22或23题10分,共70分.在答题卷上解答,解答应写出文字说明,证明过程或演算步骤.)17.设数列{a n}的前n项和S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(1)求数列{a n}的通项公式;(2)求数列的前n项和T n.【考点】数列的求和;数列递推式.(n>1),结合等差数列中项的性【分析】(1)运用数列的递推式:a n=S n﹣S n﹣1质,解方程可得首项,由等比数列的通项公式即可得到所求;(2)求得,运用数列的求和方法:分组求和,结合等比数列和等差数列的求和公式,计算即可得到所求和.【解答】解:(1)由已知S n=2a n﹣a1有a n=S n﹣S n﹣1=2a n﹣2a n﹣1(n>1),即a n=2a n﹣1(n>1).从而a2=2a1,a3=4a1.又∵a1,a2+1,a3成等差数列,即a1+a3=2(a2+1),∴a1+4a1=2(2a1+1),解得a1=2.∴数列{a n}是首项为2,公比为2的等比数列,故.(2)由(1)得,因数列是首项为,公比为的等比数列,即有T n=(++…+)﹣(1+2+…+n),∴.18.为宣传3月5日学雷锋纪念日,成都七中在高一,高二年级中举行学雷锋知识竞赛,每年级出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为,乙队每人答对的概率都是.设每人回答正确与否相互之间没有影响,用X表示甲队总得分.(1)求随机变量X的分布列及其数学期望E(X);(2)求甲队和乙队得分之和为4的概率.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(1)X的可能取值为0,1,2,3.分别求出相应的概率,由此能求出X 的分布列及数学期望.(2)设“甲队和乙队得分之和为4”事件A,包含“甲队3分且乙队1分”,“甲队2分且乙队2分”,“甲队1分且乙队3分”三个基本事件,由此能求出甲队和乙队得分之和为4的概率.【解答】解:(1)X的可能取值为0,1,2,3.,,,,∴X的分布列为:X0123P….…(2)设“甲队和乙队得分之和为4”事件A,包含“甲队3分且乙队1分”,“甲队2分且乙队2分”,“甲队1分且乙队3分”三个基本事件,则:.…19.已知等边△AB′C′边长为,△BCD中,(如图1所示),现将B与B′,C与C′重合,将△AB′C′向上折起,使得(如图2所示).(1)若BC的中点O,求证:平面BCD⊥平面AOD;(2)在线段AC上是否存在一点E,使ED与面BCD成30°角,若存在,求出CE的长度,若不存在,请说明理由;(3)求三棱锥A﹣BCD的外接球的表面积.【考点】平面与平面垂直的判定;球内接多面体.【分析】(1)运用平面几何中等腰三角形的三线合一,结合线面垂直的判定定理和面面垂直的判定定理,即可得证;(2)(法1)作AH⊥DO,交DO的延长线于H,运用平面几何中有关性质,以及线面垂直和面面垂直的性质,可得∠EDF就是ED与面BCD所成的角.运用直角三角形的知识,计算可得CE;(法2)以D为坐标原点,以直线DB,DC分别为x轴,y轴的正方向,以过D 与平面BCD垂直的直线为z轴,建立空间直角坐标系,设CE=x,求出E的坐标,运用法向量,以及向量的夹角公式,计算即可得到所求;(3)将原图补形成正方体,由AC=,可得正方体边长为1,可得外接球的直径即为正方体的对角线长,由球的表面积公式,计算即可得到所求.【解答】解:(1)证明:∵△ABC为等边三角形,△BCD为等腰三角形,且O为中点,∴BC⊥AO,BC⊥DO,∵AO∩DO=O,∴BC⊥平面AOD,又BC⊂面ABC∴平面BCD⊥平面AOD…(2)(法1)作AH⊥DO,交DO的延长线于H,则平面BCD∩平面AOD=HD,则AH⊥平面BCD,在Rt△BCD中,,在Rt△ACO中,,在△AOD中,,∴,在Rt△ADH中AH=ADsin∠ADO=1,设,作EF⊥CH于F,平面AHC⊥平面BCD,∴EF⊥平面BCD,∠EDF就是ED与面BCD所成的角.由,∴(※),在Rt△CDE中,,要使ED与面BCD成30°角,只需使,∴x=1,当CE=1时,ED与面BCD成30°角…(法2)在解法1中接(※),以D为坐标原点,以直线DB,DC分别为x轴,y轴的正方向,以过D与平面BCD垂直的直线为z轴,建立空间直角坐标系则,,又平面BCD的一个法向量为,要使ED与面BCD成30°角,只需使成60°,只需使,即,∴x=1,当CE=1时ED与面BCD成30°角;(3)将原图补形成正方体,由AC=,可得正方体边长为1,则外接球的直径为,即半径,表面积:S=4πr2=3π…20.已知圆,将圆E2按伸缩变换:后得到曲线E1,(1)求E1的方程;(2)过直线x=2上的点M作圆E2的两条切线,设切点分别是A,B,若直线AB与E1交于C,D两点,求的取值范围.【考点】平面直角坐标轴中的伸缩变换.【分析】(1)根据题意,由平面直角坐标系中的伸缩变化的规律可得(x′)2+2(y′)2=2,整理即可得答案;(2)根据题意,直线x=2上任意一点M以及切点A,B坐标,分析可得切线AM,BM的方程,分t=0与t≠0两种情况讨论,分别求出的取值范围,综合即可得答案.【解答】解:(1)按伸缩变换:得:(x′)2+2(y′)2=2,则E1:;(2)设直线x=2上任意一点M的坐标是(2,t),t∈R,切点A,B坐标分别是(x1,y1),(x2,y2);则经过A点的切线斜率k=,方程是x1x+y1y=2,经过B点的切线方程是x2x+y2y=2,又两条切线AM,BM相交于M(2,t),则有,所以经过A、B两点的直线l的方程是2x+ty=2,当t=0时,有A(1,1),B(1,﹣1),C(1,),D(1,﹣),则|CD|=,|AB|=2,=,当t≠0时,联立,整理得(t2+8)x2﹣16x+8﹣2t2=0;设C、D坐标分别为(x3,y3),(x4,y4),则,,,∴令t2+4=x,则x>4,则f(x)=,又令u=∈(0,),φ(u)=﹣32u3+6u+1,u∈(0,),令φ′(u)=﹣96u2+6,令﹣96u2+6=0,解可得u0=,故φ(u)=﹣32u3+6u+1在(0,)上单调递增,且有φ(u)∈(1,),而,则<<1;综合可得≤<1;所以的取值范围为[,1).21.已知函数g(x)=xsinθ﹣lnx﹣sinθ在[1,+∞)单调递增,其中θ∈(0,π)(1)求θ的值;(2)若,当x∈[1,2]时,试比较f(x)与的大小关系(其中f′(x)是f(x)的导函数),请写出详细的推理过程;(3)当x≥0时,e x﹣x﹣1≥kg(x+1)恒成立,求k的取值范围.【考点】导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.【分析】(1)令g′(x)≥0在[1,+∞)上恒成立,结合三角函数的性质即可得出sinθ=1;(2)化简得f(x)﹣f′(x)=x﹣lnx++﹣﹣2,利用导数分别求出y=x﹣lnx和y=+﹣﹣2在[1,2]上的最小值,即可得出结论;(3)令F(x)=e x﹣x﹣1﹣kg(x+1),则F min(x)≥0(x≥0),对k进行讨论,判断F(x)的单调性,计算F min(x)进行检验即可.【解答】解:(1)∵g(x)在[1,+∞)单调递增,∴在[1,+∞)上恒成立,即恒成立.∵当x≥1时,≤1,∴sinθ≥1,又θ∈(0,π),∴0<sinθ≤1∴sinθ=1,∴.(2)由(1)可知g(x)=x﹣lnx﹣1,∴,∴,∴,令h(x)=x﹣lnx,,∴,,∴h(x)在[1,2]上单调递增,∴h(x)≥h(1)=1,令φ(x)=﹣3x2﹣2x+6,则φ(x)在[1,2]单调递减,∵φ(1)=1,φ(2)=﹣10,∴∃x0∈(1,2),使得H(x)在(1,x0)单调递增,在(x0,2)单调递减,∵H(1)=0,H(2)=﹣,∴,∴,又两个函数的最小值不同时取得;∴,即:.(3)∵e x﹣x﹣1≥kg(x+1)恒成立,即:e x+kln(x+1)﹣(k+1)x﹣1≥0恒成立,令F(x)=e x+kln(x+1)﹣(k+1)x﹣1,则,由(1)得:g(x)≥g(1)即x﹣lnx﹣1≥0(x≥1),∴x+1≥ln(x+1)+1(x ≥0),即:x≥ln(x+1)(x≥0),∴e x≥x+1,∴当k=1时,∵x≥0,∴,∴F(x)单调递增,∴F(x)≥F(0)=0,符合题意;当k∈(0,1)时,y=(x+1)+﹣(k+1)在[0,+∞)上单调递增,∴,∴F(x)单调递增,∴F(x)≥F(0)=0,符合题意;当k≤0时,F′(x)在[0,+∞)上是增函数,∴≥F′(0)=1+k﹣(k+1)=0,∴F(x)单调递增,∴F(x)≥F(0)=0符合题意,当k>1时,F″(x)=e x﹣,∴F″(x)在[0,+∞)上单调递增,又F″(0)=1﹣k<0,且x→+∞,F″(x)>0,∴F″(x)在(0,+∞)存在唯一零点t0,∴F′(x)在(0,t0)单调递减,在(t0,+∞)单调递增,∴当x∈(0,t0)时,F′(x)<F′(0)=0,∴F(x)在(0,t0)单调递减,∴F(x)<F(0)=0,不合题意.综上:k≤1.[选修4-4:坐标系与参数方程]22.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2acosθ(a>0),过点P(﹣2,﹣4)的直线l的参数方程为(t为参数),l与C分别交于M,N.(1)写出C的平面直角坐标系方程和l的普通方程;(2)若|PM|、|MN|、|PN|成等比数列,求a的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)利用极坐标与普通方程的关系式,可得C为抛物线方程,消去参数t,可得直线l的方程;(2)由|PM|=|t1|,|MN|=|t1﹣t2|,|PN|=|t2|成等比数列,可转化为关于a的等量关系求解.【解答】解:(Ⅰ)曲线C:ρsin2θ=2acosθ,可得ρ2sin2θ=2aρcosθ,它的直角坐标方程为y2=2ax(a>0);,消去t,可得x﹣y﹣2=0,直线l的普通方程为x﹣y﹣2=0.4分(Ⅱ)将直线l的参数方程与C的直角坐标方程联立,得t2﹣2(4+a)t+8(4+a)=0 (*)△=8a(4+a)>0.设点M,N分别对应参数t1,t2,恰为上述方程的根.则|PM|=|t1|,|PN|=|t2|,|MN|=|t1﹣t2|.由题设得(t1﹣t2)2=|t1t2|,即(t1+t2)2﹣4t1t2=|t1t2|.由(*)得t1+t2=2(4+a),t1t2=8(4+a)>0,则有(4+a)2﹣5(4+a)=0,得a=1,或a=﹣4.因为a>0,所以a=1.10分[选修4-5:不等式选讲]23.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.【考点】绝对值不等式的解法.【分析】(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<a≤3.综上可得,a的取值范围(,).2017年4月15日。

立体几何与球

立体几何与球

立体几何外接球及内切球问题1.1球与正方体常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFHG 和其内切圆,则2a r OJ ==; 二是与正方体各棱相切的球,截面图为正方形EFHG 和其外接圆,则a R OG 22==; 三是球为正方体的外接球,截面图为长方形11A ACC 和其外接圆,则23'1a R O A ==. 1.2 球与长方体长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的棱长为其体对角线为.当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径 1.3球与正棱柱:①结论:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点.②球与一般的正棱柱的组合体,常以外接形态居多.本类题目的解法:构造直角三角形法:设正三棱柱111C B A ABC -的高为h ,底面边长为a ;如图2所示,D 和1D 分别为上下底面的中心。

根据几何体的特点,球心必落在高1DD 的中点O ,a AD R AO h OD 33,,2===,借助直角三角形AOD 的勾股定理,可求22332⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=a h R 。

(注:底面三角形不是特殊三角形时:可利用正弦定理得到三角形外接圆半径),,,a b cl 2l R =2 . 球与锥体2.1 球与正四面体正四面体作为一个规则的几何体,它既存在外接球,也存在内切球,并且两心合一,利用这点可顺利解决球的半径与正四面体的棱长关系.如图4,设正四面体ABC S -的棱长为a ,内切球半径为r ,外接球的半径为,取AB 的中点为D ,E 为S 在底面的射影,连接SE SD CD ,,为正四面体的高。

在截面三角形SDC ,作一个与边SD 和DC 相切,圆心在高SE 上的圆,即为内切球的截面。

因为正四面体本身的对称性可知,外接球和内切球的球心同为O ;此时, ,33,32,,a CE a SE r OE R OS CO =====则有解得: 这个解法是通过利用两心合一的思路,建立含有两个球的半径的等量关系进行求解.同时我们可以发现,球心为正四面体高的四等分点.如果我们牢记这些数量关系,可为解题带来极大的方便.2.2 球与三条侧棱互相垂直的三棱锥球与三条侧棱互相垂直的三棱锥组合问题,主要是体现在球为三棱锥的外接球.解决的基本方法是补形法,即把三棱柱补形成正方体或者长方体.常见两种形式:一、三棱锥的三条棱互相垂直且相等,则可以补形为一个正方体,它的外接球的球心就是三棱锥的外接球的球心。

正方体内接于球(精选6篇)

正方体内接于球(精选6篇)

正方体内接于球(精选6篇)以下是网友分享的关于正方体内接于球的资料6篇,希望对您有所帮助,就爱阅读感谢您的支持。

篇一第1题. 一个正方体内接于一个球,过球心作一截面,如图所示,则截面的可能图形是()③①②④A .①②B.②④C.①②③D.②③④答案:C.第2题. 三视图的正视图、俯视图、侧视图分别是从、、观察同一个几何体,画出的空间几何体的图形.答案:正前方,正上方,正左方第3题. 圆台的正视图、侧视图都是,俯视图是.答案:全等的等腰梯形,两个同心圆.第4题. 给出下列命题:①如果一个几何体的三视图是完全相同的,则这个几何体是正方体;②如果一个几何体的正视图和俯视图都是矩形,则这个几何体是长方体;③如果一个几何体的三视图都是矩形,则这个几何体是长方体;④如果一个几何体的正视图和侧视图都是等腰梯形,则这个几何体是圆台.其中正确命题的个数是()A.0 B.1 C.2 D.3 答案:B.第5题. 利用斜二测画法得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论,正确的是()A.①②B.①C.③④D.①②③④答案:A.第6题. 如图1所示为一平面图形的直观图,则此平面图形可能是图2中的()x‘图1DABC图2答案:C .第7题. 若一个几何体的正视图和侧视图都是等腰三角形,俯视图是圆,则这个几何体可能是()A.圆柱B.三棱柱C.圆锥D.球体答案:C.第8题. 下列说法中正确的是()A.互相垂直的两条直线的直观图仍然是互相垂直的两条直线B.梯形的直观图可能是平行四边形C.矩形的直观图可能是梯形D.正方形的直观图可能是平行四边形答案:D.第9题. 如图所示的直观图,其平面图形的面积为()A.3B.2C.6D.答案:C.第10题. 下面的说法正确吗?(1)水平放置的正方形的直观图可能是梯形;(2)两条相交直线的直观图可能平行;(3)互相垂直的两条直线的直观图仍然互相垂直.答案:解:(1)错(2)错(3)错第11题. 如图中斜二测直观图所示的平面图形是()A.直角梯形B.等腰梯形C.不可能是梯形答案:A.第12题. 下图中直观图所表示的平面图形是()A.正三角形B.锐角三角形C.钝角三角形D.平行四边形D.直角三角形答案:D.þ,第13题. 如图,设正三棱锥P -ABC 的侧棱长为l ,∠APB =30E ,F 分别是BP ,CP 上的点,求△AEF 周长的最小值.答案:解:如图,PABCA ´为正三棱锥的侧面展开图,则AA ´为所求△AEF 周长的最小值,=90þ,PA =PA ´=l ,在△PAA ´中,∠APA ´∴AA ´=.第14题. 如图是一个多面体的展开图,每个面内都标注了字母,请根据要求回答问题:(1)这个几何体是什么体?(2)如果面A 在几何体的底部,那么哪一个面会在上面?(3)如果面F 在前面,从左面看是面B ,那么哪一面会在上面?(4)从右边看是面C ,面D 在后面,那么哪一面会在上面?答案:解:(1)长方体(2)F (3)C (4)A提示:用一个长方体的橡皮或铅笔盒做试验.第15题. 三视图均相同的几何体有()A.球B.正方体C.正四面体D.以上都对答案:D.第16题. 已知正△ABC 的边长为a ,那么△ABC 的平面直观图△AB ‘ ‘ C ‘ 的面积为(A.a 224B.8a 2C.82D.16答案:D.第17题. 图示是一个几何体的直观图,画出它的三视图.)答案:三视图如图:第18题. 图所示是一个几何体的三视图,画出它的直观图.主视图左视图答案:三棱柱横放,直观图如图.第19题. 画出图中3个图形的指定三视图(之一).俯视图画左视图画主视图画俯视图长方体的左视图五棱柱的主视图圆柱的俯视图答案:第20题. 若一个几何体的正视图和侧视图都是等腰三角形,俯视图是圆,则这个几何体可能是(A.圆柱B.三棱柱C.圆锥D.球体答案:C.第21题. 在原来的图形中,两条线段平行且相等,则在直观图中对应的两条线段().A.平行且相等B.平行不相等C.相等不平行D.既不平行也不相等答案:A.第22题. 画出右图的三视图答案:解:.)第23题. 如图1所示,空心圆柱体的正视图是()答案:C.第24题. 如图,E ,F 分别是正方体AC 1的面ADD 1A 1和面BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面上的正投影(投射线垂直于投影面的投影)可能是.(把所有可能图形的序号都填上)答案:(2)(3).第25题. 如图所示,是水平放置的三角形的直观图,D 是△ABC 的边BC 的中点,那么三条线段AB ,AD ,AC 长的大小关系是()A.AC >AD >AB B.AB >AD >AC C.AD >AB >AC D.AD >AC >AB答案:A.第26题. 已知一个几何体是由上、下两部分构成的一个组合体,其三视图如右图所示,则这个组合体的上、下两部分分别是()A.上部是一个圆锥,下部是一个圆柱B.上部是一个圆锥,下部是一个四棱柱C.上部是一个三棱锥,下部是一个四棱柱D.上部是一个三棱锥,下部是一个圆柱答案:B.C ´,则△ABC 为()第27题. 水平放置的△ABC 有一边在水平线上,它的斜二测直观图是正△A ´B ´A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能答案:C.第28题. 一水平位置的平面图形的斜二测直观图是一个底平行于x ‘轴,底角为45,两腰和上底长均为1的等腰梯形,则这个平面图形的面积是.答案:2+篇二设正四面体为A-BCD.作三角形BCD中,CD边的中线BE, BC边的中线DF. BE,DF相交于G,连接AG.以下讨论AG的性质.连接AE,AF. 由于BC垂直于AE, BC垂直于AF,故BC垂直于平面ADF,(垂直于平面上的两相交直线,就垂直于这平面) 从而BC垂直于AG.(垂直于平面,就垂直于平面上的任何直线)同理,CD垂直于AG,即知AG垂直于平面BCD. 即AG是过三角形BCD的外心且垂直这三角形所在平面的直线.故其上任何一点到三点BCD等距离. (1) 再者,平面ABE 是二面角平面C-AB-D的平分面.即:二面角C-AB-E = E-AB-D 由此知,平面ABE上任何点到平面ABC 和平面ABD的距离相等.同理:平面ADF是二面角平面C-AD-B的平分面.知:平面ADF上任何点到平面ABD 和平面ACD的距离相等.而AG在是上述两平面的交线,,故AG上的任何点到,此到三平面ABC,ABD,ACD的距离相等(2) 同理,设三角形ADC的中心为H,连接BH, 则BH 有相应的性质:(1a)其上任意点到三点ADC的距离相等;(2a)其上任意一点到三平面:BCD,BCA,BAD 距离相等.. AG, BH都在同一平面ABE中,设它们相交于O,则O点到四点:A,B,C,D距离相等,且O点到四面ABC,ABD, BCD,ACD距离相等.即O点既是外接球的中心,又是内切球的中心.求证:空间中两条异面直线有且只有一条公垂线!即已知:直线a和直线b为异面直线求证:它们有且只有一条公垂线我问过很多同学和老师他们都写不出来...注意证明公垂线的存在性和唯一性! 存在性证明过直线b作平面A平行于a,将a向A投影得a’交b于点p过点p作直线c垂直于A∵c⊥A∴c⊥b且c⊥a’∵a‖a’且c∩a’=p∴c⊥a=p’则c即为a,b公垂线唯一性证明假设公垂线不唯一,过b上任一点m作公垂线交a于n ∵mn⊥a a‖a’∴mn⊥a’又∵mn⊥b∴mn⊥A∵mn∩a=n且mn⊥a’∴mn∩a’=n’过平面外一点有且只有一条直线垂直于平面∴m=n’=p(三点重合)得过点p有两条直线与A垂直,与定理(过平面上一点有且只有一条直线垂直于平面)矛盾,故假设不成立.唯一性得证.篇三探求正四面体外接球、内切球半径正四面体是特殊的正三棱锥,所有的棱长都相等,四个面是全等的等边三角形,有外接球、内切球,且球心重合.已知正四面体ABCD棱长为a,设外接球半径为R,内切球半径为r,球心为O,则正四面体的高h是3a,外接球半径是a 即Rh;内切球半径是a即34412r 14h. 外接球半径是内切球半径的3倍. 下面从不同角度、用不同方法进行探求:方法一:(勾股定理)作AH 平面BCD 于H 点,则点H 是BCD 的中心,高h AH a,设O为球心,则O AH. 连结BH,BO. 在RtBOH中,BO2 BH2 O H2,即R2 a)2 a R)2,R a,r h R a a a.方法二:(三角正切倍角公式)作AH 平面BCD 于H 点,则点H 是BCD 的中心,高h AH 3a,设O为球心,则O AH. 连结BH,BO. AO BOABO BAO = , BOH 2 .在RtABH中,tan BHaAH ,23a在RtOBH中,tan2 BH3 OH r,1tan2 2tan1 t an2 ,2 3r 2r a, R h r a a a.方法三:(分割等体积)作AH 平面BCD 于H 点,则点H 是BCD 的中心,高h AH 3a,设O为球心,则O AH. 连结BO,CO,DO, 得到四个以O为顶点的小棱锥,它们的底面是正四面体的一个面,高是内切球的半径r,设正四面体每个面的面积为S,则4VO B CD V A B CD,即4113Sr3SAH,r 14AH 14h a,R h r a a a.方法四:(侧棱、高相似或三角)作AH平面BCD 于H 点,则点H 是BCD 的中心,高h AH 3a,设O为球心,则O AH.设M是AB的中点,连结OM,OB,BH,AO BO OM ABAMO AHB Rt ,又 MAO HAB,AMOAHB, AMAH AOAB,2a即Ra,R 4a,r h R 3a 4a 12a.或:设 BAH MAO ,则在RtABH中,cos AHaAB a,a在RtAMO中,cos AM2AOR.aaa 2R ,以下同上.方法五:(斜高、高相似或三角)作AH 平面BCD 于H 点,则点H 是BCD 的中心,高h AH a,设O为球心,则O AH.设E为BC中点,连结AE,EH,作ON AE于N点,则N是ABC中心,N是AE的三等分点,ON 平面ABC,ON是内切圆半径r,且RtANORtAEH, ANAOaRAH AE,,R a,r h R a a a.或:设 EAH NAO ,则3在RtAEH中,cos AHaAE在RtANO中,cos ANaAOR.R,以下同上.2 方法六:(斜高、侧棱相似或三角)作AH 平面BCD 于H 点,则点H 是BCD 的中心,高h AH 3a,设O为球心,则O AH.设E为BC中点,连结AE,DE,DO,延长DO交AE于N,则N是AE的三等分点,H DE. 且DN 平面ABC.则RtODHRtDNE, OHODNE DE即OHNEOD= DE 13, rR 13, R 3r.又R r AH h 3a,r 14h 12a, R 34h 4a.或:在RtDNE中,sin NDE NEDE 13,在RtDOH中,sin NDE sin ODH OHOD,OD 13,即r1R 3, R 3r.4又R r AH h a,3r 13h a, R h a. 41244方法七:(构造正方体)正四面体的四个顶点是正方体的顶点,此时正四面体的外接球也是正方体的外接球,正四面体的棱长为a,则正方体的棱长为a.正方体的体对角线等于外接球直径,有2a 2R,2a,r h R a a a. 43412 R方法八:(相交弦定理)设外接球球心为O,半径为R,过A点作球的直径,交底面BCD于H,则H为BCD的外心,求得AH a,BH a, 由相交弦定理得2 a(2R a) a).333解得Ra.4a aa. 3412 r h R以上从不同角度针对正四面体的外接球半径、内切球半径作了讨论,从而从不同方面对思维作了训练,不仅对正四面体的外接球半径、内切球半径有了透彻的认识,同时对解题能力的提高是有帮助的.5篇四求棱长为a的正四面体外接球和内切球的体积?解一:如图设ABCD是棱长为a的正四面体作AO1⊥平面BCD于O1,则O1为ΔBCD的中心则BO1=23 a=a 3232 62 =a ∴AO1=a- a3 3在平面ABO1内作AB的垂直平分线交AO1于O,则AO=BO=CO=DO 且O到平面BCD、ABC、ACD、ABD的距离相等∴O是ΔACD的内切球,外接球球心a aAOAE6∵,∴AO= =a ABAO146a3∴OO1=a-a=a 341234 =a3, ∴ABCD的外接球的体积为a 3 8 44 6 6 =a3。

(压轴题)高中数学必修二第一章《立体几何初步》检测题(包含答案解析)

(压轴题)高中数学必修二第一章《立体几何初步》检测题(包含答案解析)

一、选择题1.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,M 为棱1DD 上的一点.当1A M MC +取得最小值时,1B M 的长为( )A .3B .6C .23D .26 2.已知正方体1111ABCD A B C D -的棱长为2,E 为棱1AA 的中点,截面1CD E 交棱AB 于点F ,则四面体1CDFD 的外接球表面积为( )A .394πB .414πC .12πD .434π 3.某几何体的三视图如图所示,其中网格纸的小正方形的边长是1,则该几何体外接球的体积为( )A .323πB .48πC 323D .643π 4.如图,在矩形ABCD 中,1AB =,3BC =,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥A BCD -正视图和俯视图如图,则三棱锥A BCD -中AC 长为( )A .32B .3C .102D .25.已知球O 的半径为5,球面上有,,A B C 三点,满足214,27AB AC BC ===,则三棱锥O ABC -的体积为( )A .77B .142C .714D .147 6.在下面四个正方体ABCD A B C D ''''-中,点M 、N 、P 均为所在棱的中点,过M 、N 、P 作正方体截面,则下列图形中,平面MNP 不与直线A C '垂直的是( ) A . B . C . D . 7.在正方体1111ABCD A B C D -中,M 是棱1CC 的中点.则下列说法正确的是( ) A .异面直线AM 与BC 所成角的余弦值为53B .BDM 为等腰直角三角形C .直线BM 与平面11BDD B 所成角的正弦值等于105D .直线1AC 与平面BDM 相交 8.如图是某个四面体的三视图,则下列结论正确的是( )A .该四面体外接球的体积为48πB .该四面体内切球的体积为23π C .该四面体外接球的表面积为323πD .该四面体内切球的表面积为2π9.在正方体1111ABCD A B C D -中,三棱锥11A B CD -的表面积为43的体积为( )A .3πB 6πC .3πD .86π 10.已知四面体ABCD ,AB ⊥平面BCD ,1AB BC CD BD ====,若该四面体的四个顶点都在球O 的表面上,则球O 的表面积为( )A .73πB .7πC .712πD .79π 11.设m 、n 是两条不同的直线,α是平面,m 、n 不在α内,下列结论中错误的是( )A .m α⊥,//n α,则m n ⊥B .m α⊥,n α⊥,则//m nC .m α⊥,m n ⊥,则//n αD .m n ⊥,//n α,则m α⊥ 12.如图(1),Rt ABC ,1,3,2AC AB BC ===,D 为BC 的中点,沿AD 将ACD △折起到AC D ',使得C '在平面ABD 上的射影H 落在AB 上,如图(2),则以下结论正确的是( )A .AC BD '⊥B .AD BC '⊥ C .BD C D ⊥' D .AB C D ⊥'二、填空题13.圆锥底面半径为1,母线长为4,轴截面为PAB ,如图,从A 点拉一绳子绕圆锥侧面一周回到A 点,则最短绳长为_________.14.如图,点E 是正方体1111ABCD A B C D -的棱1DD 的中点,点M 在线段1BD 上运动,则下列结论正确的有__________.①直线AD 与直线1C M 始终是异面直线②存在点M ,使得1B M AE ⊥③四面体EMAC 的体积为定值④当12D M MB =时,平面EAC ⊥平面MAC15.已知直三棱柱111ABC A B C -,90CAB ∠=︒,1222AA AB AC ===,则直线1A B 与侧面11B C CB 所成角的正弦值是______.16.在三棱锥P ABC -中,PA ⊥平面ABC ,22AB =,3BC =,4PA =,4ABC π∠=,则该三棱锥的外接球体积为___________.17.如图所示,Rt A B C '''∆为水平放置的ABC ∆的直观图,其中A C B C ''''⊥,2B O O C ''''==,则ABC ∆的面积是________________.18.已知正四棱锥的体积为18,侧棱与底面所成的角为45,则该正四棱锥外接球的表面积为___________.19.如图,圆柱的体积为16π,正方形ABCD 为该圆柱的轴截面,F 为AB 的中点,E为母线BC 的中点,则异面直线AC ,EF 所成的角的余弦值为______.20.在三棱锥-P ABC 中,侧面PBC 和底面ABC 都是边长为2的正三角形,若3PA =,则侧棱PA 与底面ABC 所成的角的大小是___________. 三、解答题21.如图,在正四棱柱1111ABCD A B C D -中,11,2AB AA ==,点E 为1CC 中点,点F 为1BD 中点.(1)求异面直线1BD 与1CC 的距离;(2)求直线1BD 与平面BDE 所成角的正弦值;(3)求点F 到平面BDE 的距离.22.正四棱台两底面边长分别为3和9,若侧棱所在直线与上、下底面正方形中心的连线所成的角为45,求棱台的侧面积.23.如图,圆柱的轴截面ABCD 是长方形,点E 是底面圆周上异于A ,B 的一点,AF DE ⊥,F 是垂足.(1)证明:AF DB ⊥;(2)若2AB =,3AD =,当三棱锥D ABE -体积最大时,求点C 到平面BDE 的距离. 24.如图,在直三棱柱111ABC A B C -中,底面是等腰直角三角形,90ACB ∠=︒且AC a =,侧棱12AA =,D ,E 分别是1CC ,11A B 的中点.(1)求直三棱柱111ABC A B C -的体积(用字母a 表示);(2)若点E 在平面ABD 上的射影是三角形ABD 的重心G ,①求直线EB 与平面ABD 所成角的余弦值;②求点1A 到平面ABD 的距离25.如图,已知三棱锥P ABC -﹐PC AB ⊥,ABC 是边长为23的正三角形,43PB =﹐60PBC ∠=,点F 为线段AP 的中点.(1)证明:PC ⊥平面ABC ;(2)求直线BF 与平面PAC 所成角的大小.26.我市论语广场准备设置一些多面体形或球形的石凳供市民休息,如图(1)的多面体石凳是由图(2)的正方体石块截去八个相同的四面体得到,且该石凳的体积是3160dm 3.(Ⅰ)求正方体石块的棱长;(Ⅱ)若将图(2)的正方体石块打磨成一个球形的石凳,求此球形石凳的最大体积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】本题首先可通过将侧面11CDD C 绕1DD 逆时针转90展开得出当1A 、M 、2C 共线时1A M MC +取得最小值,此时M 为1DD 的中点,然后根据11B A ⊥平面11A D DA 得出111B A A M ⊥,最后根据221111M A B B A M =+即可得出结果.【详解】如图,将侧面11CDD C 绕1DD 逆时针转90展开,与侧面11ADD A 共面,连接12A C ,易知当1A 、M 、2C 共线时,1A M MC +取得最小值,因为1AB AD ==,12AA =,所以M 为1DD 的中点,12A M = 因为11B A ⊥平面11A D DA ,1A M ⊂平面11A D DA ,所以111B A A M ⊥,则222211111(2)3M B A A M B =+=+=故选:A.【点睛】关键点点睛:本题考查根据线面垂直判断线线垂直,能否根据题意得出当M 为1DD 的中点时1A M MC +取得最小值是解决本题的关键,考查计算能力,考查数形结合思想,是中档题. 2.B解析:B【分析】可证F 为AB 的中点,设1DD 的中点为G ,DFC △的外接圆的球心为1O ,四面体1CDFD 的外接球的球心为O ,连接11,,,OG OF OO A B ,利用解三角形的方法可求DFC △的外接圆的半径,从而可求四面体1CDFD 的外接球的半径.【详解】设1DD 的中点为G ,DFC △的外接圆的圆心为1O ,四面体1CDFD 的外接球的球心为O ,连接11,,,OG OF OO A B ,因为平面11//A ABB 平面11D DCC ,平面1CD E ⋂平面11A ABB EF =,平面1CD E ⋂平面111D DCC D C =,故1//EF D C ,而11//A B D C ,故1//EF A B ,故F 为AB 的中点, 所以145DF CF ==+=,故3cos 5255DFC ∠==⨯⨯, 因为DFC ∠为三角形的内角,故4sin 5DFC ∠=,故DFC △的外接圆的半径为1254245⨯=,1OO ⊥平面ABCD ,1DD ⊥平面ABCD ,故11//OO DD ,在平面1GDO O 中,111,OG DD O D DD ⊥⊥,故1//OG O D ,故四边形1GDO O 为平行四边形,故1//OO GD ,1OO GD =,所以四面体1CDFD 2541116+= 故四面体1CDFD 的外接球表面积为41414164ππ⨯=, 故选:B.【点睛】方法点睛:三棱锥的外接球的球的半径,关键是球心位置的确定,通常利用“球心在过底面外接圆的圆心且垂直于底面的直线上”来确定. 3.A解析:A【分析】由三视图可知,该几何体是四棱锥,其中四棱锥底面是边长为4的正方形,将四棱锥补成棱长为4的正方体,则该几何体的外接球就是正方体的外接球,进而可得答案. 【详解】由三视图可知,该几何体是如图所示的四棱锥P ABCD -, 其中四棱锥底面是边长为4的正方形,四棱锥的一条侧棱与底面垂直,四棱锥的高为4, 将四棱锥补成棱长为4的正方体, 则该几何体的外接球就是正方体的外接球, 外接球的直径2R 等于正方体的对角线长, 即24323R R =⇒=,所以该几何体外接球的体积为()34233π⨯=323π,故选:A.【点睛】方法点睛:三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.4.C解析:C 【分析】先由正视图、俯视图及题意还原三棱锥,过A 作AM ⊥BD 于点M ,连结MC ,把AC 放在直角三角形AMC 中解AC . 【详解】根据三棱锥A BCD -正视图和俯视图,还原后得到三棱锥的直观图如图示,由图可知:平面ABD ⊥平面CBD ,过A 作AM ⊥BD 于点M ,连结MC ,则AM ⊥平面CBD , ∴△MCA 为直角三角形. 过C 作CN ⊥BD 于点N ,在直角三角形ABD 中,AB =1,AD 3,∴222BD AB AD =+=所以∠ABD=60°,∠ADB=30°,则在直角三角形ABM 中,AB =1,∠ABM=60°,∴13,22BM AM ==. 同理,在直角三角形CBD 中,13,22DN CN ==. ∴MN =BD -BM -DN =112122--=, ∴222237()122CM CN MN =+=+= 在直角三角形AMC 中,22227310()222AC CM AM ⎛⎫=+=+= ⎪ ⎪⎝⎭故选:C 【点睛】(1)根据三视图画直观图,可以按下面步骤进行:①、首先看俯视图,根据俯视图画出几何体地面的直观图 ;②、观察正视图和侧视图找到几何体前、后、左、右的高度;③、画出整体,让后再根据三视图进行调整.(2)立体几何中求线段长度:①、把线段放在特殊三角形中,解三角形;②、用等体积法求线段.5.A解析:A 【分析】利用正弦定理求出ABC 的外接圆半径,则可求出三棱锥的高,进而求出三棱锥体积. 【详解】设ABC 的外接圆的圆心为D ,半径为r ,在ABC 中,72cos 4214ABC ∠==,14sin ABC ∴∠=, 由正弦定理可得28sin ACr ABC==∠,即4r =,则22543OD =-=,11114214273773324O ABC ABCV SOD -∴=⨯⨯=⨯⨯⨯⨯⨯=. 故选:A.【点睛】本题考查球内三棱锥的相关计算,解题的关键是利用正弦定理求出ABC 的外接圆半径,利用勾股关系求出高.6.A解析:A 【分析】利用线面垂直的判定定理可判断BCD 选项,利用假设法推出矛盾,可判断A 选项. 【详解】对于A 选项,连接B C ',假设A C '⊥平面MNP ,在正方体ABCD A B C D ''''-中,A B ''⊥平面BB C C '',B C '⊂平面BB C C '',A B B C '''∴⊥,所以,A B C ''为直角三角形,且A CB ''∠为锐角,因为M 、N 分别为BB '、BC 的中点,则//MN B C ',所以,MN 与A C '不垂直, 这与A C '⊥平面MNP 矛盾,故假设不成立,即A C '与平面MNP 不垂直;对于B 选项,连接B D ''、A C '',如下图所示:因为四边形A B C D ''''为正方形,则A C B D ''''⊥,CC '⊥平面A B C D '''',B D ''⊂平面A B C D '''',CC B D '''∴⊥, A C CC C ''''=,B D ''∴⊥平面A CC '',A C '⊂平面A CC '',A CB D '''∴⊥,M 、P 分别为A B ''、A D ''的中点,则//MN B D '',可得MP A C '⊥, 同理可证A C MN '⊥,MP MN M ⋂=,A C '∴⊥平面MNP ;对于C 选项,连接C D '、A N '、CN 、A P '、PC ,取A B ''的中点E ,连接C E '、PE ,因为四边形CC D D ''为正方形,则CD C D ''⊥,A D ''⊥平面CC D D '',C D '⊂平面CC D D '',C D A D '''∴⊥, CD A D D ''''=,C D '∴⊥平面A CD '',A C '⊂平面A CD '',A C C D ''∴⊥,M 、N 分别为DD '、C D ''的中点,//MN C D '∴,A C MN '∴⊥,在正方形A B C D ''''中,E 、N 分别为A B ''、C D ''的中点,//A E C N ''∴且A E C N ''=, 所以,四边形A EC N ''为平行四边形,所以,//A N C E ''且A N C E ''=, 同理可证四边形CC EP '为平行四边形,//C E CP '∴且C E CP '=, 所以,//A N CP '且A N CP '=,所以,四边形A PCN '为平行四边形, 易得A N CN '=,所以,四边形A PCN '为菱形,所以,A C PN '⊥,MN PN N =,A C '∴⊥平面MNP ;对于D 选项,连接AC 、BD ,因为四边形ABCD 为正方形,则AC BD ⊥,AA '⊥平面ABCD ,BD ⊂平面ABCD ,AA BD '∴⊥, AC AA A '⋂=,BD ∴⊥平面AA C ',A C '⊂平面AA C ',AC BD '∴⊥,M 、N 分别为CD 、BC 的中点,则//MN BD ,A C MN '∴⊥,同理可证A C MP '⊥,MN MP M ⋂=,A C '∴⊥平面MNP .故选:A. 【点睛】方法点睛:证明线面垂直的方法: 一是线面垂直的判定定理; 二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.7.C解析:C 【分析】A 通过平移,找出异面直线所成角,利用直角三角形求余弦即可. B.求出三角形的三边,通过勾股定理说明是不是直角三角形.C.求出点M 到面11BB D D 的距离,再求直线BM 与平面11BDD B 所成角的正弦.D.可通过线线平行证明线面平行. 【详解】 设正方体棱长为2A. 取1BB 的中点为N ,则//BC MN ,则AM 与BC 所成角为AMN ∠ 由BC ⊥面11ABB A ,故MN ⊥面11ABB A ,故MN AN ⊥,在Rt ANM △中,5tan 2AMN ∠=,故2cos 3AMN ∠=B. BDM 中,5BM =,22BD =,5DM =,不满足勾股定理,不是直角三角形C. AC BD ⊥,1AC BB ⊥,故AC ⊥面11BB D D ,1//CC 面11BB D D ,故M 到面11BB D D 的距离等于C 到面11BB D D 的距离,即为122d AC ==直线BM 与平面11BDD B 所成角为θ210sin 55d BM θ===直线BM 与平面11BDD B 所成角的正弦值等于105D.如图ACBD O =OM 为1ACC △的中位线,有1//OM AC故直线1AC 与平面BDM 平行故选:C 【点睛】本题考查了空间几何体的线面位置关系判定与证明:(1)对于异面直线的判定要熟记异面直线的概念:把既不平行也不相交的两条直线称为异面直线;(2)对于线面位置关系的判定中,熟记线面平行与垂直、面面平行与垂直的定理是关键.8.D解析:D 【分析】先找到几何体原图,再求出几何体的外接球的半径和内切球的半径,再判断每一个选项得解. 【详解】由三视图得几何体为下图中的三棱锥A BCD -,AB ⊥平面BCD ,42AB =,2CE DE ==,2BE =,由题得2CBD π∠=.设外接球的球心为,O 外接球的半径为R ,则OE ⊥平面BCD , 连接,OB OA ,取AB 中点F ,连接OF .由题得1222OE BF AB ===,所以222(22)2,23R R =+∴=, 所以外接球的体积为34(23)3233ππ⨯=,所以选项A 错误; 所以外接球的表面积为24(23)48ππ⨯=,所以选项C 错误; 由题得22(42)(22)210AC AD ==+=, 所以△ACD △的高为24026-=, 设内切球的半径为r ,则1111111(422242222446)24423222232r ⨯⨯+⨯⨯+⨯⨯+⨯⨯=⨯⨯⨯⨯ 所以22r, 所以内切球的体积为3422)323ππ⨯=(,所以选项B 错误; 所以内切球的表面积为224()22ππ⨯=,所以选项D 正确. 故选:D【点睛】方法点睛:求几何体外接球的半径一般有两种方法:模型法和解三角形法.模型法就是把几何体放在长方体中,使几何体的顶点和长方体的若干个顶点重合,则几何体的外接球和长方体的外接球是重合的,长方体的外接球的半径22212r a b c =++几何体的外接球半径.如果已知中有多个垂直关系,可以考虑用此种方法.解三角形法就是找到球心O 和截面圆的圆心O ',找到OO '、球的半径OA 、截面圆的半径O A '确定的Rt OO A '△,再解Rt OO A '△求出球的半径OA .9.B解析:B 【分析】根据三棱锥的表面积进一步求出正方体的棱长,最后求出正方体的外接球的半径,进一步求出结果. 【详解】解:设正方体的棱长为a ,则1111112B D AC AB AD B C D C a ======, 由于三棱锥11A B CD -的表面积为43, 所以()12133442242AB CS S a==⨯⨯=所以2a =()()()2222226++=, 所以正方体的外接球的体积为34663ππ⎛⎫= ⎪ ⎪⎝⎭故选:B . 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.10.A解析:A 【分析】本题首先可根据题意将四面体ABCD 看作底面是等边三角形的直三棱柱的一部分,然后求出直三棱柱的外接球的半径,最后根据球的表面积计算公式即可得出结果. 【详解】因为AB ⊥平面BCD ,1AB BC CD BD ====,所以可将四面体ABCD 看作底面是等边三角形的直三棱柱的一部分,如图所示:则四面体ABCD 的外接球即直三棱柱的外接球,因为底面三角形BCD 的外心到三角形BCD 的顶点的长度为222131323, 所以直三棱柱的外接球的半径221372312r, 则球O 的表面积277π4π4π123S r , 故选:A. 【点睛】关键点点睛:本题考查四面体的外接球的表面积的计算,能否将四面体ABCD 看作底面是等边三角形的直三棱柱的一部分是解决本题的关键,考查直三棱柱的外接球的半径的计算,是中档题.11.D解析:D 【分析】利用线面平行的性质定理和线面垂直的定义可判断A 选项的正误;由线面垂直的性质定理可判断B 选项的正误;根据已知条件判断直线n 与平面α的位置关系,可判断C 选项的正误;根据已知条件判断直线m 与平面α的位置关系,可判断D 选项的正误. 【详解】 对于A ,//n α,由线面平行的性质定理可知,过直线n 的平面β与平面α的交线l 平行于n ,m α⊥,l α⊂,m l ∴⊥,m n ∴⊥,故A 正确;对于B ,若m α⊥,n α⊥,由直线与平面垂直的性质,可得//m n ,故B 正确; 对于C ,若m α⊥,m n ⊥,则//n α或n ⊂α,又n α⊄,//n α∴,故C 正确;对于D ,若m n ⊥,//n α,则//m α或m 与α相交或m α⊂, 而m α⊄,则//m α或m 与α相交,故D 错误. 故选:D . 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.12.C解析:C 【分析】设AH a =,则BH a =,由线面垂直的性质和勾股定理可求得DH a AH ==,由等腰三角形的性质可证得BD ⊥DH ,再根据线面垂直的判定和性质可得选项. 【详解】设AH a =,则BH a =,因为'C H ⊥面ABD ,AB 面ABD ,DH ⊂面ABD ,所以'C H ⊥AB ,'C H ⊥DH ,'C H ⊥DB ,又Rt ABC ,1,2AC AB BC ===,D 为BC 的中点,所以'1,6C D BD B DAB π==∠=∠=,所以在'Rt AC H 中,'C H ==Rt C HD ’中,()2'222'211DH C D C H a a =-=--=,所以DH a AH ==,所以6ADH DAB π∠=∠=,又23ADB π∠=,所以2HDB π∠=,所以BD ⊥DH ,又'C HDH H =,所以BD ⊥面'C DH ,又'C D ⊂面'C DH ,所以BD ⊥'C D , 故选:C. 【点睛】关键点点睛:在解决折叠问题时,关键在于得出折叠的前后中,线线、线面、面面之间的位置关系的不变和变化,以及其中的边的长度、角度中的不变量和变化的量.二、填空题13.【分析】把圆锥侧面展开为一个平面图形利用平面上两点间线段最短可得【详解】由题意所以圆锥侧面展开图中心角为如图则故答案为:【点睛】关键点点睛:本题考查圆锥侧面上的最短距离问题空间几何体表面上两点间的最解析:【分析】把圆锥侧面展开为一个平面图形,利用平面上两点间线段最短可得. 【详解】由题意1,4r l ==,所以圆锥侧面展开图中心角为2142ππθ⨯==,如图,2APA π'∠=, 则2442AA '=⨯=.故答案为:42.【点睛】关键点点睛:本题考查圆锥侧面上的最短距离问题,空间几何体表面上两点间的最短距离问题的解决方法常常是把几何体的表面展开摊平为一个平面图形,利用平面上两点间线段最短求解.14.②③④【分析】取点为线段的中点可判断①建立空间直角坐标系假设存在点使得利用解出的值即可判断②;连接交于点证明线段到平面的距离为定值可判断③;求出点的坐标然后计算平面和平面的法向量即可判断④【详解】对解析:②③④. 【分析】取点M 为线段1BD 的中点可判断①,建立空间直角坐标系假设存在点M ,使得1B M AE ⊥,利用()1110AE B M AE B B BD λ⋅=⋅+=解出λ的值即可判断②;连接AC 、BD 交于点1O ,证明11//EO BD ,线段1BD 到平面AEC 的距离为定值,可判断③;求出点M 的坐标,然后计算平面AEC 和平面MAC 的法向量,即可判断④. 【详解】对于①:连接1AC 交1BD 于点O ,当点M 在O 点时直线AD 与直线1C M 相交,故①不正确,以D 为坐标原点,建立如图所示的空间直角坐标系,设正方体的边长为2,则()0,0,0D ,()10,0,2D ,()2,0,0A ,()0,2,0C ,()0,0,1E ,()2,2,0B ,()12,2,2B ,对于②:()2,0,1AE =-,假设存在点M ,使得1B M AE ⊥,()()()1110,0,22,2,22,2,22B M B B BD λλλλλ=+=-+--=---,[]0,1λ∈,所以14220AE B M λλ⋅=+-=,解得13λ=,所以当12D M MB =时1B M AE ⊥, 故②正确;对于③:连接AC 、BD 交于点1O ,因为点E 是棱1DD 的中点,此时11//EO BD ,故线段1BD 到平面AEC 的距离为定值,所以四面体EMAC 的体积为定值,故③正确;对于④:当12D M MB =时,442,,333M ⎛⎫⎪⎝⎭,()2,0,1AE =-,()2,2,0AC =-,设平面AEC 的法向量为()111,,m x y z =,由111120220m AE x z m AC x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ 令12z =,可得11x =,11y =,可得()1,1,2m =,设平面MAC 的法向量为()222,,n x y z =,242,,333MA ⎛⎫=-- ⎪⎝⎭,由22222220242333n AC x y n MA x y z ⎧⋅=-+=⎪⎨⋅=--=⎪⎩解得:20y =,令 21x =可得22z =,所以1,1,1n,因为1111120m n ⋅=⨯+⨯-⨯=,m n ⊥所以平面EAC ⊥平面MAC ,故④正确; 故答案为:②③④. 【点睛】方法点睛:证明面面垂直的方法(1)利用面面垂直的判定定理,先找到其中一个平面的一条垂线,再证明这条垂线在另外一个平面内或与另外一个平面内的一条直线平行即可; (2)利用性质://,αββγαγ⊥⇒⊥(客观题常用); (3)面面垂直的定义(不常用);(4)向量方法:证明两个平面的法向量垂直,即法向量数量积等于0.15.【分析】取中点连接证明平面可得为直线与侧面所成的角进而可得答案【详解】取中点连接直三棱柱中平面平面又又面平面在平面上的射影为故为直线与侧面所成的角中中中故答案为:【点睛】方法点睛:求直线与平面所成的 解析:10 【分析】取11B C 中点D ,连接1,A D BD ,证明1A D ⊥平面11B C CB ,可得1A BD ∠为直线1A B 与侧面11B C CB 所成的角,进而可得答案. 【详解】取11B C 中点D ,连接1,A D BD ,直三棱柱中,1BB ⊥平面111A B C ,1A D ⊂平面111A B C ,11BB A D ∴⊥,又11111A B A C ==,111A D B C ∴⊥, 又1111B C BB B =,111,B C BB ⊂面11BB C C ,1A D ∴⊥平面11B C CB ,1A B ∴在平面11B C CB 上的射影为DB ,故1A BD ∠为直线1A B 与侧面11B C CB 所成的角,11Rt A B B 中,22211121125BB A B A B =+=+=111Rt B A C 中,1112212122B C A D=⨯==,1Rt A BD ∴中,1112102sin 5A D A BD AB ∠===, 故答案为:1010. 【点睛】方法点睛:求直线与平面所成的角有两种方法:一是传统法,证明线面垂直找到直线与平面所成的角,利用平面几何知识解答;二是利用空间向量,求出直线的方向向量以及平面的方向向量,利用空间向量夹角余弦公式求解即可.16.【分析】利用余弦定理求得利用正弦定理计算出的外接圆直径可计算出三棱锥的外接球半径然后利用球体体积公式可求得结果【详解】如下图所示圆柱的底面圆直径为圆柱的母线长为则的中点到圆柱底面圆上每点的距离都相等 解析:1326π【分析】利用余弦定理求得AC ,利用正弦定理计算出ABC 的外接圆直径2r ,可计算出三棱锥P ABC -的外接球半径R ,然后利用球体体积公式可求得结果.【详解】如下图所示,圆柱12O O 的底面圆直径为2r ,圆柱的母线长为h , 则12O O 的中点O 到圆柱底面圆上每点的距离都相等, 所以,圆柱12O O 的外接球直径为()2222R r h =+.本题中,作出ABC 的外接圆2O ,由于PA ⊥平面ABC ,可将三棱锥P ABC -放在圆柱12O O 中,在ABC 中,22AB =3BC =,4ABC π∠=,由余弦定理可得222cos 5AC AB BC AB BC ABC +-⋅∠=,由正弦定理可知,ABC 的外接圆直径为5210sin 2ACr ABC===∠ 则三棱锥P ABC -的外接球直径为()222226R PA r =+=26R =, 因此,三棱锥P ABC -的外接球的体积为334426132633V R ππ==⨯=⎝⎭. 故答案为:13263. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.17.【分析】根据直观图和原图的之间的关系由直观图画法规则将还原为如图所示是一个等腰三角形直接求解其面积即可【详解】由直观图画法规则将还原为如图所示是一个等腰三角形则有所以故答案为:【点睛】关键点点睛:根 解析:2【分析】根据直观图和原图的之间的关系,由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,直接求解其面积即可. 【详解】由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,则有2BO OC B O O C ''''====,242AO A O ''==所以114428222ABCSBC AO =⋅=⨯⨯= 故答案为:82 【点睛】关键点点睛:根据斜二测画法的规则,可得出三角形的直观图,并求出对应边长,根据面积公式求解.18.【分析】作出图形计算出正四棱锥的高与底面边长设底面的中心为计算得出为正四棱锥的外接球球心可求得该正四棱锥的外接球半径即可得解【详解】如下图所示设正四棱锥的底面的中心为连接设正四棱锥的底面边长为则由于 解析:36π【分析】作出图形,计算出正四棱锥P ABCD -的高与底面边长,设底面ABCD 的中心为E ,计算得出E 为正四棱锥P ABCD -的外接球球心,可求得该正四棱锥的外接球半径,即可得解. 【详解】如下图所示,设正四棱锥P ABCD -的底面ABCD 的中心为E ,连接PE 、AC 、BD ,设正四棱锥P ABCD -的底面边长为a ,则2AC BD a ==,由于E 为正四棱锥P ABCD -的底面ABCD 的中心,则PE ⊥平面ABCD , 由于正四棱锥P ABCD -的侧棱与底面所成的角为45,则45PAC PCA ∠=∠=, 所以,PAC △是以APC ∠为直角的等腰直角三角形, 同理可知,PBD △是以BPD ∠为直角的等腰直角三角形,E 为AC 的中点,122PE AC a ==,2ABCD S a =正方形,2311183326P ABCD ABCD V S PE a a a -=⋅=⨯⨯==正方形,解得a =,232PE a ==,由直角三角形的性质可得1122PE AC BD ==,即PE AE BE CE DE ====,所以,E 为正四棱锥P ABCD -外接球的球心, 球E 的半径为3r PE ==,该球的表面积为2436r ππ=. 故答案为:36π. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.19.【分析】由圆柱体积求得底面半径母线长设底面圆心为可得为异面直线与所成的角(或其补角)在对应三角形中求解可得【详解】设圆柱底面半径为则母线长为由得设底面圆心为连接则所以为异面直线所成的角在中所以故答案【分析】由圆柱体积求得底面半径,母线长,设底面圆心为O ,可得OEF ∠为异面直线AC 与EF 所成的角(或其补角).在对应三角形中求解可得. 【详解】设圆柱底面半径为r ,则母线长为2r ,由2216r r ππ⋅=得2r.设底面圆心为O ,连接OE ,OF .则//OE AC ,所以OEF ∠为异面直线AC ,EF 所成的角.在Rt OEF △中,2OF =,OE =EF =所以cos 3OE OEF EF ∠==..【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.20.【分析】先画出直观图证明平面平面然后侧棱与底面ABC 所成的角即为根据题目中的数据算出即可【详解】如图作的中点连结因为侧面PBC 和底面ABC 都是边长为2的正三角形而为的中点所以又所以平面同时平面所以平解析:o 60. 【分析】先画出直观图,证明平面PAD ⊥平面ABC ,然后侧棱PA 与底面ABC 所成的角即为PAD ∠,根据题目中的数据算出即可.【详解】如图,作BC 的中点D ,连结AD 、PD 因为侧面PBC 和底面ABC 都是边长为2的正三角形 而D 为BC 的中点,所以BC PD ⊥,BC AD ⊥,又PD AD D ⋂=,所以BC ⊥平面PAD ,同时BC ⊂平面ABC。

立体几何----与球有关的切、接问题拔高练——2022届高考数学一轮复习

立体几何----与球有关的切、接问题拔高练——2022届高考数学一轮复习

立体几何----与球有关的切、接问题提高练【答题技巧】1.“切”“接”问题的处理规律(1)“切”的处理:球的内切问题主要是球内切于多面体或旋转体.解答时要找准切点,通过作截面来解决.(2)“接”的处理:把一个多面体的顶点放在球面上即球外接于该多面体.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.2.当球的内接多面体为共顶点的棱两两垂直的三棱锥、共顶点的三个侧面两两垂直的三棱锥或三组对棱互相垂直的三棱锥时,常构造长方体或正方体以确定球的直径.3.与球有关的组合体的常用结论 (1)长方体的外接球: ①球心:体对角线的交点;②半径:,,r a b c =为长方体的长、宽、高). (2)正方体的外接球、内切球及与各条棱都相切的球:①外接球:球心是正方体的中心,半径(r a =为正方体的棱长); ②内切球:球心是正方体的中心,半径(2ar a =为正方体的棱长);③与各条棱都相切的球:球心是正方体的中心,半径r =(a 为正方体的棱长). (3)正四面体的外接球与内切球(正四面体可以看作是正方体的一部分):①外接球:球心是正四面体的中心,半径(r a =为正四面体的棱长);②内切球:球心是正四面体的中心,半径(r a =为正四面体的棱长). 【练习】1.在三棱锥P-ABC 中,△ABC 的内切圆圆O 的半径为2,PO ⊥平面ABC ,且三棱锥P-ABC 的三个侧面与底面所成角都为60°,则该三棱锥的内切球的体积为( )C.16π3D.4π32.已知在三棱锥P-ABC 中,△ABC 是以A 为直角的三角形,AB=AC=2,△PBC 是正三角形,且PC 与底面ABC所成角的正弦值为34,则三棱锥P-ABC外接球的半径为( )A.43B.32C.133D.2233.张衡是中国东汉时期伟大的天文学家、数学家等,他曾经得出圆周率的平方除以十六等于八分之五.已知三棱锥A-BCD的每个顶点都在球O的表面上,AB⊥底面BCD,BC⊥CD,且AB=CD=3,BC=2,利用张衡的结论可得球O的表面积为( )A.30B.1010C.33D.12104.已知三棱锥P-ABC中,PA PB PC ABC==,是边长为42的正三角形,D,E分别是PA,AB上靠近点A 的三等分点,DE PC⊥,则三棱锥P-ABC的内切球的表面积为( )A.(5763203)π-B.(2881603)π-C.(64323)π-D.(64323)π-5.取两个相互平行且全等的正n边形,将其中一个旋转一定角度,连接这两个多边形的顶点,使得侧面均为等边三角形,我们把这种多面体称作“n角反棱柱”.当6n=时,得到如图所示棱长均为2的“六角反棱柱”,则该“六角反棱柱”外接球的表面积等于( )A.(53)π+ B.(1243)π+ C.(2553)π+ D.(2843)π+6.已知在菱形ABCD中,23AB BD==ABCD沿对角线BD折起,得到三棱锥A BCD-,且使得棱33AC=A BCD-的外接球的表面积为( )A.7πB.14πC.28πD.35π7.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有仓,广三丈,袤四丈五尺,容粟一万斛.问高几何?”其意思为:“今有一个长方体的粮仓,宽3丈,长4丈5尺,可装粟10 000斛,问该粮仓的高是多少?”已知1斛粟的体积为2.7立方尺,一丈为10尺,则该粮仓的外接球的体积是( )A.133π4立方丈 B.133π48立方丈 C.133133π4立方丈 D.133133π48立方丈 8.已知正方形ABCD 中,E ,F 分别是AB ,BC 的中点,沿DE ,DF ,EF 折起得到如图所示的空间几何体,若2AB =,则此几何体的内切球的体积为( )A.3π2B.π4C.π48D.π169.在平面四边形ABCD 中,2,2AB AD BC CD DB =====,现将ABD 沿BD 折起,使二面角A BD C --的大小为60︒.若,,,A B C D 四点在同一个球的球面上,则球的表面积为( ) A.13π3B.14π3C.52π9D.56π910.已知三棱锥S-ABC 的顶点都在球O 的球面上,且该三棱锥的体积为23,SA ⊥平面,4,120ABC SA ABC =∠=︒,则球O 的体积的最小值为_________.11.如图,已知长方体1111ABCD A B C D -的底面ABCD 为正方形,P 为棱11A D 的中点,且6PA AB ==,则四棱锥P ABCD -的外接球的体积为_________________.12.设正四面体的内切球半径为r ,外接球半径为R ,则rR=___________. 13.已知底面为正方形的四棱锥P ABCD -的五个顶点在同一个球面上,,2,1PD BC AB PC ⊥==,3PD =则四棱锥P ABCD -外接球的体积为________.14.已知有两个半径为2的球记为12,O O ,两个半径为3的球记为34,O O ,这四个球彼此相外切,现有一个球O 与这四个球1234,,,O O O O 都相内切,则球O 的半径为____________.15.在三棱锥P-ABC 中,PA ⊥平面,,12ABC AB BC PA AB AC ⊥===,三棱锥P-ABC 的所有顶点都在球O 的表面上,则球O 的半径为__________;若点M 是ABC 的重心,则过点M 的平面截球O 所得截面的面积的最小值为__________.16.已知正三棱柱111ABC A B C -,底面边长为3,高为2,P 为上底面三角形111A B C 中线上一动点,则三棱锥P ABC -的外接球表面积的取值范围是_____________.17.如图,已知边长为1的正方形ABCD 与正方形BCFE 所在平面互相垂直,P 为EF 的中点,Q 为线段FC 上的动点,当三棱锥P-ABQ 的体积最大时,三棱锥P-ABQ 的外接球的表面积为_________________.答案以及解析1.答案:A解析:设三棱锥P ABC -的内切球的半径为R ,过O 作OD AC ⊥于点,D OE BC ⊥于点,E OF AB ⊥于点F ,则2OD OE OF ===.连接PD ,易证PD AC ⊥,因为三棱锥P-ABC 的三个侧面与底面所成角都为60°,所以60PDO ∠=︒,则22tan 6023,4cos60PO PD ===︒=︒.由题意可知三棱锥P-ABC 的内切球的球心'O 在线段PO 上,在Rt POD 中,sin OD RDPO PD PO R∠==-,即2423R =-,解得23R =.所以该三棱锥的内切球的体积为334423323πππ33R ⎛⎫== ⎪ ⎪⎝⎭,故选A. 2.答案:C解析:如图,不妨令二面角P BC A --为钝二面角,取BC 的中点D ,连接AD , 因为2AB AC ==,90BAC ∠=︒,所以2BC =,且D 为ABC 外接圆的圆心.作PH ⊥平面ABC 于H ,易知H 在直线AD 上,连接,HC HA ,则PCH ∠为PC 与底面ABC 所成角, 则3sin 4PH PCH PC ∠==,又2PC BC ==,所以32PH =,又3PD =,则332sin 3PH PDH PD ∠===. 设1O 为PBC 的外心,O 为三棱锥P ABC -外接球的球心,连接1,OO OD ,则1OO ⊥平面PBC ,OD ⊥平面133,,cos ABC O D PDO =∠=,则12cos 3O D OD PDO ==∠,设外接球的半径为R ,则222413131,99R OD DA R =+=+==,故选C.3.答案:B解析:因为BC CD ⊥,所以7BD 又AB ⊥底面BCD ,所以10AD O 的球心为侧棱AD 的中点,从而球O 10利用张衡的结论2π5168=,可得π10=所以球O 的表面积为2104π10π1010==⎝⎭故选B.4.答案:C解析:因为PA PB PC ==,ABC 是边长为42的正三角形,所以三棱锥P ABC -为正三棱锥, 由正棱锥对棱垂直可知PB AC ⊥.又D ,E 分别是PA ,AB 上靠近点A 的三等分点,所以//DE PB , 所以DE AC ⊥.又,DE PC PC AC C ⊥⋂=,所以DE ⊥平面PAC ,所以PB ⊥平面PAC ,所以90APB ∠=︒,所以4PA PB PC ===,所以,,PA PB PC 两两互相垂直. 设三棱锥P ABC -的内切球的半径为r ,则由等体积法可得,()1133PABPACPBCABCPACSSSSr S PB ⋅+++=⋅,即11(88883)8433r ⨯+++=⨯⨯,解得2(33)r -=,故三棱锥P ABC -的内切球的表面积为222(33)(64323)π4π4πS r ⎡⎤--==⨯=⎢⎥⎣⎦.故选C. 5.答案:B解析:如图,设上、下正六边形的中心分别为1O ,2O ,连接12O O ,则其中点O 即为所求外接球的球心. 连接2O C ,取棱AB 的中点M ,作2MN O C ⊥于点N ,连接1O M ,MC ,则13O M MC ==.而22O C =, 则22212NC O C O N O C O M =-=-=-3,222123(23)231O O MN MC NC ∴==-=--=-,则131OO -.连接OA ,1O A ,设所求外接球的半径为R ,则有2222211(31)233R OA OO O A ==+=+=+∴该“六角反棱柱”外接球的表面积24π(1243)πS R ==+.故选B.6.答案:C解析:由题意可知,ABD BCD 为等边三角形.如图所示,设外接球的球心为O ,等边三角形BCD 的中心为,O '取BD 的中点F ,连接,,,AF CF OO ',,,OB O B OA '由AB AD BC BD DC ====,得,,AF BD CF BD ⊥⊥又AF CF F ⋂=,所以BD ⊥平面AFC ,且可求得AF =3,CF =而33,AC =所以AFC ∠=120.︒在平面AFC 中过点A 作CF 的垂线,与CF 的延长线交于点E ,由BD ⊥平面AFC 得.BD AE ⊥又,,AE EC BD EC F ⊥⋂=所以AE ⊥平面BCD .过点O 作OG AE ⊥于点G ,则四边形O EGO '是矩形. 又2sin 6023O B BC '︒=⨯=,所以13331.sin 60,sin3022O F O B AE AF EF AF ''︒︒======. 设外接球的半径为,,R OO x '=则由222222,OO O B OB OA AG GO ''+==+, 得2222223332,1,2x R x R ⎛⎫⎛⎫+=-++= ⎪ ⎪ ⎪⎝⎭⎝⎭解得23,7,x R == 故三棱锥A BCD -外接球的表面积24π28π.S R ==故选C.7.答案:D解析:由题意可得粮仓的高2723 4.5h ==⨯(丈),设外接球的半径为R , 则2222133133(2)23 4.533.25,4R R =++==该粮仓的外接球的体积是34133133133π3⨯⨯⎝⎭(立方丈),选D. 8.答案:C解析:在等腰DEF 中,2222215,112DE DF EF ==+=+=D 到EF 的距离为h , 则22293(5)2222h ⎛⎫-= ⎪ ⎪⎝⎭令该几何体的内切球的球心为O ,且球心O 到三个面的距离均为半径r .又因为,DP PE DP PF ⊥⊥,且PE PF P ⋂=,所以DP ⊥平面PEF .由等体积法知O PEF O PFD O PDE O DEF D PEF V V V V V -----+++=,即11113111121212211232323232232r r r r ⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯⨯⨯,解得14r =, 则3 441πππ336448O V r ==⨯⨯=球,故选C.9.答案:C解析:如图所示,设M 为BD 的中点,连接,MA MC ,依题意,折起后AMC ∠是二面角A BD C --的平面角,则60AMC ∠=︒.易知,四面体ABCD 的外接球的球心O 在平面MCA 上,于是点O 在底面BCD 上的射影是正BCD的中心,设为点Q,而点O在侧面ABD上的射影是M,易得3MQ=,又30OMQ∠=︒,因此13OQ=,进而22221231333R OC OQ QC⎛⎫⎛⎫==+=+=⎪⎪ ⎪⎝⎭⎝⎭,所以球O的表面积为21352π4π9⎛⎫⨯=⎪⎪⎝⎭,故选C.10.4010π解析:由题意得,三棱锥S ABC-的体积11342332S ABCV AB BC-=⨯⋅=,则6AB BC⋅=,、当球O 的体积最小时,ABC外接圆的半径最小,即AC最小,在ABC中,由余弦定理和基本不等式得222123182AC AB BC AB BC AB BC⎛⎫=+-⋅⨯-⋅=⎪⎝⎭,当且仅当6AB BC=取等号,则min32AC=,此时ABC外接圆的直径min32226sin1203ACr===O的半径22210R r=+=O的体积的最小值为344010ππ3R=.11.答案:2821π解析:解法一由题意知PAD为正三角形,取AD的中点M,PAD的中心N,记AC BD F⋂=,连接,PM FM,过,N F分别作平面11AA D D与平面ABCD的垂线,两垂线交于点O,则点O为四棱锥P ABCD-的外接球球心.由题意知22362333PN PM===132ON MF AB===,所以四棱锥P ABCD-的外接球半径22223(23)21R ON PN++所以四棱锥P ABCD-的外接球的体积34π2821π3V R==.解法二连接1111,,,AC BD AC B D,记1111,AC BD F AC B D E⋂=⋂=,连接EF,易知四棱锥P ABCD-的外接球的球心O在线段EF上.取AD的中点G,连接PG,设OF x=,球O的半径为R,易知1122AF AC==⨯36232,633PG==则22222(32)(33)3R x x =+=-+,得3x =,则21R =, 所以四棱锥P ABCD -的外接球的体积34π2821π3V R ==. 12.答案:13解析:如图,在正四面体PABC 中,D ,E 分别为BC ,AC 的中点,连接AD ,BE 交于点F ,则点F 为正三角形ABC 的外心,连接PF ,则PF ⊥底面ABC ,且正四面体PABC 的外接球球心与内切球球心为同一点,应在线段PF 上,记作点O ,如图所示.不妨设正四面体PABC 的棱长为a ,则在ABC 中,22233sin 60333AF AD AC ==⋅⋅==°. PF ⊥底面,ABC AF ⊂底面,ABC PF AF ∴⊥,2222363PF AP AF a a ⎛⎫∴=-=-= ⎪ ⎪⎝⎭. 正四面体PABC 的外接球、内切球球心均为O ,,OP OA R OF r ∴===.OF PF OP =-,且在Rt AFO 中有222AF OF OA +=,22236R R ⎫⎫∴+-=⎪⎪⎪⎪⎝⎭⎝⎭, 6666,R r ∴==-=,611236r R a ∴==. 13.答案:82π3. 解析:由题意知,BC DC BC PD ⊥⊥,所以BC ⊥平面PCD ,而BC ⊂平面ABCD ,则平面PCD ⊥平面ABCD .由条件知222CD PC PD =+,所以PC PD ⊥.如图,取CD 的中点G ,连接,AC BD ,交于点O , 则O 为正方形ABCD 的中心,过点G 作平面CDP 的垂线,则点O 在该垂线上, 所以O 为四棱锥P ABCD -外接球的球心,由于2AO , 所以四棱锥P ABCD -外接球的体积为3482ππ(2)3=.14.答案:6解析:由题意可得121314234,O O O O O O O O ====24345,6O O O O ==.如图,取12O O 的中点34,M O O 的中点N ,连接1234,,,,,MN O N O N O M O M 则12O O ⊥3124,.O M O O O M ⊥ 又3412,O M O M M O O ⋂=∴⊥平面34.O O M 同理可证34O O ⊥平面2,.O O N 平面12O O N ⋂平面34,O O M MN =∴球心O 在线段MN 上. 设球O 的半径为R ,则142442, 3.5,3,OO R OO R O O O N =-=-==2222222114,23,O N MN O N O M OM OO O M ∴==-==-=222244(2)4,(3)9R ON OO O N R --=-=--.,MN OM ON =+即22(2)4(3)923,R R --+--=解得6R =.故球O 的半径为6.15.答案:3;4π9解析:(1)PA ⊥平面,ABC BC ⊂平面ABC ,,PA BC ∴⊥又AB BC ⊥,且,PA AB A BC ⋂=∴⊥平面,PAB PB ⊂平面,PAB BC PB ∴⊥,所以PC 是两个直角三角形PAC 和PBC 的斜边,取PC 的中点O ,点O到四点P ,A ,B ,C 的距离相等,即点O 是三棱锥P ABC -的外接球的球心,2231(2)3,PC R =+==(2)当点M 是截面圆的圆心时,此时圆心到截面的距离最大,那么截面圆的半径最小,即此时的面积最小,点N 是AC 的中点,M 是ABC 的重心,112,366MN BN AC ON ∴====1122PA =,所以22116OM ON MN =+=,截面圆的半径222()3r R OM =-=,所以2min 4ππ9S r ==16.答案:25π,8π4⎡⎤⎢⎥⎣⎦解析:如图,设正三棱柱111ABC A B C -上、下底面中心分别为1,O O ,点P 是111A B C 中线1C D 上一点,G 是三棱锥P ABC -的外接球的球心.因为A ,B ,C 在球面上,所以球心在线段1O O 上,点P 也在球面上, 设三棱锥P ABC -外接球的半径为R ,ABC 外接圆的半径为r ,由正弦定理有260sin 32==r ,所以1r =,设11,O P x O G y ==,则OG =2,y PG CG R -==,在1Rt PGO 中,222R x y =+,在Rt CGO 中,2221(2)R y =+-,于是2221x y +=+2(2)y -,解得254.x y =-因为点P 是111A B C 中线1C D 上一点,所以10≤≤x ,于是451≤≤y ,所以222222554(2)1,216R x y y y y ⎡⎤=+=-+=-+∈⎢⎥⎣⎦,所以外接球的表面积225π4π,8π4S R ⎡⎤=∈⎢⎥⎣⎦球.17.答案:41π16解析:如图,由题意知三棱锥P-ABQ 的体积最大时,点Q 与点C 重合,即求三棱锥P-ABC 外接球的表面积.因为正方形ABCD 与正方形BCFE 的边长均为1,点P 为EF 的中点,所以51,2,AB BC AC BP PC =====.过点P 作PG BC ⊥,垂足为G ,由正方形ABCD 与正方形BCFE 所在平面互相垂直,得PG ⊥平面ABC .设三棱锥P-ABC 外接球的球心为O ,AC 的中点为1O ,连接1OO , 则1OO ⊥平面ABC.延长1O O 到点H ,使1O H PG =.连接PH ,OP ,OA ,设1OO x =, 则2222211,(1)22OH x x x ⎛⎫⎛⎫=-+=+- ⎪ ⎪ ⎪⎝⎭⎝⎭,解得38x =, 设三棱锥P-ABC 外接球的半径为R ,则2221314128264R x ⎛⎫=+=+= ⎪⎝⎭.故所求表面积241414π4ππ6416S R ==⨯=.。

[立体几何] 球的组合体

[立体几何] 球的组合体

球的组合体一、正方体+球例1、甲球内切于某正方体的各个面,乙球内切于该正方体的条棱,丙球外接于该正方体,则三球表面面积之比是二、四面体+球例2、球的内接正四面体内有一内球,求这两球的表面积之比练习:过球O表面上一点A引三条长度相等的弦AB,AC,AD,且两两夹角都是60o,若球的半径为R,则∆BCD的面积是()例题:1、已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,该圆柱的体积是()A、3π4B、π C、π2D、π42、(“墙角型”三棱锥外接球):在球面上有四个点P、A、B、C,如果PA,PB,PC两两互相垂直,且PA=PB=PC=a,求这个球的表面积。

解法一、找截面图,找球心解法二、补正方体3、(“鳖臑型”三棱锥外接球)《九章算术》中,将底面是长方形且一条侧棱于底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑。

两类三棱锥具有典型性,需重视。

(1)已知四面体P-ABC的四个顶点都在球面上,若PB⊥平面ABC,AB⊥AC ,且AC=1,PB=AB=2,则球O的表面积为解法一、构造长方体解法二:RT∆PBC和RT∆PAC有公共的斜边PC ,其中点到四个顶点距离相等。

(2)若三棱锥A-BCD为鳖臑,AB⊥平面BCD,AB=BC=2,BD=4, 三棱锥A-BCD的顶点都在球O的球面上,则球O的体积是()提示:外接球的球心是AD的中点4、已知三棱锥S—ABC,所有顶点都在球O的球面上,SC是球O的直径,若平面SCA⊥平面SBC,SA=AC,SB=BC, 三棱锥S—ABC的体积等于9,则球O的表面积为5、正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为。

高考数学专题19 几何体中与球有关的切、接问题(解析版)

高考数学专题19 几何体中与球有关的切、接问题(解析版)

专题19 几何体中与球有关的切、接问题球的截面的性质(1)球的任何截面是圆面;(2)球心和截面(不过球心)圆心的连线垂直于截面;(3)球心到截面的距离d 与球的半径R 及截面的半径r 的关系为r =R 2-d 2几个与球有关的切、接常用结论(1)正方体的棱长为a ,球的半径为R ,①假设球为正方体的外接球,那么2R =3a ;②假设球为正方体的内切球,那么2R =a ;③假设球与正方体的各棱相切,那么2R =2a .(2)假设长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,那么2R =a 2+b 2+c 2. (3)正四面体的外接球与内切球的半径之比为3∶1. 一、题型选讲题型一 、几何体的外接球解决多面体的外接球问题,关键是确定球心的位置,方法是先选择多面体中的一面,确定此面外接圆的圆心,再过圆心作垂直此面的垂线,那么球心一定在此垂线上,最后根据其他顶点确定球心的准确位置.对于特殊的多面体还可采用补成正方体或长方体的方法找到球心位置.例1、【2021年高考全国Ⅰ卷理数】,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,假设⊙1O 的面积为4π,1AB BC AC OO ===,那么球O 的外表积为 A .64π B .48πC .36πD .32π【答案】A【解析】设圆1O 半径为r ,球的半径为R ,依题意, 得24,2r r π=π=∴,ABC 为等边三角形,由正弦定理可得2sin60AB r =︒=1OO AB ∴==1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的外表积2464S R ππ==.应选:A.此题考查球的外表积,应用球的截面性质是解题的关键,考查计算求解能力,属于根底题.例2、【2021年高考天津】假设棱长为 A .12π B .24πC .36πD .144π【答案】C【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的外表积为2244336S R πππ==⨯=. 应选:C .此题考查正方体的外接球的外表积的求法,求出外接球的半径是此题的解题关键,属于根底题.求多面体的外接球的面积和体积问题,常用方法有:〔1〕三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;〔2〕直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;〔3〕如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心. 例3、〔2021届山东省潍坊市高三上学期统考〕边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕进行折叠,使折后的2BDC π∠=,那么过A ,B ,C ,D 四点的球的外表积为〔 〕A .3πB .4πC .5πD .6π【答案】C【解析】边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕进行折叠,使折后的2BDC π∠=,构成以D 为顶点的三棱锥,且三条侧棱互相垂直,可构造以其为长宽高的长方体,其对角线即为球的直径,三条棱长分别为1,12R ==24(52S ππ==,应选C.例4、〔2021届山东省日照市高三上期末联考〕四棱锥P ABCD -的体积是,底面ABCD 是正方形,PAB ∆是等边三角形,平面PAB ⊥平面ABCD ,那么四棱锥P ABCD -外接球体积为〔 〕A .BCD .【答案】A【解析】设AB 的中点为Q ,因为PAB ∆是等边三角形,所以PQ AB ⊥,而平面PAB ⊥平面ABCD , 平面PAB ⋂平面ABCD AB =,所以PQ ⊥平面ABCD ,四棱锥P ABCD -的体积是,13AB AB PQ =⨯⨯⨯13AB AB AB =⨯⨯,所以边长6AB =,PQ =OH x =,OM x =,()(222222R OA OM AM x ==+=+,2222223R OP OH PH x ==+=+,x =2212321R =+=343V R π==球.应选:A.例5、〔2021届山东省德州市高三上期末〕中国古代数学经典?九章算术?系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,PA ⊥平面ABCE ,四边形ABCD 为正方形,AD =ED =,假设鳖臑P ADE -的外接球的体积为,那么阳马P ABCD -的外接球的外表积等于______.【答案】20π 【解析】四边形ABCD 是正方形,AD CD ∴⊥,即AD CE ⊥,且AD =ED ,所以,ADE ∆的外接圆半径为122AE r ===设鳖臑P ADE -的外接球的半径1R ,那么3143R π=,解得1R =.PA ⊥平面ADE ,1R ∴=,可得2PA ==PA ∴正方形ABCD 的外接圆直径为22r AC ==,2r ∴=PA ⊥平面ABCD ,所以,阳马P ABCD -的外接球半径2R ==因此,阳马P ABCD -的外接球的外表积为22420R ππ=. 故答案为:20π.题型二、几何体的内切球求解多面体的内切球的问题,一般是将多面体分割为以球心为顶点,多面体的各面为底面的棱锥,利用多面体的体积等于各棱锥的体积之和求内切球的半径.例6、【2021年高考全国Ⅲ卷理数】圆锥的底面半径为1,母线长为3,那么该圆锥内半径最大的球的体积为_________.【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如下图, 其中2,3BC AB AC ===,且点M 为BC 边上的中点, 设内切圆的圆心为O ,由于AM =122S =⨯⨯=△ABC 设内切圆半径为r ,那么:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()13322r =⨯++⨯=解得:22r,其体积:3433V r =π=π.. 与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出适宜的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.例7、〔2021届山东省潍坊市高三上期中〕如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如下图粽子形状的六面体,那么该六面体的外表积为__________;假设该六面体内有一小球,那么小球的最大体积为___________.【答案】2 729【解析】〔1〕因为16(1222S =⨯⨯⨯=,所以该六面体的外表积为2. 〔2〕由图形的对称性得,小球的体积要到达最大,即球与六个面都相切时,2倍,所以六面体体积是6. 由于图像的对称性,内部的小球要是体积最大,就是球要和六个面相切,连接球心和五个顶点,把六面体分成了六个三棱锥,设球的半径为R ,所以16()63R R =⨯⇒=,所以球的体积3344()393297V R ππ===.故答案为:. 二、达标训练1、〔2021届山东省泰安市高三上期末〕正三棱锥S ABC -的侧棱长为6,那么该正三棱锥外接球的外表积是〔 〕 A .16π B .20πC .32πD .64π【答案】D【解析】如下图,因为正三棱锥S ABC -的侧棱长为6,那么263AE ==6SE ===, 又由球心O 到四个顶点的距离相等,在直角三角形AOE 中,,6AO R OE SE SO R ==-=-,又由222OA AE OE =+,即222(6)R R =+-,解得4R =, 所以球的外表积为2464S R ππ==, 应选D.2、【2021年高考全国II 卷理数】△ABC 的等边三角形,且其顶点都在球O 的球面上.假设球O的外表积为16π,那么O 到平面ABC 的距离为A B .32C .1D 【答案】C【解析】设球O 的半径为R ,那么2416R π=π,解得:2R =.设ABC △外接圆半径为r ,边长为a ,ABC △的等边三角形,212a ∴=,解得:3a =,2233r ∴==∴球心O 到平面ABC 的距离1d =.应选:C .此题考查球的相关问题的求解,涉及到球的外表积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.3、【2021年高考全国Ⅰ卷理数】三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,那么球O 的体积为A .B .C .D【答案】D 【解析】解法一:,PA PB PC ABC ==△为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CEAC C EF =∴⊥平面PAC ,∴PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===P ABC ∴-为正方体的一局部,2R ==即344π33R V R =∴=π==,应选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC △为边长为2的等边三角形,CF ∴,又90CEF ∠=︒,12CE AE PA x ∴===, AEC △中,由余弦定理可得()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D 为AC 的中点,1cos 2AD EAC PA x ∠==,2243142x x x x+-+∴=,2212122x x x ∴+=∴==,,PA PB PC ∴=== 又===2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴==,2R ∴=,344338V R ∴=π=π⨯=,应选D.此题主要考查学生的空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.4、【2021年高考全国Ⅰ卷理数】设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为 A. B .C .D .【答案】B【解析】如下图,设点M 为三角形ABC 的重心,E 为AC 中点,当点D 在平面ABC 上的射影为M 时,三棱锥D ABC -的体积最大,此时,4OD OB R ===,2ABCS AB ==△,6AB ∴=,点M 为三角形ABC 的重心,23BM BE ∴==Rt OBM ∴△中,有2OM ==,426DM OD OM ∴=+=+=, ()max 163D ABC V -∴=⨯= B.5、【2021年新高考全国Ⅰ卷】直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 为半径的球面与侧面BCC 1B 1的交线长为________.【答案】2. 【解析】如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A BC D -的棱长均为2,所以△111D B C 为等边三角形,所以1D E=111D E B C ⊥,又四棱柱1111ABCD A BC D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥, 因为1111BB B C B =,所以1D E ⊥侧面11BC CB ,设P 为侧面11BC CB 与球面的交线上的点,那么1DE EP ⊥,1D E ,所以||EP ===所以侧面11BC CB 与球面的交线上的点到E因为||||EF EG ==11BC CB 与球面的交线是扇形EFG 的弧FG , 因为114B EFC EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得2FG π==.故答案为:2. 6、〔2021届山东省滨州市三校高三上学期联考〕三棱锥S ABC -,SA ⊥平面ABC ,6ABC π∠=,3SA =,1BC =,直线SB 和平面ABC 所成的角大小为3π.假设三棱锥S ABC -的四个顶点都在同一球面上,那么该球的外表积为________.【答案】13π【解析】如图:SA ⊥平面ABC ,那么SBA ∠为直线SB 和平面ABC 所成的角,即3SBA π∠=在Rt SAB ∆中:tan 3SAAB π=== 如图,设O 为三棱锥S ABC -外接球的球心,G 为ABC ∆外接圆圆心,连结,,,,OA OB GA GB OG ,那么必有OG ⊥面ABC在ABC ∆,2222cos31216AC AB BC AB BC π=+-⋅⋅=+-=, 那么1AC = 其外接圆半径122,1sin sin 6AC r r ABC π====∠, 又1322OG SA ==, 所以三棱锥S ABC -外接球半径为R ===该球的外表积为21344134S R πππ==⨯=, 故答案为:13π.7、〔2021届山东省枣庄、滕州市高三上期末〕如图,在三棱锥P -ABC 中,,PA AB ⊥PC BC ⊥,,AB BC ⊥22,AB BC ==PC ,那么PA 与平面ABC 所成角的大小为________;三棱锥P -ABC外接球的外表积是________.【答案】45︒ 6π【解析】如图,作平行四边形ABCD ,连接PD ,由AB BC ⊥,那么平行四边形ABCD 是矩形.由BC CD ⊥,BC PC ⊥,PC CD C =,∴BC ⊥平面PCD ,而PD ⊂平面PCD ,∴BC PD ⊥,同理可得AB PD ⊥,又AB BC B ⋂=,∴PD ⊥平面ABCD .,PD CD PD AD ⊥⊥,PAD ∠是PA 与平面ABC 所成角.由2,CD AB PC ===1PD =,又1AD BC ==,∴45PAD ∠=︒.∴PA 与平面ABC 所成角是45︒.由,PA AB ⊥PC BC ⊥知PB 的中点到,,,A B C P 的距离相等,PB 是三棱锥P -ABC 外接球的直径.由BC ⊥平面PCD 得BC PC ⊥,PB ===24()62PB S ππ==. 故答案为:45︒;6π.8、〔2021届山东省烟台市高三上期末〕三棱锥P ABC -的四个顶点都在球O 的外表上,PA ⊥平面ABC ,6PA =,AB =2AC =,4BC =,那么:〔1〕球O 的外表积为__________;〔2〕假设D 是BC 的中点,过点D 作球O 的截面,那么截面面积的最小值是__________.【答案】52π 4π【解析】〔1〕由题,根据勾股定理可得AC AB ⊥,那么可将三棱锥P ABC -可放入以,,AP AC AB 为长方体的长,宽,高的长方体中,那么体对角线为外接球直径,即2r ==,那么r =,所以球的外表积为224452r πππ=⨯=;〔2〕由题,因为Rt ABC ,所以D 为底面ABC 的外接圆圆心,当DO ⊥截面时,截面面积最小,即截面为平面ABC ,那么外接圆半径为2,故截面面积为224ππ⨯=故答案为:〔1〕52π;〔2〕4π9、〔2021届山东省滨州市高三上期末〕在四面体S ABC -中,2SA SB ==,且SA SB ⊥,BC =,AC =________,该四面体外接球的外表积为________.8π【解析】因为2SA SB ==,且SA SB ⊥,BC ,AC =AB ==因此222BC AC AB +=,那么AC BC ⊥;取AB 中点为O ,连接OS ,OC ,那么OA OB OC OS ====所以该四面体的外接球的球心为O ,半径为OC =所以该四面体外接球的外表积为248S ππ=⋅=;又因为SA SB =,所以SO AB ⊥;因为底面三角形ABC 的面积为定值122AC BC ⋅=,SO因此,当SO ⊥平面ABC 时,四面体的体积最大,为13ABC V S SO =⋅=故答案为:(1). (2). 8π10、〔2021届山东省济宁市高三上期末〕下列图是两个腰长均为10cm 的等腰直角三角形拼成的一个四边形ABCD ,现将四边形ABCD 沿BD 折成直二面角A BD C --,那么三棱锥A BCD -的外接球的体积为__________3cm .【答案】【解析】由题设可将该三棱锥拓展成如下图的正方体,那么该正方体的外接球就是三棱锥的外接球,由于正方体的对角线长为2l R ==即球的半径R =该球的体积343V R π==,应填答案.。

组合体的计算公式

组合体的计算公式

组合体的计算公式
组合体是由多个基本几何体组合而成的立体图形,如长方体、正方体、圆柱体、圆锥体、球体等。

组合体的计算公式包括以下几种: 1. 长方体的体积公式:V = l × w × h,其中 l、w、h 分别为长方体的长、宽、高。

2. 正方体的体积公式:V = a,其中 a 为正方体的边长。

3. 圆柱体的体积公式:V = πrh,其中 r 为圆柱体的底面半径,
h 为圆柱体的高。

4. 圆锥体的体积公式:V = 1/3πrh,其中 r 为圆锥体的底面半径,h 为圆锥体的高。

5. 球体的体积公式:V = 4/3πr,其中 r 为球体的半径。

组合体的表面积公式也可以根据其构成的基本几何体来进行计算。

例如,长方体的表面积公式为 S = 2lw + 2lh + 2wh,球体的表面积公式为 S = 4πr 等等。

在实际应用中,组合体的计算公式能够帮助我们准确地计算出其体积、表面积等重要参数,为工程设计、物理实验等领域提供了重要的数学基础。

- 1 -。

爱因斯坦智能方程

爱因斯坦智能方程

0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x x E y y x x y y F ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±.92.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.93.椭圆22221(0)x y a b a b+=>>焦半径公式)(21c a x e PF +=,)(22x ca e PF -=.94.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<. (2)点00(,)P x y 在椭圆22221(0)x y a b a b+=>>的外部2200221x y a b ⇔+>. 95. 椭圆的切线方程(1)椭圆22221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y ya b +=.(2)过椭圆22221(0)x y a b a b+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b+=. (3)椭圆22221(0)x y a b a b+=>>与直线0Ax By C ++=相切的条件是22222A a B b c +=.96.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.97.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->. (2)点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b⇔-<. 98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x aby ±=.(2)若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x轴上,0<λ,焦点在y 轴上).99. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y ya b -=.(2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b-=. (3)双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A a B b c -=.100. 抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02p CF x =+.过焦点弦长p x x px p x CD ++=+++=212122.101.抛物线px y 22=上的动点可设为P ),2(2οοy py 或或)2,2(2pt pt P P (,)x y o o ,其中22y px =o o . 102.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+-;(3)准线方程是2414ac b y a--=.103.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>. 点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>.(2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->. 104. 抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+.(3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =.105.两个常见的曲线系方程(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221x y a k b k+=--,其中22max{,}k a b <.当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}a b k a b <<时,表示双曲线.106.直线与圆锥曲线相交的弦长公式 AB =1212||||AB x x y y ==-=-(弦端点A ),(),,(2211y xB y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率).107.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B++++--=++. 108.“四线”一方程对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y+代y 即得方程 0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直;(4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b =b +a .(2)加法结合律:(a +b )+c =a +(b +c ). (3)数乘分配律:λ(a +b )=λa +λb .116.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.117.共线向量定理对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a =λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB =u u u r u u u r ⇔(1)OP t OA tOB =-+u u u r u u u r u u u r.||AB CD ⇔AB u u u r 、CD uuur 共线且AB CD 、不共线⇔AB tCD =u u u r u u u r 且AB CD 、不共线.118.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+.推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使MP xMA yMB =+u u u r u u u r u u u r,或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++u u u r u u u u r u u u r u u u r.119.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++u u u r u u u r u u u r u u u r(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面⇔AD u u u r 与AB u u u r 、AC u u ur 共面⇔AD x AB y AC =+u u u r u u u r u u u r ⇔ (1)OD x y OA xOB yOC =--++u u u r u u u r u u u r u u u r(O ∉平面ABC ).120.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c .推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使OP xOA yOB zOC =++u u u r u u u r u u u r u u u r .121.射影公式已知向量AB u u u r =a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B点在l 上的射影'B ,则''||cos A B AB =u u u r 〈a ,e 〉=a ·e122.向量的直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R);(4)a ·b =112233a b a b a b ++; 123.设A 111(,,)x y z ,B 222(,,)x y z ,则 AB OB OA =-u u u r u u u r u u u r= 212121(,,)x x y y z z ---.124.空间的线线平行或垂直设111(,,)a x y z =r ,222(,,)b x y z =r,则a b r r P ⇔(0)a b b λ=≠r r r r ⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;a b ⊥r r ⇔0a b ⋅=r r⇔1212120x x y y z z ++=.125.夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,则 cos 〈a ,b 〉.推论 2222222112233123123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式.126. 四面体的对棱所成的角四面体ABCD 中, AC 与BD 所成的角为θ,则2222|()()|cos 2AB CD BC DA AC BDθ+-+=⋅.127.异面直线所成角cos |cos ,|a b θ=r r=||||||a b a b ⋅=⋅r rr r(其中θ(090θ<≤o o)为异面直线a b ,所成角,,a b r 分别表示异面直线a b ,的方向向量)128.直线AB 与平面所成角sin ||||AB m arc AB m β⋅=u u u r u ru u u r u r (m ur 为平面α的法向量). 129.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,A B 、为ABC ∆的两个内角,则2222212sin sin (sin sin )sin A B θθθ+=+.特别地,当90ACB ∠=o时,有22212sin sin sin θθθ+=.130.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,''A B 、为ABO ∆的两个内角,则222'2'212tan tan (sin sin )tan A B θθθ+=+.特别地,当90AOB ∠=o时,有22212sin sin sin θθθ+=. 131.二面角l αβ--的平面角cos ||||m n arc m n θ⋅=u r r u r r 或cos ||||m narc m n π⋅-u r ru r r (m u r ,n r 为平面α,β的法向量). 132.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=.133. 三射线定理若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ϕθθθθθϕ=+- ;1212||180()θθϕθθ-≤≤-+o (当且仅当90θ=o 时等号成立).134.空间两点间的距离公式若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB =u u u r =135.点Q 到直线l 距离h =(点P 在直线l 上,直线l 的方向向量a =PA u u u r ,向量b =PQ uuu r ).136.异面直线间的距离||||CD n d n ⋅=u u u r u u rr (12,l l 是两异面直线,其公垂向量为n r ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).137.点B 到平面α的距离||||AB n d n ⋅=u u u r u u r r (n r 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 138.异面直线上两点距离公式d =.d =d =('E AA F ϕ=--).(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m =,AF n =,EF d =). 139.三个向量和的平方公式2222()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅r r r r r r r r r r r r2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++⋅+⋅+⋅r r r r r r r r r r r r r r r140. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例).141. 面积射影定理'cos S S θ=.(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ). 142. 斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l =斜棱柱侧. ②1V S l =斜棱柱.143.作截面的依据三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行. 144.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.145.欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系:12E nF =; (2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12E mV =. 146.球的半径是R ,则其体积343V R π=, 其表面积24S R π=.147.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体:棱长为a ,. 148.柱体、锥体的体积13V Sh =柱体(S 是柱体的底面积、h 是柱体的高).13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).149.分类计数原理(加法原理) 12n N m m m =+++L . 150.分步计数原理(乘法原理) 12n N m m m =⨯⨯⨯L . 151.排列数公式m n A =)1()1(+--m n n n Λ=!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=.152.排列恒等式(1)1(1)m m n n A n m A -=-+;(2)1mmn n n A A n m -=-; (3)11m m n n A nA --=;(4)11n n nn n n nA A A ++=-; (5)11m m m n n n A A mA -+=+.(6) 1!22!33!!(1)!1n n n +⋅+⋅++⋅=+-L . 153.组合数公式mnC =m n m mA A =m m n n n ⨯⨯⨯+--ΛΛ21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤).154.组合数的两个性质 (1)mn C =mn nC - ; (2) m n C +1-m nC =mn C 1+.注:规定10=n C .155.组合恒等式(1)11mm n n n m C C m --+=; (2)1m mn n n C C n m -=-;(3)11mm n n n C C m--=;(4)∑=nr r nC0=n2;(5)1121++++=++++r n r n r r r r r rC C C C C Λ. (6)nn n r n n n n C C C C C 2210=++++++ΛΛ. (7)14205312-+++=+++n n n n n n n C C C C C C ΛΛ. (8)1321232-=++++n n n n n n n nC C C C Λ. (9)rn m r n r m n r m n r m C C C C C C C +-=+++0110Λ. (10)nn n n n n n C C C C C 22222120)()()()(=++++Λ.156.排列数与组合数的关系m m n n A m C =⋅! .157.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n k k A A --种.②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有kk k n k n A A 11+-+-种.注:此类问题常用捆绑法;③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有kh hh A A 1+种.(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1+>m n 时,无解;当1+≤m n 时,有n m n nn m C A A 11++=种排法.(4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为nn m C +. 158.分配问题(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配方法数共有mnn nn nn mn nn mn nmn n mn C C C C C N )!()!(22=⋅⋅⋅⋅⋅=--Λ. (2)(平均分组无归属问题)将相异的m ·n 个物体等分为无记号或无顺序的m 堆,其分配方法数共有mn nn n n n mn n n mn n mn n m mn m C C C C C N )!(!)!(!...22=⋅⋅⋅⋅=--.(3)(非平均分组有归属问题)将相异的)L 12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数共有!!...!!!! (212)11m n n n n p n p n n n m p m C C C N m m =⋅⋅=-.(4)(非完全平均分组有归属问题)将相异的)L 12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...!!!...211c b a m C C C N m m n n n n p n p ⋅⋅=- 12!!!!...!(!!!...)m p m n n n a b c =.(5)(非平均分组无归属问题)将相异的)L 12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数有!!...!!21m n n n p N =.(6)(非完全平均分组无归属问题)将相异的)L 12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...)!!(!!...!!21c b a n n n p N m =.(7)(限定分组有归属问题)将相异的p (2m p n n n =L 1+++)个物体分给甲、乙、丙,……等m 个人,物体必须被分完,如果指定甲得1n 件,乙得2n 件,丙得3n 件,…时,则无论1n ,2n ,…,m n 等m 个数是否全相异或不全相异其分配方法数恒有!!...!!...21211m n n n n p n p n n n p C C C N m m =⋅=-.159.“错位问题”及其推广贝努利装错笺问题:信n 封信与n 个信封全部错位的组合数为1111()![(1)]2!3!4!!n f n n n =-+-+-L . 推广: n 个元素与n 个位置,其中至少有m 个元素错位的不同组合总数为 1234(,)!(1)!(2)!(3)!(4)!(1)()!(1)()!m m m m ppmm mmf n m n C n C n C n C n C n p C n m =--+---+--+--++--L L12341224![1(1)(1)]p m p m m m m m m mp m n n n n n nC C C C C C n A A A A A A =-+-+-+-++-L L .160.不定方程2n x x x m =L 1+++的解的个数(1)方程2n x x x m =L 1+++(,n m N *∈)的正整数解有11m n C --个. (2) 方程2n x x x m =L 1+++(,n m N *∈)的非负整数解有 11n m n C +--个.(3) 方程2n x x x m =L 1+++(,n m N *∈)满足条件i x k ≥(k N *∈,21i n ≤≤-)的非负整数解有11(2)(1)m n n k C +----个.(4) 方程2n x x x m =L 1+++(,n m N *∈)满足条件i x k ≤(k N *∈,21i n ≤≤-)的正整数解有12222321(2)11121221(1)n m n m n k n m n k n m n k n n n n n n C C C C C C C +--+---+---+---------+-+-L 个. 161.二项式定理nn n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+---ΛΛ222110)( ;二项展开式的通项公式r r n r n r b a C T -+=1)210(n r ,,,Λ=.162.等可能性事件的概率()mP A n=. 163.互斥事件A ,B 分别发生的概率的和 P(A +B)=P(A)+P(B).164.n 个互斥事件分别发生的概率的和P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+P(A n ). 165.独立事件A ,B 同时发生的概率 P(A ·B)= P(A)·P(B).166.n 个独立事件同时发生的概率P(A 1· A 2·…· A n )=P(A 1)· P(A 2)·…· P(A n ). 167.n 次独立重复试验中某事件恰好发生k 次的概率()(1).k kn k n n P k C P P -=-168.离散型随机变量的分布列的两个性质 (1)0(1,2,)i P i ≥=L ; (2)121P P ++=L . 169.数学期望1122n n E x P x P x P ξ=++++L L170.数学期望的性质(1)()()E a b aE b ξξ+=+. (2)若ξ~(,)B n p ,则E np ξ=.(3) 若ξ服从几何分布,且1()(,)k P k g k p q p ξ-===,则1E pξ=. 171.方差()()()2221122n n D x E p x E p x E p ξξξξ=-⋅+-⋅++-⋅+L L172.标准差σξ=ξD .173.方差的性质(1)()2D a b a D ξξ+=;(2)若ξ~(,)B n p ,则(1)D np p ξ=-.(3) 若ξ服从几何分布,且1()(,)k P k g k p q p ξ-===,则2q D p ξ=. 174.方差与期望的关系()22D E E ξξξ=-.175.正态分布密度函数()()()2226,,x f x x μ--=∈-∞+∞,式中的实数μ,σ(σ>0)是参数,分别表示个体的平均数与标准差.176.标准正态分布密度函数()()22,,x f x x -=∈-∞+∞.177.对于2(,)N μσ,取值小于x 的概率()x F x μσ-⎛⎫=Φ ⎪⎝⎭.()()()12201x x P x x P x x x P <-<=<<()()21F x F x =-21x x μμσσ--⎛⎫⎛⎫=Φ-Φ ⎪ ⎪⎝⎭⎝⎭.178.回归直线方程$y a bx =+,其中()()()1122211n n i i i i i i n ni i i i x x y y x y nx y b x x x nx a y bx====⎧---⎪⎪==⎨--⎪⎪=-⎩∑∑∑∑. 179.相关系数()()niix x y y r --=∑ ()()niix x y y --=∑|r|≤1,且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小.180.特殊数列的极限(1)0||1lim 11||11nn q q q q q →∞<⎧⎪==⎨⎪<=-⎩不存在或.(2)1101100()lim ()()k k k k tt t n t t kk t a n a n a a k t b n b n b b k t ---→∞-⎧<⎪+++⎪==⎨+++⎪⎪>⎩L L 不存在 .(3)()111lim11nn a q a S qq→∞-==--(S 无穷等比数列}{11n a q - (||1q <)的和). 181. 函数的极限定理lim ()x x f x a →=⇔0lim ()lim ()x x x x f x f x a -+→→==.182.函数的夹逼性定理如果函数f(x),g(x),h(x)在点x 0的附近满足: (1)()()()g x f x h x ≤≤;(2)0lim (),lim ()x x x x g x a h x a →→==(常数),则0lim ()x x f x a →=.本定理对于单侧极限和∞→x 的情况仍然成立. 183.几个常用极限(1)1lim0n n→∞=,lim 0n n a →∞=(||1a <); (2)00lim x x x x →=,0011lim x x x x →=.184.两个重要的极限 (1)0sin lim1x xx→=;(2)1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭(e=2.718281845…).185.函数极限的四则运算法则若0lim ()x x f x a →=,0lim ()x x g x b →=,则(1)()()0lim x x f x g x a b →±=±⎡⎤⎣⎦;(2)()()0lim x x f x g x a b →⋅=⋅⎡⎤⎣⎦;(3)()()()0lim0x x f x ab g x b→=≠. 186.数列极限的四则运算法则 若lim ,lim n n n n a a b b →∞→∞==,则(1)()lim n n n a b a b →∞±=±;(2)()lim n n n a b a b →∞⋅=⋅;(3)()lim0n n na ab b b →∞=≠(4)()lim lim lim n n n n n c a c a c a →∞→∞→∞⋅=⋅=⋅( c 是常数). 187.)(x f 在0x 处的导数(或变化率或微商)00000()()()limlimx x x x f x x f x yf x y x x=∆→∆→+∆-∆''===∆∆. 188.瞬时速度00()()()limlimt t s s t t s t s t t tυ∆→∆→∆+∆-'===∆∆. 189.瞬时加速度00()()()limlimt t v v t t v t a v t t t∆→∆→∆+∆-'===∆∆. 190.)(x f 在),(b a 的导数()dy df f x y dx dx ''===00()()lim limx x y f x x f x x x∆→∆→∆+∆-==∆∆. 191. 函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.192.几种常见函数的导数 (1) 0='C (C 为常数).(2) '1()()n n x nx n Q -=∈.(3) x x cos )(sin ='. (4) x x sin )(cos -='. (5) x x 1)(ln =';e a xx a log 1)(log ='. (6) x x e e =')(; a a a xx ln )(='.193.导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()(0)u u v uv v v v -=≠. 194.复合函数的求导法则设函数()u x ϕ=在点x 处有导数''()x u x ϕ=,函数)(u f y =在点x 处的对应点U 处有导数''()u y f u =,则复合函数(())y f x ϕ=在点x 处有导数,且'''x u x y y u =⋅,或写作'''(())()()x f x f u x ϕϕ=.195.常用的近似计算公式(当x 充小时)(1)x x 2111+≈+;x nx n 111+≈+; (2)(1)1()x x R ααα+≈+∈;x x-≈+111; (3)x e x+≈1;(4)x x l n ≈+)1(;(5)x x ≈sin (x 为弧度); (6)x x ≈tan (x 为弧度); (7)x x ≈arctan (x 为弧度)196.判别)(0x f 是极大(小)值的方法 当函数)(x f 在点0x 处连续时,(1)如果在0x 附近的左侧0)(>'x f ,右侧0)(<'x f ,则)(0x f 是极大值; (2)如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,则)(0x f 是极小值. 197.复数的相等,a bi c di a c b d +=+⇔==.(,,,a b c d R ∈) 198.复数z a bi =+的模(或绝对值)||z =||a bi +199.复数的四则运算法则(1)()()()()a bi c di a c b d i +++=+++; (2)()()()()a bi c di a c b d i +-+=-+-; (3)()()()()a bi c di ac bd bc ad i ++=-++; (4)2222()()(0)ac bd bc ada bi c di i c di c d c d+-+÷+=++≠++. 200.复数的乘法的运算律对于任何123,,z z z C ∈,有 交换律:1221z z z z ⋅=⋅.结合律:123123()()z z z z z z ⋅⋅=⋅⋅. 分配律:1231213()z z z z z z z ⋅+=⋅+⋅ . 201.复平面上的两点间的距离公式12||d z z =-=(111z x y i =+,222z x y i =+).202.向量的垂直非零复数1z a bi =+,2z c di =+对应的向量分别是1OZ u u u u r ,2OZ u u u u r,则 12OZ OZ ⊥u u u u r u u u u r ⇔12z z ⋅的实部为零⇔21z z 为纯虚数⇔2221212||||||z z z z +=+⇔2221212||||||z z z z -=+⇔1212||||z z z z +=-⇔0ac bd +=⇔12z iz λ= (λ为非零实数).203.实系数一元二次方程的解实系数一元二次方程20ax bx c ++=,①若240b ac ∆=->,则1,2x =②若240b ac ∆=-=,则122b x x a==-;③若240b ac ∆=-<,它在实数集R 内没有实数根;在复数集C 内有且仅有两个共轭复数根240)x b ac =-<.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精选课件
5
精选课件
6
有三个球,一球切于正方体的各面, 一球切于正方体的各棱,一球过正 方体的各顶点,求这三个球的体积 之比__1_:2__2_:_3__3.
精选课件
7
长方体的外接球的球心是体对角线的 交点,半径是体对角线的一半
• 设长方体的长、宽、高分别为a、b、 c 则对角线长为
√a2+b2+c2
精选课件
8
正四面体的三个球
一个正四面体有一个外接球, 一个内切球。那么这三个球 的球心及半径与正四面体有 何关系呢?为了研究这些关 系,我们利用正四面体的外 接正方体较为方便。
正四面体的外接球即为正 方体的外接球,与正四面 体各棱都相切的球即是正 方体的内切球,此两球的 球心都在正方体的中心, 在正四面体的高的一个靠 近面的四等分点上,
精选课件
9
精选课件
10
精选课件
11
精选课件
12
精选课件
13
精选课件
14
精选课件
15
精选课件
16
精选课件
17
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
精选课件
1
精选课件
2
D A
D A11
C B
O C1
B1
正方体的外接 球的球心是体 对角线的交点, 半径是体对角 线的一半
设 正 方 体 的 棱 长a,为则

方体的 精选课件


角线ຫໍສະໝຸດ 长3a为3正方体的内 切球的球心 是体对角线 的交点,半 径是棱长的 一半
精选课件
4
与正方体的 棱都相切的 球的球心是 体对角线的 交点,半径 是面对角线 长的一半
相关文档
最新文档