2016第14届希望杯数学复赛四年级试题
全国四年级希望杯数学竞赛全部试题与答案
全国四年级希望杯数学竞赛全部试题与答案一、竞赛介绍“希望杯”是全国小学生奥数竞赛之一,自1996年创办以来,已经成为小学生数学竞赛中最有影响力的赛事之一。
本次比赛是面向四年级的“希望杯”数学竞赛,包含两个考试科目:数学(含应用题)和口算。
这个文档将介绍全部试题和答案。
二、数学试题试题一下列哪一个数是偶数?A. 1B. 3C. 5D. 2答案D. 2试题二根据下列算式,1 + 2 + 3 + 4 + 5 + 6 = ?A. 15B. 18C. 20D. 21答案D. 21试题三张三一周的零花钱是12元,他每天都要花1元,那么他一周之后还剩下多少钱?A. 5元B. 6元C. 7元D. 8元B. 6元试题四计算:(1 + 2 - 3)× 5A. 0B. 5C. 10D. 15答案B. 5试题五根据下列数字,找到其中的三个连续数字使它们的和最大。
{3, 6, 8, 2, 7, 1, 9, 0}A. 3, 6, 8B. 8, 2, 7C. 1, 9, 0D. 6, 8, 2答案B. 8, 2, 7三、口算试题试题一计算:1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10答案55试题二计算:9 × 5答案45计算:16 ÷ 4答案4试题四计算:47 - 23答案24试题五计算:200 ÷ 8答案25四、以上是全国四年级希望杯数学竞赛的全部试题和答案。
经过这次竞赛的练习,寻找方法和答案的过程不仅能够锻炼孩子们的思维能力和逻辑思维能力,同时也是对他们平时所学知识的一种回顾和检验。
希望这份文档能够对您有所帮助。
四年级希望杯奥数试卷【含答案】
四年级希望杯奥数试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数字是偶数?A. 3B. 4C. 5D. 62. 一个正方形的四条边长相等,那么它的周长是?A. 边长的两倍B. 边长的三倍C. 边长的四倍D. 边长的五倍3. 下列哪个数字是质数?A. 12B. 17C. 20D. 214. 1千克等于多少克?A. 100克B. 1000克C. 10,000克D. 1,000,000克5. 下列哪个图形是平行四边形?A. 正方形B. 长方形C. 三角形D. 圆形二、判断题(每题1分,共5分)1. 1+1=3 ()2. 长方形和正方形的周长都是边长的四倍。
()3. 9乘以9等于81。
()4. 0是最小的自然数。
()5. 圆的周长等于直径的两倍。
()三、填空题(每题1分,共5分)1. 一个正方形的边长是5厘米,那么它的面积是____平方厘米。
2. 1千克等于____克。
3. 2乘以2等于____。
4. 下列数字中,____是最大的偶数。
5. 下列图形中,____是唯一有曲线边的图形。
四、简答题(每题2分,共10分)1. 解释什么是质数。
2. 什么是平行四边形?3. 解释什么是周长。
4. 什么是面积?5. 什么是自然数?五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求它的周长和面积。
2. 一个正方形的边长是6厘米,求它的周长和面积。
3. 一个圆形的半径是4厘米,求它的周长和面积。
4. 一个数字加上它的两倍等于15,求这个数字。
5. 一个数字减去5等于10,求这个数字。
六、分析题(每题5分,共10分)1. 小明有10个苹果,他吃了一半,然后又吃了一个,他还剩几个苹果?2. 一个长方形的长是8厘米,宽是4厘米,求它的对角线长度。
七、实践操作题(每题5分,共10分)1. 画一个边长为5厘米的正方形,并标出它的周长和面积。
2. 画一个半径为3厘米的圆形,并标出它的周长和面积。
第十四届小学四年级“希望杯”全国数学邀请赛试题及答案
第十四届小学“希望杯”全国数学邀请赛四年级第1试试题2016年3月20日上午8:30至10:00以下每题6分,共120分。
1、计算:25×259÷(37÷8)= .2、若9个连续偶数的和是2016,则这些数中,最小的是.3、有110张相同得长方形纸片,长比宽多10厘米,将这些纸片如图1无重合摆放,可以摆成长是2750厘米的长方形,将这些纸片如图2无重合摆放,可以摆成长是厘米的长方形。
4、甲、乙、丙3人一起购买学习用品,已知甲和乙共支付了67元,乙和丙共支付了64元,甲和丙共支付了63元,那么,甲支付了元。
5、图3由5×4个边长为1的小正方形组成,其中阴影部分的面积是。
6、一个工厂电表的示数是52222千瓦,若干天后,电表的示数(五位数)又出现4个相同的数码,那么该工厂在这些天内至少又用了千瓦的电.7、已知碳素笔每支1元8角,笔记本每个3元5角,文具盒每个4元2角,晶晶买这三种文具刚好用了20元,则她买了个笔记本。
8、一个除法算式,若被除数比除数大2016,商是15,余数是0,则被除数是。
9、若一个长方形的长减少3厘米、宽增加2厘米,得到一个和原长方形面积相等的正方形,则长方形的周长是厘米。
10、已知a,b,c都是质数,若a×b+b×c=119,则a+b+c= .11、王华每星期二、六学书法,已知2016年的元旦是星期五,那么在2016年8月,王华学书法的天数是。
12、一个四位数A,将四位数的各位上的数字(均不为0)重新排列得到的最大数比A大7668,得到的最小数比A小594,则A= 。
a2016能被12整除,则这样的六位数有个。
13、若六位数b14、3堆桃子的个数分别是93,70,63,一只猴子在3堆桃子间搬运,已知猴子每次最多可以搬5个桃子,并且在从一堆搬到另一堆的途中会吃掉1个,当3堆桃子个数相等时,猴子至少吃掉了个桃子。
15、在1到100这100个数中,被2,3,5除都有非零的余数,且余数彼此不等的数有个。
【广州市】小学四年级希望杯历年数学竞赛试题与答案1-14届(北京市全套完整版)
第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。
6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
小学四年级希望杯历年数学竞赛试题和答案解析1_14届[最新[全套](完整版)]
第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。
6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
1--2016第十四届希望杯四年级100题
培训题1.计算:9+99+999+9999+99999。
2.计算:2016÷28÷4×7。
3.计算:2014×2015+2013×2015-2012×2015-2011×2015。
4.定义运算:a○-b=a-b+8,a○×b=a×b-5。
求[25○-(4○×7)]○×3的值。
5.定义运算:a○+b=(a+b)÷6,若m○+8=24,求m的值。
6.在下面的□中填入运算符号“+,-,×,÷”,使等式成立。
12□4□4=7□7□3。
7.不求最后结果,将以下三个乘法运算按从大到小排列:a=2014×2016,b=2013×2017,c=2015×2015。
8.把48写成两个质数的和,有几种写法?9.求最小的自然数a,使2015+a等于某个自然数的自乘。
10.已知4个连续奇数的平均数是20,求最小的奇数。
11.五个数9,17,x,x+5,34的平均数是21,求x。
12.小杰从27起写了26个连续奇数,小强从26起写了27个连续自然数,然后他们分别将自己写的数求和,求这两个和的差。
13.已知两个数的和是555,且较大数除以较小数得商12余9,求较大数与较小数的差。
14.在一个带余除法的算式中,如果把被除数152写成125,则商会比原来的结果小3,且余数不发生变化,求余数。
15.小明在做一道带余除法的运算时,把除数18看作15,结果商没有改变,但余数增加了12,求商的值。
16.求一切除以6后余2的两位数的和。
17.一个数被5除余l,被7除余3,被11除余7,这个数最小是多少?18.abc表示一个各位数字互不相同的三位数,若这个数是6的倍数,且a+c=13,则称这个数为“金六点”,三位数中“金六点”有多少个?a b能被12整除,求这样的六位数中最大的一个。
2016年希望杯复赛四年级试题答案解析
2016年第14届四年级希望杯复赛解析一、填空题(每题5分,共60分)一、计算: 2016×2021-2021×2021+2021×2021-2021×2016=_______.【答案】1【解析】()()112015-120162012-20132015 -2013-201420162016×2013-2015×2012+2015×2013-2014×2016 =⨯⨯=⨯⨯=二、60的不同约数(1除外)的个数是_______.【答案】11 【解析】60=1×60 =2×30 =3×20 =4×15 =5×12 =6×10.60的约数(1除外)有:二、3、4、五、六、10、1二、1五、20、30、60,共11个。
3、今年丹丹4岁,丹丹的爸爸28岁,a 年后,爸爸的年龄是丹丹年龄的3倍,那么a 的值是_______.【答案】8【解析】年龄问题。
关键是年龄差不变。
年龄差为28 – 4=24(岁)当爸爸年龄是丹丹年龄的3倍时,两人的年龄差仍为24岁。
因此,a 年后丹丹的年龄为24÷(3-1)=12(岁)a=12-4=8(年)4、已知a 比c 大2,那么三位自然数abc 与 cba 的差是_______.【答案】198 【解析】abc -cba =1001010010a b c c b ++--a - ()100()a c a c =--- =2002-198=5、正方形A 的边长是10,假设正方形B,C 的边长都是自然数,且B,C 的面积和等于A 的面积,那么B 和C 的边长的和是_______.【答案】14【解析】B,C 的面积和等于A 的面积,即B,C 的面积和是10×10=100,那么b 2+c 2=100,且b ,c 皆为自然数,一试便知为6和8,B 和C 的边长的和是6+8=14.6、已知9个数的平均数是9,若是把其中一个数改成9后,这9个数的平均数变成8,那么那个被改动的数原先是_________.【答案】18【解析】平均数=总和÷总个数平均数由9变成8,减少了9-8=1;总数减少了1×9=9;因此原先的数为9+9=18.7、如图I ,水平相邻和竖直相邻的两个格点间的距离都是1,那么图中阴影部份的面积是_______.【答案】17【解析】依照毕克定理,正方形格点图算面积:面积=内部点+边界点÷2-1内部点:8个边界点:20个因此面积:8+20÷2-1=17八、两个数的和是363,用较大的数除以较小的数得商16余6,那么这两个数中较大的是_______.【答案】342【解析】较大数减去6以后是较小数的16倍,且它们的和为3636-357= 依照和倍问题的大体公式:较小数=和÷(倍数+1),较小数=357÷(16+1)=21,因此较大数:363-21=3429、如图2,阴影部份是一个边长为6厘米的正方形,在它的周围有四个长方形,假设四个长方形的周长和是92厘米,那么四个长方形的面积的和是__________平方厘米。
2016年第十四届希望杯复赛四年级试题详解 [2016年4月10日]
X二42
路程为42X4二168(千米) 二、解答题(每小题巧分,共60分)(每题者吧馨写出推算过程) ”、如图4,用正方形a ' b , c ' d , e拼成个长3o厘米,宽是z2厘米的长力J乡,求正方形e 的面积。 【解析】
奋百.. . . 1
a+b二22 a+b上三个数的不赌阶伴筹,则x+y+。+b
+C+d=
0
L答案】68 【解析】 根据15+4=12+y,可以得出,厂15+4一12二7 . 根据2y=4+a,可以得出,2 X7=4+a , a=10・ 根据2 x 15二12+d,可以得出,少2 X 15一12二18 . 根据Zx二a+d二10+15,可以得出x二14 幻和二15+4+14二33,则。二33一3=11 .
a
h
22厄代
所以。=8厘米
ZC+e二221
所以e=6厘米 所以正方形e的面积是:6X6二36(平方厘米)
叫卜---------30互’代
14、有两块地,平均亩产粮食675千克,其中第一块地是s亩,亩产幸良食705千克,如果 第二块地亩产哮良食6叨千克,那么,第二块地有多少亩? E解析1第一块地总共比平均少:(705一675)XS二150(千克) 所以第二块地比平均多150千克
灸19令3二39.。二”, 2
根据余数的可加可减性,白球的个数除以3也是余2,白球的个数只能是2。 黑球和红球共:双黔2尔的(个) 红球:的令3二33(个)只能是义5*笼酥33(个) 答:装有巧个球的盒子里装的是红球。 (2)还剩下琢玲,彝兔的盒子里装的是黑球,即有3个盒子 答:有3个盒子里装的是黑球。
2、60的不厉甘褛女(1除外)的个姿女是 【答案】止
5 【解析】6。二少<6。二2 >(3。二3 >(2。二二>(二5 >(二2二6 ><二O 一乙、一《。爪)二汽自什・气一/卜 6。的约数(二除外)有:2、3、二、5、
2016希望杯复赛试题及答案
{ x} =
9 - [ x] , [ x] - 1
显然, 0 £ {x} < 1 ,故 考虑到 [ x] 为整数,得
[ x] - 1 > 9 - [ x] ³ 0 , [ x] 可以取 6,7,8,9,
(10 分) (13 分)
3 1 1 与 [ x] 对应的 {x} 的值分别为 , , ,0 , 5 3 7 综上知,方程 [ x ] { x} x 2{ x} 9 的全部解是
发现,55 是 11 的倍数,56 是 7 的倍数; (5 分) 再确定最小的 a,使 a 是 11 的倍数,a+1 是 7 的倍数,a+2 是 5 的倍数: 显然 55+2=57 不是 5 的倍数, 因为 11 和 7 的最小公倍数是 77, (7 分) 所以可在 57 的基础上加上 77 的整数倍,直到得数能被 5 整除,考察 57+77,57+77×2,……,57+77×4=365, (10 分) 发现 363 是 11 的倍数,364 是 7 的倍数,365 是 5 的倍数,366 是 3 的倍数, 所以满足条件的 4 个最小的自然数是 363,364,365,366, (12 分) 363+364+365+366=1458, 答:这 4 个自然数的和最小是 1458.(15 分) 16. (1)由黑球的个数是红球的 2 倍知,这两种球的总个数是 3 的倍数.(2 分) 因为 6 个盒子里球的总个数是 15+16+18+19+20+31=119= 3 39 2 , 又因为白球只有 1 盒,所以白球的个数被 3 除余 2. 观察 15,16,18,19,20 和 31 这 6 个数,只有 20÷3=6……2,所以白球有 20 个.(5 分) 除白球外,其余 5 盒球的总个数为 119-20=99(个) , 所以红球有 33 个,黑球有 66 个. 而只有 15+18=33(个) , 所以装有 15 个球的盒子里装的是红球. 答:装有 15 个球的盒子里装的是红球。 (8 分) (2)由(1)可知,装有 15 和 18 个球的盒子里装的都是红球, 即有两个盒子装的是红球.(12 分) 由题设可知,白球只有 1 盒,且一共只有 6 个盒子, 所以有 6-2-1=3(个)盒子装黑球. 答:3 个盒子装的是黑球。 (15 分)
小学四年级希望杯历年数学竞赛试题与答案1-13届
第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。
6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
2020年第十四届小学数学“梦想杯”全国数学邀请赛试卷(四年级第2试)
2016年第十四届小学“希望杯”全国数学邀请赛试卷(四年级第2试)一、填空题(每题5分,共60分).1.(5分)2016×2014﹣2013×2015+2012×2015﹣2013×2016=.2.(5分)60的不同约数(1除外)的个数是.3.(5分)今年丹丹4岁,丹丹的爸爸28岁,a年后爸爸年龄是丹丹年龄的3倍,则a的值是.4.(5分)已知a比c大2,则三位自然数与的差是.5.(5分)正方形A的边长的10,若正方形B,C的边长都是自然数,且B,C的面积和等于A的面积,则B和C的边长的和是.6.(5分)已知9个数的平均数是9,如果把其中一个数改为9后,这9个数的平均数变为8,那么这个被改动的数原来是.7.(5分)在下面的格点图中,水平相邻和竖直相邻的两个格点的距离都是1,则图中阴影部分的面积是.8.(5分)两个数的和是363,用较大的数除以较小的数,得商16余6,则这两个数中较大的是.9.(5分)如图,阴影部分是一个边长为6厘米的正方形,在它的四周有四个长方形,若四个长方形的周长的和是92厘米,则四个长方形的面积的和是平方厘米.10.(5分)有一根长240厘米的木棒,先从左端开始每隔7厘米划一条线,再从右端开始每隔6厘米划一条线,并且从划线处截断木棒,则在所截得的小木棒中,长度3厘米的木棒有根.11.(5分)在如图的9个方格中,每行、每列及每条对角线上三个数的和都相等,则x+y+a+b+c+d=.12.(5分)甲、乙两人分别从A、B两地同时出发,相向而行,4小时可相遇;若两人时速都增加3千米,则出发后3小时30分可相遇.A、B两地相距千米.二、解答题(每题15分,共60分).13.(15分)如图,用正方形a、b、c、d、e拼成一个长30厘米,宽22厘米的长方形,求正方形e的面积.14.(15分)有两块地,平均亩产粮食675千克,其中第一块地5亩,亩产粮食705千克.如果第二块地亩产粮食650千克,第二块地有多少亩?15.(15分)4个连续的自然数,从小到大依次是11的倍数、7的倍数、5的倍数、3的倍数,求这4个自然数的和最小值.16.(15分)有6个密封的盒子,分别装有红球、白球和黑球,每个盒子里只有一种颜色的球,且球的个数分别是15,16,18,19,20,31,已知黑球的个数是红球个数的2倍,白球只有1盒,问:(1)装有15个球的盒子里装的是什么颜色的球?(2)有多少个盒子装的是黑球?2016年第十四届小学“希望杯”全国数学邀请赛试卷(四年级第2试)参考答案与试题解析一、填空题(每题5分,共60分).1.(5分)2016×2014﹣2013×2015+2012×2015﹣2013×2016=1.【分析】根据乘法的分配律,提取公因数简算即可.【解答】解:2016×2014﹣2013×2015+2012×2015﹣2013×2016=2016×2014﹣2013×2016﹣2013×2015+2012×2015=2016×(2014﹣2013)﹣(2013﹣2012)×2015=2016×1﹣1×2015=2016﹣2015=1故答案为:1.【点评】本题考查了学生对整数四则混合运题目进行计算的能力.完成本题要注意分析式中数据,运用合适的简便方法计算.2.(5分)60的不同约数(1除外)的个数是11.【分析】先将60分解质因数,60=2×2×3×5,再写成标准式是22×3×5,再利用约数个数公式,约数个数=不同质因数指数加1然后再相乘,最后减去1,即得答案.【解答】60分解质因数60=2×2×3×5,再下称标准式是22×3×5,再利用约数个数公式,约数个数=不同质因数指数加1然后再相乘.60的不同约数(1除外)的个数是(2+1)×(1+1)×(1+1)﹣1=11个.答:答案是11个.【点评】约数个数公式的推导要用乘法原理,当然此题也可以用列举法求解.3.(5分)今年丹丹4岁,丹丹的爸爸28岁,a年后爸爸年龄是丹丹年龄的3倍,则a的值是8.【分析】根据“今年丹丹4岁,丹丹的爸爸28岁”,知道今年爸爸与丹丹相差28﹣4=24岁,再根据年龄差不会随时间的变化而改变,利用差倍公式,用24除以倍数差(3﹣1)即可求出当爸爸的年龄是丹丹年龄的3倍时丹丹的年龄,进而求出答案.【解答】解:年龄差:28﹣4=24(岁),丹丹的年龄:24÷(3﹣1)=24÷2=12(岁),12﹣4=8(年),所以,a的值是8.答:a年后爸爸年龄是丹丹年龄的3倍,则a的值是8.故答案为:8.【点评】关键是根据年龄差不会随时间的变化而改变,再根据差倍问题{差÷(倍数﹣1)=较小数,较小数×倍数=较大数,(或较小数+差=较大数)}与基本的数量关系解决问题.4.(5分)已知a比c大2,则三位自然数与的差是198.【分析】两个数字对调顺序的字母正好是a和c,而我们知道a﹣c=2.b在中间可以约掉.所以最终的差需要用a和c的差表示出来.【解答】解:=100a+10b+c﹣(100c+10b+a)=100a+10b+c﹣100c﹣10b﹣a=99a﹣99c=99(a﹣c)∵a﹣c=2∴99×2=198故答案为:198【点评】针对位值原理必须明白什么是完全拆分和不完全拆分.知道两数的差,我们就按照位值原理展开做差即可.5.(5分)正方形A的边长的10,若正方形B,C的边长都是自然数,且B,C的面积和等于A的面积,则B和C的边长的和是14.【分析】本题是说明两个正方形B和C的面积与A的面积相等,符合勾股定理,根据勾股定理a2+b2=c2即可求解.【解答】解:根据勾股定理a2+b2=c2得,其中一个正方形的边长是10,根据6,8,10是一组勾股数得.62+82=102满足条件.6+8=14,故答案为:14.【点评】本题考查对勾股定理的理解与运用,同时要掌握一些常见的勾股数组合,做题的时候比较快同时加强准确率.(3,4,5)(6,8,10,)(5,12,13)等6.(5分)已知9个数的平均数是9,如果把其中一个数改为9后,这9个数的平均数变为8,那么这个被改动的数原来是18.【分析】改动之前的总数是9×9=81,改动后的总数是8×9=72,前后相差9×9﹣8×9=9,说明这个数比原来减少了9,这个被改动的数原来是9+9=18;据此解答即可.【解答】解:9×9﹣8×9=81﹣72=99+9=18答:这个被改动的数原来是18.故答案为:18.【点评】此题考查了平均数的意义及求平均数的方法的拓展运用;知识点:总数量=平均数×总份数.7.(5分)在下面的格点图中,水平相邻和竖直相邻的两个格点的距离都是1,则图中阴影部分的面积是17.【分析】红色正方形的面积是3×3=9,每个外部的角的面积都是2×1÷2=1,8个一共是8,然后求整个的面积即可.【解答】解:3×3+2×1÷2×8=9+8科技新闻网:##科技新闻网每天更新最新科技新闻,这里有最权威的科技新闻资料,我们是国内外最新的科技新闻网。
小学四年级希望杯历年数学竞赛试题与答案1_14届(最新全套完整版)
第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。
6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年第14届四年级希望杯复赛真题
一、填空题(每小题5分,共60分)
1、计算:2016×2014-2013×2015+2012×2015-2013×2016=_______.
2、60的不同约数(1除外)的个数是_______.
3、今年丹丹4岁,丹丹的爸爸28岁,a年后,爸爸的年龄是丹丹年龄的3倍,则a的值是_______.
4、已知a比c大2,则三位自然数a b c与c b a的差是_______.
5、正方形A的边长是10,若正方形B,C的边长都是自然数,且B,C的面积和等于A的面积,则B和C的边长的和是_______.
6、已知9个数的平均数是9,如果把其中一个数改为9后,这9个数的平均数变为8,那么这个被改动的数原来是_________.
7、如图I,水平相邻和竖直相邻的两个格点间的距离都是1,则图中阴影部分的面积是_______.
8、两个数的和是363,用较大的数除以较小的数得商16余6,则这两个数中较大的_______.
9、如图2,阴影部分是一个边长为6厘米的正方形,在它的四周有四个长方形,若四个长方形的周长和是92厘米,则四个长方形的面积的和是__________
平方厘米。
10、有一根长240厘米的木棒,先从左端开始每隔7厘米划一条线,再从右端开始每隔6厘米划一条线,并且从划线处截断木棒,则所截得得小木棒中,长度是3厘米的木棒有_______根
11、在图3的9个方格中,每行每列以及每条对角线上三个数的和都相等,则x+y+a+
b+c+d=_______。
12、甲、乙两人分别从A、B两地同时出发,相向而行,4小时可相遇;若两人的时速都增加3千米,则出发后3小时30分可相遇,A、B两地相距________千米。
二、解答题(每小题15分,共60分)(每题都要写出推算过程)
13、如图4,用正方形a,b,c,d,e拼成一个长30
厘米,宽是22厘米的长方形,求正方形e的面积。
14、有两块地,平均亩产粮食675千克,其中第
一块地是5亩,亩产粮食705千克,如果第二块地亩产粮食650千克,那么,第二块地有多少亩?
15、4个连续的自然数,从小到大依次是11的倍数、7的倍数、5的倍数、3的倍数,求这4个自然数的和的最小值。
16、有6个密封的盒子,分别装有红球、白球和黑球,每个盒子里只有一种颜色的球,且球的个数分别是15,16,18,19,20,31,已知黑球的个数是红球个数的两倍,装白球的盒子只有1个,问:
(1)装有15个球的盒子里装的是什么颜色的球?
(2)有多少个盒子里装的是黑球?。