《三角函数的应用》三角函数PPT优秀课件

合集下载

5.7 三角函数的应用 课件(共26张PPT)

5.7 三角函数的应用 课件(共26张PPT)

5.7 三角函数的应用课件(共26张PPT)(共26张PPT)5.7三角函数的应用第五章学习目标学科素养1.了解三角函数是描述周期变化现象的重要函数模型;2.会用三角函数模型解决简单的实际问题1.数学建模2.逻辑推理1自主学习函数y=Asin(ωx+φ),A>0,ω>0中参数的物理意义Aωx+φφ2经典例题题型一三角函数在物理中的应用解列表如下:2t+0 π 2πts 0 4 0 -4 0描点、连线,图象如图所示.(2)小球上升到最高点和下降到最低点时的位移分别是多少?解小球上升到最高点和下降到最低点时的位移分别是4 cm和-4 cm.(3)经过多长时间小球往复振动一次?解因为振动的周期是π,所以小球往复振动一次所用的时间是π s.跟踪训练1已知电流I与时间t的关系为I=Asin(ωt+φ).∴ω≥300π>942,又ω∴N*,故所求最小正整数ω=943.题型二三角函数在生活中的应用解三角函数应用问题的基本步骤跟踪训练2健康成年人的收缩压和舒张压一般为120~140 mmHg 和60~90 mmHg.心脏跳动时,血压在增加或减小.血压的最大值、最小值分别称为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数120/80 mmHg为标准值.记某人的血压满足函数式p(t)=115+25sin(160πt),其中p(t)为血压(mmHg),t为时间(min),试回答下列问题:(1)求函数p(t)的周期;(2)求此人每分钟心跳的次数;(3)求出此人的血压在血压计上的读数,并与正常值比较.解p(t)max=115+25=140(mmHg),p(t)min=115-25=90(mmHg),即收缩压为140 mmHg,舒张压为90 mmHg.此人的血压在血压计上的读数为140/90 mmHg,在正常值范围内.3当堂达标√√√4.如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin +k.据此函数可知,这段时间水深(单位:m)的最大值为A.5B.6C.8D.10√解析根据图象得函数的最小值为2,有-3+k=2,k=5,最大值为3+k=8.【课后作业】对应课后练习。

三角函数的应用ppt课件

三角函数的应用ppt课件
D 系,在转动一周的过程中,H 关于 t 的函数解析式为( )
A.
H
55
sin
π 15
t
π 2
,
x 0, 30
C.
H
55
sin
π 15
t
π 2
55 ,
x 0, 30
B.H
55
sin
π 15
t
π 2
,
x 0, 30
D.H
55
sin
π 15
t
π 2
65,
x 0, 30
解析:因为游客在座舱转到距离地面最近的位置进舱,转一周大约需要30min ,所 以游客进仓后第一次到达最高点时摩天轮旋转半周,大约需要15min , 又因为摩天轮最高点距离地面高度为120m ,所以t 15 时, H 120 ,
i
Asin
t
来刻画,其中

表示频率,A
表示振幅,
表示初相.
解:
(1)由图可知,电流最大值 5A,因此 A=5;电流变化的周期为 1 s,频率为 50Hz, 50
即 50 ,解 得 100π ;再 由初始状 态( t=0)的 电流约为 4.33A,可 得

sin
0.866
,因此
约为
π 3
.所以电流 i
解析:设角速度
k
sin (k
0)
,故旋转一周所用的时间t
k
2
sin
.当
90
2
时,
t
24
,故
k
12
,所以
t
24
sin
.故当“傅科摆”处于北纬
40
时,

5.7 三角函数的应用 课件(共20张PPT)

5.7 三角函数的应用 课件(共20张PPT)
(5)每秒钟小球能往复振动多少次?
.

4
解:(1)由题意可得h=2sin(t+ )的图象,如图所示:

(2)由题意可得当t=0时,h=2sin(0+ )
4
= 2,
故小球在开始振动时的位置在(0, 2).
(3)由解析式可得A=2,故小球的最高点和
最低点与平衡位置的距离均为2(厘米).
(4)可得函数的周期为T=2π,故小球往复
想发现和提出、分析和解决问题,提升数学建模素养.
一、引入新课
地球自转
钟摆
潮涨潮落
我们已经学习了三角函数的概念、图象和性质,特别研究
了三角函数的周期性.在现实世界中,大到宇宙天体的运动,
小到质点的运动以及现实生活中具有周期性变化的现象无
处不在,那么能不能建立数学模型来刻画具有周期性变化
的问题呢?
二、问题探究
函数y=Asin(ωx+φ)+b的半个周期的图象,
1
2
所以A= ×(30-10)=10,
1
2
b= ×(30+10)=20,
1 2

因为 × =14-6,所以ω= .
2

8

3
所以 ×10+φ=2π+2kπ,k∈Z,取φ= ,
8
4
3
所以y=10sin( x+ )+20,x∈[6,14].
8
4
的最多时间是16小时.
②设在时刻x货船航行的安全水深为y,
那么y=11.5-0.5(x-2)(x≥2).

6
设f(x)= 3sin x+10,x∈[2,10],g(x)=11.5-0.5(x-2)(x≥2),
由f(6)=10>g(6)=9.5且f(7)=8.5<g(7)=9知,

北师大版九年级数学下册《三角函数的应用》精品课件PPT

北师大版九年级数学下册《三角函数的应用》精品课件PPT

都来当个小专家!
A
B 咋 办
2 如图,水库大坝的截面是梯形
ABCD,坝顶AD=6m,坡长CD=8m.坡底
D
BC=30m,∠ADC=1350. (1)求坡角∠ABC的大小;
(2)如果坝长100m,那么修建这个 C 大坝共需多少土石方(结果精确到
0.01m3 ).
先构造直 角三角形!
2020年北师大版九年级数学下册1.5《 三角函 数的应 用》课 件(共 16张pp t)
1 如图,有一斜坡AB长40m,坡顶离地面的
高度为20m,求此斜坡的倾斜角. 2.有一建筑物,在地面上A点测得其顶点 A
C的仰角为300,向建筑物前进50m至B处,又 A
测得C的仰角为450,求该建筑物的高度(结
果精确到0.1m).
B
3. 如图,燕尾槽的横断面是一个等腰梯 形,其中燕尾角∠B=550,外口宽AD=180mm, 燕尾槽的尝试是70mm,求它的里口宽BC(结 果精确到1mm).
北师大版九年级数学下册 2020年北师大版九年级数学下册1.5《三角函数的应用》课件(共16张ppt)
2020年北师大版九年级数学下册1.5《 三角函 数的应 用》课 件(共 16张pp t)
2020年北师大版九年级数学下册1.5《 三角函 数的应 用》课 件(共 16张pp t)
直角三角形的边角关系
看我露一手
解:要知道货轮继续向东航行途中有无触礁的危险,只
要过点A作AD⊥BC的延长线于点D,如果AD>10海里,则无
触礁的危险.根据题意可知,∠BAD=550,∠CAD=250,BC=
20海里.设AD=x,则

A
tan 550 BD , tan 250 CD ,

高中数学课件三角函数ppt课件完整版

高中数学课件三角函数ppt课件完整版

归纳法等方法推导出诱导公式。
03
诱导公式的应用
在解三角函数的方程、求三角函数的值、证明三角恒等式等方面有广泛
应用。例如,利用诱导公式可以简化计算过程,提高解题效率。
恒等式及其证明方法
恒等式的基本形式
两个解析式之间的一种等价关系,即对于某个变量或一组变量的取值范围内,无论这些变量 取何值,等式都成立。
拓展延伸:反三角函数简介
01
02
03
04
反三角函数的定义
反正弦、反余弦、反正切等反 三角函数的定义及性质。
反三角函数的图像
反正弦、反余弦、反正切函数 的图像及其与对应三角函数的
关系。
反三角函数的应用
在几何、物理等领域中的应用, 如角度计算、长度测量等。
反三角函数的计算
利用计算器或数学软件进行计 算,求解三角方程等问题。
高中数学课件三角函 数ppt课件完整版
REPORTING
目录
• 三角函数基本概念与性质 • 三角函数诱导公式与恒等式 • 三角函数的加减乘除运算 • 三角函数在解三角形中的应用 • 三角函数在数列和概率统计中的应用 • 总结回顾与拓展延伸
PART 01
三角函数基本概念与性质
REPORTING
三角函数的定义及性质
PART 05
三角函数在数列和概率统 计中的应用
REPORTING
三角函数在数列求和中的应用
利用三角函数的周期 性,将数列求和转化 为定积分计算
结合三角函数的图像 和性质,分析数列的 收敛性和求和结果
通过三角函数的和差 化积公式,简化数列 求和过程
三角函数在概率统计中的应用
利用三角函数表示周期性随机 变量的概率密度函数

三角函数的应用 ppt课件

三角函数的应用 ppt课件

(2) 电压值重复出现一次的时间间隔;
(3) 电压的最大值和第一次取得最大值的时间.
探究二 三角函数模型在生活中的应用 例2 如图,游乐场中的摩天轮匀速转动,每转动一圈需要12分钟, 其中心O距离地面40.5米,半径为40米,如果你从最低处登上摩天轮, 那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻 开始计时,请回答下列问题:
(1) 作出函数的图象; [答案] 函数的图象如图所示.
(3) 当单摆摆动到最右边时,离开平衡位置的位移是多少?
(4) 单摆来回摆动一次需要多长时间?
解题感悟 三角函数模型在物理中的应用主要体现在简谐运动中,其中对弹簧振子和单 摆的运动等有关问题考查的最多,尤其要弄清振幅、频率、周期、平衡位置 等物理概念的意义和表示方法.
5.7三角函数的应用
学习目标
1.会用三角函数模型解决一些具有周期变化规律的实际问
题.
2.能将某些实际问题抽象为三角函数模型.
要点梳理
1.三角函数模型的作用 三角函数作为描述现实世界中
周期现象 的一种数学
模型,可以用来研究很多问题,在刻画
周期变化 规ቤተ መጻሕፍቲ ባይዱ、预
测未来等方面发挥重要作用.
[激趣诱思] 江心屿,位于浙江省温州市区北面瓯江中游,属于中国四大 名屿.该屿风景秀丽,东西双塔凌空,映衬江心寺,历来被称 为“瓯江蓬莱”. 江心寺为全国32所观音道场之一,分前、中、后三殿,殿内槛联匾额,琳琅 满目.寺院大门两边有一著名的叠字联: “云朝朝,朝朝朝,朝朝朝散;潮长长,长长长,长长长消 (念‘yúnzhāocháo,zhāozhāocháo,zhāocháozhāosàn;cháochángzhǎng, chángchángzhǎng,chángzhǎngchángxiāo’).”该对联巧妙地运用了叠字 诗展现了瓯江潮水涨落的壮阔画面.

三角函数的应用PPT省公开课获奖课件市赛课比赛一等奖课件

三角函数的应用PPT省公开课获奖课件市赛课比赛一等奖课件

B
┌ C D C
经过本节课旳学习你又增长了哪些知 识?
• 我们发觉以上几种问题旳处理措施,都是 首先构建直角三角形,在两个直角三角形 中利用边角关系分步处理。此类题型需要 大家冷静分析,仔细解答。
从已知旳 边和角
表达
未知旳边和 角
求出 答案
A 6m D
1350 8m


F 30m E C
100m
由梯形面积公式S AD BCAF 得,
2 S 36 4 2 72 2.
2
V 100S 100 72 2 10182.34 m3 .
答:修建这个大坝共需土石方约10182.34m3.
1 如图,有一斜坡AB长40m,坡顶离地面旳
AD
┌ C
AB
BC sin 350
BD sin 450 sin 350
4 0.6428 0.5736
4.48m.
AB BD 4.48 4 0.48m.
答:调整后旳楼梯会加长约0.48m.
成功在于坚持
解:如图,根据题意可知,∠A=350,∠BDC=400,DB=4m.
求(2) AD旳长. tan 400 BC ,
E
怎么做?
2m
C
400
D
5m B
我快乐,我会做
解:如图,根据题意可知,∠CDB=400,EC=2m,DB=5m.求
DE旳长. tan 400 BC , BC BD tan 400.
E
BD
BE BC 2 BD tan 400 2 6.1955(m). tan BDE BE 5 tan 400 2 1.24.
2m
C
BD
5
∴∠BDE≈51.12°.

《三角函数的应用》三角函数PPT优秀教学课件

《三角函数的应用》三角函数PPT优秀教学课件
已经用三角函数模型刻画过匀速圆周运动.例如筒车运动、摩天轮的运动 、钟表指针的转动等.
新知探究
1.问题研究1——简谐运动
问题2 观看弹簧振子的运动视频,振子运动过程中有哪些周 期性现象?可以利用哪些变量之间的函数关系来刻画振子运动过 程中的周期性现象?
弹簧振子的运动(如图).
新知探究
1.问题研究1——简谐运动
50
50
再由初始状态(t=0)的电流约为4.33A,可得sinφ=0.866,因此φ约为
π 3

所以电流i随时间t变化的函数解析式是
i 5 sin(100πt π),t [0, ) .
3
当 t 0时,i 5 3;
2
当 t 1 时,i 5;
600
当 t 1 时,i 0;
150

t
7 600
2
所以函数的解析式为y=20sin(10π t- π ),t∈[0,+∞).
32
新知探究
2.建模解模
教师补充:现实生活中存在大量类似弹簧振子的运动,如钟摆的摆动,水中 浮标的上下浮动,琴弦的震动,等等.这些都是物体在某一中心位置附近循环往 复的运动.
在物理学中,把物体受到的力(总是指向平衡位置)正比于它离开平衡位置 的距离的运动称为“简谐运动”.可以证明,在适当的坐标系下,简谐运动可以 用函数y=Asin(ωx+φ),x∈[0,+∞)表示,其中A>0,ω>0.描述简谐运动的物理量 ,如振幅、周期和频率等都与这个解析式中的常数有关:
新知探究
2.建模解模
问题6 例1中简谐运动的振幅、周期与频率各是多少?相位、初相分别是 什么?
答案:振幅A=20mm,周期T= 3 s,频率f= 5 次,相位为 10π t- π ,

5.7三角函数的应用(课件(人教版))

5.7三角函数的应用(课件(人教版))

新知探究
练习1 图为一向右传播的绳波在某一时刻绳子各店的位置图,经过 1 2
周期后,乙点的位置将移至何处?
乙点的位置将移至它关于x轴的对称点处.
新知探究
练习2 从诞生之日起,人的情绪、体力、智力等状况就呈周期性变 化,根据心理学统计,人体节律分为体力节律,情绪节律,智力节律 三种,这些节律的时间周期分别为23天,28天,33天.每个节律周期 又分为高潮期,临界日,低潮期三个阶段.节律周期的半数为临界日, 临界日的前半期为高潮期,后半期为低潮期.生日前一天是起始位置 (平衡位置),请根据自己的诞生日期,绘制自己的体力,情绪,智 力曲线,并预测本学期期末考试期间,你在体力,情绪,智力方面会 有怎样的表现,需要注意哪些问题?
0.4
1.0
目标检测
(1)试画出散点图;
(2)视察散点图,从y=at+b,y=Asin(ωt+φ)+b,y=Acos(ωt +φ)+b中选择一个合适的函数模型,并求出该拟合模型的解析式;
(3)如果确定当浪高不低于0.8 m时才进行训练,试安排合适的训练 时间段.
解:(1)如图;
目标检测
(2)由散点图可知,选择y=Asin(ωt+φ)+b函数模型较为合适. y 2 sin πt 1(1≤ t ≤ 24). 56
(3)在11 h~19 h进行训练较为合适.
5.7 三角函数的应用
第二课时
新知探究
例1 如图,某地一天从6~14时的温度变化曲线近似满足函数
y Asin(x ) b.
(1)求这一天6~14时的最大温差; (2)写出这段曲线的函数解析式.
新知探究
例2 海水受日月的引力,在一定时候产生涨落的现象叫潮.一般地, 早潮叫潮,晚潮叫汐.在通常的情况下,船在涨潮时驶进巷道,靠近 码头;卸货后,在落潮时返回海洋.表是某港口某天的时刻与水深关 系的预报.

第五章5.7三角函数的应用PPT课件(人教版)

第五章5.7三角函数的应用PPT课件(人教版)

(2)振子在1 s内通过的路程为4A,故在5 s内通过的路程s=5×4A=20A= 20×10=200(cm). 5 s末物体处在B点,所以它的位移为0 cm.
题型二 已知三角函数解析式解决应用问题 【例 2】 一根细线的一端固定,另一端悬挂一个小球,小球来回摆动时,离开
平衡位置的位移 s(单位:厘米)与时间 t(单位:秒)的函数关系是:s=6sin(2πt+π6). (1)画出它一个周期的图象; (2)回答以下问题: ①小球开始摆动(即 t=0),离开平衡位置是多少厘米? ②小球摆动时,离开平衡位置的最大距离是多少厘米? ③小球来回摆动一次需要多少时间?
解 (1)周期 T=22ππ=1(秒). 列表:
t
0
1 6
5 12
2 3
11 12
1
2πt+π6
π 6
π 2
π
3π 2
2π 2π+π6
6sin(2πt+π6) 3
6
0 -6 0
3
描点画图:
(2)①小球开始摆动(t=0),离开平衡位置为3 厘米. ②小球摆动时离开平衡位置的最大距离是6 厘米. ③小球来回摆动一次需要1 秒(即周期).
规律方法 根据收集的数据,先画出相应的“散点图”,视察散点图,然后进行函数 拟合获得具体的函数模型,然后利用这个模型解决实际问题.
【训练4】 一物体相对于某一固定位置的位移y(cm)和时间t(s)之间的一组对应值如下 表所示,则可近似地描述该物体的位置y和时间t之间的关系的一个三角函数式为 ________.
∴ω≥300π>942,又ω∈N*,
故所求最小正整数ω=943.
规律方法 已知三角函数图象解决应用问题,第一由图象确定三角函数的 解析式,其关键是确定参数A,ω,φ,同时在解题中注意各个参数的取值 范围.

三角函数的应用课件

三角函数的应用课件
总结词
解决物理问题中,三角函数的应用广泛且重要。
详细描述
在物理问题中,如振动、波动、电磁场等,经常需要用到三角函数来描述物理量的变化规律。例如,简谐振动的 位移、速度和加速度可以用正弦和余弦函数表示。
应用实例二:利用三角函数解决几何问题
总结词
在几何问题中,三角函数常用于角度、长度等的计算。
详细描述
在几何问题中,如三角形、圆、椭圆等,三角函数可以用于计算角度、长度等几何量。例如,在直角 三角形中,可以利用正切函数来计算对边长度。
应用实例三:利用三角函数解决金融问题
总结词
在金融领域,三角函数的应用相对较少 ,但仍然存在一些应用场景。
VS
详细描述
在金融领域,如股票价格、债券收益率等 时间序列数据的分析中,有时会用到三角 函数来描述其波动规律。此外,在保险精 算中,也可能会用到三角函数来计算赔率 等。
05
总结与展望
三角函数应用的重要性和意义
三角函数在数学、物理和工程领域中具有广泛的应用,是解决实际问题的重要工具 之一。
三角函数可以描述周期性变化的现象,例如振动、波动、交流电等,为解决这些问 题提供了数学模型和计算方法。
三角函数在几何学、解析几何和线性代数等领域也有着重要的应用,为解决复杂的 几何问题和线性方程组提供了有效的工具。
THANKS
感谢观看
在平面几何中,三角函数用于计算角度、边长和面积。在立体几何中,三角函数 用于描述三维空间中的角度和距离。
三角函数在金融领域的应用
总结词
金融领域中,三角函数常用于分析周 期性数据,如股票价格、利率等。
详细描述
在金融分析中,三角函数用于描述周 期性数据的波动和趋势。此外,三角 函数在复利计算、债券定价和期权定 价等方面也有应用。

第二章--三角函数的应用ppt课件

第二章--三角函数的应用ppt课件

第二章 三角函数的应用ppt课件
§2—1 解直角三角形及其应用
节菜单
一、在推导计算公式中的应用 2—1 解直角三角形及其应用
2—2 正弦定理和余弦定理的应用
2—3 三角函数的常用公式及应用
2—4 正弦型函数的图像及应用
2—5 反三角函数及应用
第二章 三角函数的应用ppt课件
§2—1 解直角三角形及其应用
2—5 反三角函数及应用
第二章 三角函数的应用ppt课件
§2—4 正弦型函数的图像及应用
节菜单
二、正弦型函数的图像——1.正弦型曲线的变换作图法 2—1 解直角三角形及其应用
2—2 正弦定理和余弦定理的应用
2—3 三角函数的常用公式及应用
2—4 正弦型函数的图像及应用
2—5 反三角函数及应用
第二章 三角函数的应用ppt课件
第二章 三角函数的应用ppt课件
§2—3 三角函数的常用公式及应用
节菜单
2—1 解直角三角形及其应用 2—2 正弦定理和余弦定理的应用 2—3 三角函数的常用公式及应用 2—4 正弦型函数的图像及应用 2—5 反三角函数及应用
第二章 三角函数的应用ppt课件
§2—4 正弦型函数的图像及应用
节菜单
2—1 解直角三角形及其应用 2—2 正弦定理和余弦定理的应用 2—3 三角函数的常用公式及应用 2—4 正弦型函数的图像及应用 2—5 反三角函数及应用
第二章 三角函数的应用ppt课件
§2—4 正弦型函数的图像及应用
节菜单
一、三角函数的图像及性质
2—1 解直角三角形及其应用
2—2 正弦定理和余弦定理的应用
第二章 三角函数的应用ppt课件
§2—2 正弦定理和余弦定理的应用

《三角函数的应用》三角函数PPT

《三角函数的应用》三角函数PPT
从0~24时的变化情况,则水面高度h关于时间t的函数关系式

.
解析:设 h 关于 t 的解析式为 h=Asin(ωt+φ),
则有 h(0)=0,即 sin φ=0,
因此可取 φ=0;

π
又||=12,取 ω=6,
π
π
则有 h=Asin6t,又 h(3)=Asin2=A=-6,
π
故所求解析式为 h=-6sin6t.
有大小,还有方向.错解中由于对周期的概念理解不清导致周期求
错,另外,混淆了路程与位移直接的区别导致结果错误.
课堂篇
探究学习
探究一
探究二
探究三
思维辨析
随堂演练
正解:(1)设振幅为A,
则2A=20 cm,A=10 cm.

设周期为T,则 2 =0.5 s,T=1 s,f=1 Hz.
(2)振子在1T内通过的距离为4A,
的最大值以及最小值即得血压在血压计上的读数从而得(4).
课堂篇
探究学习
探究一
探究二
探究三
思维辨析
随堂演练


解:(1)因为 ω=160π,代入周期公式 T= ,可得 T=
||
160π
1
所以函数 p(t)的周期为80 min.
1
(2)每分钟心跳的次数即为函数的频率 f==80(次).
=
1
(min),
和水车问题等都是日常生活中的一些周期现象.
3.填空
三角函数作为描述现实世界中周期现象的一种数学模型,可以用
来研究很多问题,在刻画周期规律、预测未来方面发挥重要作用.
课前篇
自主预习

《三角函数的应用》三角函数PPT教学课件(第2课时)

《三角函数的应用》三角函数PPT教学课件(第2课时)

再见
高中数学人教A版必修第一册单元教学设计
三角函数的应用
第2课时
-.
整体感知
问题1 匀速圆周运动、简谐运动和交变电流都是理想化的运动变化现象, 可以用三角函数模型准确地描述它们的运动变化规律,其中分别是通过什么 方法构建得到其中的函数模型?
答案:匀速圆周运动是依据三角函数定义,直接推理得出变量之间的关系 ,得到函数模型;简谐运动和交变电流是通过收集数据——画散点图——选择 函数模型——求解函数模型的方法建立函数模型.
新知探究
5.模型应用
问题6 可以将上述求得的点A,B,C,D的横坐标作为进出港时间吗?为 什么?
答案:事实上为了安全,进港时间要比算出的时间推后一些,出港时间要比 算出的时间提前一些,这样才能保证货船始终在安全水域.
例如,由模型解出的凌晨进港时间约等于0.3975时,如果考虑到安全因素, 在稍后的0.5时,即0时30分进港是合适的.
5.模型应用
问题5 例2(2)中,货船需要的安全深度是多少?转化为数学问题,就是 在函数的解析式中,哪个变量需要满足什么条件,该船就可以进入港口?从图 象上看呢?
答案:货船需要的安全水深为4+1.5=5.5m. 从函数的解析式来看,满足y≥5.5,该船可以进入港口; 从图象上看,就是函数 y 2.5 sin 5π x 5 的图象在直线y=5.5上方时,该船可
31
,因此5π x 0.2014 ,或π 5π x 0.2014 .
31
31
解得xA≈0.3975,xB≈5.8025.
由函数的周期性易得:
xC≈12.4+0.3975=12.7975,xD≈12.4+5.8025=18.2025. 因此,货船可以在零时30分左右进港,早晨5时45分左右进港;或在下午 13时左右进港,下午18时左右出港.每次可以在港口停留5小时左右.

《三角函数的应用》课件

《三角函数的应用》课件

三角函数的应用领域
01
02
03
物理学
在物理学的振动、波动、 电磁学等领领域中,三角函数用于 解决各种实际问题。
航海学
在航海学中,三角函数用 于计算航行角度、距离等 关键参数。
02
三角函数的基本性质
正弦函数
定义
正弦函数是三角函数的一种,定 义为y=sinx,x∈R。
详细描述
在数学中,三角函数被广泛应用于解决各种 问题,如代数、几何、微积分等。例如,在 求解代数方程时,可以通过三角函数进行因 式分解;在求解几何问题时,可以通过三角 函数计算角度和长度;在微积分中,三角函 数可以用于求解微分方程和积分方程等。
经济问题中的三角函数应用
要点一
总结词
要点二
详细描述
在经济领域中,三角函数的应用相对较少,但在某些特定 问题中仍然有应用。
复数的运算
掌握利用三角函数进行复数的运 算,如乘法、除法、指数运算等。
傅里叶变换
理解傅里叶变换的概念,掌握利 用三角函数进行傅里叶变换的方 法,解决信号处理、图像处理等
领域的问题。
05
总结与展望
三角函数应用的总结
三角函数在数学、物理和工程领域中的应用
三角函数在解决数学问题、分析物理现象和设计工程结构等方面发挥了重要作用。例如,在解析几何中,三角函 数用于研究平面和三维空间中的角和线段;在物理学中,三角函数用于分析振动、波动和电磁波等现象;在工程 学中,三角函数用于设计桥梁、建筑和机械等结构。
三角函数的周期性和奇偶性
周期性
正弦函数、余弦函数和正切函数的 周期分别为2π、2π和π。
奇偶性
正弦函数和正切函数是奇函数, 余弦函数是偶函数。
03
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档