数学分析12.ppt
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可看作一动点在数轴上依次取 x1 , x2 ,, xn ,.
x1 x3 x2 x4 xn
数列可看作自变量为正整数 n的函数: xn f (n) 整标函数或下标函数
6
数列的极限
(2) 在平面上画出自变量坐标轴和因变量坐标轴, 则数列的几何意义是平面上一串分离的点. xn
o ·1 2·3·4
n
注 不可将这串点·连成曲线.
9
数列的极限
|
xn
1 |
1 n
给定
1 100
,
由
1 n
1, 100
只要 n 100时,有
xn
1
1, 100
给定 1 , 1000
只要 n 1000时, 有
xn
1
1, 1000
给定 1 , 10000
只要 n 10000时,
有
xn
1
1, 10000
给定
0, 只要 n
N ( [1])时,有
采用逻辑符号将 lim n
xn
a的定义可缩写为:
N 定义 0, N 0, 当n N时,
有 xn a .
12
数列的极限
数列极限的几何意义 a 2
xn a
Leabharlann Baidu
a xn a
(n N )
即 xn U(a , )
a
(n N )
x2 x1 xN 1 a xN 2 x3 x
a;
(1) {xn a}
(2)
为无穷{小n }量, ;
xn a n .
(3) 存在无穷小量 使
14
数列的极限
例 证明 lim n (1)n1 1.
n
n
证时个,对找虽于x出n然给使是定1不可的等n以式,任总成(意n暂立1小时)n的的认1N正为. 1解数它不,是但n1等固使式定用的定,义按证照题这
意思是:一”尺. 长的棍子, 第一天取其一半, 第二
天取其剩下的一半, 以后每天都取其剩下的一 半, 这样永远也取不完.
2
数列的极限
刘徽(三世纪)的“割圆术”中说: “割之弥细,所失弥少.割之又割,以至不
可割,则与圆周合体,而无所失矣.”
意思是: 设给定半径为1尺的圆, 从圆内接正6边
形开始,每次把边数加倍,屡次用勾股定理.求出 正12边形、正24边形. ……等等正多边形的边长, 边数越多, 圆内接正多边形越与圆接近, 最后与 圆周重合, 则正多边形周长与圆周长就没有误 差了.
3
数列的极限
正六边形的面积 A1 正十二边形的面积 A2
正6 2n1形的面积 An A1 , A2 , A3 ,, An , S
R
4
数列的极限
二、数列 (sequence of number) 的概念
定义 按照自然数的顺序排列的一列数
x1 , x2 , xn , 简记为{ xn }, 其中xn称为数列{ xn }的通项(general
如果数列没有极限, 就说数列发散(diverge).
11
数列的极限
注
(1) 不等式 xn a 刻划了xn与a的无限接近;
(2) 正数是任意给定的 , 但是一旦给出之后,
它就是确定了;
(3) N与给定的有关, 一般地说,越小, N将越大;
(4) {xn}有没有极限, “前面” 的有限项不起作用, 主要看“后面”的无穷多项.
0, 要 xn 1 ,
只要
1 n
,
或n
1
所以, 取N
1,
则当n
N时,
有 n (1)n1 1 n
即lim n (1)n1 1.
n
n
15
数列的极限
例 证 极用 定明 限定数.义0列,证寻x数找n 列N,n极1但c限o不s存n必2在要(时求n ,最关1、小键2、的是3N任).意以给0为
当n无限增大时, xn 无限接近于1.
8
数列的极限
研究数列{1 (1)n1 }当 n 时的变化趋势. n
当n无限增大时, xn无限接近于1.
“无限接近”意味着什么?
如何用数学语言刻划它.
|
xn
1|
(1 (1)n1
1)1 n
1 n
xn 1 可以要多么小就多么小,只要n充分大, 则要看 xn 1小到什么要求.
第一节 数列的极限
概念的引入 数列的概念 数列极限的概念 收敛数列的性质 小结 思考题 作业
第三章 极限与函数的连续性
1
数列的极限
一、概念的引入
极限概念是从常量到变量, 从有限到无限, 即从初等数学过渡到高等数学的关键.
极限的思想源远流长. 庄子(约公元前355~275年)在《天下篇》 中写道: “一尺之棰,日取其半,万世不竭
xn
1
成立.
10
数列的极限
定义 如果对于任意给定的正数 (不论它多么小),
总存在正整数N,使得对于n N 时的一切 xn ,
不等式
xn a
成立. 那末就称常数a是数列 xn的极限(limit), 或称数列 xn收敛于a (converge to a) .
记为 或
lim
n
xn
a,
xn a (n ).
7
数列的极限
三、数列极限的概念
问题 当 n无限增大时, xn是否无限接近于某一
确定的数值? 如果是, 如何确定?
研究数列{1 (1)n1 }当 n 时的变化趋势. n
1 1, 1 1 , 1 1 , 1 1 , 1 1 , 2345
即 2, 1 , 4 , 3 , 6 2 345
当n N时, 所有的点 xn都落在(a , a )内,
只有有限个(至多只有N个) 落在其外.
注 数列极限的定义通常是用来进行推理
和证明极限,而不是用来求极限, 因为这里
需要预先知道极限值是多少.
13
无穷小量
• Def 3.3 极限为0的数列称为无穷小
量.
•
Proplnim3.x1n
以下三个命题等价:
term), 或者一般项.
如 2,4,8,,2n ,;
{2n }
1 2
,
1 4
,
1 8
,,
1 2n
,;
{
1 2n
}
5
数列的极限
1,1,1,,(1)n1 ,; {(1)n1 }
2, 1 , 4 ,, n (1)n1 ,;
23
n
数列的(两种)几何表示法:
n (1)n1
{
}
n
(1)数列对应着数轴上一个点列.
证
0, 要使 xn 0
1 cos n 0 n2
.
由于 1 cos n 0 1 cos n 1
n2
n 2n
只为要了n1简 化,或解不n 等1式, 的取运N 算 [,常1 ], 则当n N时,
常把 有
x1n
a
cos
作适当地放大.
n 0 . 即lim
1
cos
n
0
n2
n n
2
16
数列的极限
例
设xn
C(C为常数),
证明 lim n
xn
C.
证 任给 0, 对于一切自然数n ,
xn C C C 0 成立,
x1 x3 x2 x4 xn
数列可看作自变量为正整数 n的函数: xn f (n) 整标函数或下标函数
6
数列的极限
(2) 在平面上画出自变量坐标轴和因变量坐标轴, 则数列的几何意义是平面上一串分离的点. xn
o ·1 2·3·4
n
注 不可将这串点·连成曲线.
9
数列的极限
|
xn
1 |
1 n
给定
1 100
,
由
1 n
1, 100
只要 n 100时,有
xn
1
1, 100
给定 1 , 1000
只要 n 1000时, 有
xn
1
1, 1000
给定 1 , 10000
只要 n 10000时,
有
xn
1
1, 10000
给定
0, 只要 n
N ( [1])时,有
采用逻辑符号将 lim n
xn
a的定义可缩写为:
N 定义 0, N 0, 当n N时,
有 xn a .
12
数列的极限
数列极限的几何意义 a 2
xn a
Leabharlann Baidu
a xn a
(n N )
即 xn U(a , )
a
(n N )
x2 x1 xN 1 a xN 2 x3 x
a;
(1) {xn a}
(2)
为无穷{小n }量, ;
xn a n .
(3) 存在无穷小量 使
14
数列的极限
例 证明 lim n (1)n1 1.
n
n
证时个,对找虽于x出n然给使是定1不可的等n以式,任总成(意n暂立1小时)n的的认1N正为. 1解数它不,是但n1等固使式定用的定,义按证照题这
意思是:一”尺. 长的棍子, 第一天取其一半, 第二
天取其剩下的一半, 以后每天都取其剩下的一 半, 这样永远也取不完.
2
数列的极限
刘徽(三世纪)的“割圆术”中说: “割之弥细,所失弥少.割之又割,以至不
可割,则与圆周合体,而无所失矣.”
意思是: 设给定半径为1尺的圆, 从圆内接正6边
形开始,每次把边数加倍,屡次用勾股定理.求出 正12边形、正24边形. ……等等正多边形的边长, 边数越多, 圆内接正多边形越与圆接近, 最后与 圆周重合, 则正多边形周长与圆周长就没有误 差了.
3
数列的极限
正六边形的面积 A1 正十二边形的面积 A2
正6 2n1形的面积 An A1 , A2 , A3 ,, An , S
R
4
数列的极限
二、数列 (sequence of number) 的概念
定义 按照自然数的顺序排列的一列数
x1 , x2 , xn , 简记为{ xn }, 其中xn称为数列{ xn }的通项(general
如果数列没有极限, 就说数列发散(diverge).
11
数列的极限
注
(1) 不等式 xn a 刻划了xn与a的无限接近;
(2) 正数是任意给定的 , 但是一旦给出之后,
它就是确定了;
(3) N与给定的有关, 一般地说,越小, N将越大;
(4) {xn}有没有极限, “前面” 的有限项不起作用, 主要看“后面”的无穷多项.
0, 要 xn 1 ,
只要
1 n
,
或n
1
所以, 取N
1,
则当n
N时,
有 n (1)n1 1 n
即lim n (1)n1 1.
n
n
15
数列的极限
例 证 极用 定明 限定数.义0列,证寻x数找n 列N,n极1但c限o不s存n必2在要(时求n ,最关1、小键2、的是3N任).意以给0为
当n无限增大时, xn 无限接近于1.
8
数列的极限
研究数列{1 (1)n1 }当 n 时的变化趋势. n
当n无限增大时, xn无限接近于1.
“无限接近”意味着什么?
如何用数学语言刻划它.
|
xn
1|
(1 (1)n1
1)1 n
1 n
xn 1 可以要多么小就多么小,只要n充分大, 则要看 xn 1小到什么要求.
第一节 数列的极限
概念的引入 数列的概念 数列极限的概念 收敛数列的性质 小结 思考题 作业
第三章 极限与函数的连续性
1
数列的极限
一、概念的引入
极限概念是从常量到变量, 从有限到无限, 即从初等数学过渡到高等数学的关键.
极限的思想源远流长. 庄子(约公元前355~275年)在《天下篇》 中写道: “一尺之棰,日取其半,万世不竭
xn
1
成立.
10
数列的极限
定义 如果对于任意给定的正数 (不论它多么小),
总存在正整数N,使得对于n N 时的一切 xn ,
不等式
xn a
成立. 那末就称常数a是数列 xn的极限(limit), 或称数列 xn收敛于a (converge to a) .
记为 或
lim
n
xn
a,
xn a (n ).
7
数列的极限
三、数列极限的概念
问题 当 n无限增大时, xn是否无限接近于某一
确定的数值? 如果是, 如何确定?
研究数列{1 (1)n1 }当 n 时的变化趋势. n
1 1, 1 1 , 1 1 , 1 1 , 1 1 , 2345
即 2, 1 , 4 , 3 , 6 2 345
当n N时, 所有的点 xn都落在(a , a )内,
只有有限个(至多只有N个) 落在其外.
注 数列极限的定义通常是用来进行推理
和证明极限,而不是用来求极限, 因为这里
需要预先知道极限值是多少.
13
无穷小量
• Def 3.3 极限为0的数列称为无穷小
量.
•
Proplnim3.x1n
以下三个命题等价:
term), 或者一般项.
如 2,4,8,,2n ,;
{2n }
1 2
,
1 4
,
1 8
,,
1 2n
,;
{
1 2n
}
5
数列的极限
1,1,1,,(1)n1 ,; {(1)n1 }
2, 1 , 4 ,, n (1)n1 ,;
23
n
数列的(两种)几何表示法:
n (1)n1
{
}
n
(1)数列对应着数轴上一个点列.
证
0, 要使 xn 0
1 cos n 0 n2
.
由于 1 cos n 0 1 cos n 1
n2
n 2n
只为要了n1简 化,或解不n 等1式, 的取运N 算 [,常1 ], 则当n N时,
常把 有
x1n
a
cos
作适当地放大.
n 0 . 即lim
1
cos
n
0
n2
n n
2
16
数列的极限
例
设xn
C(C为常数),
证明 lim n
xn
C.
证 任给 0, 对于一切自然数n ,
xn C C C 0 成立,