第五专题 矩阵地数值特征(行列式、范数、条件数、迹、秩、相对特征根)

合集下载

矩阵的行列式、秩与迹及特征值分析

矩阵的行列式、秩与迹及特征值分析
A=[1,-2,3;2,3,1;3,T,T] B=det(A) C=rank(A) D=trace(A) E=eig(A) [V,D]=eig(A)
Al=[l,2,3;4,5,6] B1=det(A1) C1=trace(A1)
2.2矩阵的迹 矩阵的迹等于矩阵主对角线元素的总和。 也等于矩阵特征值的总和。
运算符:trace() 注意:要求矩阵是方阵
3.矩阵的特征值分析
E=eig(A ) 求矩阵A的全部特征值, 并构成向量E
[V,D]=eig(A )求矩阵A的全部特征值,构成 对角矩阵D;求A的特征向量 构成列向量V。
例2.4一1
矩阵的行列式、秩与迹 及特征值分析
主要内容
矩阵的行列式 矩 阵的秩与迹 矩阵 的特征值分析
1・矩阵的行列 式
运算符:det() 注意:用于求方阵阵的秩 矩阵的秩是矩阵的列向量组(或行向量组) 的任一极大线性无关组所含向量的个数。
运算符:rank()
2.矩阵的秩与迹

矩阵的知识点总结

矩阵的知识点总结

矩阵的知识点总结一、基本概念1.1 矩阵的定义矩阵是一个由数字排成的矩形阵列。

它由m行n列的数域(通常是实数域或复数域)中的元素所组成,用A=(aij)m×n表示。

1.2 矩阵的分类按行、列的数量可以将矩阵分为行矩阵、列矩阵和方阵;按元素的类型可以分为实矩阵和复矩阵。

1.3 矩阵的转置矩阵A的转置记作A^T,其中A^T的行数等于A的列数,A^T的列数等于A的行数。

1.4 矩阵的秩矩阵的秩是指矩阵中非零行的最大数目。

二、性质2.1 矩阵的加法性质设A、B是同一维数的矩阵,则它们的和A+B也是同一维数的矩阵,它的元素是A和B 对应元素的和。

2.2 矩阵的数乘性质设A是m×n的矩阵,k是数,则kA是m×n的矩阵,它的元素是k与A中对应元素的乘积。

2.3 矩阵的乘法性质设A是m×n的矩阵,B是n×p的矩阵,那么它们的乘积AB是m×p的矩阵。

2.4 矩阵的逆若存在一个矩阵B,使得AB=BA=I,其中I是单位矩阵,则称B是A的逆矩阵,记作A^-1。

2.5 矩阵的行列式对于n阶方阵A,其行列式是一个标量,通常用det(A)或|A|表示,代表了矩阵A的某种代数性质。

三、运算3.1 矩阵的加法设A=(aij)m×n,B=(bij)m×n,那么A+B=(aij+bij)m×n。

3.2 矩阵的数乘设A=(aij)m×n,k是数,则kA=(kaij)m×n。

3.3 矩阵的乘法设A=(aij)m×n,B=(bij)n×p,那么AB=(cij)m×p,其中cij=∑(k=1→n)aij*bkj。

3.4 矩阵的转置对于n×m的矩阵A,它的转置矩阵是m×n的矩阵,且满足(a^T)ij=aji。

四、特殊矩阵4.1 方阵每个元素是一个标量的矩阵,其中行数和列数相等。

4.2 零矩阵所有元素都是零的矩阵。

矩阵与行列式解析矩阵与行列式的性质与运算规律

矩阵与行列式解析矩阵与行列式的性质与运算规律

矩阵与行列式解析矩阵与行列式的性质与运算规律矩阵和行列式是线性代数中重要的概念和工具。

它们在数学、物理、工程等领域都有广泛的应用。

本文将详细解析矩阵与行列式的性质和运算规律。

一、矩阵的性质与运算规律1. 矩阵的定义矩阵是一个按照长方阵列排列的数。

它由m行n列元素组成,记作A=(a_ij),其中1≤i≤m,1≤j≤n。

矩阵的行数和列数分别称为矩阵的阶数或维数。

2. 矩阵的运算规律2.1 矩阵的加法和减法设A=(a_ij)和B=(b_ij)是两个同阶矩阵,则它们的和C=A+B的定义为C=(c_ij),其中c_ij=a_ij+b_ij。

矩阵的减法定义类似。

2.2 矩阵的数乘设A=(a_ij)是一个矩阵,k是一个数,则kA的定义为kA=(ka_ij),其中ka_ij=ka_ij。

2.3 矩阵的乘法设A=(a_ij)是一个m行n列的矩阵,B=(b_ij)是一个n行p列的矩阵,则它们的乘积C=AB的定义为C=(c_ij),其中c_ij=a_i1b_1j+...+a_inb_nj。

3. 矩阵的性质3.1 矩阵的转置设A=(a_ij)是一个m行n列的矩阵,A的转置记作A^T,定义为A^T=(a_ji)是一个n行m列的矩阵。

3.2 矩阵的逆设A是一个n阶方阵,若存在一个n阶方阵B,使得AB=BA=I,其中I为单位矩阵,则称矩阵A可逆,B为A的逆矩阵。

若A不可逆,则称为奇异矩阵。

3.3 矩阵的行列式矩阵A的行列式记作|A|,行列式是一个标量,它由矩阵元素按一定规则计算而得。

行列式的性质包括行列式的加法性、数乘性、转置性等。

二、行列式的性质与运算规律1. 行列式的定义行列式是一个方阵的特征值之一。

设A=(a_ij)是一个n阶方阵,行列式的定义为|A|=a_11a_22...a_nn-a_11a_23...a_n(n-1)-...-a_1n-1a_2n...a_n。

2. 行列式的运算规律2.1 行列式的数乘若k是数,A是n阶方阵,则kA的行列式等于k的n次方乘以A 的行列式,即|kA|=k^n|A|。

矩阵讲义全

矩阵讲义全

本课程的说明:矩阵分析理论是在线性代数的基础上推广的(数学是在已有的基础理论上模仿,推广而发展的。

要大胆猜想,小心证明!) 矩阵分析理论的组成:四部分:一、基础知识(包括书上的前三章内容)重点、难点:约当标准形与多项式矩阵,矩阵的分解等; 二、矩阵分析(第四章:矩阵函数及其应用)重点、难点:范数,矩阵幂级数,微分方程组; 三、矩阵特征值的估计(第五章)重点、难点:Gerschgorin 圆盘定理;广义逆矩阵; 四、非负矩阵(第六章)(注:不讲)重点、难点:基本不等式,素矩阵,随机矩阵等。

§1 线性空间与度量空间一、线性空间: 1.数域:Df 1:若复数的一个非空集合P 含有非零的数,且其中任意两数的和、差、积、商(除数不为0)仍在这个集合中,则称数集P 为一个数域 eg 1:Q (有理数),R (实数),C (复数),Z (整数),N (自然数)中哪些是数域?哪些不是数域? 2.线性空间— 设P 是一个数域,V 是一个非空集合,若满足:<1> 可加性—指在V 上定义了一个二元运算(加法)即:V ∈∀βα, 经过该运算总存在唯一的元素V ∈γ与之对应,称γ为α与β的和,记βαγ+= 并满足:① αββα+=+② )()(γβαγβα++=++ ③ 零元素—=有θαθααθ+∈∀∈∃Vt s V .(线性空间必含θ)。

④ αβαβθβααβ-+∈∀∈∃=记的负元素为=有对V V<2> 数积:(数乘运算)—在P 与V 之间定义了另一种运算。

即V P k ∈∈∀α,经该运算后所得结果,仍为V 中一个唯一确定的元素(存在唯一确定的元素V ∈δ与之对应),称δ为k 与α的乘积。

记为αδk =并满足:① αα=⋅1② P l k ∈∀, αα)()(kl l k = ③ P l k ∈∀, αααl k l k +=+)( ④ γβα∈∀, βαβαk k k +=+)(则称V 为数域P 上的线性空间(向量空间)记为)...(∙+P V 习惯上V 中的元素—向量, θ—零向量, 负元素—负向量结论:可以证明,线性空间中的零向量是唯一的,负元素也是唯一的,且有:θα=⋅0 θθ=⋅k αα-=⋅-)1( )(βαβα-+=-eg2:}{阶矩阵是n m A A V ⨯= P —实数域R按照矩阵的加法和数与矩阵的乘法,就构成实数域R 上的线性空间,记为:n m R ⨯同样,若V 为n 维向量,则可构成R 上的n 维向量空间n R —线性空间。

线性代数 矩阵的特征值与特征向量(课堂PPT)

线性代数 矩阵的特征值与特征向量(课堂PPT)

互不相等的特征值.
§
20
例1. 问A是否可对角化?若可,求可逆矩阵P,使
1 2 2
P1AP 为对角矩阵.
这里
A
2 2
2 4
4 2
解: A的特征多项式为
1 2 2 E A 2 2 4
n1
n2
nn
称为A的特征多项式. 方程 E A 0 称为A的
特征方程,其根称为A的特征根,即A的特征值. 注. n阶方阵A在复数范围内有n个特征值.
§
4
(1 ) 若 是A的属于特征值 的特征向量,则 k (k 0) 也是A的属于 的特征向量. (2) 若 1,2,L ,s 是A的属于特征值 的特征向量,
性质3:已知 为n阶矩阵A的一个特征值,则
(1) kA 必有一个特征值为 k ;
(2) A2 必有一个特征值为
2
;
§
8
(3) Am (m Z ) 必有一个特征值为 (4)A可逆时,A1必有一个特征值为 (5)A可逆时,A* 必有一个特征值为
m
;
1 ;
A

(6)多项式( A)必有一个特征值为 ( ).
第五章 矩阵的特征值与特征向量
§1 特征值与特征向量、相似矩阵
§2 矩阵可对角化的条件、实对称 矩阵的对角化
§
1
§1 特征值与特征向量、相似矩阵
一、特征值与特征向量 二、相似矩阵
§
2
一、特征值与特征向量
定义1:设A是n阶方阵,若对于数 ,存在n维非零
列向量 ,使得 A =
则称数 为方阵A的一个特征值,非零向量 称为
定理1 :设矩阵A 是一个 n 阶方阵,则A可对角化 A 有 n 个线性无关的特征向量.

关于矩阵特征值有关性质的探讨

关于矩阵特征值有关性质的探讨

关于矩阵特征值有关性质的探讨矩阵特征值是线性代数中的一个重要概念,它与矩阵的特征向量密切相关,给出了矩阵在某些方面的重要信息。

本文将探讨矩阵特征值的一些基本性质,包括其定义、性质、计算方法以及应用等方面。

一、矩阵特征值的定义给定一个$n$阶方阵$A$,如果存在一个常数$\lambda$以及非零向量$x$,使得下式成立:$A x = \lambda x$则称$\lambda$是矩阵$A$的一个特征值,而$x$则是对应的特征向量。

特别地,如果$x$可以选成单位向量,则称之为规范化特征向量。

1. 特征值的数量等于矩阵的阶数,且特征值可以存在重复。

2. 特征值和矩阵的行列式有以下关系:其中$I$是$n$阶单位矩阵。

$\operatorname{tr}(A) = \sum_{i=1}^n a_{ii} = \sum_{i=1}^n \lambda_i$其中$\lambda_i$表示矩阵$A$的第$i$个特征值。

4. 矩阵的特征向量线性无关。

5. 如果矩阵是可对角化的,则其特征向量构成矩阵的一组基。

6. 矩阵的特征值具有可乘性,即:1. 求解特征值的通常方法是通过计算矩阵的特征多项式的根,即通过求解以下方程组:2. 特殊情况下,例如矩阵为三角矩阵或对称矩阵时,特征值可以更加容易地求解。

矩阵特征值是线性代数中一个极其重要的概念,它在众多领域中都有重要的应用,例如:1. 信号处理与图像处理领域中,利用矩阵特征值进行信号与图像的压缩、噪声去除等处理。

2. 机器学习中,利用矩阵特征值进行降维、分类、聚类等操作。

3. 物理学中,矩阵特征值被广泛应用于量子力学、波动问题、振动问题等领域。

4. 工程与应用数学中,矩阵特征值被应用于控制系统分析与设计、特征提取、优化问题等领域。

总之,矩阵特征值在数理学科以及众多应用领域中都具有广泛的应用,其重要性显而易见。

因此,对于矩阵特征值的认识和掌握将对于我们深入理解许多数学和工程问题非常有帮助。

第五专题矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)讲解学习

第五专题矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)讲解学习

第五专题矩阵的数值特征(行列式、迹、秩、相对特征根、范数、条件数)一、行列式已知A p x q, B q x p,则|l p+AB| = |l q + BA|证明一:参照课本194 页,例4.3.证明二:利用AB 和BA 有相同的非零特征值的性质;从而l p+AB ,l q+BA 中不等于1 的特征值的数目相同,大小相同;其余特征值都等于1。

行列式是特征值的乘积,因此|I p+AB|和|I q+BA|等于特征值(不等于1)的乘积,所以二者相等。

二、矩阵的迹矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。

下面讨论有关迹的一些性质和不等式。

nn定义:tr(A) a ii i ,etrA=exp(trA)i 1 i 1性质:1. tr( A B) tr(A) tr(B) ,线性性质;2. tr(A T ) tr(A) ;3. tr(AB) tr(BA) ;14. tr(P 1AP) tr(A) ;5. tr(x H Ax) tr(Axx H),x 为向量;nn6. tr(A) i ,tr(A k) i k;i 1 i 1从Schur 定理(或Jordan 标准形) 和(4)证明;7. A 0,则tr(A) 0 ,且等号成立的充要条件是A=0;8. A B(即A B 0),则tr(A) tr(B),且等号成立的充要条件是A=B( A B i(A) i(B) );9. 对于n阶方阵A,若存在正整数k,使得A k=0, 则tr(A)=0 (从Schur 定理或Jordan 标准形证明)。

若干基本不等式对于两个m x n复矩阵A和B, tr(A H B)是m x n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式2[x,y] w [x,x]. [y,y]得定理:对任意两个m x n 复矩阵A 和B|tr(A H B)|2w tr(冲A) • tr(B H B)这里等号成立的充要条件是A=cB,c为一常数。

第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)

第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)

第五专题 矩阵的数值特征(行列式、迹、秩、相对特征根、范数、条件数)一、行列式已知A p ×q , B q ×p , 则|I p +AB|=|I q +BA| 证明一:参照课本194页,例.证明二:利用AB 和BA 有相同的非零特征值的性质;从而I p +AB ,I q +BA 中不等于1的特征值的数目 相同,大小相同;其余特征值都等于1。

行列式是特征值的乘积,因此|I p +AB|和|I q +BA|等于特征值(不等于1)的乘积,所以二者相等。

二、矩阵的迹矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。

下面讨论有关迹的一些性质和不等式。

定义:nnii i i 1i 1tr(A)a ====λ∑∑,etrA=exp(trA)性质:1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质;2.Ttr(A )tr(A)=;3. tr(AB)tr(BA)=;4.1tr(P AP)tr(A)-=; 5.H H tr(x Ax)tr(Axx ),x =为向量; 6. nnkk i i i 1i 1tr(A),tr(A )===λ=λ∑∑;从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0;8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥⇒λ≥λ);9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。

若干基本不等式对于两个m ×n 复矩阵A 和B ,tr(A HB)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式[x,y]2≤[x,x]﹒[y,y]得定理:对任意两个m ×n 复矩阵A 和B |tr(A H B)|2≤tr(A H A)﹒tr(B H B)这里等号成立的充要条件是A=cB,c 为一常数。

矩阵迹的求法

矩阵迹的求法

矩阵迹的求法矩阵的迹是一个重要的线性代数概念,它是指一个方阵的主对角线上的元素之和。

在本文中,我将详细介绍矩阵迹的定义、性质以及求法,并阐述其在数学和实际应用中的意义。

首先,让我们来定义矩阵迹。

一个n阶方阵是指有n行n列的矩阵。

设A=[aij]是一个n阶方阵,则A的迹Tr(A)定义为矩阵A的主对角线上元素的和,即Tr(A) = a11 + a22 + … + ann。

矩阵迹的求法有多种方法,下面我将详细介绍其中的两种常见方式:直接求和法和特征值法。

首先,我们来看直接求和法。

对于一个给定的n阶方阵A,我们可以直接对其主对角线上的元素求和,即将a11, a22, …, ann相加得到迹Tr(A)。

这种方法非常直接简单,适用于小规模的矩阵。

其次,我们来看特征值法。

设A是一个n阶方阵,记λ₁, λ₂, …, λn为A的特征值。

根据线性代数的基本定理,我们知道A的特征值是通过求解方程|A-λI|=0得到的。

其中,I是单位矩阵,|X|表示矩阵X 的行列式。

根据特征值的定义,我们可以计算矩阵的迹。

根据特征值法,我们可以得到矩阵的迹与特征值之间的关系。

设A 是一个n阶方阵,λ₁, λ₂, …, λn为其特征值。

根据特征值的定义,我们知道有以下关系:Tr(A) = λ₁ + λ₂ + … + λn特别地,当A是一个对角矩阵时,即除了主对角线上的元素外,其余元素都为0。

对于对角矩阵A,我们可以直接通过主对角线上的元素求和来计算迹。

这是因为对于对角矩阵A,它的特征值就是主对角线上的元素,没有其他的非零特征值。

因此,Tr(A) = a11 + a22 + …+ ann。

除了上述两种方法,我们还可以利用矩阵的性质来求解矩阵的迹。

下面我将介绍几个常见的性质。

性质1:两个矩阵的迹的和等于它们的和的迹。

即对于任意两个n阶方阵A和B,有Tr(A + B) = Tr(A) + Tr(B)。

这个性质可以通过直接对两个矩阵的主对角线上的元素求和,然后再相加来证明。

第五专题矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)

第五专题矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)

第五专题矩阵的数值特征(⾏列式、范数、条件数、迹、秩、相对特征根)第五专题矩阵的数值特征(⾏列式、迹、秩、相对特征根、范数、条件数)⼀、⾏列式已知A p ×q , B q ×p , 则|I p +AB|=|I q +BA| 证明⼀:参照课本194页,例4.3.证明⼆:利⽤AB 和BA 有相同的⾮零特征值的性质;从⽽I p +AB ,I q +BA 中不等于1的特征值的数⽬相同,⼤⼩相同;其余特征值都等于1。

⾏列式是特征值的乘积,因此|I p +AB|和|I q +BA|等于特征值(不等于1)的乘积,所以⼆者相等。

⼆、矩阵的迹矩阵的迹相对其它数值特征简单些,然⽽,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应⽤,许多量的计算都会归结为矩阵的迹的运算。

下⾯讨论有关迹的⼀些性质和不等式。

定义:nnii i i 1i 1tr(A)a ====λ∑∑,etrA=exp(trA)性质:1. tr(A B)tr(A)tr(B)λ+µ=λ+µ,线性性质;2. Ttr(A )tr(A)=;3. tr(AB)tr(BA)=;4.1tr(P AP)tr(A)-=; 5. H Htr(x Ax)tr(Axx ),x =为向量;6. nnkki i i 1i 1tr(A),tr(A )===λ=λ∑∑;9. 对于n 阶⽅阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。

若⼲基本不等式对于两个m ×n 复矩阵A 和B ,tr(A H B)是m ×n 维⾣空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利⽤Cauchy-schwarz 不等式[x,y]2≤[x,x]﹒[y,y]得定理:对任意两个m×n复矩阵A和B|tr(A H B)|2≤tr(A H A)﹒tr(B H B)这⾥等号成⽴的充要条件是A=cB,c为⼀常数。

矩阵的范数及相关数学含义

矩阵的范数及相关数学含义

矩阵的范数及相关数学含义
矩阵的奇异值:
设A为复数域内m*n阶矩阵,A*表⽰A的共轭转置矩阵,A*·A的n个⾮负特征值的算术平⽅根(即A*·A的开根号值)叫作矩阵A的奇异值。

记为σi(A)。

如果把A*·A的特征值记为λi(A*·A),则σi(A)=sqrt(λi(A*·A))。

或者说矩阵A的奇异值是A*·A 的特征值的平⽅根。

任意矩阵都有奇异值。

对于⼀般的⽅阵来说,其奇异值与是没有关系的。

奇异值的数⽬是矩阵的最⼩的维数。

当A是⽅阵时,其奇异值的⼏何意义是:若X是n维单位球⾯上的⼀点,则Ax是⼀个n维椭球⾯上的点,其中椭球的n个半轴长正好是A的n个奇异值。

简单地说,在⼆维情况下,A将单位圆变成了椭圆,A的两个奇异值是椭圆的长半轴和短半轴。

如果取维空间的单位球,⽤ × 矩阵乘其中对于每个点的向量,这将得到维空间的椭球体. 的奇异值给出椭球体主轴的长度.
矩阵的2-范数 Norm 是椭球体的最⼤的主轴,等于矩阵最⼤的奇异值. 这也是对于任何可能的单位向量,的最⼤的2-范数长度.。

矩阵论范数知识点总结

矩阵论范数知识点总结

矩阵论范数知识点总结一、概述矩阵论是线性代数的一个分支,它研究矩阵及其性质。

矩阵的范数是矩阵的一种性质的度量,它在矩阵分析、数值线性代数、优化理论等领域中有着广泛的应用。

本文将对矩阵范数的定义、性质、应用以及相关的其他知识点进行总结和介绍。

二、矩阵的定义在数学中,矩阵是一个按照矩形排列的复数或实数集合。

也可以看成是一个数域上的矩形阵列。

矩阵的元素可以是实数、复数或者是其他的数学对象。

一个n×n矩阵A是一个由n×n个元素(a_ij)组成的矩形数组。

三、范数的定义在数学中,范数是定义在向量空间中的一种函数,它通常被用来衡量向量的大小或长度。

对于矩阵来说,范数是一种度量矩阵大小的方法。

对于一个矩阵A,它的范数通常记作||A||。

矩阵的范数满足以下性质:1. 非负性:||A|| ≥ 0,并且当且仅当A = 0时,||A|| = 02. 齐次性:对于任意标量c,||cA|| = |c| * ||A||3. 三角不等式:||A+B|| ≤ ||A|| + ||B||四、矩阵范数的种类矩阵范数一般有几种不同的类型。

1. Frobenius范数:矩阵A的Frobenius范数定义为||A||_F = sqrt(Σ_(i=1)^m Σ_(j=1)^n|a_ij|^2)2. 1-范数:矩阵A的1-范数定义为||A||_1 = max(Σ_(i=1)^n |a_ij|)3. 2-范数:矩阵A的2-范数定义为||A||_2 = max(Σ_(i=1)^m Σ_(j=1)^n |a_ij|^2)^(1/2)4. ∞-范数:矩阵A的∞-范数定义为||A||_∞ = max(Σ_(j=1)^n |a_ij|)五、矩阵范数的性质矩阵范数具有一些重要的性质,下面将介绍其中一些主要性质。

1. 非负性:||A|| ≥ 0,并且当且仅当A = 0时,||A|| = 02. 齐次性:对于任意标量c,||cA|| = |c| * ||A||3. 三角不等式:||A+B|| ≤ ||A|| + ||B||4. 乘法范数:||AB|| ≤ ||A|| * ||B||5. 谱半径:对于任意矩阵A,它的谱半径定义为rho(A) = max|λ_i(A)|6. 对称矩阵:对于对称矩阵A,其2-范数定义为rho(A),即||A||_2 = rho(A),其中rho(A)是A的最大特征值六、矩阵范数的应用矩阵范数在数学和工程领域有着广泛的应用,下面将介绍一些主要的应用。

矩阵的范数和条件数课件

矩阵的范数和条件数课件

02
条件数
定义与性质
定义
条件数是衡量矩阵数值稳定性的一个 重要指标,定义为矩阵A的谱范数与 Frobenius范数的比值,记为cond(A) 。
性质
条件数具有对称性,即cond(A) = cond(A^T),且对于任意常数c,有 cond(cA) = |c| * cond(A)。
条件数的计算方法
考虑计算效率和精度
在选择范数和条件数时,需要权衡计算效率和精度。如果计算效率更重要,可以选择较小 的范数和条件数;如果精度更重要,可以选择较大的范数和条件数。
使用预处理技术改善计算的稳定性和精度
当矩阵的条件数较大时,可以考虑使用预处理技术来改善计算的稳定性和精度。例如,在 求解线性方程组时,可以使用不完全分解(Incomplete LU Factorization)或共轭梯度 法(Conjugate Gradient Method)等预处理技术来降低条件数的影响。
条件数对计算稳定性的影响
矩阵的条件数越大,计算过程中数值不稳定的程度越高,计 算结果可能偏离真实值。因此,在求解线性方程组时,如果 系数矩阵的条件数较大,则需要采取适当的预处理技术来改 善计算的稳定性。
如何选择合适的范数和条件数
根据问题需求选择合适的范数
在某些应用中,可能需要选择特定的范数来衡量矩阵的大小或稳定性。例如,在图像处理 中,可能需要使用Frobenius范数来衡量矩阵的大小。
THANKS
在数值分析中的应用
矩阵的范数可以用于求解线性方程组的迭代法和直接法中,以确定收敛性和误差控制。
条件数可以用于分析数值方法的稳定性和误差传播。
05
总结与展望
矩阵的范数和条件数的重要性和意义
矩阵的范数在数学、物理、工程等领域中有着广泛的应用,如线性方程组的解、控制系统稳定性分析 、图像处理等。

特征矩阵行列式

特征矩阵行列式

特征矩阵行列式特征矩阵是线性代数中一个非常重要的概念,也是很多应用数学领域,例如图像处理、信号处理、统计学习、物理学等等中经常用到的一个知识点。

本文将以特征矩阵的行列式为主线,介绍特征矩阵的相关概念、性质以及应用。

一、特征矩阵的定义特征矩阵是指一个 $n \times n$ 的矩阵 $A$ 所满足的特殊条件:存在一个 $\lambda$,使得当一个向量 $x$ 满足 $Ax=\lambda x$ 时,$x$ 是非零向量。

此时 $\lambda$ 被称为矩阵 $A$ 的一个特征值,而列向量$x$ 被称为矩阵 $A$ 对应于特征值 $\lambda$ 的特征向量。

一个矩阵可以具有 $n$ 个特征值和 $n$ 个对应的特征向量。

特征向量不同所对应的特征值也不同。

二、特征值与行列式对于一个 $n \times n$ 的矩阵 $A$,我们可以定义其特征值方程:$$det(A - \lambda I_n) = 0$$其中 $I_n$ 为 $n$ 阶单位矩阵,$det$ 表示行列式。

这个方程根据矩阵$A$ 的特征矩阵(即矩阵 $A - \lambda I_n$)的行列式为零的特殊性质得到。

我们来解释一下这个方程:对于一个非零特征向量 $x$ 和其对应的特征值 $\lambda$,有 $Ax=\lambda x$,可以转化成 $(A - \lambda I_n)x=0$,因此矩阵 $(A - \lambda I_n)$ 是奇异矩阵,其行列式为零。

因此,我们可以解出特征值方程的 $n$ 个根 $\lambda_1,\lambda_2, \cdots ,\lambda_n$,它们就是矩阵 $A$ 的 $n$ 个特征值。

特别地,当 $n=2$ 时,对于矩阵$A=\begin{bmatrix}a&b\\c&d\end{bmatrix}$,有其特征值方程为:$$det(A - \lambda I_n) = \begin{vmatrix}a-\lambda & b\\c & d-\lambda\end{vmatrix} = (a-\lambda)(d-\lambda)-bc = \lambda^2 -(a+d)\lambda + (ad-bc) = 0$$其根为:$$\lambda_1,\lambda_2 = \frac{a+d \pm \sqrt{(a+d)^2-4(ad-bc)}}{2}$$三、特征值与特征向量的关系对于特征值方程 $det(A - \lambda I_n) = 0$,我们可以求解出 $n$ 个特征值 $\lambda_1, \lambda_2, \cdots, \lambda_n$。

矩阵特征值的数值解法

矩阵特征值的数值解法

第9章 矩阵特征值的数值解法9.1 引言矩阵特征值问题有广泛的应用背景. 例如动力系统和结构系统中的振动问题、电力系统的静态稳定分析上、工程设计中的某些临界值的确定等,都归结为矩阵特征值问题. 数学中诸如方阵的对角化及解微分方程组等问题,都要用到特征值的理论. 本章介绍n 阶实矩阵n n ⨯∈R A 的特征值与特征向量的数值解法.定义9.1.1 已知n 阶实矩阵()n n ij a ⨯=∈R A ,如果存在常数λ和非零向量x ,使λ=Ax x 或 ()λ-=0A I x (9.1.1)那么称λ为A 的特征值(eigenvalue),x 为A 的相应于λ的特征向量(eigenvector). 多项式111212122212()det()n n n n n nn a a a a a a p a a a λλλλλ-⎡⎤⎢⎥-⎢⎥=-=⎢⎥⎢⎥-⎣⎦LL M M O M LA I (9.1.2) 称为特征多项式(characteristic polynomial),det()0λ-=A I (9.1.3)称为特征方程(characteristic equation).注 式(9.1.3)是以λ为未知量的一元n 次代数方程,()det()n p λλ=-A I 是λ的n 次多项式. 显然,A 的特征值就是特征方程(9.1.3)的根. 特征方程(9.1.3)在复数范围内恒有解,其个数为方程的次数(重根按重数计算),因此n 阶矩阵A 在复数范围内有n 个特征值. 除特殊情况 (如2,3n =或A 为上(下)三角矩阵)外,一般不通过直接求解特征方程(9.1.3)来求A 的特征值, 原因是这样的算法往往不稳定. 在计算上常用的方法是幂法与反幂法和相似变换方法. 本章只介绍求矩阵特征值与特征向量的这两种基本方法. 为此将一些特征值和特征向量的性质列在此处.定理9.1.2 设n 阶方阵()ij n n a ⨯=A 的特征值为12,,,n λλλL ,那么 (1) 121122n nn a a a λλλ+++=+++L L ; (2) 12det n λλλ=L A .定理9.1.3 如果λ是方阵A 的特征值,那么 (1) k λ是k A 的特征值,其中k 是正整数;(2) 当A 是非奇异阵时,1λ是1-A 的特征值. (3) ()n p λ是()n p A 的特征值,其中()n p x 是多项式2012()n n n p x a a x a x a x =++++L .定义9.1.4 设,A B 都是n 阶方阵. 若有n 阶非奇异阵P ,使得1-=P AP B ,则称矩阵A 与B 相似(similar),1-P AP 称为对A 进行相似变换(similarity transformation),P 称为相似变换矩阵(similarity transformation matrix).定理9.1.5 若矩阵A 与B 相似,则A 与B 的特征值相同. 定理9.1.6 如果A 是n 阶正交矩阵,那么 (1) 1T -=A A ,且det 1=A 或1-;(2) 若=y Ax ,则22=y x , 即T T ⋅=⋅x x y y . 定理9.1.7 设A 是任意n 阶实对称矩阵,则 (1) A 的特征值都是实数; (2) A 有n 个线性无关的特征向量.定理9.1.8 设A 是任意n 阶实对称矩阵,则必存在n 阶正交矩阵P ,使得1T -==P AP P AP Λ,其中12diag(,,,)n λλλ=L Λ是以A 的n 个特征值12,,,n λλλL 为对角元素的对角矩阵.定理9.1.9 (圆盘定理) 矩阵()ij n n a ⨯=A 的任意一个特征值至少位于复平面上的几个圆盘中的一个圆盘上。

线性代数 第五章第一节 矩阵的特征值与特征向量 PPT精品课件

线性代数 第五章第一节 矩阵的特征值与特征向量 PPT精品课件

性质6 设 λ1,λ2 ,L,λs为矩阵A的互异特征值 , 对应的
第 五
特征向量分别为 ξ1,ξ2 ,L,ξ s , 则ξ1,ξ2 ,L,ξ s线性无关.
证:⑴ s=1时结论成立;


⑵假设s=r-1时成立,则s=r时:
阵 的
设 k1ξ1 + k2ξ2 + L + kr−1ξr−1 + krξ r = 0, (∗)

n
特 征 值 与
其中 trA = ∑ aii 为A的迹。 i =1 性质2 设相似矩阵有相同的特征多项式,从而特征
对 角
值也相同。

证:设A与B相似, 则存在可逆阵P,使得 B = P −1AP
fB (λ ) = λI − B = λI − P −1AP = P −1(λI − A)P
= P−1 λI − A P = λI − A = fA(λ )
⎜⎛ 1 ⎟⎞
ξ1 = ⎜ 1 ⎟;
⎜⎝ 0 ⎟⎠
⎜⎛ 1 ⎟⎞
ξ2 =⎜ 0⎟;
⎜⎝ 1 ⎟⎠
⎜⎛ 1 ⎟⎞
ξ3 =⎜ −1⎟ .
⎜⎝ − 1 ⎟⎠
-6-
第一节 矩阵的特征值与特征向量

例3 设λ0 为A的特征值,则


⑴ λm0 为Am的特征值;
矩 阵 的 特

若A可逆,

1
λ0
为A−1的特征值;
征 值 与 对

若A可逆,

1
λ0
A 为A∗的特征值.


-7-
第一节 矩阵的特征值与特征向量
特征值与特征向量的性质:
特征方程在复数范围内恒有解,其个数为方程的次

线性代数期末题库矩阵的迹与行列式的性质

线性代数期末题库矩阵的迹与行列式的性质

线性代数期末题库矩阵的迹与行列式的性质线性代数期末题库:矩阵的迹与行列式的性质一、矩阵的迹的定义及性质矩阵的迹是指矩阵主对角线上元素的和,用Tr(A)表示。

1. 矩阵迹的定义对于n阶方阵A = [a_ij],其迹定义为Tr(A) = ∑(i=1->n)a_ii。

2. 矩阵迹的性质(1)性质1:Tr(A + B) = Tr(A) + Tr(B)两个矩阵相加后,它们的迹等于各自矩阵的迹之和。

(2)性质2:Tr(kA) = k * Tr(A)一个矩阵乘以一个标量k后,它的迹等于原矩阵的迹乘以该标量。

(3)性质3:Tr(AB) = Tr(BA)两个矩阵AB和BA的迹相等。

(4)性质4:对于方阵A和B,如果AB存在,那么Tr(AB) = Tr(BA) = Tr(A'B')其中A'和B'是A和B的伴随矩阵。

二、行列式的定义及性质行列式是一个方阵的标量值,表示线性方程组解空间的体积。

1. 行列式的定义对于n阶方阵A = [a_ij],其行列式定义为det(A) = ∑(p的顺序排列)sgn(p) * a_1p(1) * a_2p(2) * ... * a_np(n),其中sgn(p)是p的奇偶置换的符号。

2. 行列式的性质(1)性质1:det(I) = 1单位矩阵的行列式为1。

(2)性质2:det(A^T) = det(A)方阵A的转置矩阵A^T与A的行列式相等。

(3)性质3:如果A的某两行(或某两列)交换位置,行列式的值会变号。

(4)性质4:如果A的某一行(或某一列)乘以k,行列式的值会乘以k。

(5)性质5:行列式对于某一行(或某一列)展开,等于该行(或该列)上各元素与其代数余子式的乘积的和。

(6)性质6:det(AB) = det(A) * det(B)两个矩阵的乘积的行列式等于对应矩阵行列式的乘积。

三、矩阵迹与行列式的关系矩阵迹与行列式之间有一定的关系。

1. 行列式与矩阵迹的关系性质1:对于n阶方阵A,有det(A) = ∏(i=1->n)λ_i,其中λ_i是A的特征值。

《线性代数》学习指导 第五章 矩阵的特征值与特征向量(43P)

《线性代数》学习指导 第五章 矩阵的特征值与特征向量(43P)

第五章 矩阵的特征值与特征向量一.内容提要1 . 特征值和特征向量定义1 设()ijn nA a ⨯=是数域P 上的n 阶矩阵,若对于数域P 中的数λ,存在数域P 上的非零n 维列向量X ,使得X AX λ=则称λ为矩阵A 的特征值,称X 为矩阵A 属于(或对应于)特征值λ的特征向量注意:1)()ijn nA a ⨯=是方阵;2)特征向量 X 是非零列向量; 3)方阵 ()ijn nA a ⨯= 与特征值 λ 对应的特征向量不唯一4)一个特征向量只能属于一个特征值.2.特征值和特征向量的计算计算矩阵A 的特征值与特征向量的步骤为: (1) 计算n 阶矩阵A 的特征多项式|λE -A |;(2) 求出特征方程|λE -A |=0的全部根,它们就是矩阵A 的全部特征值; (3) 设λ1 ,λ2 ,… ,λs 是A 的全部互异特征值。

对于每一个λi ,解齐次线性方程组()i E A X λ-=0,求出它的一个基础解系,该基础解系的向量就是A 属于特征值λi的线性无关的特征向量,方程组的全体非零解向量就是A 属于特征值λi 的全体特征向量.3. 特征值和特征向量的性质性质1 (1)若X 是矩阵A 属于特征值λ的特征向量,则kX (0k ≠)也是A 属于λ的特征向量;(2)若12,,,s X X X 是矩阵A 属于特征值λ的特征向量,则它们的非零线性组合1122s s k X k X k X +++也是A 属于λ的特征向量;(3)若A 是可逆矩阵,λ是A 的一个特征值,则λ1是A—1的一个特征值,λ||A 是A *的一个特征值;(4)设λ是n 阶矩阵A 的一个特征值,f (x )= a m x m + a m-1x m -1 + … + a 1x + a 0为一个多项式,则()f λ是f (A )的一个特征值。

性质2(1)nn n a a a +⋅⋅⋅++=+⋅⋅⋅++221121λλλ (2)|| 21A n =⋅⋅⋅λλλ性质3 n 阶矩阵A 和它的转置矩阵TA 有相同的特征值 性质4 n 阶矩阵A 不同的特征值所对应的特征向量线性无关4. 相似矩阵定义2 设A 、B 为n 阶矩阵,若存在可逆矩阵P ,使得B=P ―1AP则称A 与B 相似。

线性代数知识点总结

线性代数知识点总结

线性代数知识点总结线性代数知识点总结线性代数是数学的一个分支,它的研究对象是向量,向量空间,线性变换和有限维的线性方程组。

下面是小编想跟大家分享的线性代数知识点总结,欢迎大家浏览。

线性代数知识点总结篇1第一章行列式知识点1:行列式、逆序数知识点2:余子式、代数余子式知识点3:行列式的性质知识点4:行列式按一行(列)展开公式知识点5:计算行列式的方法知识点6:克拉默法则第二章矩阵知识点7:矩阵的概念、线性运算及运算律知识点8:矩阵的乘法运算及运算律知识点9:计算方阵的幂知识点10:转置矩阵及运算律知识点11:伴随矩阵及其性质知识点12:逆矩阵及运算律知识点13:矩阵可逆的判断知识点14:方阵的行列式运算及特殊类型的矩阵的运算知识点15:矩阵方程的求解知识点16:初等变换的概念及其应用知识点17:初等方阵的概念知识点18:初等变换与初等方阵的关系知识点19:等价矩阵的概念与判断知识点20:矩阵的子式与最高阶非零子式知识点21:矩阵的秩的概念与判断知识点22:矩阵的秩的性质与定理知识点23:分块矩阵的概念与运算、特殊分块阵的运算知识点24:矩阵分块在解题中的技巧举例第三章向量知识点25:向量的概念及运算知识点26:向量的线性组合与线性表示知识点27:向量组之间的线性表示及等价知识点28:向量组线性相关与线性无关的概念知识点29:线性表示与线性相关性的关系知识点30:线性相关性的判别法知识点31:向量组的最大线性无关组和向量组的秩的概念知识点32:矩阵的秩与向量组的秩的关系知识点33:求向量组的最大无关组知识点34:有关向量组的定理的综合运用知识点35:内积的概念及性质知识点36:正交向量组、正交阵及其性质知识点37:向量组的正交规范化、施密特正交化方法知识点38:向量空间(数一)知识点39:基变换与过渡矩阵(数一)知识点40:基变换下的坐标变换(数一)第四章线性方程组知识点41:齐次线性方程组解的性质与结构知识点42:非齐次方程组解的性质及结构知识点43:非齐次线性线性方程组解的各种情形知识点44:用初等行变换求解线性方程组知识点45:线性方程组的公共解、同解知识点46:方程组、矩阵方程与矩阵的乘法运算的关系知识点47:方程组、矩阵与向量之间的联系及其解题技巧举例第五章矩阵的特征值与特征向量知识点48:特征值与特征向量的概念与性质知识点49:特征值和特征向量的求解知识点50:相似矩阵的概念及性质知识点51:矩阵的相似对角化知识点52:实对称矩阵的相似对角化.知识点53:利用相似对角化求矩阵和矩阵的幂第六章二次型知识点54:二次型及其矩阵表示知识点55:矩阵的合同知识点56 : 矩阵的等价、相似与合同的关系知识点57:二次型的标准形知识点58:用正交变换化二次型为标准形知识点59:用配方法化二次型为标准形知识点60:正定二次型的概念及判断线性代数知识点总结篇2行列式一、行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五专题矩阵的数值特征(行列式、迹、秩、相对特征根、数、条件数)一、行列式已知A p×q, B q×p, 则|I p+AB|=|I q+BA|证明一:参照课本194页,例4.3.证明二:利用AB和BA有相同的非零特征值的性质;从而I p+AB,I q+BA中不等于1的特征值的数目相同,大小相同;其余特征值都等于1。

行列式是特征值的乘积,因此|I p+AB|和|I q+BA|等于特征值(不等于1)的乘积,所以二者相等。

二、矩阵的迹矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。

下面讨论有关迹的一些性质和不等式。

定义:n nii ii1i1tr(A)a====λ∑∑,etrA=exp(trA)性质:1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质;2. Ttr(A )tr(A)=;3. tr(AB)tr(BA)=;4.1tr(P AP)tr(A)-=; 5. H Htr(x Ax)tr(Axx ),x =为向量;6. nnk ki i i 1i 1tr(A),tr(A )===λ=λ∑∑;从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0;8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥⇒λ≥λ);9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。

若干基本不等式对于两个m ×n 复矩阵A 和B ,tr(A H B)是m ×n 维酉空间上的积,也就是将它们按列依次排成的两个mn 维列向量的积,利用Cauchy-schwarz 不等式[x,y]2≤[x,x]﹒[y,y]得定理:对任意两个m ×n 复矩阵A 和B |tr(A H B)|2≤tr(A H A)﹒tr(B H B)这里等号成立的充要条件是A=cB,c为一常数。

特别当A和B为实对称阵或Hermit矩阵时0≤|tr(AB)|≤定理:设A和B为两个n阶Hermite阵,且A≥0,B≥0,则0≤tr(AB)≤λ1(B)tr(A) ≤tr(A)﹒tr(B)λ1(B)表示B的最大特征值。

证明:tr(AB)= tr(A1/2BA1/2) ≥0,又因为A1/2[λ1(B)I-B]A1/2≥0,所以λ1(B)tr(A)≥A1/2BA1/2,得tr(AB)= tr(A1/2BA1/2)≤tr(λ1(B) A)=λ1(B) tr(A)≤tr(A)﹒tr(B)推论:设A为Hermite矩阵,且A>0,则tr(A)tr(A-1)≥n另外,关于矩阵的迹的不等式还有很多,请参考《矩阵论中不等式》。

三、矩阵的秩矩阵的秩的概念是由Sylvester于1861年引进的。

它是矩阵的最重要的数字特征之一。

下面讨论有关矩阵秩的一些性质和不等式。

定义:矩阵A 的秩定义为它的行(或列)向量的最大无关组所包含的向量的个数。

记为rank(A)性质:1. rank(AB)min(rank(A),rank(B))≤;2. rank(A B)rank(A,B)rank(A)rank(B)+≤≤+;3.H Hrank(AA )rank(A )rank(A)==; 4. rank(A)rank(XA)rank(AY)rank(XAY)===,其中X 列满秩,Y 行满秩(消去法则)。

定理(Sylvester ):设A 和B 分别为m×n 和n×l 矩阵,则rank(A)rank(B)n rank(AB)+-≤min(rank(A),rank(B))≤Sylveste 定理是关于两个矩阵乘积的秩的不等式。

其等号成立的充要条件请参考王松桂编写的《矩阵论中不等式》,三个矩阵乘积的秩的不等式也一并参考上述文献。

四、相对特征根定义:设A 和B 均为P 阶实对称阵,B>0,方程 |A-λB |=0的根称为A 相对于B 的特征根。

性质:|A-λB |=0等价于|B -1/2AB -1/2-λI|=0(因为B>0,所以B 1/2>0)注:求A相对于B的特征根问题转化为求B-1/2AB-1/2的特征根问题或AB-1的特征根。

因B-1/2AB-1/2是实对称阵,所以特征根为实数。

定义:使(A-λi B)l i=0的非零向量l i称为对应于λi 的A相对于B的特征向量。

性质:①设l是相对于λ的A B-1的特征向量,则A B-1l=λl 或 A (B-1l)=λB( B-1l)B-1l 为对应λ的A相对于B的特征向量(转化为求A B-1的特征向量问题)。

②设l是相对于λ的B-1/2AB-1/2的特征向量,则B-1/2AB-1/2l=λl可得A (B-1/2l)=λB(B-1/2l)则B-1/2l 为对应λ的A相对于B的特征向量(转化为求B-1/2AB-1/2对称阵的特征向量问题)。

五、向量数与矩阵数向量与矩阵的数是描述向量和矩阵“大小”的一种度量。

先讨论向量数。

1. 向量数定义:设V为数域F上的线性空间,若对于V的任一向量x,对应一个实值函数x,并满足以下三个条件:(1)非负性 x 0≥,等号当且仅当x=0时成立; (2)齐次性 x x ,k,x V;α=α⋅α∈∈ (3)三角不等式x y x y ,x,y V +≤+∈。

则称x 为V 中向量x 的数,简称为向量数。

定义了数的线性空间定义称为赋线性空间。

例1. n x C ∈,它可表示成[]T12n x =ξξξ,i C ξ∈,1n22i 2i 1x ∆=⎛⎫=ξ ⎪⎝⎭∑就是一种数,称为欧氏数或2-数。

证明:(i )非负性 1n22i 2i 1x 0=⎛⎫=ξ≥ ⎪⎝⎭∑,当且仅当()i 0i 1,2,,n ξ==时,即x =0时,2x=0(ii )齐次性11nn 2222i i 22i 1i 1x x ==⎛⎫⎛⎫α=αξ=α⋅ξ=α⋅ ⎪⎪⎝⎭⎝⎭∑∑(iii )三角不等式[]T12n y =ηηη ,i C η∈[]T1122n n x y +=ξ+ηξ+ηξ+ηn22i i 2i 1x y =+=ξ+η∑()22222i i i i i i i i i i 2Re 2ξ+η=ξ+η+ξη≤ξ+η+ξηn222i i 222i 1x y x y 2=+≤++ξη∑()222222222x y x y 2x y +=++根据Hölder 不等式:11nnnpqp q i i i i i 1i 1i 1a b a b ===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑,i i 11p,q 1,1,a ,b 0p q >+=> 11nnn2222i i i i 22i 1i 1i 1x y ===⎛⎫⎛⎫=ξη≥ξη ⎪ ⎪⎝⎭⎝⎭∑∑∑∴ 222x y x y +≤+2. 常用的向量数(设向量为[]T12n x =ξξξ)1-数:ni 1i 1x==ξ∑;∞-数:1i nx i max ∞≤≤=ξ;P-数:1npp i p i 1x =⎛⎫=ξ ⎪⎝⎭∑ (p>1, p=1, 2,…,∞,);2-数:()1H22x x x=;椭圆数(2-数的推广):()1H2Axx Ax=,A 为Hermite 正定阵.加权数:1n22i i wi 1xw =⎛⎫=ξ ⎪⎝⎭∑,当[]12n A W diag w w w ==,i w 0>证明:px显然满足非负性和齐次性(iii )[]T12n y =ηηη1npp i p i 1x =⎛⎫=ξ ⎪⎝⎭∑,1n pp i pi 1y =⎛⎫=η ⎪⎝⎭∑,1npp i i p i 1x y =⎛⎫+=ξ+η ⎪⎝⎭∑()nnppp 1i i i ii ipi 1i 1nnp 1p 1i ii i iii 1i 1x y-==--==+=ξ+η=ξ+ηξ+η≤ξ+ηξ+ξ+ηη∑∑∑∑应用Hölder 不等式()11nnnqpp 1p 1q p ii i i ii i 1i 1i 1--===⎡⎤⎡⎤ξ+ηξ≤ξ+ηξ⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑ ()11nnnqpp 1p 1q p iii i ii i 1i 1i 1--===⎡⎤⎡⎤ξ+ηη≤ξ+ηη⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑()111p 1q p p q+=⇒-= ∴111n nn n qp p p p p p i i ii i i i 1i 1i 1i 1====⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥ξ+η≤ξ+ηξ+η ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦∑∑∑∑ 111nnnpppp p p ii i i i 1i 1i 1===⎛⎫⎛⎫⎛⎫ξ+η≤ξ+η ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑即 p p px y x y+≤+3. 向量数的等价性 定理 设α、β为n C 的两种向量数,则必定存在正数m 、M ,使得m xx M xαβα≤≤,(m 、M 与x 无关),称此为向量数的等价性。

同时有11x x x Mmβαβ≤≤注:(1)对某一向量X 而言,如果它的某一种数小(或大),那么它的其它数也小(或大)。

(2)不同的向量数可能大小不同,但在考虑向量序列的收敛性问题时,却表现出明显的一致性。

4、矩阵数向量数的概念推广到矩阵情况。

因为一个m ×n阶矩阵可以看成一个mn 维向量,所以m nC ⨯中任何一种向量数都可以认为是m ×n 阶矩阵的矩阵数。

1. 矩阵数定义:设m n C ⨯表示数域C 上全体m n ⨯阶矩阵的集合。

若对于m nC ⨯中任一矩阵A ,均对应一个实值函数A ,并满足以下四个条件:(1)非负性:A 0≥ ,等号当且仅当A=0时成立; (2)齐次性:A A ,C;α=αα∈(3)三角不等式:m n A B A B ,A,B C ⨯+≤+∈,则称A 为广义矩阵数;(4)相容性:AB A B ≤⋅,则称A 为矩阵数。

5. 常用的矩阵数 (1)Frobenius 数(F-数)F-数:12n2ij Fi j 1Aa =⎛⎫= ⎪⎝⎭∑,=矩阵和向量之间常以乘积的形式出现,因而需要考虑矩阵数与向量数的协调性。

定义:如果矩阵数A 和向量数x 满足Ax A x ≤⋅则称这两种数是相容的。

给一种向量数后,我们总可以找到一个矩阵数与之相容。

(2)诱导数设A ∈C m ×n ,x ∈C n , x 为x 的某种向量数, 记x 1A max Ax == 则A 是矩阵A 的且与x 相容的矩阵数,也称之为A 的诱导数或算子数。

相关文档
最新文档